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A B S T R A C T

Background and Objective: In the realm of automatic Electronic Health Records (EHR) classification accord-
ing to the International Classification of Diseases (ICD) there is a notable gap of non-black box approaches
and more in Spanish, which is also frequently ignored in clinical language classification. An additional gap in
explainability pertains to the lack of standardized metrics for evaluating the degree of explainability offered
by distinct techniques.
Methods: We address the classification of Spanish electronic health records, using methods to explain the
predictions and improve the decision support level. We also propose Leberage a novel metric to quantify the
decision support level of the explainable predictions.

We aim to assess the explanatory ability derived from three model-independent methods based on
different theoretical frameworks: SHapley Additive exPlanations (SHAP), Local Interpretable Model-agnostic
Explanations (LIME), and Integrated Gradients (IG). We develop a system based on longformers that can process
long documents and then use the explainability methods to extract the relevant segments of text in the EHR that
motivated each ICD. We then measure the outcome of the different explainability methods by implementing
a novel metric.
Results: Our results beat those that carry out the same task by 7%. In terms of explainability degree LIME
appears as a stronger technique compared to IG and SHAP.
Discussion: Our research reveals that the explored techniques are useful for explaining the output of black
box models as the longformer. In addition, the proposed metric emerges as a good choice to quantify the
contribution of explainability techniques.
1. Introduction

Automating Electronic Health Records (EHR) classification accord-
ing to the International Classification of Diseases (ICD) is becoming
a critical task in the healthcare environment. The ICD classification,
which is a laborious manual process, is crucial for enhancing health-
care systems’ efficiency freeing healthcare workers from this task and
allowing them to focus on tasks more closely related to the patient.
This study delves into the clinical decision support for the classification
of EHRs in Spanish, aiding the decision support by using evidence-
based diagnostic prediction. Due to limited resources, Spanish is often
disregarded in the area of automated clinical language processing, yet
it is essential as clinical coding is mandatory not only in Spain but also
in other Spanish-speaking countries.
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Large Language Models (LLMs), such as longformers, are frequently
seen as black boxes as how the decision is made is hardly understand-
able and thus, criticized for their opacity. Under the European Union’s
‘‘General Data Protection Regulation’’ and the ‘‘European General Data
Protection Regulation’’ users have a legal right to an explainable argu-
mentation on the logic involved in the decisions adopted by computer
systems [1,2]. Moreover, the first law written on AI from the European
Parliament challenges the widespread usage of ‘‘black box’’ models
and highlights the need for transparency across all general-purpose AI
systems [3]. This increasing need for transparent and human-oriented
models has led to the so-called eXplainable Artificial Intelligence (XAI).
XAI aims to respond to society not only with effective AI solutions
but also with understandable evidence that motivated the results pro-
vided by the AI. Sensitive domains like healthcare are particularly in
need of XAI because it relies on complex data sources and the need
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for transparency and liability in decision-making [4,5]. Due to these
requirements of the institutions, the concern of generating explainable
models is gaining importance and is becoming a core topic of interna-
tional relevant conferences [6–8] In addition, certain projects run by
the Defense Advanced Research Projects Agency (DARPA) [9] as well
as other European projects such as Horizon and Antidote are working
with XAI techniques [10].

The concept of ‘‘explainability ’’ itself has different definitions [1].
Our focus is on the ‘‘outcome explanation issue’’, that is, a user-centric
meaning of XAI in which the user should be able to understand how
a model has arrived at a result. For example, in text classification,
this could be done by highlighting the relevant parts of the document
that motivated the class proposed by the model. This could help the
developer improve the system based on the system output, as well as,
the users to trust the system’s decision [4].

If Spanish EHR classification literature is scarce, those that do so
without using black box models are even fewer. In Spanish, explain-
ability has been explored by using convolutional neural networks as a
tool for EHR categorization. The precise text passages that contributed
to the assignment of each code were highlighted, enhancing transparent
AI and, therefore, improving decision support systems for clinicians in
charge of ICD coding [11].

In an attempt to gain some sense of explainability using transformer
models, in another approach apart from the predicted codes the details
about the precise text span that influenced the inference were also
extracted [12]. They achieved this by combining two transformers,
first one was trained in Medical Entity Recognition (MER) task, and
the output served then as input to a transformer trained in medical
Named Entity Normalization (MEN) that classified according to ICD-10
the clinical entities identified by the first transformer. While classifying
documents, it is important to consider codes that are not specifically
specified in the document; this method overlooks these codes, high-
lighting a gap in the proposed approach [12]. Moreover, the existing
explainability methods in Spanish focus on using systems that are self-
explainable, that is, the system itself is designed to be able to mark
those words that motivated a prediction, therefore it is a characteristic
of the system to be self-explanatory. Given the fact that the majority
of Deep learning (DL) models lack this quality, i.e., they are not self-
explanatory, we focus on explainability strategies that may be applied
to any current DL model.

Another notable gap in explainability is the absence of standardized
metrics to measure and compare the explainability degree provided by
different explainable techniques [13]. The lack in this regard inhibits
the capacity to enhance the transparency of AI models as different
explainability techniques outputs cannot be compared among different
researches [1]. Doxpy is an example of a model-agnostic metric for
objective evaluation of explainability in generative AI, inspired by
Ordinary Language Philosophy [14]. It bases explanations on Achin-
stein’s theory, where explanations are answers to archetypal questions,
implying that a system’s explainability increases with its ability to
answer these fundamental questions [15]. Similarly, in our work, we
developed a metric aimed at assessing the understandability degree of
the aforementioned explainability techniques in a classification task.
We develop an application that can identify and highlight words and
phrases that are pertinent to each prediction.

In this work, we, therefore, put in value the relevance of XAI ap-
proaches to aid clinical decision-making for clinical documentation of
health reports in Spanish. Diagnoses are extracted and, thus, the EHRs
are classified following the ICD standard as in clinical documentation,
associating each EHR with all the inherent diagnoses (i.e. ICDs) either
explicitly or implicitly stated. The XAI highlights relevant segments of
text in the EHR that motivated each ICD (being the ICDs the outcome
of the model) as a support system for clinical documentation. That is,
humans are aided with XAI in the EHR classification task. We have
explored three XAI approaches, being the main contribution of our
aper to assess, quantitatively, the performance of XAI approaches.
e have proposed a novel metric to this end, with which we have

valuated the performance of the three XAI approaches, providing thus,

uantitative and qualitative evidence of each of them.

2 
2. Methods

In this paper, we seek to evaluate the explanatory ability extracted
by different model-independent techniques that can be applied to any
neural network. Our goal is to create a system able to handle long
documents whose predictions can subsequently be explained using
the aforementioned model-independent explainability techniques. To
this end, first, we build a classification model based on transformers
able to handle long documents. We also investigate and assess several
explainability strategies using a unique metric that aims to broaden the
explainability evaluation standard methods.

In this section, first, we describe the methodology used for the clas-
sification of large clinical texts. Next, we describe different techniques
used to evaluate the explainability of the model and we give insights
about Leberage, the developed evaluation metric.

2.1. Long document handling

The maximum input token capacity of traditional LLMs, which is
usually restricted at 512 tokens [16], is a limitation as the EHRs
employed in our research significantly exceed this limit, averaging
1575 tokens per document. This disparity makes it essential to explore
novel approaches that can handle long documents.

To overcome this limitation, a number of innovative approaches
have been explored to address the challenge of processing large EHRs.
In the work titled ‘‘PLM-ICD: Automatic ICD Coding with Pretrained
Language Models’’ they employed an approach known as segment pool-
ing that consisted of dividing documents into smaller segments that
could be processed by Pretrained Language Models (PLMs) such as
BioBERT [17], PubMedBERT [18], and RoBERTa-PM [19]. Segments
were then combined to represent the entire document overcoming the
maximum length restriction of PLMs [20] .

Needless to say, disregarding parts of documents due to processing
limitations might yield to missing relevant contextual information. A
major breakthrough in processing long sequences was made when
Longformer was first introduced [21]. By employing the localized slid-
ing window and global attention mechanisms, Longformers were able
to reduce the computational expenses of full self-attention mechanisms
from quadratic to linear. A similar approach, known as BigBird, also
emerged at the time. This approach reduced the computing expense
of full self-attention mechanisms by applying a combination of sparse
attention, global attention, and random attention mechanisms to the
input sequence [22].

In this research, we need to process long clinical texts, so alter-
natives such as Longformer or Big-bird emerge as good candidates to
carry out our research. An investigation compared the performance
of Longformer and BigBird [23]. They proposed Clinical Longformer
and Clinical BigBird; Longformer and BigBird further trained with
clinical knowledge. The proposed Clinical Longformer outperformed
Clinical BigBird and traditional Longformer in several proposed tasks,
including clinical document classification, Named Entity Recognition
(NER), and question answering, proving to be able to handle long
clinical documents. We employed this Clinical Longformer variant as it
meets our two requirements showing good results: it can process long
documents and is tailored to clinical terminology [23].

2.2. Model-independent explainability techniques

To describe our model’s decision-making processes, we use three
well-known explainability techniques: SHapley Additive exPlanations
(SHAP), Local Interpretable Model-agnostic Explanations (LIME), and
Integrated Gradients (IG). These approaches have been selected for
their model independence, meaning that they can be used to explain
different machine-learning models without modifying their internal
structure. In the context of our study, these techniques are employed

to clarify the decision-making process of the Longformer transformer
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model. Specifically, they analyze the outputs generated by the Long-
former to determine how different tokens of the input text contribute
to the final predictions. They are also widely used in XAI tasks in the
clinical domain [24,25], and they are based on different theoretical
frameworks, offering an extensive explanation perspective.

SHAP [26], are values based in cooperative game theory and can
be used to explain any output derived from a model based on machine
learning that uses certain features to infer a prediction. They provide
a way to measure how much each feature (for example a word) con-
tributes to the model’s decision on the prediction. These values take
into account the prior expected prediction of the model 𝐸 [𝑓 (𝑧)] (i.e. the
expected prediction of the model for a subset of input features 𝑧). The
difference between the prior expected prediction with respect to the
real output 𝑓 (𝑥) in which 𝑥 refers to the full set of input features for
a certain prediction, plays a core role. Indeed, the model’s expected
prediction is computed conditioned on a feature value and, thus, the
difference between prior and conditioned expectation is seized. For
each prediction, every possible feature subset is examined and deter-
mined how much each feature contributes positively or negatively to
the prediction.

Deep SHAP [26] is a variant of SHAP devoted to explaining Deep
Learning models. It combines two concepts, SHAP and DeepLIFT [27].
In this variant, DeepLIFT attributes the impact of each input to a
reference value that is used by SHAP as the prior expected prediction
𝐸 [𝑓 (𝑧)]. These input features are considered independent and the
model to be linear. Then, SHAP values are propagated from the output
layer back to the input layer, recursively calculating SHAP values for
each neuron. Therefore, DeepSHAP maintains the coherence of SHAP
values while providing understandable explanations for complex deep
learning models with the added value that explanations are not merely
limited to the inputs but also provided in the inner neurons.

LIME is a technique that approximates any black box machine
learning model [28]. To do so, it creates an interpretable model that
approximates the original opaque model for a specific prediction. Then,
the input is perturbed (e.g. dropping words, altering the word order,
etc.), and the effect in the prediction is seized in an attempt to observe
how the changes affect the prediction.

The prediction obtained from perturbed inputs is compared to the
prediction obtained from the original input and by means of the prox-
imity of the predictions, the relevance of the perturbations is weighted
with respect to the original input. By analyzing the weighted impor-
tance of each feature, LIME helps to determine which words in the input
were essential to get the outcome [28].

IG is a technique used in deep learning to explain the decisions
made by a model [29]. It works by computing the relative contributions
of each feature in the input to the model’s output and measuring how
much each feature in the input contributes to the decision made by
the model. A key component of IG is the use of a ‘baseline’ input.
The baseline represents an absence of features, for text features, a zero
embedding vector. IG works by interpolating between this baseline
and the actual input. It essentially creates a series of steps from the
baseline to the actual input, and at each step, it computes the gradient
of the model’s output concerning the input. These gradients are then
aggregated across all steps. This aggregation represents the integrated
gradient and indicates how each feature contributed to the change from
the baseline output to the actual output.

Explainable AI relies heavily on SHAP, LIME, and IG, but each takes
a different method to determine how important input features are,
therefore, each of them has strengths and weaknesses depending on
the task to which it is applied. Moreover, each of these approaches
lacks a predefined or fixed range for assigning weights to each feature.
While SHAP and IG assign weights at a token level as depicted in
Fig. 1, LIME constructs the local model based on full words. To bring
together these diverse approaches, we obtain word weights in SHAP
and LIME by aggregating the weights of each token as in Fig. 1. As

the weight of each word is estimated independently by each method,

3 
even if it pertains to the same word, we average the weight of each
word, assigning the same weight to equal words. This is the case of
the word man in the example in Fig. 1, it has been assigned two
different weights in different appearances in the text, therefore we
average both. Finally, the weights are normalized to be between 0 and
1 and be consistent across all three techniques, and serve as the basis
for comparison using the metric we propose. With this normalization,
the contributions of individual words as determined by SHAP, LIME,
and IG can be better understood and compared, thus providing a global
view of their explanatory capabilities.

2.3. Leberage: A quantitative evaluation of the understandability degree

The task of measuring the degree of explainability may seem am-
biguous. Previous work has defined the explainability of generative
LLM as the ability of the output (the generated text) to answer certain
general and basic questions (e.g., what, how). The degree to which
those questions are adequately answered is the degree of explainability
of the text [15]. Our focus is not on generating text, but on classifying
it, so is fundamental to understand the extent to which the explanations
in our model facilitate accurate and informed decision-making. There-
fore, we define the degree of explainability as the extent to which an
explanation of a prediction aids in decision-making.

To determine this level of explainability, first, our system (Long-
former) outputs a set of predicted codes. Next, the previously defined
model agnostic explainability techniques (SHAP, LIME, and IG) high-
light the relevant words from the text that motivated the predicted
code. Each code, at the same time, has a related Diagnostic Term (DT)
which is a short definition of the disease that the code represents. For
a certain document the predicted codes, their corresponding DTs, and
the sets of highlighted words are as follows:

Clinical document fragment

Mujer sufre de hta y diabetes mellitus mellitus , no hábitos
tóxicos . En último control se detectó dislipemia .... Debido a
la hipertensión arterial control recurrente de hba... Se realiza
ecocardiograma de esfuerzo...Implante de 3 stents farmacoac-
tivos...

Predicted code: E119
Diagnostic Term: Diabetes mellitus insulinodependiente sin mención
de complicación
Highlighted words: hba, mellitus, diabetes, dislipemia, hta

Predicted code: I10
Diagnostic Term: Hipertensión esencial primaria
Highlighted words: ecocardiograma, stents, mellitus, tóxicos, hiperten-
sión

At first glance, we can infer that the system’s prediction is correct,
since among the highlighted words are those that refer to the diagnosis:
diabetes mellitus related to code E119 and hipertensión related to code
I10. As a result, we can also conclude that the example has a very
high degree of explainability since the prediction significantly assists
in decision-making throughout document coding.

The core idea behind Leberage is to measure the extent to which
the highlighted words aid in decision-making quantitatively. In order
to achieve this, we look at the semantic relationship between the
embeddings of the highlighted words and the definition of the DTs as
shown in Fig. 2. In essence, an explanation (a set of highlighted words)
will be considered relevant if it has a clear and direct relationship to
the associated classification code. The higher that similarity, the higher

would be the understandability degree of the explanation. That is the
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Fig. 1. Example of the token weights processing and normalization. The weights of the tokens that correspond to a word are first added together, and then different weights that
relate to the same word are averaged. Finally, the weights are normalized so they range between 0 and 1.
Fig. 2. Heatmap of the semantic similarity between the Highlighted words embeddings and Diagnostic Term words embeddings. Each cell represents the similarity score, ranging
from 0 to 1, where 1 indicates a perfect association and 0 indicates no association.
smaller the distance between the embeddings of the highlighted words
and the terms of the definition, the higher the understandability degree
of the explanation.

Consequently, to determine the degree of explainability
(𝐿𝑒𝑏𝑒𝑟𝑎𝑔𝑒(𝐷)) of a set of predicted codes 𝐶𝐷 for a given document 𝐷,
our method involves extracting the highlighted words 𝑊 𝐷

𝑗 associated
to each code 𝑗 predicted for document 𝐷 and 𝐷𝑇𝐷

𝑗 , the DT associated
to the code 𝑗. We then calculate the cosine similarity between these
highlighted words and the words in the DT as in Expression (1).

𝐶𝑜𝑠𝑆𝑖𝑚(𝑒(𝐷𝑇𝐷
𝑗,𝑘), 𝑒(𝑊

𝐷
𝑗,𝑘)) =

𝑒(𝐷𝑇𝐷
𝑗,𝑘) ⋅ 𝑒(𝑊

𝐷
𝑗,𝑘)

‖

‖

‖

𝑒(𝐷𝑇𝐷
𝑗,𝑘)

‖

‖

‖

‖

‖

‖

𝑒(𝑊 𝐷
𝑗,𝑘)

‖

‖

‖

(1)

Following the previous example we intuitively saw that the degree
of explainability of the codes was very high, reaching 1 to 1 between
some highlighted words and the definition terms in many cases. At this
point, we propose two alternatives when calculating the average cosine
4 
similarity. First, we suggest that the average cosine similarity between
all the highlighted terms and the words of the definition should be
used to determine a code’s explainability level as in Expression (2).
However, in the previous example has been noted that in situations
when the diagnostic terms and the highlighted words correspond one
to one, the remaining correspondences introduce noise into the mean
(e.g., hypertension with toxic, or diabetes with dyslipidemia). There-
fore, we also propose to calculate the mean as the maximum between
each definition word and the diagnostic terms as in Expression (3), that
is, for each highlighted word we find the most related word in the DT
and calculate the average between them. In this case, the maximum
value of the Leberage metric (4) will be given in the case where all
relevant words are in the definition of the DT.

𝐴𝑣𝑔𝐶𝑜𝑠𝑆𝑖𝑚(𝑊 𝐷
𝑗 , 𝐷𝑇𝐷

𝑗 ) = 1
|𝐷|

∑

𝐶𝑜𝑠𝑆𝑖𝑚(𝑒(𝐷𝑇𝐷
𝑗,𝑘), 𝑒(𝑊

𝐷
𝑗,𝑘)) (2)
|𝐷| 𝑖=1
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Fig. 3. Boxplot Comparing Understandability Degrees Across Different Explainability Methods. This figure illustrates the distribution of understandability degrees for four
explainability methods: Random, IG, SHAP, and LIME. Each box represents the interquartile range (IQR) of understandability degrees, with the line inside the box denoting
the median. The means are indicated by triangles.
𝐴𝑣𝑔𝐶𝑜𝑠𝑆𝑖𝑚(𝑊 𝐷
𝑗 , 𝐷𝑇𝐷

𝑗 ) = 1
|𝐷|

|𝐷|

∑

𝑖=1
𝑀𝑎𝑥

|

|

|

𝐷𝑇𝑗
|

|

|

𝑘=1 𝐶𝑜𝑠𝑆𝑖𝑚(𝑒(𝐷𝑇𝐷
𝑗,𝑘), 𝑒(𝑊

𝐷
𝑗,𝑘))

(3)

In both, Expression (2) and Expression (3) |𝐷| represents the full
vocabulary of the document D, which we restricted to the top 5 relevant
words highlighted by the system.

Then, the understandability of a document, what we call Leber-
age, is determined by averaging the similarity scores between each
predicted label as in Eq. (4).

𝐿𝑒𝑏𝑒𝑟𝑎𝑔𝑒(𝐷) = 1
|

|

𝐶𝐷
|

|

|𝐶𝐷|
∑

𝑗=1
𝐴𝑣𝑔𝐶𝑜𝑠𝑆𝑖𝑚(𝑊 𝐷

𝑗 , 𝐷𝑇𝐷
𝑗 ) (4)

To validate this metric, and decide which approach best helps us
to measure the degree of explainability of the documents, we analyzed
the relevant words associated with the predictions of 100 documents
extracted using the three explainability techniques analyzed: Shap,
LIME, and IG. We added a third technique which we called Random,
which consists of randomly highlighting 5 words. This last technique
serves as a basis to measure the contribution of the explainability
techniques and to analyze whether the metric helps to isolate the
degree of explainability.

The findings of this experiment are displayed in a boxplot in Fig. 3.
On the one hand, Fig. 3(a) displays the Leberage determined for 100
documents using Eq. (2), computing the similarity mean. On the other
hand, Fig. 3(b) shows the Leberage that was determined using Eq. (3)
to find the mean of the similarity for the 100 documents. The boxplots
reflect the variations of the Leberage of the predictions of the 100
documents.

As we believed, calculating Leberage as the mean between the
distance between the relevant words and the DT words introduces a
noise that does not help to isolate the Random approach from the
other explainability methods. As depicted in Fig. 3(a) both, the Random
approach and the explainability methods are close. However, by com-
puting the average cosine similarity by using the maximum between
each definition word and the diagnostic terms, the metric manages to
isolate the three techniques with respect to the random one. Thus, we
finally defined our Leberage metric as in Expression (5)

𝐿𝑒𝑏𝑒𝑟𝑎𝑔𝑒(𝐷) = 1
| |

|𝐶𝐷|
∑ 1

|𝐷|

|𝐷|

∑

𝑀𝑎𝑥
|

|

|

𝐷𝑇𝑗
|

|

|

𝑘=1 𝐶𝑜𝑠𝑆𝑖𝑚(𝑒(𝐷𝑇𝐷
𝑗,𝑘), 𝑒(𝑊

𝐷
𝑗,𝑘)) (5)
|

𝐶𝐷| 𝑗=1 𝑖=1

5 
3. Materials

This work is assessed in a real framework, employing a set of EHRs
from the Basque Health System. This dataset comprises 26 731 discharge
summaries (unstructured texts), each labeled with multiple diagnostic
terms, following the ICD-10 standard [30]. The ICD-coding process was
carried out by clinicians in their daily practice. We faced a multi-label
classification problem: each EHR can contain multiple ICD codes that
are not mutually exclusive. We accounted for 5 540 distinct ICD codes.
We removed codes with fewer than ten occurrences, which reduced the
initial 5540 code to 1307 (as shown in Table 1b).

Following the tendency in previous works [31,32] and with the aim
of comparing our outcomes with related works, we found of interest
to evaluate the performance in different ICD-10 granularity levels. An
ICD-10 code can be made up of up to five characters arranged in a
hierarchy. The first character is the most general one and designates the
Chapter in which the diagnose is located within the ICD; the first three
characters together encode the diagnostic term without non-essential
modifiers (referred to as Main); the remaining characters, also known
as non-essential modifiers, complete code providing details like severity
and laterality of the main disease. A code with all its characters is
known as a fully specified and will be referred to as Full throughout
this paper.

The details of the input and the output, i.e. the documents and the
ICD codes associated, respectively, are given in Table 1. It is evident
that both the vocabulary and the average word count per document are
notorious: 1575, highlighting the need to use LLM, such as longformers,
to classify them. In Table 1b we provide the quantitative details of the
ICD codes (label-set) divided by the aforementioned hierarchies.

Label imbalance is one of the major challenges in the multi-label
classification task. To ensure that all labels are fairly represented in
the training, validation, and testing sets, we used multi-label stratified
sampling as part of our methodology, making sure that the codes in
the training set are represented in test and development (dev) subsets.
This sampling strategy led to the division of the dataset into train-
ing, validation, and test sets, with partitions of 18,380 documents for
training, 4744 for testing, and 3607 for development. We also ensured
that no patient occurred in both the training and test sets. We used
the training set to fit the model, allowing the algorithm to learn the
underlying patterns within the data. The dev subset was used during
training to evaluate the model performance while the model was being
tuned. Finally, the test set was used as a final evaluation to assess
the generalization ability and performance of the model. The text was
pre-processed as in relevant antecedents [33], lower-casing texts, and
removing non-alphanumeric characters for the experimentation phase.
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Table 1
Quantitative description of the EHRs amount, EHR size and vocabulary Table 1a. Size
of the label-set taking different granularity levels 1b.

EHRs 26 731
Vocabulary 315 801
Words per EHR 1 575

(a) Quantitative description of the EHRs: EHRs represent the total number
of documents, the cardinality of the vocabulary and the average number
of words per document.

Full Main Chapter

ICD count 1307 527 22

EHRs
per
ICD

Mean 73 184 3,011
Max 5,361 5,361 11,378
Min 3 4 85
Stdev 240 493 3,163

ICDs
per
EHR

Mean 5.45 5.31 3.60
Max 266 23 13
Min 1 1 1
Stdev 3.21 3.05 1.82

(b)Size of label-set taking different granularity of labels. ‘‘Full’’ stands for fully
specified ICD code, ‘‘Main’’ for the essential modifiers and ‘‘Chapter’’ for the ICD
chapter. EHRs per ICD indicate the repetition of codes among EHRs, while ICDs
per EHR refer to the amount of codes related to an EHR.

Table 2
System performance on all services reports for all specialties combined
across various ICD code granularities: Full, Main and Chapter.

Precision Recall F-measure

Full 59.62 45.36 51.42
Main 66.28 52.41 53.47
Chapter 80.95 66.03 73.52

4. Experimental results

In this section, we propose two experiments to evaluate the au-
tomatic classification of ICD codes and their contribution to decision
making. We seek to develop a model with a good performance in
ICD classification and helpful in decision-making. Consequently, in
this section, we first give insights about the classifier system built
with the longformer and evaluate it using the f-measure, precision,
and recall measures. Next, we analyze the contribution to decision-
making: we give and comment on an example of the system’s output
and use Leberage to examine the explainability degree derived from the
predictions.

4.1. Predicting overall ability

In this phase we build a model based on Longformer, the aim of the
model is to give a clinical document to output the diagnoses of ICD-10
codes related to it. So given a clinical input our model will output a
set of different ICD codes. We train our model for 100 epochs using the
training data. As the computational requirements of the device grow
with the window size, we limit the window size of the long former to
1512 tokens which is the closest to the mean document length of 1575.

Table 2 shows the results attained by the system in terms of Pre-
cision, Recall, and F-measure. As expected, at the higher level of the
hierarchy labels (Chapter), the results improve as there are fewer labels
ut also less specific. If we focus on the Main code, the results decline

leading to a F-score deterioration of 20%. However, when adding the
complexity of predicting the Full code F-score slightly decreases (2%),
giving the advantage of getting the completely detailed diagnosis code.

Previous work also makes this granularity distinction, when dealing
with the same classification task [31]. If we compare our results we
beat that earlier study in 2%, 7%, and 28% respectively in Full, Main,

and Chapter granularities. Moreover, comparing our results with a
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previous work that carried out the same task focusing on explain-
ability [11], our results on the Full granularity level beat those by
7%.

A critical examination of these related works indicates a significant
limitation in their methodology — the restriction to 512 tokens. That
means that they dropped two-thirds of the information of an average
document (according to Table 1 the average document in our data
contains 1575 tokens). Needless to say, restricting the text to the first
512 tokens might lead to a significant drop of information that would
impact the ability of the model to compute the underlying diagnoses.
Given that our health system deals with long documents, we promote
the use of systems able to process large volumes of input text.

4.2. Evaluation of the understandability degree

Having compared the overall ability of the model to make accurate
predictions in comparison to antecedents, we focused on the ability
of the model to assist in decision-making. That is, our next goal is to
focus on the ability of the system to motivate the outcomes provided
(i.e. ICD codes) about the content of the input document. To this
end, we carried out a qualitative experiment using the explainability
techniques described in Section 2. The purpose of this experiment is to
shed light on the model’s decision-making procedure for a particular
prediction as a clinical decision support system. Using each of the
techniques, our approach is able to identify the most relevant words
or tokens that correspond to each predicted label (diagnostic term
expressed as an ICD). These words are then highlighted, providing a
visual representation of the elements the model considers significant in
its predictions.

Fig. 4 provides an example derived from our experiments translated
into English to aid the reader. Is structured as follows: on top of the
input text (initially given without any color) and on the bottom the
ICD codes provided by the system. The codes are colored (e.g. 𝑍98.61
in green) by the system and the color pallet is used by the system
to highlight the segments of input text that are more relevant to
predict the code (e.g. the tokens Cardiology; losartan; catheterization;
stent; aneurysm) are also highlighted in green as in connection with the
ICD 𝑍98.61.

The example in Fig. 4 was obtained with the explainability mecha-
nism underlying LIME, explained in Section 2.2, applied to the output
of the Longformer. For the input text, the system provided three codes
(𝐼10, 98.61, and 𝐼25.1) and also highlighted the words in the report
that resulted in relevance for each code. Some of these words might
appear more than once in the document and, in an attempt to alleviate
the colors and redundancies in the document, we chose to highlight
only one occurrence of each relevant word. Notably, all the highlighted
terms are directly related to the ICD codes. For instance, 𝐼10 is strongly
linked with hypertension, and the terms coronary artery have a 1 to 1
relation with the DT related to code 𝐼25.1. In cases where a term is
related to two different ICDs, as is the case of the word stent (implant
in the coronary artery), the system outputs the word twice, in each
case colored according to the color of each ICD. In this case stent is
related to code 𝑍98.61 as it is implanted during a coronary angioplasty
procedure, and to code 𝐼25.1 (atherosclerotic heart disease) as the stent
is implanted due to this disease (𝐼25.1), which the patient suffers from.

By selecting the 5 words highlighted by the system for each code
in each test document, we are able to determine the Leberage of each
explored explainability technique. This provides us with quantitative
knowledge about the level of contribution of each technique to the
decision support of our system. Following the methodology carried out
during the development of the metric we also provide the results of
Leberage when using the Random approach that consisted of randomly
highlighting 5 words. In Table 3 we show the Leberage results of the
test documents for each method.

All three of the explainability strategies perform better than the ran-
dom approach in terms of the proposed metric. IG and SHAP have very
similar results and LIME is the one with the highest understandability

degree.
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Fig. 4. Example of a clinical note translated into English for better understanding. The system assigns ICD codes automatically (bottom). Besides, the words from the input text
connected to each ICD-10 code provided are highlighted by the relevance weight received according to LIME (top).
Table 3
Leberage from testing documents for each of the explainability
approaches.

Random IG Shap Lime

Leberage 32.44 56.45 54.45 61.00

5. Discussion

Our work marks a significant step forward in the explainable auto-
matic classification of EHRs in Spanish, a language that, despite its wide
usage, often receives less attention in the realm of automated clinical

documentation.
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The use of methods able to deal with long texts resulted in a signifi-
cant improvement in the clinical documentation task. This implies that
meaningful information is along the document and cannot be captured
limiting the method to the first 250 or 500 tokens as in the antecedents.
The F-score in our work outperformed those related works [11,31]
in up to 7% and 24% respectively dealing with EHRs classification
according to ICD.

With this first set of experiments, we learned that in computer-aided
clinical documentation, all the text contains valuable information that
should not be disregarded. By taking into account whole documents
our system overcomes those that do not take into account complete

documents.
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Having set a system devoted to multi-label document classification,
as in clinical documentation, we assessed its value to aid experts in clin-
ical documentation ICD-10. To this end, we focused on a quantitative
means of assessing the explainability, indeed, diverse techniques were
compared in our study. The transparency provided by these techniques
is essential in medical applications where understanding the rationale
behind a diagnosis or decision is as crucial as the decision itself. By
emphasizing the most essential phrases and making a black box model
explicable, the IG, SHAP, and LIME approaches have proven their
capacity to accomplish this aim.

Unlike antecedents [13], which merely focus on extracting ex-
plainable predictions and lack a standardized metric to measure and
compare the quality of explanations across different models, in our
work we seek to evaluate it. With that aim, we proposed Leberage, a
metric to assess explainability.

Leberage has proven effective in measuring the degree of explain-
ability when classifying a document. As shown in Table 3, Leberage
can quantify the contribution of explainability techniques in contrast
to a random methodology. In this case, the Random approach obtains
a 32.44% of Leberage while explainability methods get a 54.45% or
higher, proving that the metric is valid in quantifying the decision
support level of the explanations. To our knowledge, there are no
previous works that quantitatively compare different explainability
techniques.

An interesting finding about explainability is the direct propor-
tionality between the degree of explainability and the performance in
supervised classification. This is particularly relevant in the classifica-
tion of documents in Spanish, where better classification results also
correlate with a higher degree of explainability. Regarding the com-
parative analysis of explainability strategies, the outcomes for SHAP
and IG are very similar. However, there is an increase in explainability
when LIME is used.

Our methodology demonstrates robust potential for adaptation
across various languages. These employed techniques are based on
learning mechanisms that do not inherently prefer one language over
another. With appropriate fine-tuning using language-specific corpora,
our approach could be effectively applied to clinical text mining in
languages other than Spanish.

However, despite our effort to construct a generic metric to measure
the quality of the explainability of predictions, it is only applicable
in labeling tasks where labels have a direct definition associated with
them, as in the case of CIE codes, or in named entity recognition tasks.
In other tasks where labels are not associated with definitions, our
metric is not applicable, at least without a prior task in which labels are
defined. Furthermore, it is far from accurate to regard the explanations
offered by the system as the explanations that motivate the predictions
are merely words underlined in the text.

6. Conclusion

In this article, we delve into the computer-aided classification of
EHRs in accordance with the ICD widely employed in clinical documen-
tation, with a focus on Spanish. EHRs are long documents and, while
traditional NLP approaches such as BERT [16] and RoBERTa [19] found
difficulties in analyzing entire documents, experimental results show
that crucial information is spread along the entire document. Indeed,
LLMs resulted in excellent alternatives.

Competitive models, such as LLMs, are often criticized for their
opacity. To cope with this issue, we explored different model-agnostic
explainability techniques: IG, SHAP, and LIME. Furthermore, we found
a lack of measures for categorizing the level of explainability. In this
work, we proposed Leberage a novel metric to assess and compare the
effectiveness of these techniques. One of the strengths of our work rests
on the thorough experimental framework disclosing alternative per-

spectives of this versatile approach, not only performance but also with N
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the added value provided by explainability, core in clinical decision
support initiatives.

In terms of future work, plenty of room remains for additional
progress on explainable AI. To improve the use of the system to a
wider public, we propose to improve the depth of the explanations
provided, by using generative LLMs. This integration can potentially
enrich the explanations by adding context and narrative, making the
AI’s decision-making process more transparent and understandable.
Generative LLMs, with their capacity to produce coherent and con-
textually relevant text, could offer a more detailed backdrop to each
explanation, bridging the gap between the technical output of the
system and the intuitive understanding of its users. This strategy would
not only expand the applicability of our explainability metric but also
move towards explaining AI decisions by improving explanation quality
to a level more akin to human reasoning.

Our study opens up new possibilities in the realm of medical docu-
ment classification and paves the way for AI models in healthcare that
are more precise, transparent, and trustworthy to users.
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ppendix. Software and hardware requirements

.1. Software dependencies

For the implementation of the Longformer model and the applica-
ion of the explainability techniques SHAP, LIME, and IG, we employed
ython 3.9.7 programming language next to the following key libraries:

• Transformers version 4.27.3 - Hugging Face’s library, including
the Clinical Longformer model.

• SHAP version 0.42.1 a library with DeepShap implementation.
• LIME version 0.2.0.1 a library with LIME implementation
• Captum 0.6.0 that implements IG explainability technique.

Detailed requirements and additional libraries are listed in the
equirements.txt file available in our code repository.

.2. Hardware requirements

The model training and experiments were conducted using an

VIDIA Tesla V100 GPU (32 GB) and 138 GB of CPU.
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A.3. Code availability

In an attempt to aid reproducibility, the complete source code is
available online at: https://github.com/nuriale207/Quantifying-decisi
on-support-level.
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