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1.  INTRODUCTION

Expectations can have dramatic effects on sensory pro-
cessing (de Lange et  al., 2018). A prime example is 
speech perception, where word recognition is strongly 
affected by semantic context (Davis et al., 2011), word 
prevalence (Sereno et  al., 2003), and prior knowledge 

(Sohoglu et  al., 2012). Predictive coding is one of the 

leading frameworks explaining how expectations affect 

perceptual encoding (Friston, 2003, 2005; Rao & Ballard, 

1999). A key hypothesis of the framework is that sensory 

neurons at lower levels do not encode the features of the 

stimuli but prediction error: the difference between the 
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sensory input and the predictions of an internal genera-
tive model of the sensory world.

The encoding of prediction error to fast dynamic stim-
uli has been robustly demonstrated in the auditory cortex 
(Blank & Davis, 2016; Blank et al., 2018; Hovsepyan et al., 
2020; Signoret et al., 2020; Sohoglu & Davis, 2020; Stein 
et al., 2022; Vidal et al., 2019; Ylinen et al., 2016). How-
ever, anatomical and physiological properties make the 
subcortical auditory pathway very well suited to test 
hypotheses on fast dynamic sounds (Giraud et al., 2000; 
Osman et al., 2018; von Kriegstein et al., 2008): Neural 
populations in the auditory midbrain (inferior colliculus; 
IC) and thalamus (medial geniculate body; MGB) are 
endowed with much shorter time constants and faster 
access to acoustic information than neural populations in 
the cerebral cortex (Steadman & Sumner, 2018). More-
over, the nuclei are the target of massive cortico-thalamic 
and cortico-collicular efferent systems (Lee & Sherman, 
2011; Schofield, 2011; Winer, 1984, 2005a) that are pro-
pitious to transmit complex predictions.

Stimulus-specific adaptation (SSA) has been used as 
a first attempt to test for predictive coding in the subcor-
tical pathways. SSA is a phenomenon where individual 
neurons adapt to repetitions of a pure tone but show 
recovered responses to a frequency deviant (Ulanovsky 
et  al., 2003). SSA is present in single neurons of the 
rodent’s IC (Ayala et al., 2015; Gao et al., 2014; Parras 
et al., 2017; Pérez-González et al., 2012; Robinson et al., 
2016; Zhao et al., 2011) and MGB (Anderson et al., 2009; 
Antunes et al., 2010; Bauerle et al., 2011; Parras et al., 
2017), and in neural populations of the human IC and 
MGB (Cacciaglia et al., 2015; Cornella et al., 2015; Escera 
& Malmierca, 2014; Grimm et  al., 2011; Tabas et  al., 
2020). SSA can, however, be explained by both neural 
habituation and predictive coding (see Tabas & von 
Kriegstein, 2021a for a review). In the case of pure tones, 
we have recently used a novel SSA paradigm which 
revealed that SSA in human IC and MGB is driven largely 
by an internal model of the sensory world informed by the 
subjective expectations of the listeners, as hypothesised 
by predictive coding but not by neural habituation (Tabas 
et al., 2020).

In contrast to pure tones, natural sounds comprise 
highly dynamic elements that cannot be fully character-
ised by mixtures of pure tones. An ubiquitous example of 
these dynamic elements are fast frequency-modulated 
(FM)-sweeps (Liberman & Studdert-Kennedy, 1978; 
Liberman et  al., 1956). While pure tones are encoded 
according to their frequency along the tonotopic axis 
already at the basilar membrane (Hu, 2003), FM-sweeps 
are encoded in FM-direction and FM-rate selective neu-
rons (Kuo & Wu, 2012). In humans, the lowest level in the 
auditory hierarchy with evidence for fast FM-direction 

(Hsieh et al., 2012; Joanisse & DeSouza, 2014) and rate 
(Okamoto & Kakigi, 2015) selectivity is in auditory cortex; 
however, FM-sensitive neurons have been reported in the 
rodent IC and MGB (Issa et al., 2016; Kuo & Wu, 2012; 
Lui & Mendelson, 2003; Ye et  al., 2010; Zhang et  al., 
2003). Here, we focus on the subcortical auditory path-
way, where the encoding of FM has not been shown yet 
in humans, and where the encoding of FM as prediction 
error would be the most surprising.

We addressed two key questions. First, whether FM-
rate and FM-direction are already encoded in neural pop-
ulations of the human IC and MGB. Second, whether fast 
FM-sweeps are encoded in IC and MGB according to the 
principles of predictive coding; that is, as prediction error 
with respect to a generative model of the sensory world 
that incorporates the subjective expectations of the lis-
tener. We measured BOLD responses in the IC and MGB 
while participants listened to sequences of FM-sweeps. 
We used abstract rules to manipulate the subjective 
expectations of the participants on the incoming FM-
sweeps independently of local stimulus statistics. We 
reasoned that, if FM-sweeps were encoded according to 
their objective properties, an FM-sweep embedded in a 
specific statistical context should elicit the same activa-
tion no matter the expectations that participants have on 
its occurrence. Reversely, if FM-sweeps were encoded 
according to the principles of predictive coding, BOLD 
responses should directly depend on how well the sen-
sory input fits the expectations of the listeners.

2.  METHODS

This study was approved by the Ethics committee of the 
Technische Universtät Dresden, Germany (ethics 
approval number EK 315062019). All listeners provided 
written informed consent and received monetary com-
pensation for their participation.

2.1.  Participants

Eighteen German native speakers (12 female), aged 19 to 
31 years (mean 24.6), participated in the study. None of 
them reported a history of psychiatric or neurological dis-
orders, hearing difficulties, or current use of psychoactive 
medications. Normal hearing abilities were confirmed 
with pure tone audiometry (250 Hz to 8000 Hz); all partic-
ipants had hearing threshold equal to or below 15  dB 
SPL in the frequency range of the stimuli used in the 
experiment (1000  Hz–3000  Hz). Participants were also 
screened for dyslexia (German SLRT-II test (Moll & 
Landerl, 2014), RST-ARR (Ibrahimović & Bulheller, 2013), 
and rapid automatised naming (RAN) test of letters, 
numbers, objects, and colours (Denckla & Rudel, 1974)) 
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and autism (Autism Spectrum Quotient; AQ (Baron- 
Cohen et al., 2001)). All scores were within the neurotyp-
ical range (SLRT: min max PRwords,PRpseudowords( )( ) = 21, 
higher than the cut-off value of 16, following the same 
guidelines as Gutschmidt et  al. (2021); RST-ARR: all 
PR ≥ 31, higher than the cut-off value of 16; RAN: maxi-
mum of 3 errors and RT < 36 seconds in each of the four 
categories; AQ: all participants AQ ≤ 31, under or equal 
to the cut-off value of 32).

Since we had no estimations of the possible sizes of 
the effects, we maximised our statistical power by 
recruiting as many participant as we could fit in the MRI 
measurement time allocated to the study. This number 
was fixed to 20 before we started data collection, but  
2 participants dropped out of the study during data 

collection. We maximised the amount of data collected 
for participant to reduce random error to a minimum and 
maximise the likelihood of measuring effects at the 
single-subject level.

2.2.  Stimuli

The stimuli were three fast FM-sweeps: One sweep with a 
fast negative FM-rate (frequency span Δf = −200 Hz), one 
with a fast positive FM-rate (frequency span Δf = 200 Hz), 
and one with a slow positive FM-rate (frequency span 
Δf = 100 Hz; Fig. 1A, B). We used 50 ms long sweeps in the 
frequency range of f ∼ 1100  Hz so that they had the typical 
properties of formant transitions in speech (Liberman & 
Studdert-Kennedy, 1978). The sweep average frequencies 

Fig. 1.  Experimental design and hypotheses. (A) Example of an FM-sweep with positive FM-rate. (B) The three FM-
sweeps used in the experiment (in dark blue) in comparison to an hypothetical family of seven sweeps with increasing 
modulation rate. All sweeps had the same duration of 50 ms. They were characterised by differences in the frequency 
span Δf . (C) Example trial. Each trial consisted of a sequence of seven repetitions of one FM-sweep (standards; blue) 
and one other FM-sweep (deviant; red). In each trial, a single deviant was located in positions 4, 5, or 6 of the sequence. 
Participants reported, in each trial, the position of the deviant right after they identified it. Each participant completed up to 
540 trials in total, 60 per deviant position and FM-sweep combination Δ = Δfdeviant − Δfstandard . Sweeps within a sequence 
were separated by 700 ms inter-stimulus-intervals (ISIs). (D) Schematic view of the expected underlying responses in 
the auditory pathway for the sequence shown in (C), together with the definition of the experimental variables (std0: first 
standard; std1: repeated standards preceding the deviant; std2: standards following the deviant; devx: deviant in position 
x). (E) Schematic view of the six standard (blue) and deviant (red) combinations. Combinations are characterised by 
whether deviant and standard differ in: modulation direction only, modulation rate only, or both. (F) Expected responses 
in the auditory pathway nuclei corresponding to the hypotheses: h1) responses reflect adaptation by habituation only; h2) 
responses reflect prediction error with respect to the participant’s expectations.
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were adjusted so that all FM-sweeps were perceived as 
having the same pitch (Nabelek et al., 1970; Tabas & von 
Kriegstein, 2021b). We used a previous computational 
model to confirm that the selected FM-sweeps would elicit 
the same average activity along the tonotopic axis (Tabas 
& von Kriegstein, 2021b) and thus the same representation 
(averaged across the 50 ms duration of the stimuli) in the 
receptive fields encoding pure tones; that is, the receptive 
fields that were putatively used to differentiate between the 
stimuli in Tabas et al. (2020). Thus, if the model predictions 
are correct, participants would needed to engage FM-
direction and FM-rate selective circuits to differentiate 
between any two sweeps in the present paradigm.

All sounds were 50  ms long (including 5  ms in/out 
ramps) sinusoidal FM sweeps. The frequency sweeps 
lasted for 40 ms and were preceded and followed by 5 ms 
long segments of constant frequency that overlapped 
with the in/out ramps (Fig. 1A). The constant frequency 
and sweep segments were merged in the frequency space 
to avoid discontinuities in the stimulus waveforms. The 
constant frequency segments were used to guarantee 
that the entire sweep segments, which were controlled to 
elicit the same pitch percept, were played at the same 
loudness and audible in the loud noise generated by the 
MRI scanner. Participants could not have used these seg-
ments to characterise the sounds because they were only 
audible (having a loudness that was comparable or larger 
than the scanning noise) for about 2  ms, whereas the 
auditory system needs to integrate along four repetition 
cycles of the stimuli to characterise pitch (Pressnitzer 
et al., 2001); that is, for about 6 ms for a ∼ 1.5 kHz tone. 
Moreover, the constant frequency segments would be 
strongly affected by forward and backward masking 
(Elliott, 1971) from the louder and longer sweep segment.

We used a total of three sweeps during the experiment: 
a fast up sweep with starting frequency f0 = 1000 Hz and 
ending frequency f1 = 1200  Hz (Δf = 200 Hz); a slow up 
sweep with f0 = 1070 Hz and f1 = 1170 Hz (Δf = 100 Hz), 
and a fast down sweep with f0 = 1280 Hz and f1 = 1080 Hz 
(Δf = −200 Hz). The sweep average frequencies were 
adjusted so that all FM-sweeps elicited the same average 
activity along the tonotopic axis and were perceived as 
having the same pitch (Nabelek et al., 1970; Tabas & von 
Kriegstein, 2021b); this design guaranteed that FM-
direction and FM-rate selective neurons were necessary 
to differentiate between any two sweeps in the paradigm.

2.3.  Experimental paradigm

We arranged the stimuli in sequences of 8 FM-sweeps 
with 7 repetitions of the same sweep (standard) and one 
deviating sweep (deviant) (Fig.  1C). Participants were 
instructed to report, with a button press, the position of the 

deviant within the sequence as fast and accurately as pos-
sible after identifying the deviant. Each sequence was 
characterised by the position of the deviant and the com-
bination of sweeps. There were three combinations 
(Fig. 1E): one where the sweeps differed only on modula-
tion direction, one where the sweeps differed only on mod-
ulation rate, and one where the sweeps differed in both.

In each trial of the fMRI experiment, participants lis-
tened to one tone sequence and reported, as fast and 
accurately as possible using a button box with three but-
tons, the position of the deviant (4, 5 or 6). The inter-trial-
interval (ITI) was jittered to maximise the efficiency of the 
response estimation of the deviants (Friston et al., 1999). 
To do this, we first sampled the time lapsed between 
deviants (inter-deviant-interval; IDI) from a truncated nor-
mal distribution with an average of 5 seconds and a stan-
dard deviation of 1  second, truncated between 3 and 
11 seconds. We used the deviant position of the current 
and next trial to compute the corresponding ITI given the 
sampled IDI, and further constrained the ITI to be of a 
minimum of 1.5 seconds to ensure that participants were 
able to tell consecutive trials apart from each other. Par-
ticipants were allowed to report the deviant position up to 
2000 ms after the offset of the last tone; if participants 
had not responded after the minimum ITI of 1500 ms, this 
minimum was automatically extended to accommodate 
the additional waiting period. This construction resulted 
in the following summary statistics for the IDIs: mean of 
7.2  seconds, minimum of 5.2  seconds, maximum of 
13.0 seconds; and the following summary statistics for 
the ITIs: minimum of 1.5 seconds, mean of 4.8 seconds. 
These summary statistics ignored the periods of silence 
corresponding to the null trials.

We implicitly modulated the participant’s subjective 
expectations on the incoming stimuli using two abstract 
rules that were disclosed to the participants: 1) all 
sequences have a deviant, and 2) the deviant is always 
located in position 4, 5, or 6. The three deviant posi-
tions were used the same number of times along the 
experiment, so that the three deviant positions were 
equally likely at the beginning of the sequence. There-
fore, the likelihood of finding a deviant in position 4 
after hearing 3 standards is 1/ 3. However, if the deviant 
is not located in position 4, it must be located in either 
position 5 or 6, so participant expect a deviant in posi-
tion 5 after hearing 4 standards with a probability 1/ 2. 
The probability of finding a deviant in position 6 after 
hearing 5 standards is 1.

2.4.  Experimental design

Participants completed the task while we measured 
BOLD responses in participants’ IC and MGB with an 
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fMRI-sequence. All but one participant completed 9 runs 
of the main experiment across three sessions; participant 
18 completed only 8 runs for technical reasons.

Each run contained 6 blocks of 10 trials. The 10 trials 
in each block used one of the 6 possible sweep combina-
tions, so that all the sequences within each block had the 
same standard and deviant. Thus, within a block only the 
position of the deviant was unknown, while the deviant’s 
FM-direction and FM-rate were known in nine of every 10 
trials. The order of the blocks within the experiment was 
randomised. The position of the deviant was pseudoran-
domised across all trials in each run so that each deviant 
position happened 180 times per participant but an 
unknown amount of times per run. This constraint allowed 
us to keep the same a priori probability for all deviant 
positions in each block. In addition, there were 23 silent 
gaps of 5300 ms duration (i.e., null events of the same 
duration as the tone sequences) randomly located in 
each run (Friston et al., 1999), which did not necessarily 
fall at the end or beginning of a block. Each run lasted 
around 10 minutes, depending on the reaction times of 
the participant.

Due to an undetected bug in the presentation code, 
the standard/deviant combination of the trial was incor-
rectly recorded in some runs. The bug affected the first 
three runs of participants 1, 2, 4, and 5; and the first six 
runs of participant 3. This information was not relevant for 
the analyses that aggregated the data across sweep 
combinations, and affected only the analyses of Figure 5, 
where we excluded the affected runs of participants 1, 2, 
4, and 5, and participant 3 altogether.

2.5.  Functional localiser

We also run a functional localiser that was designed to 
activate the participant’s IC and MGB. Each run of the 
functional localiser consisted of 20 blocks of 16 seconds 
and lasted for about 6.5 minutes. Ten of the blocks were 
silent; the remaining blocks consisted of presentations of 
16 contiguous sounds of 1 second duration each. Sounds 
were taken from a collection of 85 natural sounds col-
lected by Moerel et al. (2015). Participants were instructed 
to press a key when the same sound was repeated twice, 
which happened on 5% of the trials. The participants 
received this task to ensure that they attended the 
sounds: behavioural data from the functional localiser 
was not used in the analysis.

2.6.  Experiment structure

Each session consisted of three runs of the main experi-
ment, interspersed with two runs of the functional localiser. 
All runs were separated by breaks of a minimum of 1 min-

ute to allow the participants rest. Fieldmaps and a whole-
head EPI were acquired between the third and fourth run. 
In the first session, we also measured a structural image 
before the fieldmaps. The first run of the first session was 
preceded by a practice run of four randomly chosen trials 
to ensure the participants had understood the task. We 
acquired fMRI during the practice run in order to allow the 
participants to undertake the training with MRI-noise.

2.7.  Data acquisition

MRI data were acquired using a Siemens Trio 3 T scanner 
(Siemens Healthineers, Erlangen, Germany) with a 
32-channel head coil. Functional MRI data were acquired 
using echo planar imaging (EPI) sequences. We used 
partial coverage with 24 slices. The volume was oriented 
in parallel to the superior temporal gyrus such that the 
slices encompassed the IC, the MGB, and the superior 
temporal gyrus. In addition, we acquired one volume of 
an additional whole-head EPI with the same parameters 
(including the FoV) and 84 slices during resting to aid the 
coregistration process (see Section 2.8).

The EPI sequence had the following acquisition 
parameters: TR = 1900 ms, TE = 42 ms, flip angle 66°, 
matrix size 88 × 88, FoV 154 mm × 154 mm, voxel size 
1.75 mm isotropic, bandwidth per pixel 1386 Hz/px, and 
interleaved acquisition. During functional MRI data acqui-
sition, cardiac signal was acquired using a scanner pulse 
oximeter (Siemens Healthineers, Erlangen, Germany).

Structural images were recorded using an MPRAGE 
(Brant-Zawadzki et al., 1992) T1 protocol with 1 mm iso-
tropic resolution, TE = 1.95 ms, TR = 1000 ms, TI = 880 
ms, flip angle 1 = 8°, and FoV = 256 mm × 256 mm.

Stimuli were presented using MATLAB (The Mathworks 
Inc., Natick, MA, USA) with the Psychophysics Toolbox 
extensions (Brainard, 1997) and delivered through an 
Optoacoustics (Optoacoustics Ltd, Or Yehuda, Israel) 
amplifier and headphones equipped with active noise-
cancellation. Loudness was adjusted independently for 
each participant to a comfortable level before starting the 
data acquisition.

2.8.  Data preprocessing

The preprocessing pipeline was coded in Nipype 1.5.0 
(Gorgolewski et al., 2011), and carried out using tools of 
the Statistical Parametric Mapping toolbox, version 12; 
Freesurfer, version 6 (Fischl et al., 2002); the FMRIB Soft-
ware Library, version 5 (FSL) (Jenkinson et al., 2012)); and 
the Advanced Normalization Tools, version 2.3 (ANTS) 
(Avants et  al., 2011). All data were coregistered to the 
Montreal Neurological Institute (MNI) MNI152 1 mm iso-
tropic symmetric template.
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First, we realigned the functional runs. We used SPM’s 
FieldMap Toolbox to calculate the geometric distortions 
caused in the EPI images due to field inhomogeneities. 
Next, we used SPM’s Realign and Unwarp to perform 
motion and distortion correction on the functional data. 
Motion artefacts, recorded using SPM’s ArtifactDetect, 
were later added to the design matrix (see Section 2.9).

Next, we used Freesurfer’s recon-all routine to calcu-
late the boundaries between grey and white matter (these 
are necessary to register the functional data to the struc-
tural images) and ANTs to compute the transformation 
between the structural images and the MNI152 symmet-
ric template.

Last, we coregistered the functional data to the struc-
tural image with Freesurfer’s BBregister, using the bound-
aries between grey and white matter of the structural data 
and the whole-brain EPI as an intermediate step. Data 
were analysed in the participant space, and then coregis-
tred to the MNI152 template. Note that, since the resolu-
tion of the MNI space (1 mm isotropic) was higher than 
the resolution of the functional data (1.75 mm isotropic), 
the transformation resulted in a spatial oversampling.

All the preprocessing parameters, including the 
smoothing kernel size, were fixed before we started fitting 
the general linear model (GLM) and remained unchanged 
during the subsequent steps of the data analysis.

Physiological (heart rate) data were processed by the 
PhysIO Toolbox (Kasper et al., 2017), that computes the 
Fourier expansion of each component along time and 
adds the coefficients as covariates of no interests in the 
model’s design matrix.

2.9.  Estimation of the BOLD responses

First level analyses were coded in Nipype and carried out 
using SPM. Second-level analyses were carried out using 
custom code in MATLAB. The coregistered data were 
first smoothed using a 2 mm FWHM Gaussian kernel with 
SPM’s Smooth.

The first-level GLM’s design matrix for the main exper-
iment included 6 regressors: first standard (std0), stan-
dards before the deviant (std1), standards after the 
deviant (std2), and deviants in positions 4, 5, and 6 (dev4, 
dev5, and dev6, respectively; Fig. 1). Conditions std1 and 
std2 were modelled using linear parametric modulation 
(O’Doherty et al., 2007), whose linear factors were coded 
according to the position of the sound within the sequence 
to account for effects of habituation (Tabas et al., 2020; 
Supplementary Fig.  S1). The first-level GLM’s design 
matrix for the functional localiser included 2 conditions: 
sound and silence. On top of the main regressors, the 
design matrix also included the physiological PhysIO  
and artefact regressors of no-interest. Beta values were  

z-scored per run and participant before running group 
statistics to ensure they all had zero mean and unit vari-
ance (Devore, 2008).

This design allowed us to maximally disentangle 
responses to stimuli that were close to each other in time 
at the cost of introducing the reasonable assumption that 
the responses to the repeated standards (std1 and std2) 
varied approximately linearly across successive repeti-
tions. The resulting design matrix, convoluted by the 
hemodynamic response function (Glover, 1999), presents 
moderate correlations between most pairs of regressors 
(Supplementary Fig.  S2). Although these correlations 
reduce the statistical power to detect differences in 
responses to correlated regressors, with over 360 min-
utes of measured data for the main task per participant, 
our study is well equipped to compensate for the result-
ing decrease on statistical power. Moreover, correlation 
between regressors can under no circumstance result in 
an increase of type I errors (i.e., false positives) (Mumford 
et al., 2015); therefore, the measured correlations do not 
challenge the interpretability of positive results.

Analyses geared towards testing whether responses 
to different deviants differed were carried out by fitting 
the regressors across all trials to maximise statistical 
power. Analyses geared towards testing specific sensitiv-
ity to FM-direction or FM-rate were carried out by defin-
ing a total of 18 regressors, 6 for each of the three 
standard/deviant combinations (Fig. 1E).

2.10.  Definition of the anatomical and SSA ROIs

We used a recent anatomical atlas of the subcortical audi-
tory pathway (Sitek et al., 2019) to compute prior regions 
corresponding to the left IC, right IC, left MGB, and right 
MGB, respectively. The atlas comprises three different 
definitions of the ROIs calculated using 1) data from the 
big brain project, 2) postmortem data, and 3) fMRI in vivo-
data. To compute the prior coarse region for each nuclei, 
we combined the three masks and inflated the resulting 
regions with a Gaussian kernel with FWHM = 1 mm isotro-
pic. Next, we used SPM to compute the contrast sound > 
silence of the data from the functional localiser. We then 
masked this contrast with each of the prior coarse regions. 
Last, we iteratively thresholded the contrast to increas-
ingly conservative higher values until the number of sur-
viving voxels equal the volume of the region reported in 
Sitek et al. (2019); namely, 146 voxels for each of the ICs, 
and 152 for each of the MGBs.

The final IC and MGB regions were computed by com-
bining the prior coarse regions with the results from the 
contrast sound > silence of the functional localiser. Within 
each region, we thresholded the contrast to increasingly 
higher values until the number of surviving voxels equalled 
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the volume of the region reported in Sitek et  al. (2019); 
namely, 146 voxels for each of the ICs, and 152 for each of 
the MGBs.

To address our first research question, whether neural 
populations of human IC and MGB encode FM-rate and 
FM-direction, we tested whether these two nuclei show 
SSA to the FM-sweeps used in the experiment; namely, if 
neural responses in IC and MGB adapt to repeated FM-
sweeps while preserving high responsiveness to FM-
sweeps that deviate from the standards in FM-rate or 
FM-direction (Fig. 1D). Since all sweeps were designed to 
elicit the same average activation across the tonotopic axis 
and elicited the same pitch percept, neural populations 
showing SSA to these FM-sweeps necessarily comprise 
neurons that are sensitive to FM-rate and FM-direction.

We used the coefficients of the GLM or beta esti-
mates from the first-level analysis to calculate the adap-
tation and deviant detection ROIs, defined as the sets of 
voxels within the IC and MGB ROIs that responded sig-
nificantly to the contrasts std0 > 0.5 std1+ 0.5 std2 and 
dev4 > 0.5 std1+ 0.5 std2, respectively. Significance was  
defined as p < 0.05, family-wise-error (FDR)-corrected 
for the number of voxels within each of the IC/MGB 
ROIs. SSA voxels are defined as voxels that show both, 
adaptation and deviant detection; thus, we calculated 
an upper bound of the p-value maps for the SSA con-
trast as the maximum of the uncorrected p-values asso-
ciated to the adaptation and deviant detection contrasts. 
The SSA ROIs were calculated by FDR-correcting and 
thresholding the resulting p-maps at α = 0.05. All calcu-
lations were performed using custom-made scripts (see 
Data and Code Availability section).

2.11.  Bayesian model comparison

To address our second research question, whether IC and 
MGB responses encode FM-sweeps as prediction error 

with respect to the listener expectations, we used Bayes-
ian model comparison. According to predictive coding, 
both the responses to deviants and standards should 
scale with the predictability of the stimuli. Due to the lim-
ited temporal resolution of fMRI, we cannot use a classi-
cal analysis to robustly estimate the responses to the 
standards and the deviants simultaneously in each single 
voxel. However, by introducing reasonable assumptions 
on the response patterns expected by habituation 
(Malmierca et  al., 2009) and prediction error (Friston, 
2003), Bayesian techniques can evaluate whether a voxel 
is significantly likely to encode prediction error to both, 
deviants and standards.

We considered two models. The first model assumed 
that adaptation to repeated fast FM-sweeps was driven 
by habituation to the stimulus sequence properties, inde-
pendently of participant’s expectations; namely, that 
neural populations habituate to repetitions of the stan-
dard, but show recovered responses to deviant irregard-
less of their position (habituation hypothesis; Fig. 1F, h1). 
The second model assumed that adaptation was driven 
by predictive coding; namely, that neural responses to 
the deviants encoded prediction error with respect to the 
expectations of the participants (predictive coding 
hypothesis; Fig. 1F, h2). Although we expect habituation 
to also contribute to the BOLD response in this last sce-
nario, we conservatively decided not to include an addi-
tional habituation regressor in h2 to limit its explanatory 
power in voxels that are not driven by prediction error.

The Bayesian analysis of the data consisted as well of 
first- and second-level analyses. In the first level, we used 
SPM via nipype to compute the log-evidence in each 
voxel of each participant for each of the four models (see 
Fig. 2). The models were described using regressors with 
parametric modulation whose coefficients corresponded 
to a simplified view of the expected responses according 
to each model (Table 1). The expected responses of each 

Fig. 2.  Design of the Bayesian models. The table shows the parametrised expected response to each tone in the 
sequence (rows) for the two different models (h1/h2) and the three deviant positions. Each model was defined according 
to the relative amplitudes it predicted for the different sounds in the sequences. H1 assumed asymptotic habituation to 
consecutive standards and recovered responses to deviants. H2 assumed that responses to the stimuli depended on how 
predictable they were. Note that the models have free linear parameters: the displayed amplitudes are one of the many 
possible solutions of the linear fit. See Table 1 for an exact definition of each model.
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Fig. 3.  Performance and reaction times. Mean accuracy 
(A) and reaction times (B) across deviant positions. 
Grey circles represent the average value per participant 
and deviant position. Violin plots are the kernel density 
estimations of the reaction times for each deviant position. 
**p < 0.005, ****p < 0.00005; all p-values corrected for  
3 comparisons.

model were the same in all trials that had the same 
standard-deviant combination and deviant position. 
Given the model amplitude(s) an and the timecourse of a 
voxel y, SPM calculates the log-evidence of the linear 
model y = ∑βnan + ξ, where βn are the linear coefficients 
of each regressor and ξ are noise terms.

Log-evidence maps for each participant were com-
bined following the random-effects-equivalent procedure 
described in Rosa et al. (2010) and Stephan et al. (2009) to 
compute the posterior probability maps associated to each 
model at the group level. We combined the maps using 
custom scripts (see Data and Code Availability section). 
Histograms shown in Figures 7 and 8 are kernel-density 
estimates computed with the distribution of the posterior 
probabilities across voxels for each of the SSA ROIs.

2.12.  Statistical analysis

All pairwise comparisons reported in the study were eval-
uated for significance using two-tailed Ranksum tests. 
Unless stated otherwise, p-values for all analyses that 
comprised multiple testing were corrected using the 
Holm-Bonferroni method. A result was deemed statisti-
cally significant when the corrected p < 0.05.

3.  RESULTS

3.1.  Behavioural responses

Behavioural results showed an average accuracy over 
0.96 to all deviant positions (Fig.  3A). Accuracy was 
slightly higher for the two more expected deviant pos
itions, but differences between conditions were not sig
nificant (p > 0.1, uncorrected). Reaction times (Fig.  3B) 

Table 1.  Amplitudes of the models used for Bayesian Model Comparison.

1 2 3 4 5 6 7 8

h1 deviant in 4 a0 a1 a1/2 a2 a3 a3/2 a3/3 a3/4
deviant in 5 a0 a1 a1/2 a1/3 a2 a3 a3/2 a3/ 3
deviant in 6 a0 a1 a1/2 a1/3 a1/4 a2 a3 a3/2

h2 deviant in 4 a0 0 0 2a1/3 0 0 0 0
deviant in 5 a0 0 0 a1/3 a1/2 0 0 0
deviant in 6 a0 0 0 a1/3 a1/2 0 0 0

H1 assumes an asymptotic decay (a0 ∝1/n where n is the position of the stimulus in the sequence) in the responses for all standards, a 
full response to deviants, and a recovery from the last standard before the deviant and the first standard after the deviant that is sufficient 
to make the responses to both standards comparable. The model was built as a simplification of the average dynamics reported in the 
animal literature on SSA (e.g., Malmierca et al., 2009). The free parameters encode the relative decay from the first to the second standard 
(a0/a1), the recovery between the last standard before the deviant and the first standard after the deviant (modulated by a3), and the 
recovery of the responses to the deviant (a2). H2 assumes that the responses scale with predictability (a0 = 1− p, where p is the likelihood 
of finding the heard stimuli in each position). The model was built following the precision-weighted formulation of predictive coding 
(Friston, 2003), which assumes that predictability is a multiplicative factor in the generation of prediction error. We used an additional free 
parameter to encode the amount of prediction error elicited by the first standard (a0, which, unlike the rest of the stimuli in the trial, is 
additionally affected by uncertainty in the time onset). These models include a larger number of free parameters than the ones we used 
in our previous study (Tabas et al., 2020). The additional parameters allowed us to capture a variety of habituation and prediction error 
dynamics within the same model, rendering the definitions more general. However, using the more restricted models from Tabas et al. 
(2020) yields similar results (Supplementary Fig. S2).

showed a behavioural benefit of expectations: Partici-
pants reacted faster to more expected deviants (average 
RT = 770 ms, 558 ms and 246 ms for deviants at posi-
tions 4, 5, and 6, respectively; all differences were signifi-
cant with p < 0.0001, corrected for 3 comparisons).

3.2.  Human IC and MGB show stimulus specific 
adaptation (SSA) to FM-sweeps

We first studied whether the IC and MGB show SSA to 
fast FM-sweeps to test if the two nuclei are sensitive  
to FM-rate and FM-direction in humans. To compute  
SSA, we determined which voxels within the ICs and 
MGBs adapted to the standard (i.e., adaptation) and 
recovered responsiveness to deviants (i.e., deviant 
detection). SSA regions were then defined as the inter-
section between adaptation and deviant detection 
regions. ICs and MGBs were identified based on struc-
tural MRI data and an independent functional localiser 
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(see Section 2; IC and MGB ROIs; coloured patches in 
Fig. 4). Within these ROIs, we used non-parametric rank-
sum tests (N = 18; one sample per participant) to find 
which voxels showed significant adaptation to repeated 
standards (contrast std0 > 0.5 std1+ 0.5 std2). The asso-
ciated p-maps were thresholded so that the false-
discovery-rate FDR < 0.05. Surviving voxels constituted 
the adaptation ROIs (blue and purple patches in Fig. 4). 
The same procedure was used to delimit the deviant 
detection ROIs (red and purple patches in Fig. 4): the set 
of voxels within each anatomical ROI that responded sig-
nificantly stronger to deviants than to repeated standards 
(contrast dev4 > 0.5 std1+ 0.5 std2; note that we com-
pare the responses to the repeated standards with dev4 
as this is the deviant position for which participants have 
the lowest expectation). The four anatomical ROIs 
showed significant adaptation (peak p ≤ 0.0001) and 
deviant detection (peak p < 0.0001; cluster size, exact 
peak p-values, and MNI coordinates are shown in 
Table 2; all p-values corrected for four comparisons).

SSA regions were computed combining the unthresh-
olded adaptation and deviant detection p-maps. The 
uncorrected p-value associated to SSA for a given voxel 
was pSSA =max padaptation,pdeviant detection( ) . SSA p-maps 
where thresholded to FDR < 0.05 to compute the SSA 
ROIs (Fig.  4, purple). The four anatomical ROIs had 
extensive SSA regions (cluster sizes larger than 90 mm3; 
peak p ≤ 0.0003; exact peak p-values and MNI coordi-
nates are shown in Table 2; all p-values corrected for four 
comparisons).

Significant SSA was also found in at least one of the 
nuclei of 15 of the 18 participants (p ≤ 0.048 for each of 
the 15 participants, corrected for the 596 voxels included 
in a global subcortical auditory ROI that comprised bilat-

Fig. 4.  Mesoscopic stimulus specific adaptation (SSA) in bilateral IC and MGB. Regions within the MGB and IC 
ROIs adapted to the repeated standards (adaptation; blue shows adaptation only, purple shows SSA, which includes 
adaptation) and recovered responses to deviants (deviant detection; red shows deviant detection only, purple shows SSA, 
which includes deviant detection). Stimulus-specific adaptation (i.e., recovered responses to a deviant in voxels showing 
adaptation; SSA) occurred in bilateral MGB and IC (purple). Maps were computed by thresholding the contrast p-maps 
at FDR < 0.05. Yellow patches show voxels included in the anatomical masks computed with a functional localiser that 
showed neither adaptation nor deviant detection.

eral IC and MGB), but not all participants showed signifi-
cant SSA in all ROIs (IC-L: 8 participants, p ≤ 0.049; IC-R, 
MGB-L, MGB-R: 6 participants each, with p ≤ 0.048; all  
p-values corrected for the number of voxels in the ROI 
and further corrected for four ROIs).

These results confirmed that there are extensive 
regions of bilateral IC and MGB that selectively habituate, 
and therefore are sensitive, to FM direction and rate.

3.3.  Human IC and MGB are sensitive to  
FM-direction and FM-rate

In the next step, we specifically tested whether the IC and 
MGB are similarly sensitive to FM-rate and FM-direction. 
To do that, we analysed the regressor fits corresponding 
to: 1) trials where the standard and deviant differed only in 
modulation direction but not in absolute modulation rate; 
and 2) trials where the standard and deviant differed only 
in modulation rate but not in direction. If IC and MGB 
encode direction and rate, we would expect similar results 
in both partitions of the data. Conversely, if human IC and 
MGB are only sensitive to one of the two properties, we 
would expect null effects in the partition of the data where 
the standard and deviants differ in the other property.

Results were similar in both partitions of the data 
(Fig.  5), demonstrating that the human IC and MGB 
encode both FM-direction and FM-rate.

We further corroborated that the levels of SSA were 
comparable for both types of FM changes at the single-
subject level. In order to characterise FM-sensitivity 
with a number for each subject and FM-sweep combi-
nation, we used the SSA index (Ulanovsky et al., 2003) 
SI  (Eq. (1); note that SI > 0 is equivalent to the deviant 
detection contrast used in Fig. 4).
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SI =
dev4 − 1

2
std1+ std2( )

dev4 + 1
2
std1+ std2( )

	

(1)

We measured the difference in SI to FM-direction (SIdir)  
and FM-rate (SIrate) in the voxels of the subject-specific 
SSA regions calculated in the previous section for each of 
the 15 subjects for which we obtained significant SSA. If 
FM-direction and FM-rate are both encoded in IC and 
MGB, we would expect no difference between these two 
partitions of the data. We measured the difference using 
Cohen’s d = SIdir − SIrate( ) / σ ), where SI  is the aver-
age of SI  and σ  is the pooled standard deviation. The 
difference ranged between d ≥ −0.33 and d ≤ 0.475  across 
participants. The expected value of the difference 
(E d[ ] = 0.02 ± 0.05) overlapped with zero, indicating once 
again that both FM-direction and FM-rate are already 
encoded in the subcortical auditory pathway.

3.4.  Expectations drive the encoding of FM-sweeps 
in IC and MGB

To address our second question, we evaluated whether 
the average pooled BOLD responses to deviants in the 
three different positions were affected by participant’s 
subjective expectations within the SSA regions. In congru-
ence with the predictive coding hypothesis (Fig. 1F, h2), 
the response profile showed reduced responses for more 
expected deviants (Fig. 6). This pattern was systematically 
reproduced in all subjects (Supplementary Fig. S4).

Formal statistical testing confirmed that responses  
to different deviant positions were different in all ROIs  
for all contrasts among deviant positions: dev4 ≠ dev5 
( d ≥ 0.99 and p < 0.006), dev4 ≠ dev6 ( d ≥ 2.39 and 
p < 0.00005), and dev5 ≠ dev6 ( d ≥ 1.74 and p < 0.0003; 
all p-values corrected for 3× 4 12 comparisons). Exact  
p-values and effect sizes are listed in Table 3. All statisti-
cal tests included one sample per participant, ROI, and 
deviant position.

Table 2.  Statistics and MNI coordinates of the adaptation and deviant detection contrasts in the four regions of interest.

Contrast ROI Cluster size MNI coordinates (mm) Peak-level p-value

adaptation left IC 130 voxels −4,−35,−9[ ] p = 1×10−4
right IC 124 voxels 4,−35,−9[ ] p = 8 ×10−5

left MGB 152 voxels −14,−25,−7[ ] p = 8 ×10−5

right MGB 146 voxels 14,−26,−6[ ] p = 1×10−4

deviant detection left IC 92 voxels −6,−33,−10[ ] p = 9×10−5

right IC 91 voxels 6,−33,−8[ ] p = 7×10−5

left MGB 136 voxels −14,−24,−7[ ] p = 5×10−5

right MGB 140 voxels 11,−27,−5[ ] p = 2×10−5

SSA left IC 91 voxels −4,−35,−9[ ] p = 3×10−4

right IC 91 voxels 6,−33,−9[ ] p = 2×10−4

left MGB 136 voxels −14,−25,−7[ ] p = 2×10−4

right MGB 140 voxels 12,−26,−5[ ] p = 1×10−4

All p-values FDR-corrected for the number of voxels in each anatomical ROI and further corrected for 4 comparisons within each contrast.

Fig. 5.  Summary BOLD responses for partitions of the data where deviant and standard differed only in direction or 
rate. Average z-score in each of the four SSA ROIs to the different experimental conditions in trials where the standard 
and deviant differed only in direction (orange) or rate (yellow). Violin plots are kernel density estimations of the distribution 
of z-scores, averaged over voxels and runs of each ROI. Each distribution holds 17 samples, one per participant (one 
participant was excluded from this analysis because there were not enough trials available, see Section 2 for details). 
Black error bars show the mean and standard error of the distributions.
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To corroborate that differences were present at the 
single-subject level, we run a correlation analysis for each 
of the 15 participants for which we obtained significant 
SSA. In each participant, we computed the Pearson’s cor-
relation between the BOLD responses elicited by each 
deviant position with its likelihood of occurrence (namely, 
1/ 3 for deviant 4, 1/ 2 for deviant 5, and 1 for deviant 6). If 
BOLD responses reflect prediction error, we would expect 
a negative correlation between the likelihood and the 
responses. We found significantly negative correlations in 

Fig. 6.  Summary BOLD responses. Average z-score in each of the four SSA ROIs to the different regressors. Violin 
plots are kernel density estimations of the distribution of z-scores, averaged over voxels and runs of each ROI. Each 
distribution holds 18 samples, one per participant. Black error bars show the mean and standard error of the distributions. 
Significance bars were computed by pooling across standard-deviant combinations. Single-subject distributions are 
shown in Supplementary Figure S4. Std0, first standard; std1: standards preceding the deviant; std2: standards following 
the deviant; dev4, dev5, and dev6: deviants at positions 4, 5, and 6, respectively (Fig. 1D). *p < 0.05 , **p < 0.005, 
***p < 0.0005, ****p < 0.00005; all p-values corrected for 12 comparisons.

Table 3.  Statistics of the average BOLD response 
differences between deviant positions.

IC-L

dev5 dev6
dev4 d = 0.89 p = 0.017 d = 2.35 p = 4 ×10−5

dev5 d = 1.75 p = 4 ×10−4

IC-R

dev5 dev6
dev4 d = 0.86 p = 0.022 d = 2.24 p = 10−4

dev5 d = 1.74 p = 5×10−4

MGB-L

dev5 dev6
dev4 d = 1.20 p = 0.0075 d = 2.46 p = 10−4

dev5 d = 1.68 p = 0.0015

MGB-R

dev5 dev6
dev4 d = 1.17 p = 0.0073 d = 2.91 p = 2×10−5

dev5 d = 2.40 p = 3×10−4

Effect size is expressed as Cohen’s d. Statistical significance was 
evaluated with two-tailed Ranksum tests between the distributions 
of the mean response in each ROI across participants (N = 18 ), 
pooling across standard-deviant combinations. All p-values in the 
table are corrected for 3× 4 = 12 comparisons.

all 15 participants (ρ∈ −0.87,−0.42[ ], all p < 0.03; all Pear-
son tests had 9× 3 = 27 samples, 3 per run).

3.5.  FM-sweeps are encoded as prediction error  
in the majority of IC and MGB voxels

We used Bayesian model comparison to formally evalu-
ate whether the responses in each voxel of the IC and 
MGB ROIs were best explained as prediction error. This 
approach provides for a quantitative assessment of the 
likelihood that each of the two hypotheses (Fig. 1F) can 
explain the responses in each voxel. This analysis is sen-
sitive to possible region-specific effects that could have 
been averaged out when aggregating the z-scores across 
voxels in each ROI.

Following the methodology described in Rosa et  al. 
(2010) and Stephan et al. (2009), we first calculated the 
log-likelihood of each model in each voxel of the two ICs 
and MGBs in each participant. Each model yields different 
predictions on the relative amplitudes to different positions 
in the sequences (Fig. 1F). We tested h1 and h2 to adju-
dicate between the habituation and predictive coding 
explanations of the responses. H1 assumed an asymp-
totic decay of the standards and recovered responses to 
the deviants; h2 assumed that the responses to both 
deviants and standards would depend on the participant’s 
expectations (Fig.  2; for exact values, see Section  2). 
Participant-specific log-likelihoods were used to compute 
the Bayes’ factor K  (i.e., the ratio of the posterior likeli-
hoods) between h1 and h2.

H2 was the best explanation for the data in the majority 
of voxels of the four ROIs (Fig. 7): h2 was more likely than 
h1 in all voxels of the left and right IC, and in 85% and 
61% of the voxels of the left and right MGB, respectively 
(see also results from an alternative BMC analysis based 
on Tabas et al. (2020) in Supplementary Fig. S3).
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To test whether the effect was present at the single-
subject level, we computed K  independently for each sub-
ject in the subject-specific bilateral IC and MGB. Since we 
performed the group analyses over the entire ROIs (and not 
only the SSA regions), here we used the full anatomical 
ROIs of each participant. We measured for how many vox-
els within each participant h2 was the better explanation of 
the data (see full results in Supplementary Fig. S5). In 15 of 
the 18 participants (all but subjects 3, 5, and 18), there were 
more voxels for which K > 10  than for which K < 1/ 10 ; 
namely, more voxels for which there was substantial evi-
dence in favour of h2 than for h1. These single-subject level 
results confirmed that responses do not simply habituate 
to successive repetitions of the tone but that, as hypothe-
sised by predictive coding, they are also strongly affected 
by the subjective expectations of the listeners.

3.6.  FM-sweeps are encoded as prediction error  
in primary and secondary MGB

The auditory pathway is anatomically subdivided into two 
sections: the primary (lemniscal) or secondary (non-
lemniscal) pathways. The primary pathway is character-
ised by neurons that carry auditory information with high 

fidelity and it is generally regarded as responsible for the 
transmission of bottom-up sensory input (Hu, 2003). The 
secondary pathway has wider tuning curves and it is gen-
erally regarded as responsible for the integration of con-
textual and multisensory information (Hu, 2003).

Both IC and MGB comprise regions that participate in 
both, the primary and secondary pathways (Hu, 2003). 
The primary subdivision of the IC is its central nucleus, 
while the cortices constitute the secondary subdivisions. 
The primary subdivision of the MGB is its ventral section, 
while the medial and dorsal sections constitute the sec-
ondary subdivisions.

In rodents, SSA and prediction error to pure tones are 
significantly stronger in secondary subdivisions (e.g., 
Parras et al., 2017). In humans, prediction error is simi-
larly strong in primary and secondary MGB for pure tones 
(Tabas et al., 2020). Here, we test for differential repre-
sentations of prediction error to FM-sweeps in MGB.

Distinguishing between the primary and secondary 
subsection of the IC and MGB non-invasively is techni-
cally challenging (Moerel et  al., 2015). A recent study 
(Mihai et al., 2019) distinguished two distinct tonotopic 
gradients of the MGB. The ventral tonotopic gradient was 
identified as the ventral or primary (vMGB) subsection of 

Fig. 7.  Bayesian model comparison. (A) Bayes’ factor K between h2 (predictive coding) and h1 (habituation) in each of 
the voxels of the subcortical ROIs in a logarithmic scale. Voxels with negative logK values (K<1; blue) are best explained 
by h1; voxels with positive logK values (K >1; red) are best explained by h2. Single-subject K  factors are plotted in 
Supplementary Figure S5. (B) Kernel-density estimations of the distribution of K  for the model comparison h2/h1 across 
voxels (i.e., one sample per voxel). See Supplementary Figure S3 for a replication of these results, obtained using the 
mathematical definitions of the models of Tabas et al. (2020).
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the MGB (see Fig. 8A, green). Although the parcellation is 
based only on the topography of the tonotopic axes and 
their anatomical location, the region is the best approxi-
mation to-date of the vMGB in humans. No parcellation 
of the IC is available to-date.

Both primary and secondary subdivisions of bilateral 
MGB showed SSA. SSA strength was measured in each 
voxel using the SSA index (Eq. (1)). Distributions of the SI 
across the voxels of each of the subdivisions were compa-
rable in both hemispheres (Fig.  8B), demonstrating that 
SSA is not confined to nor stronger in the secondary MGB.

Predictive coding (h2) was the best explanation for the 
responses in 84% and 87% in the two subdivisions of the 
left MGB, and in 58% and 64% of the primary and sec-
ondary subdivisions of the right MGB, demonstrating the 
encoding of prediction error to FM-sweeps in both, pri-
mary and secondary subdivisions of bilateral MGB. More-
over, the distributions of the Bayes’ factor K between the 
predictive coding (h2) and adaptation (h1) hypotheses 
were comparable across subdivisions (Fig. 8C).

3.7.  Prediction error to FM-sweeps and pure tones 
has similar topographic distributions in the IC

To study whether the same neural populations are in 
charge of encoding prediction error to FM-sweeps and 

Fig. 8.  Analyses of BOLD responses in ventral MGB. (A) Masks from Mihai et al. (2019) of the ventral MGBs (green); 
blue indicates the remainder of the anatomical MGB ROIs. (B) The distribution of the SSA index SI  across each of the 
two subdivisions of the MGB ROIs; SI > 0  is usually interpreted as SSA in the animal literature (Ulanovsky et al., 2003). 
(C) Histograms showing Bayes’ factor K for the comparison between h2 and h1 (Fig. 1F) in each of the subdivisions. No 
systematic functional differences are apparent between primary and secondary MGB.

pure tones, we compared the topographic distribution of 
the Bayes’ factor K between the h2 and h1 in our data 
with the topographic distribution of the Bayes’ factor K 
we obtained in a previous experiment, where we mea-
sured BOLD responses to the same experimental para-
digm as here but using pure tones (Tabas et al., 2020). We 
computed the correlation between both K  across voxels 
of each of the four ROIs, as defined by the anatomical 
atlas from Sitek et al. (2019). To ensure that the analyses 
were comparable across studies, we ran a second Bayes-
ian Model Comparison analysis on the current data using 
the same model definitions as in Tabas et al. (2020) (see 
Supplementary Fig. S3).

Distribution of K  to both families of stimuli was strongly 
correlated across voxels of bilateral IC (left, ρ = 0.47, 
p = 4 ×10−9; right, ρ = 0.34, p = 3×10−5; p-values cor-
rected for 4 comparisons), but not across voxels of the 
MGBs (left, ρ = −0.11, p = 0.22; right, ρ = 0.15, p = 0.1; 
uncorrected p-values). These results indicate that the 
topographic distributions of prediction error responses 
are similar across stimulus modalities.

4.  DISCUSSION

The effects of expectations on sensory processing are 
readily evident in our daily lives. However, the neural 
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mechanisms underlying the integration of expectations at 
early stages of the acoustic processing pipeline are 
poorly understood. Here, we have investigated how fast 
FM-sweeps, an important dynamic component of natural 
sounds, are encoded in the human subcortical auditory 
pathway, and how the subjective expectations of the lis-
tener influence their processing. Our study provided four 
main findings: first, we showed that the human IC and 
MGB comprise FM-direction and FM-rate selective neu-
ronal populations. Second, we showed that responses in 
IC and MGB were driven by subjective expectations of 
the participants, demonstrating that the IC and MGB are 
integrated in a global network of predictive coding. The 
findings were robust and present at the single-subject 
level, demonstrating the generalisation power of the 
result. Third, we showed that the expectations deter-
mined the responses to FM-sweeps in primary and sec-
ondary subdivisions of bilateral MGB. Last, we showed 
that the topographic distribution of neural populations 
encoding the FM-sweeps as prediction error was similar 
to that of pure tones in the IC.

Combined, our results provide first demonstration that 
the human IC and MGB are actively engaged in the predic-
tive processing of dynamic stimuli that transcend the tono-
topic static representation: fast FM-sweeps. This confirms 
the long-standing hypothesis that predictive coding com-
bines high-level expectations with the exquisite temporal 
properties of the subcortical auditory pathway to promote 
the encoding of dynamic low-level features (von Kriegstein 
et al., 2008; Yildiz et al., 2013). This mechanism might be 
responsible for boosting encoding efficiency and aiding, 
for example, speech recognition.

Neurons that respond selectively to FM-direction and 
FM-rate have been located in rodents in the IC (Geis & 
Borst, 2013; Hage & Ehret, 2003; Li et al., 2010), MGB 
(Kuo & Wu, 2012; Lui & Mendelson, 2003), and auditory 
cortex (Issa et  al., 2016; Trujillo et  al., 2013; Ye et  al., 
2010; Zhang et al., 2003). In contrast, FM-selectivity has 
been reported in humans in auditory cortex (Okamoto & 
Kakigi, 2015) or higher-order areas of the cerebral cortex 
(Hsieh et al., 2012; Joanisse & DeSouza, 2014). One pre-
vious study (Chandrasekaran et  al., 2012) showed that 
auditory training improves encoding of rising FM-sweeps 
in the IC as measured by the frequency-following-
response (Coffey et  al., 2019), supporting the active 
involvement of the IC in the processing of FM. Here, we 
have established that neural populations in the human IC 
and MGB show SSA to FM-direction and FM-rate; since 
our FM-sweeps were matched in duration, pitch, and 
expected elicited activity along the tonotopic axis, our 
results extend previous findings providing first evidence 
for FM-direction and FM-rate selectivity in the human 
subcortical auditory pathway.

Animal studies have extensively shown that the SSA 
index to pure tones in IC and MGB increases with increas-
ing rarity and frequency difference of the deviant with 
respect to the standard (Anderson et al., 2009; Antunes & 
Malmierca, 2011; Antunes et al., 2010; Ayala et al., 2013, 
2015; Duque & Malmierca, 2015; Duque et  al., 2016; 
Malmierca et al., 2009; Zhao et al., 2011). These studies 
implicitly assume that sensory neurons form expecta-
tions based on the local statistics of the stimuli. This form 
of predictive coding, which we call local (Tabas & von 
Kriegstein, 2021a), is difficult to disambiguate from pas-
sive effects of neural habituation: Modelling studies have 
demonstrated that identical phenomenology can be pro-
duced by synaptic fatigue without the need of maintain-
ing additional internal generative models (Eytan et  al., 
2003; Mill et al., 2011, 2012). Manipulating expectations 
orthogonally to stimulus regularities is the only way to 
assess if prediction error is computed with respect to a 
global model of the sensory world (Tabas & von Kriegstein, 
2021a).

To date, the only evidence (see Tabas & von Kriegstein, 
2021a for a review) that subcortical nuclei encode stimuli 
according to subjective expectations independently of 
stimulus regularities was provided by our previous study 
on pure tones in human IC and MGB (Tabas et al., 2020). 
Here, we used fast FM-sweeps that were explicitly 
designed to elicit the same activation across the tonotopic 
axis (Tabas & von Kriegstein, 2021b) to ensure that partic-
ipants had to make use of FM-direction and FM-rate 
selective neurons to differentiate the deviant from the stan-
dards. The current findings demonstrate that the same 
principles apply to the encoding of dynamic FM-sweeps.

Our results also showed that the topographic distribu-
tion of voxels encoding pure tones and FM-sweeps 
according to the principles of predictive coding was 
highly correlated in the IC, but not in the MGB. This diver-
gence might indicate a different functional role of the IC 
and the MGB with respect to both families of stimuli; 
however, it might also be caused by a greater variability 
in the anatomical location and orientation of the MGB 
across subjects (Moerel et al., 2015) and should be con-
sidered with caution.

The expectations induced by our paradigm are still far 
from the complexity of the predictive system putatively in 
charge of the processing of natural complex signals like 
speech. However, we speculate that an integrated 
inverted hierarchy could propagate linguistic predictions 
to the representational level of formant transitions (Friston 
et al., 2021; Tabas & von Kriegstein, 2021a; von Kriegstein 
et al., 2008), and use these predictions to compute pre-
diction error in the IC and MGB.

The expectations induced by our paradigm are most 
likely generated in the cerebral cortex. However, since we 
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optimised our paradigm to study prediction error rather 
than the generation of expectations, we cannot test 
whether the subcortical responses we measured are 
driven or not by corticofugal projections. This possibility 
would be consistent with the massive corticofugal con-
nections from cerebral cortex to MGB and IC (Winer, 
1984, 2005b), and with results from animal studies where 
the deactivation of unilateral auditory cortex (Bauerle 
et al., 2011) or the thalamic reticular nucleus (Yu et al., 
2009) led to reduction of SSA in the ventral MGB (but also 
see contradictory findings in non-lemniscal MGB 
(Antunes & Malmierca, 2011) and non-lemniscal IC 
(Anderson & Malmierca, 2013)).

The present and previous (Tabas et al., 2020) results 
demonstrate that the IC and the MGB encode auditory 
stimuli according to subjective expectations when the 
sensory signal is relevant for the listener’s task. This 
encoding strategy might 1) be general to sensory pro-
cessing or specific to the processing of task-relevant 
stimuli; and 2) be particular of processing under abstract 
expectations that are explicitly known by the listeners or 
general to any expectation that could be inferred from 
exposure to the sensory input. Previous studies showed 
that the IC and the MGB adapt to stimulus regularities 
even in the absence of a task (e.g., Cacciaglia et  al., 
2015). Whether abstract regularities also affect the 
encoding of task-irrelevant stimuli in the subcortical 
pathway is still an open question.

Despite the fact that the MGB is at a higher processing 
stage than the IC, we found similar prevalence of the pre-
dictive coding Bayesian model (h2) in both nuclei for FM-
sweeps (Fig.  7) as well as for pure tones (Tabas et  al., 
2020). These results contrast with a study in rodents, 
concluding that the MGB encodes prediction error more 
strongly than the IC (Parras et al., 2017). We speculate 
that this fundamental difference is caused by the intro-
duction of abstract rules in our paradigm. Since predic-
tion error depends only on the local representation and 
the predictions (Friston, 2003), there is no reason for pre-
diction error to vary across hierarchical stages that 
receive the same set of predictions and have comparable 
representation of the stimuli, as it is the case for FM-
sweeps in IC and MGB (Kuo & Wu, 2012) (and also for 
pure tones (Hu, 2003)). Rodent studies use passive lis-
tening tasks where expectations are induced by repeti-
tion. Without an explicit high-level model, prediction error 
can only be computed with respect to local models that 
may vary in complexity across processing stages. A task 
involving stimuli that are represented differently in IC and 
MGB should shed light on the hierarchical role played by 
each of the two stages.

Previous studies on subcortical SSA rested almost 
exclusively on pure tones (Carbajal & Malmierca, 2018; 

Malmierca et al., 2015; Tabas & von Kriegstein, 2021a). 
Only three studies considered whether SSA generalised 
to other acoustic properties. Thomas et  al. (2012) 
reported SSA to FM-rate in the IC of the big brown bat; 
however, since the authors used stimuli in the rate range 
of echolocation signals, it was unclear whether this 
behaviour would generalise to auditory FM. Gao et al. 
(2014) measured SSA using ramped and damped broad-
band noises in the IC, demonstrating that neurons in the 
IC adapt to intensity modulation. Last, Duque et  al. 
(2016) measured SSA to intensity, and showed that neu-
rons in the IC do not adapt to nominal loudness. Our 
findings complement these results showing that the 
human IC and MGB adapt to fast FM without loudness 
or spectral changes, and provides first evidence for SSA 
to acoustic properties other than pitch and loudness in 
the subcortical pathways.

We have argued that the response pattern in MGB and 
IC (Fig. 6) can be interpreted as the encoding of predic-
tion error with respect to the subjective expectations of 
the participants. There are two conceivable alternative 
interpretations for the results: that responses are driven 
by attention-driven gain modulation, and that responses 
are driven by general habituation to auditory stimuli. The 
former view interprets the higher responses to dev4 and 
dev5 as the result of a stronger attention of the partici-
pant to these positions, which are relevant to the task, 
and the lower responses to dev6, which is fully expected, 
as the results of a reduction of attention. Previous fMRI 
studies have indeed shown that attended stimuli elicited 
higher BOLD responses in auditory cortex (Lee et  al., 
2014; Paltoglou et  al., 2011), and to a much weaker 
extent also in the IC (Riecke et  al., 2018; Rinne et  al., 
2007, 2008; Varghese et al., 2015). However, this inter-
pretation of our results is unsatisfactory because, first, 
we observe statistically significant differences in the 
BOLD responses to dev4 and dev5 , although they are 
both equally relevant for the task. Second, we observed 
no systematic differences between responses to dev6  
and std2, whereas in a previous fMRI study deviants 
always elicited statistically significantly higher responses 
than standards (Cacciaglia et  al., 2015). This was the 
case although the study had lower statistical power in 
comparison to our study and used passive stimulation. 
Only by interpreting the BOLD responses in Figure 6 as 
prediction error with respect to the participant’s expecta-
tions we can explain the similar responses to dev6 and 
std2 in our paradigm.

The other conceivable interpretation is that the 
response pattern found in MGB and IC (Fig. 6) is driven 
by a kind of habituation that partially generalises to tones 
of other frequencies. This kind of general habituation has 
been reported in the human auditory cortex (e.g., Rosburg 
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et al., 2002). Since dev6 is preceded by five standards, it 
is plausible that general habituation incurs into lower 
responses to dev6 than to dev5 or dev4, which are pre-
ceded by four and three standards, respectively. How-
ever, this interpretation of our results is also unsatisfac-
tory. First, the effect size of the reduction of the responses 
to dev5 with respect to dev4 is d ! 1, and the effect of the 
response reduction from dev5 to dev6 is even stronger. If 
one more repetition of a standard was responsible for 
such a large reduction of the responses, we would expect 
the responses to dev4, which is preceded by three stan-
dards, to be much smaller than the responses to the first 
standard. However, we observe similar responses to 
dev4 and std0. Second, if there were strong general 
habituation effects capable of inducing a significant 
decrease in the BOLD responses in tones preceded by 
more than three standards, we would expect the 
responses to the standard preceding the deviant (std1) to 
elicit stronger responses than the standards following  
the deviant (std2 ). However, the results in Figure 6 show 
no systematic differences in the responses to std1  
and std2.

It has been previously suggested that prediction error 
may be encoded exclusively in the non-lemniscal or 
secondary subdivisions of the IC and MGB (Ayala et al., 
2015; Malmierca et  al., 2015; Parras et  al., 2017). In 
agreement with this hypothesis, SSA is stronger in sec-
ondary subdivisions of the rodent’s IC (Ayala & 
Malmierca, 2018; Ayala et al., 2015; Duque et al., 2014; 
Gao et al., 2014; Pérez-González et al., 2012) and MGB 
(Antunes & Malmierca, 2011; Antunes et  al., 2010; 
Duque et al., 2014).

In contrast, our results indicated an apparent lack of 
specialisation across subdivisions of the MGB during the 
encoding of FM-sweeps: both subdivisions were simi-
larly responsive to FM, and they both encoded FM as 
prediction error. Similar results were apparent in our pre-
vious study when we investigated the encoding of pure 
tones (Tabas et  al., 2020). This lack of specialisation 
would fit with the idea that expectations are used in the 
subcortical pathways to aid encoding: to optimise the 
resources of the subcortical stations requires to make 
use of the narrow receptive fields of the primary subdivi-
sions (Hu, 2003).

The fundamental difference between our results and 
the findings in animals might stem from a number of 
reasons. First, our design involved an active task: lem-
niscal pathways might only be strongly modulated by 
predictions when they carry behaviourally relevant sen-
sory information. Second, the modulation of the subcor-
tical auditory pathway might be fundamentally different 
in humans compared to other mammals, as they have to 
accomplish processing of such complex and dynamic 

signals as speech. Last, given the strength of the SSA 
effects reported in this study, it is possible that regions 
with weak SSA might have been contaminated with sig-
nal stemming from areas with strong SSA due to 
smoothing and interpolation necessary for the analysis 
of fMRI data.

Given the paramount role of predictions on sensory 
processing (Blank et al., 2018; Davis et al., 2011; Davis 
& Johnsrude, 2007; de Lange et  al., 2018; Sohoglu 
et al., 2012), atypical predictive coding in the subcorti-
cal sensory pathway could have profound repercussion 
at the cognitive level (Diaz et al., 2012; McFadyen et al., 
2020; Tabas & von Kriegstein, 2021a). For instance, 
developmental dyslexia has been attributed to altered 
adaption dynamics to stimulus regularities (Ahissar 
et al., 2006; Chandrasekaran et al., 2009; Perrachione 
et  al., 2016), altered responses in the left MGB 
(Chandrasekaran et  al., 2009; Diaz et  al., 2012), and 
atypical left hemispheric cortico-thalamic pathways 
(Müller-Axt et  al., 2017; Tschentscher et  al., 2019). 
Understanding the mechanisms underlying the predic-
tive processing of dynamic acoustic features in subcor-
tical sensory pathways is an essential prerequisite to 
understand dysfunction.
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