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Abstract. In space dimension n ≥ 3, we consider the electromagnetic Schrödinger
Hamiltonian H = (∇−iA(x))2−V and the corresponding Helmholtz equation

(∇− iA(x))2u + u− V (x)u = f in Rn.

We extend the well known Lp-Lq estimates for the solution of the free Helmholtz
equation to the case when the electromagnetic hamiltonian H is considered.

1. Introduction

This paper is devoted to the study of some estimates for the Helmholtz equation
with electromagnetic potential. A very natural question is to extend the known
results for the Helmholtz equation with constant coefficients to the case when we
consider the perturbed Helmholtz equation by a potential. Our goal will be to
extend the well known Lp-Lq estimates for the free Helmholtz equation given in
[KRS], [CS], [Gut] and [Gut1] to the case when we perturb the equation with
an electromagnetic potential. More precisely, conditions on the electric and the
magnetic part of the potential will be given in order to ensure that the estimates
remain true. The Lp-Lq estimates for the free Helmholtz equation are the following:

(1.1) ‖u‖Lq(Rn) ≤ C‖f‖Lp(Rn),
where u is a solution of

(1.2) ∆u+ (τ ± iε)u = −f τ, ε > 0.

The exponents p and q in (1.1) have to verify some specific conditions that will be
specified later on. Here C can depend on τ , p, q and n and is independent of ε.

The investigation of the estimates (1.1) started in [KRS], where the study of
uniform Sobolev estimates for constant coefficient second order differential opera-
tors was accomplished. Later on, in [Gut], [Gut1] (See also [CS]) the range of the
exponents p and q where the estimates (1.1) hold was determined.

Moreover, in the purely electric case i.e., for Schrödinger Hamiltonians of the
type ∆ + V (x), where V : Rn → R is the electric potential, some positive results
were given in [RV].

Therefore the aim of the paper is to prove the corresponding estimates (1.1) in
the case when the electromagnetic Schrödinger hamiltonian is considered .

In the first part we will prove that the existing results for the free Helmholtz
equation can be extended to the perturbed equation if we impose precise decay
conditions at infinity for the electric and the magnetic potential. This can be done
without assuming smallness, neither for the electric part, nor for the magnetic part.

As it will be shown, for the electromagnetic case, the range for the exponents p
and q where the estimates (1.1) are valid is not the same as the one for the free
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case, hence in order to go further, we deal with the Helmholtz equation with purely
electric potential, trying to obtain results in the same region of boundedness of the
free equation.

Therefore, we consider the electromagnetic Schrödinger hamiltonian H of the
form

(1.3) H = (∇− iA(x))2 − V (x),

and the corresponding Helmholtz equation in dimensions n ≥ 3, namely,

(1.4) (∇− iA(x))2u+ u− V (x)u = f in Rn.

Here A : (A1, . . . , An) : Rn → Rn is the magnetic potential and V (x) : Rn → R is
the electric potential. Since now on, we denote by

∇A = ∇− iA, ∆A = ∇2
A.

The magnetic potential A is a mathematical construction which describes the in-
teraction of particles with an external magnetic field. The magnetic field B, which
is the physically measurable quantity, is given by

(1.5) B ∈Mn×n, B = DA− (DA)t,

i.e. it is the anti-symmetric gradient of the vector field A (or, in geometrical terms,
the differential dA of the 1-form which is standardly associated to A). In dimension
n = 3 the action of B on vectors is identified with the vector field curlA, namely

(1.6) Bv = curlA× v n = 3,

where the cross denotes the vectorial product in R3.
One of the most interesting facts related to the Lp-Lq estimates for the electro-

magnetic hamiltonian is that it seems that in order to conclude the boundedness of
the solution, one should be able to bound the first order term that appears when the
hamiltonian H is expanded. More concretely, when the term (∇− iA(x))2 in (1.4)
is expanded, a first orden term, namely A · ∇, comes out and it is well known that
there are no Lp-Lq estimates for the gradient of the solution of the free Helmholtz
equation,

(1.7) ∆u+ u = −f in Rn.

We will proceed in the following way. Let us consider the modified Helmholtz
equation with electromagnetic potential and fixed frequency τ = 1. It reads as
follows

(1.8) (∇− iA(x))2u+ (1± iε)u− V (x)u = f in Rn, ε 6= 0.

Remark 1.1. For convenience we will deal only with the case τ = 1, in contrast
with the case of general τ > 0.

We will prove the corresponding Lp-Lq estimates, independent of ε, for the so-
lution of (1.8). The independence of ε will imply that the result remains true for
the solution of (1.4). This can be seen in [IS].

Our method is a mixture of an a priori estimate and perturbative arguments.
This is what allows us to avoid smallness conditions in the potentials. Similar argu-
ments have been used in the setting of the free Schrödinger equation, as can be seen
in [BPST] and [DFVV]. Along the proof our basic tools will be the corresponding
Lp-Lq estimates and a L2-local estimate for the solution of the free Helmholtz equa-
tion, together with an a priori estimate for the solution of the modified Helmholtz
equation with electromagnetic potential (1.8).
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Before we describe the results that we are going to use during our proof, let us
introduce some basic notation. For f : Rn → C we define the Morrey-Campanato
norm as

(1.9) |||f |||2 := sup
R>0

1

R

∫
|x|≤R

|f |2dx.

Moreover, we denote, for j ∈ Z, the annulus C(j) by

C(j) = {x ∈ Rn : 2j ≤ |x| ≤ 2j+1},

(1.10) N(f) :=
∑
j∈Z

(
2j+1

∫
C(j)

|f |2dx

)1/2

,

and we easily see the duality relation∫
fgdx ≤ |||g||| ·N(f).

These norms were introduced by Agmon and Hörmander in [AH].
During the exposition, the truncated version of the norms appearing above will be
necessary. We will denote them respectively by

(1.11) |||f |||20 := sup
R≥1

1

R

∫
|x|≤R

|f |2dx,

(1.12) N0(f) :=
∑
j≥0

(
2j+1

∫
C(j)

|f |2dx

)1/2

.

Let us also denote by L2
β(Rn), for β ∈ R, the Hilbert space of all functions f such

that (1 + |x|)βf is square integrable over Rn. The norm in this space is denoted by
‖ · ‖β . Trivially we have that if β > 1/2 and f ∈ L2

β(Rn), then N0(f) < +∞.
As we have said, part of our method is perturbative, so in order to be able to

start, let us remind what is known for the free Helmholtz equation. Firstly, we are
going to state the result concerning the Lp-Lq estimates which appears in [Gut]
and [Gut1]. Let be

A =

(
n+ 3

2n
,
n− 1

2n

)
, A′ =

(
n+ 1

2n
,
n− 3

2n

)
B =

(
n2 + 4n− 1

2n(n+ 1)
,
n− 1

2n

)
, B′ =

(
n+ 1

2n
,
n2 − 2n+ 1

2n(n+ 1)

)

and ∆(n), the set of points of [0, 1]× [0, 1] given by

(1.13) ∆(n) =

{(
1

p
,

1

q

)
∈ [0, 1]2 :

2

n+ 1
≤ 1

p
− 1

q
≤ 2

n
,

1

p
>
n+ 1

2n
,

1

q
<
n− 1

2n

}
.

The set ∆(n) is the trapezium ABB′A′ with the closed line segments AB and B′A′

removed (see Figure 1).
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Figure 1. ∆(n), n ≥ 3.

Now, we are in conditions to recall the existing result for the Helmholtz equation
with constant coefficients.

Remark 1.2. In [Gut] (See also [Gut1]), estimates for the solution of the equation
perturbed with generals τ > 0 and ε > 0, are given, namely,

(1.14) ∆u+ (τ + iε)u = −F, τ, ε > 0.

The special case where the point (1/p, 1/q) lies on the open segment AA′ and on the
duality line 1/q = 1− 1/p in Figure 1 was previously obtained in [[KRS], Theorem
2.2 and 2.3 respectively].

Recall that we will only deal with the case of fixed frequency τ = 1. The Theorem
reads as follows.

Theorem 1.1. Let u be a solution of

(1.15) ∆u+ (1 + iε)u = −F, ε > 0.

Then, there exists a constant C, independent of ε, such that

(1.16) ‖u‖Lq(Rn) = ‖(∆ + (1 + iε))−1F‖Lq(Rn) ≤ C‖F‖Lp(Rn)

when ( 1
p ,

1
q ) ∈ ∆(n), n ≥ 3.

As we mentioned, another tool that will be crucial in the proof is an L2-local
estimate, which bounds the truncated Morrey-Campanato norm of the solution of
the free equation, defined in (1.11), in terms of the Lp norm of the RHS data. This
Theorem also appears in [RV], [Gut] and [Gut1]. The statement is the following.

Theorem 1.2. Let u be a solution of

(1.17) ∆u+ (1 + iε)u = −F, ε > 0.

If

(i) n = 3 or 4 and 1
n+1 ≤

1
p −

1
2 <

1
2 , or

(ii) n ≥ 5 and 1
n+1 ≤

1
p −

1
2 ≤

2
n ,
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then, there exists a constant C, independent of ε, such that

(1.18) sup
R≥1

(
1

R

∫
BR

|u(x)|2dx
)1/2

≤ C‖F‖Lp(Rn).

The last result concerns an a priori estimate for the solution of the perturbed
equation. It states that, given precise conditions, without assuming smallness, on
the decay at infinity for the the electric potential, the magnetic potential and the
radial derivative of the electric potential, we have a precise control for ‖∇Au‖−(1+δ)

2

and ‖u‖−(1+δ)
2

. This result appears in [IS] .

The Theorem is the following one.

Theorem 1.3. Let n ≥ 3, and u ∈ C∞0 be a solution of

(∇− iA(x))2u+ (1± iε)u− V (x)u = f, ε 6= 0.

Let us assume that:

(V) V (x) can be decomposed as V (x) = V1(x) + V2(x), and there exist strictly
positive constants C and µ such that

(V1)

|V1(x)| ≤ C|x|−µ, (∂rV1)(x) ≤ C|x|−1−µ, |x| ≥ 1,

(V2)

|V2(x)| ≤ C|x|−1−µ, |x| ≥ 1,

(B)

|B(x)| ≤ C|x|−1−µ, |x| ≥ 1.

Choose δ > 0 sufficiently small (so that δ ≤ µ/2, δ < 1). Then, there exists a
constant C = C(δ), which depends uniformly in ε, such that the following a priori
estimate holds

(1.19) ‖∇Au‖−(1+δ)
2

+ ‖u‖−(1+δ)
2
≤ C‖f‖ 1+δ

2
.

Remark 1.3. Observe that, since the electric potential V and magnetic potential
A must satisfy the conditions of the theorem, singularities at the origin are not
allowed.

Remark 1.4. Notice that the unique continuation property holds for the differential
operator H = (∇−iA(x))2−V (x), as can be seen in [R]. The assumptions (V ), (V1),
(V2) and (B), together with this observation implies that the limiting absorption
principle holds.

Remark 1.5. The conditions on the decay for the electric potential V and the
magnetic field B given by (V1), (V2) and (B) respectively, are sufficient for us, due
we have fixed the frequency τ = 1. It can be seen in [IS], that the result is true
provided τ and ε belong to the following set denoted by K

(1.20) K = {k = τ + iε ∈ C/τ ∈ (τ0, τ1), ε ∈ (0, ε1)},

where 0 < τ0 < τ1 <∞ and 0 < ε1 <∞.
Hence, the critical case τ = 0 is excluded. This situation requires more decay

for both potentials (typically 〈x〉−(2+ε), ε > 0, for B and V if n = 3 and 〈x〉−2
for n ≥ 4, where 〈x〉 = (1 + |x|2)1/2), in order to obtain a priori estimates for the
solution of the perturbed equation, as can be seen in [F], where Morrey -Campanato
type estimates, uniform in ε, are obtained for τ ≥ 0.

Note also that this result gives an a priori estimate without assuming smallness
neither for the non repulsive component of the electric field nor for the trapping
component of the magnetic field, defined by Bτ := x

|x|B.



6 ANDONI GARCIA

Once we have described all the tools which are going to be used, it is necessary
to introduce the region where we are able to extend the known results for the free
Helmholtz equation to the case when electromagnetic perturbations are considered.
During the discussion, it will appear a subregion of ∆(n), for n ≥ 3, which will be
denoted by ∆0(n), given by

(1.21) ∆0(n) =

{(
1

p
,

1

q

)
∈ ∆(n) :

1

n+ 1
≤ 1

p
− 1

2
,

1

n+ 1
≤ 1

2
− 1

q

}
.

The set ∆0(n) is the solid triangle determined by the points Q, Q′ and Q′′ (see
Figure 2).
This will be the region of boundedness for the perturbed Helmholtz equation.

Figure 2. ∆0(n), n ≥ 3.

Remark 1.6. For the case of the perturbed electromagnetic equation we are not
able to obtain a positive result of boundedness for the whole region ∆(n), since we
have not control for the gradient term, namely A·∇, outside ∆0(n). However, when
we set A ≡ 0, and consider the electric hamiltonian, the results can be extended
outside ∆(n) by imposing more decay on V .

2. Electromagnetic Helmholtz Equation.

In this section we will give the precise statement and the proof of the theorem,
where we extend the known result for the free Helmholtz equation to the case when
electromagnetic perturbations are considered. The basic theorems which will be
used along the proof were given in the section 1, as well as the basic notation. First
we will announce the result for the general electromagnetic case and afterwards, by
setting A ≡ 0, the electric case will be treated by extending our previous result.

Let us start by considering the solution of the Helmholtz equation with elec-
tromagnetic potential that satisfies either the ingoing or the outgoing Sommerfeld
radiation condition. For n ≥ 3, it reads,

(2.1) (∇− iA(x))2u+ u− V (x)u = f in Rn,
where A : (A1, . . . , An) : Rn → Rn is the magnetic potential and V (x) : Rn → R is
the electric potential.
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We will assume that the magnetic potential A satisfies the Coulomb gauge con-
dition

(2.2) ∇ ·A = 0.

We will prove Lp-Lq estimates for the solution of the equation (2.1). In order
to do that we will consider the solution of (2.1) as the solution of the modified
Helmholtz electromagnetic equation,

(2.3) (∇− iA(x))2u+ (1± iε)u− V (x)u = f in Rn, ε 6= 0,

via limiting absorption principle, by taking the limit of the solution of (2.3) when
ε goes to 0. We will obtain the corresponding Lp-Lq estimates, independent of ε,
for the solution of (2.3), so these will remain true for the solution of (2.1). This is
guaranteed by the results appearing in [IS].

The goal is to determine the region of p and q where the solution of (2.3) satisfies
Lp-Lq estimates, namely,

(2.4) ‖u‖Lq(Rn) ≤ C‖f‖Lp(Rn).

with C independent of ε.
The main result of this section is the following.

Theorem 2.1. Let u be a solution of

(2.5) (∇− iA(x))2u+ (1± iε)u− V (x)u = f in Rn, n ≥ 3, ε 6= 0.

Let V and A satisfy (V ), (V1), (V2) and (B) in Theorem 1.3, and suppose that there
exist constants C, µ > 0 such that

(2.6) |A(x)| ≤ C

(1 + |x|)1+µ
, |V (x)| ≤ C

(1 + |x|)1+µ
.

Then, there exists a constant C, independent of ε, such that

(2.7) ‖u‖Lq(Rn) ≤ C‖f‖Lp(Rn),

when
(

1
p ,

1
q

)
∈ ∆0(n).

Proof.

Remark 2.1. Notice that there are no smallness assumption neither for the electric
potential V nor for the magnetic potential A. Also we bound the solution only
assuming short-range decay for V and A. As we said in Remark 1.3, singularities
at the origin for V and A are not considered.

Step 1. It will be proved that, whenever
(

1
p ,

1
q

)
∈ ∆0(n) then we get the following

(2.8) ‖u‖Lq(Rn) ≤ C‖f‖ 1+δ
2
.

Let u be a solution of (2.5). Since ∇ ·A ≡ 0, we can expand the term (∇− iA)2 in
the following form

(2.9) (∇− iA)2u = ∆u− 2iA · ∇Au+ |A|2u.

This is the key point in order to consider the electromagnetic case as a perturbation
of the free equation. As can be seen, there appear terms of order zero and order
one. So by passing terms to the RHS, we have that u is solution of the following
equation

(2.10) ∆u+ (1± iε)u = f + 2iA · ∇Au− |A|2u+ V u.
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Now we apply the result coming from Theorem 1.2. By considering the dual esti-

mate of (1.18), we get that, if
(

1
p ,

1
q

)
∈ ∆0(n) it holds

‖u‖Lq(Rn) = ‖(∆ + (1± iε))−1(f + 2iA · ∇Au− |A|2u+ V u)‖Lq(Rn)(2.11)

≤ C(N0(f) +N0(2iA · ∇Au) +N0(|A|2u) +N0(V u)).

with C independent of ε and N0 defined in (1.12).
Now we continue by treating the terms appearing on the RHS of (2.11). First

we deal with the term N0(2iA · ∇Au). From (2.6), we get that this term can be
bounded as

N0(2iA · ∇Au)2 = C
∑
j≥0

2j+1

∫
C(j)

|A · ∇Au|2dx(2.12)

≤ C
∑
j≥0

2j
∫
C(j)

|A|2|∇Au|2dx

≤ C
∑
j≥0

2j(δ−2µ)
∫
Rn

|∇Au|2

(1 + |x|)1+δ
dx.

Therefore, we finally have

(2.13) N0(2iA · ∇Au) ≤ C‖∇Au‖−(1+δ)
2

.

Let us continue with the term N0(|A|2u). As before, from (2.6), we can treat
this term as follows

N0(|A|2u)2 =
∑
j≥0

2j+1

∫
C(j)

||A|2u|2dx(2.14)

≤ C
∑
j≥0

2j
∫
C(j)

|A|4|u|2dx

≤ C
∑
j≥0

2j(−2+δ−4µ)
∫
Rn

|u|2

(1 + |x|)1+δ
dx.

Hence, we get

(2.15) N0(|A|2u) ≤ C‖u‖−(1+δ)
2

.

The last term is N0(V u). Similarly, we obtain from (2.6)

N0(V u)2 =
∑
j≥0

2j+1

∫
C(j)

|V u|2dx(2.16)

≤ C
∑
j≥0

2j
∫
C(j)

|V |2|u|2dx

≤ C
∑
j≥0

2j(δ−2µ)
∫
Rn

|u|2

(1 + |x|)1+δ
.dx

So, it verifies

(2.17) N0(V u) ≤ C‖u‖−(1+δ)
2

.
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From (2.11), (2.13), (2.15) and (2.17), we get that, whenever
(

1
p ,

1
q

)
∈ ∆0(n), the

Lq norm of u can be bounded as

‖u‖Lq(Rn) = ‖(∆ + (1± iε))−1(f + 2iA · ∇Au− |A|2u+ V u)‖Lq(Rn)(2.18)

≤ C(N0(f) +N0(2iA · ∇Au) +N0(|A|2u) +N0(V u)).

≤ CN0(f) + C1‖∇Au‖−(1+δ)
2

+ C2‖u‖−(1+δ)
2

.

Now we remind the a priori estimate given by Theorem 1.3, which ensures that,
under the assumptions (V ), (V1), (V2) and (B) for V and A respectively, there
exists a constant C, such that the following holds

(2.19) ‖∇Au‖−(1+δ)
2

+ ‖u‖−(1+δ)
2
≤ C‖f‖ 1+δ

2
.

Remark 2.2. The constant C which appears here depends uniformly in ε.

So, from (2.18) and (2.19), we get

(2.20) ‖u‖Lq(Rn) ≤ CN0(f) + C1‖f‖ 1+δ
2
.

Moreover, it holds that N0(f) can be bounded as

(2.21) N0(f) ≤ C‖f‖ 1+δ
2
.

This, together with (2.20) concludes that, if u is a solution of (2.5), it verifies

(2.22) ‖u‖Lq(Rn) ≤ C‖f‖ 1+δ
2
.

Therefore, we get the desired estimate.

Step 2. By applying duality to the last estimate, we get that if
(

1
p ,

1
q

)
∈ ∆0(n),

(2.23) ‖u‖−(1+δ)
2
≤ C‖f‖Lp(Rn)

Remark 2.3. The adjoint operator is the one corresponding to ∓ε. Since we can do
the same argument for both signs, all the computations are justified.

Step 3. This is the final step in the proof. As we said in the introduction the main
difficulty will be to handle the first order term given by A · ∇Au, since there are
no Lp-Lq estimates for the gradient of the solution of the free Helmhotz equation.
Instead of considering this norm our argument will end up by treating ‖∇Au‖−(1+δ)

2
,

and this norm will be under control in the region ∆0(n).

Consequently, we have that if
(

1
p ,

1
q

)
∈ ∆0(n), from the Lp-Lq estimates for the

solution of the free equation, namely (1.16), given in Theorem 1.1, and proceeding
as in the step 1 for the terms 2iA · ∇Au, |A|2u and V u, we get

‖u‖Lq(Rn) = ‖(∆ + (1± iε))−1(f + 2iA · ∇Au− |A|2u+ V u)‖Lq(Rn)(2.24)

≤ C‖f‖Lp(Rn) + C1(N0(2iA · ∇Au) +N0(|A|2u) +N0(V u)).

where C and C1 do not depend on ε.
Let us remind that, from (2.6) it holds

N0(2iA · ∇Au) ≤ C1‖∇Au‖−(1+δ)
2

,(2.25)

N0(|A|2u) ≤ C2‖u‖−(1+δ)
2

,

N0(V u) ≤ C3‖u‖−(1+δ)
2

.

Therefore, we get

(2.26) ‖u‖Lq(Rn) ≤ C‖f‖Lp(Rn) + C1‖∇Au‖−(1+δ)
2

+ C2‖u‖−(1+δ)
2

.
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Finally we conclude that if u is solution of (2.5), by applying (2.23) we can bound
its Lq norm as follows

(2.27) ‖u‖Lq(Rn) ≤ C‖f‖Lp(Rn) + C1‖∇Au‖−(1+δ)
2

.

It remains to bound ‖∇Au‖−(1+δ)
2

. This can be done in the following way. Let us

consider a radial function ϕ = ϕ(|x|) ∈ C∞0 . By multiplying Helmholtz equation
(2.5) by ϕū in the L2-sense and taking the resulting real parts it gives the identity

−
∫
Rn
ϕ|∇Au|2dx+

1

2

∫
Rn

∆ϕ|u|2dx−
∫
Rn
ϕV |u|2dx+

∫
Rn
ϕ|u|2dx(2.28)

= <
∫
Rn
fϕūdx.

From this, passing some terms to the RHS and taking modulus, it holds∫
Rn
ϕ|∇Au|2dx ≤

1

2

∫
Rn
|∆ϕ||u|2dx+

∫
Rn
|ϕ||V ||u|2dx+

∫
Rn
|ϕ||u|2dx(2.29)

+

∫
Rn
|fϕū|dx.

Assume for simplicity that f has compact support and therefore from Step 1
we have that

(2.30) ‖u‖Lq(Rn) < +∞.
Then we proceed by density.

Now we pass to choose the appropriate function ϕ. Let us consider ϕ = ϕ(|x|) =
1

(1+|x|)1+δ .

Now, we start to bound some of the terms appearing in the RHS of (2.29). We
trivially have

(2.31) |∆ϕ| ≤ C|ϕ|,
so it holds

(2.32)

∫
Rn
|∆ϕ||u|2dx ≤ C

∫
Rn
|ϕ||u|2dx,

and from (2.6), we obtain

(2.33)

∫
Rn
|ϕ||V ||u|2dx ≤ C

∫
Rn
|ϕ||u|2dx.

Then, we conclude

(2.34)

∫
Rn

|∇Au|2

(1 + |x|)1+δ
dx ≤ C

∫
Rn

|u|2

(1 + |x|)1+δ
dx+

∫
Rn
|fϕū|dx

For the last term, by applying Hölder inequality with 1 = 1
p + 1

q + 1
r , we can bound

it as

(2.35)

∫
Rn
|fϕū|dx ≤ ‖f‖Lp‖u‖Lq‖ϕ‖Lr ,

where r is to be determined. From (2.34) and (2.35) we obtain that

(2.36)

∫
Rn

|∇Au|2

(1 + |x|)1+δ
dx ≤ C

∫
Rn

|u|2

(1 + |x|)1+δ
dx+ C1‖f‖Lp‖u‖Lq .

This leads to the crucial estimate

(2.37) ‖∇Au‖−(1+δ)
2
≤ C‖u‖−(1+δ)

2
+ α‖u‖Lq + C(α)‖f‖Lp ,

for α,C(α) > 0.
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Therefore, we have to find the region for p and q, for ( 1
p ,

1
q ) ∈ ∆0(n), where the

following conditions are satisfied

(2.38)
n

r
≤ 1, 1 =

1

p
+

1

q
+

1

r
.

We have that (2.38) holds if ( 1
p ,

1
q ) ∈ ∆−0 (n), where ∆−0 (n) is given by

(2.39) ∆−0 (n) =

{(
1

p
,

1

q

)
∈ ∆0(n) :

1

q
≤ 1− 1

p

}
.

The region ∆−0 (n) is determined by the points
(

1
p ,

1
q

)
∈ ∆0(n) under the diagonal

1/q = 1− 1/p, including the points
(

1
p ,

1
q

)
in the duality line (see Figure 3).

Figure 3. ∆−0 (n), n ≥ 3.

Finally we have that if ( 1
p ,

1
q ) ∈ ∆−0 (n), from (2.23) and (2.37) it holds

(2.40) ‖∇Au‖−(1+δ)
2
≤ C‖f‖Lp + α‖u‖Lq + C(α)‖f‖Lp ,

for α,C(α) > 0. This, together with (2.27) leads to

(2.41) ‖u‖Lq(Rn) ≤ C‖f‖Lp(Rn) + α‖u‖Lq + C(α)‖f‖Lp ,

for ( 1
p ,

1
q ) ∈ ∆−0 (n). Now we choose α sufficiently small and conclude for ( 1

p ,
1
q ) ∈

∆−0 (n) the desired bound

(2.42) ‖u‖Lq(Rn) ≤ C‖f‖Lp(Rn).

Finally, by applying duality we have that the result is true for ( 1
p ,

1
q ) ∈ ∆0(n). The

proof is complete. �

Notice that the region of boundedness for the solution of the Helmholtz equation
with electromagnetic potential is smaller than the region obtained in the free case.
This is due to the presence of the first order term. Therefore it is natural to
consider if, whenever A ≡ 0 (i.e., we deal with the Helmholtz equation with electric
potential), this region can be extended to the whole ∆(n). This will be our next
aim.
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This idea is resumed in the following result, where we extend the boundedness
of the solution to the whole ∆(n). We have been able to prove the next Theorem.

Theorem 2.2. Let u be a solution of

(2.43) −∆u+ (1± iε)u+ V (x)u = f, in Rn, n ≥ 3, ε 6= 0.

If V satisfies (V ), (V1) and (V2) in Theorem 1.3, and suppose that there exist
constants C, γ > 0 such that

(2.44) |V (x)| ≤ C

(1 + |x|)γ+µ
,

and γ satisfies for
(

1
p ,

1
q

)
∈ ∆(n) \∆0(n),

(2.45) γ >


1+δ
2 − µ+ n

{
2

n+1 − ( 1
2 −

1
q )
}
, 1

2n <
1
2 −

1
q <

1
n+1 ,

1+δ
2 − µ+ n

{
2

n+1 − ( 1
p −

1
2 )
}
, 1

2n <
1
p −

1
2 <

1
n+1 ,

then, there exists a constant C, independent of ε, such that

(2.46) ‖u‖Lq(Rn) ≤ C‖f‖Lp(Rn).

Proof. As for the proof of Theorem 2.1, this will be divided in three steps. The
first two steps are the same, so we will skip them. The main difference appears in
Step 3.

Remark 2.4. As we have seen in Theorem 2.1, whenever
(

1
p ,

1
q

)
∈ ∆0(n), the decay

assumption (2.6) for the electric potential V is sufficient ir order to prove the Lp-Lq

estimates. As we will see, outside this region, more decay for the electric potential
V potential is needed.

Step 3. Now let us consider
(

1
p ,

1
q

)
∈ ∆(n) such that 1

2n < 1
2 −

1
q <

1
n+1 . Then

from Theorem 1.1 and observing that, since the dual estimate of (1.18) in Theorem
1.2 can not be applied for the perturbative term V u because we are outside the
allowed range for q, we conclude that the Lq norm of the solution of the equation
(2.43) can be bounded as follows

‖u‖Lq(Rn) = ‖(−∆ + (1± iε))−1(f − V u)‖Lq(Rn)(2.47)

≤ C(‖f‖Lp(Rn) + ‖V u‖Lp1 (Rn)).
where C does not depend on ε.
Here p1 is given by

(2.48)
1

p1
− 1

q
=

2

n+ 1
,

1

2n
<

1

2
− 1

q
<

1

n+ 1
.

We have taken the point p1 being in the line 1/p1 − 1/q = 2/(n + 1) in order the
require the smallest decay for V .

Now, we can bound the term V u in (2.47) as follows. By applying Hölder
inequality we trivially get

‖V u‖Lp1 (Rn) ≤ C‖(1 + |x|)−(γ+µ)+
1+δ
2 u(1 + |x|)−

1+δ
2 ‖Lp1 (Rn)(2.49)

≤ C‖(1 + |x|)−(γ+µ)+
1+δ
2 ‖Lr(Rn)‖u(1 + |x|)−

1+δ
2 ‖L2(Rn).

where r is given by

(2.50)
1

p1
=

2

n+ 1
+

1

q
=

2

n+ 1
−
(

1

2
− 1

q

)
+

1

2
=

1

r
+

1

2
.

We have that

(2.51) ‖(1 + |x|)−(γ+µ)+
1+δ
2 ‖Lr(Rn) <∞,
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provided that

(2.52) γ >
1 + δ

2
− µ+ n

{
2

n+ 1
− (

1

2
− 1

q
)

}
.

Finally, from (2.47), (2.49) and reminding that ‖u‖−(1+δ)
2

is still bounded for(
1
p ,

1
q

)
∈ ∆(n) such that 1

2n <
1
2 −

1
q <

1
n+1 , we can conclude the final estimate

(2.53) ‖u‖Lq(Rn) ≤ C‖f‖Lp(Rn).

Now, by applying duality we have that the result is true whenever
(

1
p ,

1
q

)
∈ ∆(n)

such that 1
2n <

1
p −

1
2 <

1
n+1 . This ends the proof. �

Remark 2.5. Notice that, from (2.45), the necessary decay γ for V in order to obtain
the result grows as we approach the upper frontier of ∆(n) (See line segment AB
Figure 3). However, we can always take γ < 2 and |V (x)| ≤ C/(1 + |x|)γ , where C
is not necessarily small.
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