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Abstract. In space dimension n ≥ 3, we consider the electromagnetic Schrödinger
Hamiltonian H = (∇−iA(x))2 +V and the corresponding Helmholtz equation

(∇− iA(x))2u + u + V (x)u = f in Rn,

where the magnetic and electric potentials are allowed to have singularities at
the origin and decay at infinity. We extend the well known Lp-Lq estimates for

the solution of the free Helmholtz equation to the case when the electromag-

netic hamiltonian H is considered. This work extends the results that appear
in [G].

1. Introduction

In this paper we extend our previous results appearing in [G], where Lp-Lq

estimates for the solution of the electromagnetic Helmholtz equation were proven,
to the case of singular potentials A and V . We want to preserve the behavior of the
potentials at infinity, that is, consider potentials with short-range decay without
assuming smallness. Our goal will be to extend the well known Lp-Lq estimates
for the free Helmholtz equation given in [KRS], [CS], [Gut] and [Gut1], to the case
when we perturb the equation with an electromagnetic potential with singularities
at the origin. More precisely, conditions on the electric and the magnetic part of
the potential will be given in order to ensure that the estimates remain true. The
Lp-Lq estimates for the free Helmholtz equation are the following

(1.1) ‖u‖Lq(Rn) ≤ C‖f‖Lq(Rn),

where u is a solution of

(1.2) ∆u+ (τ ± iε)u = −f τ, ε > 0.

The exponents p and q in (1.1) have to verify some specific conditions that will be
specified later on. Here C can depend on τ , p, q and n and is independent of ε.

In the first part of the paper we will prove that the existing results for the
free Helmholtz equation can be extended to the perturbed equation by imposing
conditions on the admissible singularity at the origin and decay at infinity for the
potentials. This can be done without assuming smallness at infinity, neither for
the electric part, nor for the magnetic part. It will be concluded that the range
for p and q where estimates (1.1) are true is not the same as the one for the free
Helmholtz equation. Therefore this motivates the second part of the paper in which,
by setting A ≡ 0, we consider the Helmholtz equation with electric potential and
prove estimates (1.1) in the same region of boundedness of the free equation.

Therefore, we consider the electromagnetic Schrödinger hamiltonian H of the
form

(1.3) H = (∇− iA(x))2 + V (x),
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and the Helmholtz equation in dimensions n ≥ 3, namely,

(1.4) (∇− iA(x))2u+ u+ V (x)u = f in Rn.
Here, A : (A1, . . . , An) : Rn → Rn is the magnetic potential and V (x) : Rn → R is
the electric potential. Since now on, we denote by

(1.5) ∇A = ∇− iA, ∆A = ∇2
A.

The magnetic potential A is a mathematical construction which describes the in-
teraction of particles with an external magnetic field. The magnetic field B, which
is the physically measurable quantity, is given by

(1.6) B ∈Mn×n, B = DA− (DA)t,

i.e. it is the anti-symmetric gradient of the vector field A (or, in geometrical terms,
the differential dA of the 1-form which is standardly associated to A). In dimension
n = 3 the action of B on vectors is identified with the vector field curlA,

(1.7) Bv = curlA× v n = 3,

where the cross denotes the vectorial product in R3.
We also define the trapping component of B as

(1.8) Bτ (x) =
x

|x|
B(x), (Bτ )j =

n∑
k=1

xk
|x|
Bkj

and we say that B is non trapping if Bτ=0. Observe that in dimension n = 3 it
coincides with

(1.9) Bτ (x) :=
x

|x|
× curlA(x).

Hence, Bτ (x) is the projection of B on the tangential space in x to the sphere of
radius |x|, for n = 3. Observe also that Bτ · x = 0 for any n ≥ 2, therefore Bτ is a
tangential vector field in any dimension and we call it the tangential component of
the magnetic field B.

In order to ensure the self-adjointness of H we require some local integrability
conditions on the potentials. We will assume

(1.10) Aj ∈ L2
loc(Rn), V ∈ L1

loc(Rn),

∫
V |u|2dx ≤ ν

∫
|∇u|2dx, 0 < ν < 1.

From this assumptions it can be concluded (See [Z1]) that H is self-adjoint on
L2(Rn) with form domain

D(H) = {f ∈ L2(Rn) :

∫
|∇Af |2dx−

∫
V |f |2dx <∞}.

Note that by (1.10) then D(H) is equivalent to the Hilbert space

H1
A(Rn) = {f ∈ L2(Rn) :

∫
|∇Af |2dx <∞}.

Since the spectrum of a self-adjoint operator is real, we conclude the existence of
solution of

(1.11) Hu+ (1± iε)u = f in Rn, ε 6= 0,

for any f ∈ L2(Rn) and u ∈ H1
A(Rn). See [IK], [LS], [AHS] or [CFKS] for more

details about the self-adjointness of the electromagnetic Schrödinger operator H.
The main difficulty in order to obtain the estimates is that when the magnetic

laplacian is expanded we have to deal with a first order term, namely A · ∇, and it
is well known that there are no Lp-Lq estimates for the gradient of the solution of
the free Helmholtz equation,

(1.12) ∆u+ u = −f in Rn.
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The main result of the paper appears in Section 2, concretely Theorem 2.1.
We will proceed in the following way. Let us consider the modified Helmholtz

equation with electromagnetic potential and fixed frequency τ = 1. It is given by

(1.13) (∇− iA(x))2u+ (1± iε)u+ V (x)u = f in Rn, ε 6= 0.

Remark 1.1. For convenience we will deal only with the case τ = 1, in contrast
with the case of general τ > 0.

In order to derive the estimates for the solution of (1.4), Lp-Lq estimates, inde-
pendent of ε, will be obtained for the solution of the modified Helmholtz equation
with electromagnetic potential (1.13). The independence of ε for the estimates will
imply that these will remain true for the solution of (1.4). This is true due some
results in [Z].

Our method is a mixture of a priori estimates and perturbative arguments. This
is what allows us to avoid smallness conditions in the potentials. Similar arguments
have been used in the setting of the free Schrödinger equation, as can be seen in
[BPST] and [DFVV]. Along the proof our basic tools will be the corresponding Lp-
Lq estimates and a L2-local estimate for the solution of the free Helmholtz equation,
together with an a priori estimate for the solution of the modified Helmholtz equa-
tion with electromagnetic potential (1.13).

Let us introduce some notation. For f : Rn → C we define the Morrey-
Campanato norm as

(1.14) |||f |||2 := sup
R>0

1

R

∫
|x|≤R

|f |2dx.

Moreover, we denote, for j ∈ Z, the annulus C(j) by

C(j) = {x ∈ Rn : 2j ≤ |x| ≤ 2j+1},

(1.15) N(f) :=
∑
j∈Z

(
2j+1

∫
C(j)

|f |2dx

)1/2

,

and we easily see the duality relation∫
fgdx ≤ |||g||| ·N(f).

These norms were introduced by Kenig, Ponce and Vega in [KPV].
Concerning the perturbative part of our argument, it is necessary to remind

the results that are true for the free Helmholtz equation. Firstly, we are going to
state the result concerning the Lp-Lq estimates which appears in [KRS], [Gut] and
[Gut1]. Let

A =

(
n+ 3

2n
,
n− 1

2n

)
, A′ =

(
n+ 1

2n
,
n− 3

2n

)
B =

(
n2 + 4n− 1

2n(n+ 1)
,
n− 1

2n

)
, B′ =

(
n+ 1

2n
,
n2 − 2n+ 1

2n(n+ 1)

)

and ∆(n), for n ≥ 3, is the set of points of [0, 1]× [0, 1] given by

(1.16) ∆(n) =

{(
1

p
,

1

q

)
∈ [0, 1]2 :

2

n+ 1
≤ 1

p
− 1

q
≤ 2

n
,

1

p
>
n+ 1

2n
,

1

q
<
n− 1

2n

}
.

The set ∆(n) is the trapezium ABB′A′ with the closed line segments AB and B′A′

removed (See Figure 1).
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Figure 1. ∆(n), n ≥ 3.

Now, we are in conditions to recall the existing result for the Helmholtz equation
with constant coefficients.

Remark 1.2. In [Gut] (See also [Gut1]), estimates for the solution of the equation
perturbed with generals τ > 0 and ε > 0 are given, namely, the equation reads as
follows,

(1.17) ∆u+ (τ + iε)u = −F, τ, ε > 0.

Recall that we will only deal with the case of fixed frequency τ = 1.

The result is the following one.

Theorem 1.1. Let u be a solution of

(1.18) ∆u+ (1 + iε)u = −F, ε > 0.

Then, there exists a constant C, independent of ε, such that

(1.19) ‖u‖Lq(Rn) = ‖(∆ + (1 + iε))−1F‖Lq(Rn) ≤ C‖F‖Lp(Rn)

when ( 1
p ,

1
q ) ∈ ∆(n), n ≥ 3.

As we mentioned, another tool that will be crucial in the proof is an L2-local
estimate, which bounds the Morrey-Campanato norm of the solution of the free
equation, defined in (1.14), in terms of the Lp norm of the RHS data. This theorem
also appears in [RV], [Gut] and [Gut1]. The statement is the following.

Theorem 1.2. Let u be a solution of

(1.20) ∆u+ (1 + iε)u = −F, ε > 0.

If

(i) n = 3 and 1
4 ≤

1
p −

1
2 <

1
2 , or

(ii) n ≥ 4 and 1
n+1 ≤

1
p −

1
2 ≤

3
2n ,

then, there exists a constant C, independent of ε, such that

(1.21) sup
R>0

(
1

R

∫
BR

|u(x)|2dx
)1/2

≤ C‖F‖Lp(Rn).
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Once we have established the theorems that we use in our perturbative argument
it remains to state the a priori estimate that we are going to consider. We have
that, given precise conditions on the admissible singularity at the origin for the
electromagnetic potential, and the decay at infinity as well, a Morrey-Campanato
type estimate for the solution of the perturbed Helmholtz equation holds for n ≥ 3.
This can be seen in [Z].

We give now the main assumptions that must verify the potentials V (x) and
A(x) in [Z]. The electric potential will be decomposed as V (x) = V1(x) + V2(x),
where V1 is a long range potential and V2 is a short range one which might be
singular.

Let V1(x), Aj(x), j = 1, . . . , n, V2(x) be real-valued functions, r0 ≥ 1 and µ > 0.
For n ≥ 3, if |x| > r0 we assume

(1.22)
|V1(x)|
|x|

+ (∂rV1(x))− + |Bτ (x)|+ |V2(x)| ≤ c

|x|1+µ
,

for some c > 0, where ∂rV1 = x
|x| ·∇V1 is considered in the distributional sense and

(∂rV1)− denotes the negative part of ∂rV1. On the other hand, we require

(1.23) V1(x) = (∂rV1(x))− = 0 if |x| ≤ r0,

and

(1.24) |V2(x)| ≤ c

|x|2−α
if |x| ≤ r0, α > 0,

for some c > 0.
If n > 3, we consider

(1.25) |B| ≤ C∗

|x|2
|x| ≤ r0,

for some C∗ > 0 small enough. Finally, in dimension n = 3 we assume

(1.26) |B| ≤ c

|x|2−α
|x| ≤ r0, α > 0,

for some c > 0.

Remark 1.3. For simplicity, from now on we take r0 = 1.

Finally, let us define the following function

(1.27) χ(n) =

{
1 if n = 3,

0 if n 6= 3.

The theorem reads as follows (see [Z]).

Theorem 1.3. Let n ≥ 3, f such that N(f) <∞ and u ∈ H1
A(Rn) a solution of

(1.28) (∇+ iA(x))2u+ V1(x)u+ V2(x)u+ (1± iε)u = f, ε 6= 0,

where V1, V2 and A(x) satisfy assumptions (1.22)-(1.24), (1.25) for n > 3, and
(1.22)-(1.24), (1.26) for n = 3. Then, there exists a constant C, which depends
uniformly in ε, such that the following a priori estimate holds

|||u|||2 + |||∇Au|||2 +

∫
|x|≤1

|∇Au|2

|x|
dx+ sup

R>0

1

R2

∫
|x|=R

|u|2dσR(x)(1.29)

+ (1− χ(n))

∫
Rd

|u|2

|x|3
dx ≤ CN(f)2.
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Remark 1.4. In order to prove the a priori estimate (1.29), in [Z] is sufficient to
impose conditions on the trapping component of the magnetic field Bτ , not on the
whole B. More precisely, they depend on the dimension. For n > 3, Bτ must
satisfy with C∗ <

√
(n− 1)(n− 3),

(1.30) |Bτ | ≤
C∗

|x|2
|x| ≤ 1,

and if n = 3

(1.31) |Bτ | ≤
c

|x|2−α
|x| ≤ 1 c, α > 0.

Remark 1.5. The a priori estimates from Theorem 2.1 and Theorem 2.2 in [Z] are a
bit different from the one that we present in (1.29). In the left hand side it appears
the term ∫

|∇⊥Au|2

|x|
dx,

where ∇⊥A denotes the tangential component of the magnetic gradient ∇A defined
in (1.5). In principle we can not conclude anything from this for the term∫

|x|≤1

|∇Au|2

|x|
dx.

The estimate that we need for this term appears in [Z1], Lemma 2.4.1.

Remark 1.6. In [Z], Theorem 1.3 is proved for all τ ≥ τ0 > 0 and ε ∈ (0, ε1). We
only deal with the particular case τ = 1. The case τ = 0 requires more decay on
the potentials, as can be seen in [F].

Once we have described all the tools which are going to be used, it is necessary
to introduce the region where we are able to extend the known results for the free
Helmholtz equation to the case when electromagnetic perturbations are considered.
During the discussion, it will appear a subregion of ∆(n), for n ≥ 3, which will be
denoted by ∆0(n), given by

(1.32) ∆0(n) =

{(
1

p
,

1

q

)
∈ ∆(n) :

1

n+ 1
≤ 1

p
− 1

2
,

1

n+ 1
≤ 1

2
− 1

q

}
.

The set ∆0(n) is the solid triangle determined by the points Q, Q′ and Q′′ (See
Figure 2).

This will be the region of boundedness for the perturbed Helmholtz equation.

Remark 1.7. For the case of the perturbed electromagnetic equation, we are not
able to obtain a positive result of boundedness for the whole region ∆(n), since we
have not control for the gradient term, namely A ·∇, outside ∆0(n). However, if we
consider A ≡ 0, we can probe the estimates in the whole ∆(n) by imposing more
decay on V outside ∆0(n).

2. Electromagnetic Helmholtz Equation

In this section we give the precise statement and the proof of the theorem, where
we extend the Lp-Lq estimates for the solution of the electromagnetic Helmholtz
equation. The theorems and the notations which will be used along the proof were
presented in Section 1. We give first the result for the Helmholtz equation with
electromagnetic potential and afterwards, by setting A ≡ 0 we extend the result to
the electric case.

Let us start by considering the Helmholtz equation with electromagnetic poten-
tial in dimensions n ≥ 3. It reads,
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Figure 2. ∆0(n), n ≥ 3.

(2.1) (∇− iA(x))2u+ u+ V (x)u = f in Rn,
where A : (A1, . . . , An) : Rn → Rn is the magnetic potential and V (x) : Rn → R is
the electric potential.

We will also assume that the magnetic potential A is divergence free, or in other
words, A satisfies the so called Coulomb gauge condition

(2.2) ∇ ·A = 0.

We will prove Lp-Lq estimates for the solution of the equation (2.1). In order to do
that we will consider the solution of (2.1) as the solution of the modified Helmholtz
electromagnetic equation,

(2.3) (∇− iA(x))2u+ (1± iε)u+ V (x)u = f in Rn, ε 6= 0,

via the limiting absorption principle, by taking the limit of the solution of (2.3)
when ε goes to 0. We will obtain the corresponding Lp-Lq estimates, independent
of ε, for the solution of (2.3), so these will remain true for the solution of (2.1).
This procedure is justified by the results appearing in [Z].

The goal is to determine the region of p and q where the solution of (2.3) satisfies
Lp-Lq estimates, namely,

(2.4) ‖u‖Lq(Rn) ≤ C‖f‖Lp(Rn).

with C independent of ε.
We will impose the following conditions on the potentials.

Asumption 2.1. Let us assume that the electric potential V is such that

(2.5) V (x) = V2(x),

that is, V satisfies the assumptions of Theorem 1.3,

(2.6) V (x) = V1(x) + V2(x),

with V1 ≡ 0.
In order to use (1.29), the magnetic potential A and the electric potential V

must satisfy the assumptions (1.22)-(1.24) and (1.25) for n ≥ 4 and (1.22)-(1.24)
and (1.26) when n = 3.
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Moreover, A and V must verify the following conditions on the admissible sin-
gularity at the origin and the decay at infinity. They read as

(2.7) (H1)


|A(x)| ≤ C

|x|β , β < n+3
2(n+1) , |x| ≤ 1,

|V (x)| ≤ C
|x|γ , γ < 3n+5

2(n+1) , |x| ≤ 1,

|A(x)| ≤ C
|x|1+µ , µ > 0, |x| > 1,

|V (x)| ≤ C
|x|1+µ , µ > 0, |x| > 1.

Remark 2.1. The constant C that appears in (H1) and which measures the small-
ness near the origin of the potentials, does not need to be small as in Theorem 1.3,
since that we are far away from the critical admissible singularity for the magnetic
potential A and the electric potential V given by the conditions (1.24) and (1.25)
for n ≥ 4 and (1.24) and (1.26) if n = 3.

The main result of the paper is the following. This is the natural generalization
of the Theorem 2.1 in [G] to the case of singular potentials.

Theorem 2.1. Let u ∈ H1
A(Rn) be a solution of

(2.8) (∇− iA(x))2u+ (1± iε)u+ V (x)u = f in Rn, n ≥ 3, ε 6= 0.

where V and A satisfy assumptions (1.22)-(1.24), (1.25) and (H1) for n = 3,
and (1.22)-(1.24), (1.26) and (H1) for n ≥ 4. Then, there exists a constant C,
independent of ε, such that

(2.9) ‖u‖Lq(Rn) ≤ C‖f‖Lp(Rn),

when
(

1
p ,

1
q

)
∈ ∆0(n).

Proof. Step 1. We will prove that, whenever 1
n+1 ≤

1
2 −

1
q , then we get

(2.10) ‖u‖Lq(Rn) ≤ CN(f).

Let u be a solution of (2.8). Since ∇·A ≡ 0, we have that (∇− iA)2 can be written
as

(2.11) (∇− iA)2u = ∆u− 2iA · ∇Au+ |A|2u.
Notice that, the electromagnetic hamiltonian can be considered as a perturbation
of the free hamiltonian. Then, we have that u is solution of the following equation

(2.12) ∆u+ (1± iε)u = f + 2iA · ∇Au− |A|2u− V u.
Now we use the result from Theorem 1.2. If we consider the dual estimate of (1.21),
we obtain that, if 1

n+1 ≤
1
2 −

1
q it holds

‖u‖Lq(Rn) = ‖(∆ + (1± iε))−1(f + 2iA · ∇Au− |A|2u− V u)‖Lq(Rn)(2.13)

≤ C(N(f) +N(2iA · ∇Au) +N(|A|2u) +N(V u)).

with C independent of ε and N defined in (1.15).
We are going to estimate the terms that appear on the RHS of (2.13). First we

deal with the term N(2iA · ∇Au). We can split this term in two parts,

N(2iA · ∇Au)2 = C
∑
j∈Z

2j+1

∫
C(j)

|A · ∇Au|2dx(2.14)

= C
∑
j≤0

2j+1

∫
C(j)

|A · ∇Au|2dx

+ C
∑
j≥0

2j+1

∫
C(j)

|A · ∇Au|2dx.
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Let us deal both terms separately.
First, consider

∑
j≥0 2j+1

∫
C(j)
|A · ∇Au|2dx. Since |A(x)| ≤ C/|x|1+µ, µ > 0,

|x| ≥ 1, we have that this term can be bounded as

∑
j≥0

2j+1

∫
C(j)

|A · ∇Au|2dx ≤ C
∑
j≥0

2j
∫
C(j)

|A|2|∇Au|2dx

≤ C
∑
j≥0

2−j2−2jµ

∫
C(j)

|∇Au|2dx

≤ C

(
sup
R≥1

1

R

∫
1≤|x|≤R

|∇Au|2dx

)∑
j≥0

2−2jµ

≤ C sup
R≥1

1

R

∫
1≤|x|≤R

|∇Au|2dx.

Now, we can treat the part
∑
j≤0 2j+1

∫
C(j)
|A ·∇Au|2dx. Let us consider α positive

that will be fixed below, α < 2/(n+ 1) (see (2.39)). Since |A(x)| ≤ C/|x|β , |x| ≤ 1,
we have that the following holds,

∑
j≤0

2j+1

∫
C(j)

|A · ∇Au|2dx ≤ C
∑
j≤0

2j
∫
C(j)

|A|2|∇Au|2dx

≤ C
∑
j≤0

2j
∫
C(j)

|∇Au|2

|x|2β
dx

≤ C
∑
j≤0

∫
C(j)

|∇Au|2

|x|α
|x|α+1−2βdx

≤ C
∫
|x|≤1

|∇Au|2

|x|α
dx,

provided α + 1 − 2β ≥ 0. This condition, together with the previous one, α <
2/(n+ 1), leads us to the admissible singularity for A.

2β − 1 ≤ α < 2

n+ 1
⇐⇒ β <

n+ 3

2(n+ 1)
.

Therefore we obtain from the separate analysis that

(2.15) N(2iA · ∇Au)2 ≤ C

(∫
|x|≤1

|∇Au|2

|x|α
dx+ sup

R≥1

1

R

∫
1≤|x|≤R

|∇Au|2dx

)
.

Let us continue with the term N(|A|2u). As before, we can say that

N(|A|2u)2 =
∑
j∈Z

2j+1

∫
C(j)

||A|2u|2dx(2.16)

=
∑
j≤0

2j+1

∫
C(j)

||A|2u|2dx

+
∑
j≥0

2j+1

∫
C(j)

||A|2u|2dx.
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The term away the origin can be treated as above, and we get∑
j≥0

2j+1

∫
C(j)

||A|2u|2dx ≤ C
∑
j≥0

2j
∫
C(j)

|A|4|u|2dx(2.17)

≤ C
∑
j≤0

2−j2−2j(1+2µ)

∫
C(j)

|u|2dx

≤ C

(
sup
R≥1

1

R

∫
1≤|x|≤R

|u|2dx

)∑
j≥0

2−2j(1+2µ)

≤ C sup
R≥1

1

R

∫
1≤|x|≤R

|u|2dx.

Let us now proceed with the part concerning to the singularity at the origin for the
magnetic potential A. The analysis of this term will be different depending on the
dimension. We start by considering the case n = 3. Again, since |A(x)| ≤ C/|x|β ,
|x| ≤ 1, it holds∑

j≤0

2j+1

∫
C(j)

||A|2u|2dx ≤ C
∑
j≤0

2j
∫
C(j)

|A|4|u|2dx

≤ C
∑
j≤0

2j(α+3)2−j(α+2)

∫
C(j)

|u|2

|x|4β
dx

= C
∑
j≤0

2j(α+3−4β) 1

2j(α+2)

∫
C(j)

|u|2dx

≤ C

(
sup
R≤1

1

Rα+1

∫
|x|=R

|u|2dσR(x)

)∑
j≤0

2j(α+3−4β)

≤ C sup
R≤1

1

Rα+1

∫
|x|=R

|u|2dσR(x),

if α+ 3− 4β > 0. From this , together with α < 2/(n+ 1), we can conclude

4β − 3 < α <
2

n+ 1
⇐⇒ β <

3n+ 5

4(n+ 1)
.

We have that
n+ 3

2(n+ 1)
<

3n+ 5

4(n+ 1)
, ∀n > 1.

Hence, if |A(x)| ≤ C/|x|β , β < (n+ 3)/2(n+ 1), |x| ≤ 1, we get if n = 3,

(2.18)
∑
j≤0

2j+1

∫
C(j)

||A|2u|2dx ≤ C sup
R≤1

1

Rα+1

∫
|x|=R

|u|2dσR(x).

Now, we treat the case n ≥ 4. We have that∑
j≤0

2j+1

∫
C(j)

||A|2u|2dx ≤ C
∑
j≤0

2j
∫
C(j)

|A|4|u|2dx

≤ C
∫
|x|≤1

|u|2

|x|α+2
|x|α+3−4βdx

≤ C
∫
|x|≤1

|u|2

|x|α+2
dx,
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provided α + 3 − 4β ≥ 0. As before, if β < (n + 3)/2(n + 1), we can bound this
term as

(2.19)
∑
j≤0

2j+1

∫
C(j)

||A|2u|2dx ≤ C
∫
|x|≤1

|u|2

|x|α+2
dx.

From (2.16), (2.17) and (2.18), we get for n = 3

(2.20) N(|A|2u)2 ≤ C

(
sup
R≤1

1

Rα+1

∫
|x|=R

|u|2dσR(x) + sup
R≥1

1

R

∫
1≤|x|≤R

|u|2dx

)
,

and for n ≥ 4, from (2.16), (2.17) and (2.19), it holds

(2.21) N(|A|2u)2 ≤ C

(∫
|x|≤1

|u|2

|x|α+2
dx+ sup

R≥1

1

R

∫
1≤|x|≤R

|u|2dx

)
.

Now, it remains to consider the term concerning the electric potential V (x). We
proceed as above by splitting the term in two parts

N(V u)2 =
∑
j∈Z

2j+1

∫
C(j)

|V u|2dx(2.22)

=
∑
j≤0

2j+1

∫
C(j)

|V u|2dx

+
∑
j≥0

2j+1

∫
C(j)

|V u|2dx.

Due to V (x) ≤ C/|x|1+µ, µ > 0, |x| ≥ 1, the second part can be upper bounded as∑
j≥0

2j+1

∫
C(j)

|V u|2dx ≤ C
∑
j≥0

2j
∫
C(j)

|V |2|u|2dx(2.23)

≤ C
∑
j≤0

2−j2−2jµ

∫
C(j)

|u|2dx

≤ C

(
sup
R≥1

1

R

∫
1≤|x|≤R

|u|2dx

)∑
j≥0

2−2jµ

≤ C sup
R≥1

1

R

∫
1≤|x|≤R

|u|2dx.

The term near the origin must be treated as the magnetic potential. We consider
separately the cases n = 3 and n ≥ 4. For the n = 3, due to the singularity
assumption, namely |V (x)| ≤ C/|x|γ , |x| ≤ 1, we get∑

j≤0

2j+1

∫
C(j)

|V u|2dx ≤ C
∑
j≤0

2j
∫
C(j)

|V |2|u|2dx

≤ C
∑
j≤0

2j(α+3)2−j(α+2)

∫
C(j)

|u|2

|x|2γ
dx

= C
∑
j≤0

2j(α+3−2γ) 1

2j(α+2)

∫
C(j)

|u|2dx

≤ C

(
sup
R≤1

1

Rα+1

∫
|x|=R

|u|2dσR(x)

)∑
j≤0

2j(α+3−2γ)

≤ C sup
R≤1

1

Rα+1

∫
|x|=R

|u|2dσR(x),



12 ANDONI GARCIA

whenever α+ 3− 2γ > 0. This, together with α < 2/(n+ 1) leads us to

2γ − 3 < α <
2

n+ 1
⇐⇒ γ <

3n+ 5

2(n+ 1)
.

Hence, we can bound this term as

(2.24)
∑
j≤0

2j+1

∫
C(j)

|V u|2dx ≤ C sup
R≤1

1

Rα+1

∫
|x|=R

|u|2dσR(x).

When n ≥ 4 we have∑
j≤0

2j+1

∫
C(j)

|V u|2dx ≤ C
∑
j≤0

2j
∫
C(j)

|V |2|u|2dx

≤ C
∫
|x|≤1

|u|2

|x|α+2
|x|α+3−2γdx

≤ C
∫
|x|≤1

|u|2

|x|α+2
dx,

provided α+ 3− 2γ ≥ 0. As above we obtain

(2.25)
∑
j≤0

2j+1

∫
C(j)

|V u|2dx ≤ C
∫
|x|≤1

|u|2

|x|α+2
dx.

Therefore, from (2.22), (2.23) and (2.24), we get for n = 3

(2.26) N(V u)2 ≤ C

(
sup
R≤1

1

Rα+1

∫
|x|=R

|u|2dσR(x) + sup
R≥1

1

R

∫
1≤|x|≤R

|u|2dx

)
,

and for n ≥ 4, from (2.22), (2.23) and (2.25), it holds

(2.27) N(V u)2 ≤ C

(∫
|x|≤1

|u|2

|x|α+2
dx+ sup

R≥1

1

R

∫
1≤|x|≤R

|u|2dx

)
.

From (2.13), (2.15), (2.20) and (2.26), for n = 3 and from (2.13), (2.15), (2.21) and
(2.27) for n ≥ 4, we get that whenever 1

n+1 ≤
1
2 −

1
q , we can estimate as follows

‖u‖Lq(Rn) = ‖(∆ + (1± iε))−1(f + 2iA · ∇Au− |A|2u− V u)‖Lq(Rn)

(2.28)

≤ C(N(f) +N(2iA · ∇Au) +N(|A|2u) +N(V u))

≤ CN(f) + C1


(∫
|x|≤1

|∇Au|2

|x|α
dx

)1/2

+

(
sup
R≥1

1

R

∫
1≤|x|≤R

|∇Au|2dx

)1/2

+χ(n)

(
sup
R≤1

1

Rα+1

∫
|x|=R

|u|2dσR(x)

)1/2

+

(
sup
R≥1

1

R

∫
1≤|x|≤R

|u|2dx

)1/2

+(1− χ(n))

(∫
|x|≤1

|u|2

|x|α+2
dx

)1/2
 ,

where χ(n) was defined in (1.27).
Now we remind the a priori estimate given by Theorem 1.3, which ensures that,

under the assumptions (1.22)-(1.24), (1.25) for n > 3, and (1.22)-(1.24), (1.26) for



Lp-Lq ESTIMATES FOR ELECTROMAGNETIC HELMHOLTZ EQUATION. SINGULAR POTENTIALS13

n = 3, there exists a constant C, such that the following holds

|||u|||2 + |||∇Au|||2 +

∫
|x|≤1

|∇Au|2

|x|
dx+ sup

R>0

1

R2

∫
|x|=R

|u|2dσR(x)(2.29)

+ (1− χ(n))

∫
Rd

|u|2

|x|3
dx ≤ CN(f)2,

where χ(n) was defined in (1.27).

Remark 2.2. The constant C in (2.29) depends uniformly in ε.

Remark 2.3. Since α < 1, the terms containing α in (2.28) are always smaller than
the corresponding ones in (2.29).

Then, from (2.28), (2.29) and Remark 2.3, we get

(2.30) ‖u‖Lq(Rn) ≤ CN(f).

Consequently, we get the desired estimate.
Step 2. By applying duality to the last estimate, we get that if 1

n+1 ≤
1
p −

1
2 ,

(2.31) |||u||| ≤ C‖f‖Lp(Rn)

Remark 2.4. The adjoint operator is the one corresponding to ∓ε. Since we can do
the same argument for both signs, all the computations are justified.

Step 3. This is the final step in the proof. As we said in the introduction the main
difficulty will be to handle the first order term given by A ·∇Au, since there are no
Lp-Lq estimates for the gradient of the solution of the free Helmholtz equation. In
the analysis we will consider |||∇Au|||, being this norm controlled in ∆0(n).

We have that, if
(

1
p ,

1
q

)
∈ ∆(n) such that 1

n+1 ≤
1
2−

1
q , from the Lp-Lq estimates

for the solution of the free equation, namely (1.19), given in Theorem 1.1, and
proceeding as in the Step 1 for the terms 2iA · ∇Au, |A|2u and V u, we get

‖u‖Lq(Rn) = ‖(∆ + (1± iε))−1(f + 2iA · ∇Au− |A|2u+ V u)‖Lq(Rn)

≤ C‖f‖Lp(Rn) + C1(N(2iA · ∇Au) +N(|A|2u) +N(V u)),

where C and C1 do not depend on ε.
Let us remind that, for the term N(2iA · ∇Au), it holds for n ≥ 3,

N(2iA · ∇Au)2 ≤ C

(∫
|x|≤1

|∇Au|2

|x|α
dx+ sup

R≥1

1

R

∫
1≤|x|≤R

|∇Au|2dx

)
.

Concerning the term N(|A|2u), we have for n = 3

N(|A|2u)2 ≤ C

(
sup
R≤1

1

Rα+1

∫
|x|=R

|u|2dσR(x) + sup
R≥1

1

R

∫
1≤|x|≤R

|u|2dx

)
,

and for n ≥ 4,

N(|A|2u)2 ≤ C

(∫
|x|≤1

|u|2

|x|α+2
dx+ sup

R≥1

1

R

∫
1≤|x|≤R

|u|2dx

)
.

Finally, for the term N(V u), we get for n = 3

N(V u)2 ≤ C

(
sup
R≤1

1

Rα+1

∫
|x|=R

|u|2dσR(x) + sup
R≥1

1

R

∫
1≤|x|≤R

|u|2dx

)
,

and for n ≥ 4,

N(V u)2 ≤ C

(∫
|x|≤1

|u|2

|x|α+2
dx+ sup

R≥1

1

R

∫
1≤|x|≤R

|u|2dx

)
.
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Hence, we have that

‖u‖Lq(Rn) = ‖(∆ + (1± iε))−1(f + 2iA · ∇Au− |A|2u− V u)‖Lq(Rn)

≤ C‖f‖Lp(Rn) + C1


(∫
|x|≤1

|∇Au|2

|x|α
dx

)1/2

+

(
sup
R≥1

1

R

∫
1≤|x|≤R

|∇Au|2dx

)1/2

+χ(n)

(
sup
R≤1

1

Rα+1

∫
|x|=R

|u|2dσR(x)

)1/2

+

(
sup
R≥1

1

R

∫
1≤|x|≤R

|u|2dx

)1/2

+(1− χ(n))

(∫
|x|≤1

|u|2

|x|α+2
dx

)1/2
 ,

Finally, we conclude that if u is solution of (2.8), by applying (2.31) we have that
if ( 1

p ,
1
q ) ∈ ∆0(n) we conclude

‖u‖Lq(Rn) = ‖(∆ + (1± iε))−1(f + 2iA · ∇Au− |A|2u− V u)‖Lq(Rn)

(2.32)

≤ C‖f‖Lp(Rn) + C1


(∫
|x|≤1

|∇Au|2

|x|α
dx

)1/2

+

(
sup
R≥1

1

R

∫
1≤|x|≤R

|∇Au|2dx

)1/2

+χ(n)

(
sup
R≤1

1

Rα+1

∫
|x|=R

|u|2dσR(x)

)1/2

+ (1− χ(n))

(∫
|x|≤1

|u|2

|x|α+2
dx

)1/2
 .

We have to bound the remaining factors in (2.32) in terms of the Lp norm of f .
This will be done in two parts. During the discussion we will distinguish between
the terms related with the behaviour of the solution u near the origin and those
ones related with the behaviour at infinity. Therefore, we consider separately the
cases R ≤ 1 and R ≥ 1. Let us first proceed with the case R ≤ 1.

Consider a radial function ϕ = ϕ(|x|) ∈ C∞0 (Rn). By multiplying Helmholtz
equation (2.8) by ϕū in the L2-sense and taking the resulting real parts it gives the
identity

−
∫
Rn
ϕ|∇Au|2dx+

1

2

∫
Rn

∆ϕ|u|2dx+

∫
Rn
ϕV |u|2dx+

∫
Rn
ϕ|u|2dx(2.33)

= <
∫
Rn
fϕūdx.

Then, we choose the appropriate multiplier ϕ. Consider, for R ≤ 1, ϕR = ηψR,
where η ∈ C∞0 (Rn) and ψR are defined respectively by

(2.34) η(x) =

{
1 if |x| ≤ 1,

0 if |x| ≥ 2,

and

(2.35) ψR(x) =


− 1
Rα if |x| ≤ R,
− 1
|x|α if R < |x| ≤ 1,

0 if |x| > 2.

where α < 2/(n+ 1).
Notice that ϕR is continuous. Since R ≤ 1 and this multiplier is chosen in order

to control the terms near the origin in (2.32), the interesting region is |x| ≤ 1, and
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it is easy to compute that ∆ϕR is given by

∆ϕR(x) =
α

Rα+1
δ|x|=R +

α(n− (α+ 2))

|x|α+2
χ{R<|x|≤1}(x).

By inserting ϕR in (2.33), we get

1

Rα

∫
BR

|∇Au|2dx+

∫
R<|x|≤1

|∇Au|2

|x|α
dx+

∫
1<|x|≤2

|ϕR||∇Au|2dx(2.36)

α

2Rα+1

∫
|x|=R

|u|2dσR(x) +
α(n− (α+ 2))

2

∫
R<|x|≤1

|u|2

|x|α+2
dx

+
1

2

∫
1<|x|≤2

∆ϕR|u|2dx ≤ |
∫
Rn
ϕRfūdx|+

1

Rα

∫
BR

|V ||u|2dx

+

∫
R<|x|≤1

|V ||u|2

|x|α
dx+

∫
1<|x|≤2

|ϕR||V ||u|2dx+
1

Rα

∫
BR

|u|2dx

+

∫
R<|x|≤1

|u|2

|x|α
dx+

∫
1<|x|≤2

|ϕR||u|2dx.

We are going to bound the terms appearing in the RHS of (2.36). First, we consider
1
Rα

∫
BR
|V ||u|2dx. Recall that |V (x)| ≤ C/|x|γ , γ < (3n + 5)/2(n + 1), |x| ≤ 1.

Therefore, we can proceed for n = 3 as follows

1

Rα

∫
BR

|V ||u|2dx ≤
∫
BR

|V ||u|2

|x|α
dx =

∫ R

0

dρ

ρα

∫
|x|=ρ

|V ||u|2dσρ(x)

≤

(∫ 1

0

sup
|x|=ρ

|x||V (x)|dρ

)
sup
R≤1

1

Rα+1

∫
|x|=R

|u|2dσR(x).

Let us denote by

(2.37) ‖|x|V ‖L1
r<1L

∞(Sr) =

∫ 1

0

sup
|x|=ρ

|x||V (x)|dρ.

This norm is obviously finite under the assumptions for V (x) in (2.7),

‖|x|V ‖L1
r<1L

∞(Sr) =

∫ 1

0

sup
|x|=ρ

|x||V (x)|dρ ≤ C
∫ 1

0

dρ

ργ−1
.

The last integral is finite whenever γ < 2. We have that

3n+ 5

2(n+ 1)
< 2 ⇐⇒ n > 1.

Consequently, we can ensure that for n = 3

1

Rα

∫
BR

|V ||u|2 ≤ ‖|x|V ‖L1
r<1L

∞(Sr) sup
R≤1

1

Rα+1

∫
|x|=R

|u|2dσR(x).

Now, we treat the term
∫
R<|x|≤1

|V ||u|2
|x|α dx. Proceeding as above, we get∫

R<|x|≤1

|V ||u|2

|x|α
dx =

∫ 1

R

dρ

ρα

∫
|x|=ρ

|V ||u|2dσρ(x)

≤

(∫ 1

0

sup
|x|=ρ

|x||V (x)|dρ

)
sup
R≤1

1

Rα+1

∫
|x|=R

|u|2dσR(x).

Hence, ∫
R<|x|≤1

|V ||u|2

|x|α
dx ≤ ‖|x|V ‖L1

r<1L
∞(Sr) sup

R≤1

1

Rα+1

∫
|x|=R

|u|2dσR(x).
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Let us now consider the case n ≥ 4. We have that

1

Rα

∫
BR

|V ||u|2dx ≤
∫
BR

|V ||u|2

|x|α
dx

≤ ‖|x|2V ‖L∞(|x|≤1)

∫
|x|≤1

|u|2

|x|α+2
dx

Moreover
‖|x|2V ‖L∞(|x|≤1) = sup

|x|≤1

|x||V (x)| ≤ C sup
|x|≤1

|x|2−γ = C

provided γ ≤ 2. We have that this condition holds, since γ < (3n+ 5)/2(n+ 1).
Similarly, we get∫

R<|x|≤1

|V ||u|2

|x|α
dx ≤ ‖|x|2V ‖L∞(|x|≤1)

∫
|x|≤1

|u|2

|x|α+2
dx.

Now, we consider
∫
R<|x|≤1

|u|2
|x|α dx. This can be bounded as follows. Let J ∈ Z,

j ≤ 0 such that 2J < R < 2J+1. We get∫
R<|x|≤1

|u|2

|x|α
dx =

∑
J<j≤0

∫
C(j)

|u|2

|x|α
dx ≤

∑
j≤0

∫ 2j+1

2j

|u|2

2jα
dx

≤ C sup
R≤1

1

Rα+1

∫
|x|=R

|u|2dσR(x).

In the same way, we obtain

1

Rα

∫
BR

|u|2dx ≤ C sup
R≤1

1

Rα+1

∫
|x|=R

|u|2dσR(x)

We also have that∫
1<|x|≤2

|ϕR||V ||u|2dx+

∫
1<|x|≤2

|ϕR||u|2dx ≤ sup
R≥1

1

R

∫
1<|x|≤R

|u|2dx.

The last term is the one which contains f . Let us apply Hölder inequality to this
term, obtaining

(2.38)

∫
Rn
|ϕRfū|dx ≤ ‖f‖Lp‖u‖Lq‖ϕR‖Lr ,

whenever 1 = 1/p+ 1/q + 1/r.
We are going to consider the following subregion of ∆(n), for n ≥ 3, which will

be crucial during the discussion. It is defined by

∆0(n) =

{(
1

p
,

1

q

)
∈ ∆(n) :

1

n+ 1
≤ 1

p
− 1

2
,

1

n+ 1
≤ 1

2
− 1

q

}
.

∆0(n) is the solid triangle determined by the points Q, Q′ and Q′′ (See Figure 3).
Let us consider the point Q′ ∈ ∆(n) and apply Hölder inequality when p and q are
the coordinates of Q′. The point Q′ satisfies that

1

p
− 1

2
=

1

n+ 1
,

1

2
− 1

q
=

n+ 2

n(n+ 1)
.

Therefore, the corresponding r in (2.38) is given by

1

r
=

(
1

2
− 1

q

)
−
(

1

p
− 1

2

)
=

2

n(n+ 1)
.

Then, we have to compute ‖ϕR‖Lr , with r given above, under the assumption
R ≤ 1. If n− αr > 0, we get

(2.39) ‖ϕR‖rLr ≤
C

n− αr
Rn−αr.
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Figure 3. ∆0(n), n ≥ 3.

So, in order to keep under control the factor n − αr in the denominator, we take
α < 2/(n + 1). This choice of α justifies the allowed singularity for the potentials
A and V given by the (H1) assumption (See (2.7)). With this choice we have that

n− αr > 0.

Therefore, we have that, for the point Q′, the Lr norm of ϕR is bounded from above

‖ϕR‖rLr ≤ C.

Now, after taking supremum in (2.36), we get for the the point Q′ in the 3-D case

sup
R≤1

1

Rα

∫
BR

|∇Au|2dx+

∫
|x|≤1

|∇Au|2

|x|α
dx+

α

2
sup
R≤1

1

Rα+1

∫
|x|=R

|u|2dσR(x)

≤ C‖f‖Lp‖u‖Lq + C1‖|x|V ‖L1
r<1L

∞(Sr) sup
R≤1

1

Rα+1

∫
|x|=R

|u|2dσR(x)

+ C2 sup
R≥1

1

R

∫
1<|x|≤R

|u|2dx

Therefore by making ‖|x|V ‖L1
r<1L

∞(Sr) small enough, we finally, we obtain for n = 3

sup
R≤1

1

Rα

∫
BR

|∇Au|2dx+

∫
|x|≤1

|∇Au|2

|x|α
dx+ sup

R≤1

1

Rα+1

∫
|x|=R

|u|2dσR(x)

≤ C

(
‖f‖Lp‖u‖Lq + sup

R≥1

1

R

∫
1<|x|≤R

|u|2dx

)
.

where p and q are the coordinates of the point Q′.
Similarly, for n ≥ 4 and observing that, since α < 1 we have that

α(n− (α+ 2))

2
>
α(n− 3)

2
,
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we get, after taking supremum in (2.36),

sup
R≤1

1

Rα

∫
BR

|∇Au|2dx+

∫
|x|≤1

|∇Au|2

|x|α
dx+

α

2
sup
R≤1

1

Rα+1

∫
|x|=R

|u|2dσR(x)

+
α(n− 3)

2

∫
|x|≤1

|u|2

|x|α+2
dx ≤ C‖f‖Lp‖u‖Lq + C1‖|x|2V ‖L∞(|x|≤1)

∫
|x|≤1

|u|2

|x|α+2
dx

+ C2 sup
R≥1

1

R

∫
1<|x|≤R

|u|2dx.

As before if we take ‖|x|2V ‖L∞(|x|≤1) sufficiently small , we get for n ≥ 4

sup
R≤1

1

Rα

∫
BR

|∇Au|2dx+

∫
|x|≤1

|∇Au|2

|x|α
dx+ sup

R≤1

1

Rα+1

∫
|x|=R

|u|2dσR(x)

+

∫
|x|≤1

|u|2

|x|α+2
dx ≤ C

(
‖f‖Lp‖u‖Lq + sup

R≥1

1

R

∫
1<|x|≤R

|u|2dx

)
,

where p and q are the coordinates of the point Q′.
Now, we are going to deal with the case R ≥ 1. Let us consider ϕR ∈ C∞0 (Rn)

given by

ϕR =


0 if |x| < 1

2 ,

− 1
R if 1 < |x| ≤ R,

0 if |x| > 2R.

By inserting this function in (2.33), we get

∫
1
2<|x|≤1

|ϕR||∇Au|2dx+
1

R

∫
1<|x|≤R

|∇Au|2dx+

∫
R<|x|≤2R

|ϕR||∇Au|2dx(2.40)

+
1

2

∫
|x|≤2R

∆ϕR|u|2dx ≤ |
∫
Rn
ϕRfūdx|+

∫
1
2<|x|≤1

|ϕR||V ||u|2dx

+
1

R

∫
1<|x|≤R

|V ||u|2dx+

∫
R<|x|≤2R

|ϕR||V ||u|2dx+

∫
1
2<|x|≤1

|ϕR||u|2dx

+
1

R

∫
1<|x|≤R

|u|2dx+

∫
R<|x|≤2R

|ϕR||u|2dx.

Some terms on the LHS of (2.40) are positive, so we discard them, obtaining the
following inequality

1

R

∫
1<|x|≤R

|∇Au|2dx ≤ |
∫
Rn
ϕRfūdx|+

∫
1
2<|x|≤1

|ϕR||V ||u|2dx

+
1

R

∫
1<|x|≤R

|V ||u|2dx+

∫
R<|x|≤2R

|ϕR||V ||u|2dx+

∫
1
2<|x|≤1

|ϕR||u|2dx

+
1

R

∫
1<|x|≤R

|u|2dx+

∫
R<|x|≤2R

|ϕR||u|2dx.
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We treat the terms appearing on the RHS of the previous inequality. Since |V (x)| ≤
C/|x|1+µ, |x| ≥ 1, we can proceed as follows

1

R

∫
1<|x|≤R

|V ||u|2dx ≤
∫

1<|x|≤R

|V ||u|2

|x|
dx(2.41)

≤ C
∑
j≥0

2−j(1+µ)2−j
∫
C(j)

|u|2dx

≤ C

(
sup
R≥1

1

R

∫
1≤|x|≤R

|u|2dx

)∑
j≥0

2−j(1+µ)

≤ C sup
R≥1

1

R

∫
1≤|x|≤R

|u|2dx.

Similarly, we have∫
R<|x|≤2R

|ϕR||V ||u|2dx ≤
1

R

∫
1<|x|≤2R

|V ||u|2dx

≤ C sup
R≥1

1

R

∫
1≤|x|≤R

|u|2dx.

Moreover ∫
1
2<|x|≤1

|ϕR||V ||u|2dx ≤ C sup
R≥1

1

R

∫
1≤|x|≤R

|u|2dx,∫
1
2<|x|≤1

|ϕR||u|2dx ≤ C sup
R≥1

1

R

∫
1≤|x|≤R

|u|2dx,

1

R

∫
1<|x|≤R

|u|2dx ≤ sup
R≥1

1

R

∫
1≤|x|≤R

|u|2dx,

and ∫
R<|x|≤2R

|ϕR||u|2dx ≤
1

R

∫
1<|x|≤2R

|u|2dx(2.42)

≤ C sup
R≥1

1

R

∫
1≤|x|≤R

|u|2dx.

Hence, after taking supremum in the LHS of (2.40), we obtain

sup
R≥1

1

R

∫
1<|x|≤R

|∇Au|2dx ≤ |
∫
Rn
ϕRfūdx|+ C sup

R≥1

1

R

∫
1≤|x|≤R

|u|2dx.

As when we discussed the case R ≤ 1, for the term containing f , we apply Hölder
inequality and obtain

(2.43)

∫
Rn
|ϕRfū|dx ≤ ‖f‖Lp‖u‖Lq‖ϕR‖Lr ,

whenever 1 = 1/p+ 1/q + 1/r.
Therefore, we have to compute ‖ϕR‖Lr under the assumption R ≥ 1. We get

the following

‖ϕR‖rLr ≤ CRn−r.
This term is bounded for R ≥ 1 if

(2.44)
n

r
≤ 1, 1 =

1

p
+

1

q
+

1

r
.

So, we have to find the region for p and q, for ( 1
p ,

1
q ) ∈ ∆0(n), where (2.44) are

satisfied.
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We have that (2.44) holds if ( 1
p ,

1
q ) ∈ ∆−0 (n), where ∆0(n)

2 is given by

∆−0 (n) =

{(
1

p
,

1

q

)
∈ ∆0(n) :

1

q
≤ 1− 1

p

}
.

The region ∆−0 (n) is determined by the points
(

1
p ,

1
q

)
∈ ∆0(n) under the diagonal

1/q = 1− 1/p, including the points
(

1
p ,

1
q

)
in the duality line (See Figure 4).

Figure 4. ∆−0 (n), n ≥ 3.

Hence, if ( 1
p ,

1
q ) ∈ ∆−0 (n), we can apply Hölder inequality and we obtain

(2.45) sup
R≥1

1

R

∫
1<|x|≤R

|∇Au|2dx ≤ C‖f‖Lp‖u‖Lq + C1 sup
R≥1

1

R

∫
1≤|x|≤R

|u|2dx.

Recall that we were able to apply Hölder inequality for the case R ≤ 1 if p and
q were the coordinates of the point Q′. We are going to remind the results we
obtained. For n = 3, we got the following

sup
R≤1

1

Rα

∫
BR

|∇Au|2dx+

∫
|x|≤1

|∇Au|2

|x|α
dx+ sup

R≤1

1

Rα+1

∫
|x|=R

|u|2dσR(x)(2.46)

≤ C

(
‖f‖Lp‖u‖Lq + sup

R≥1

1

R

∫
1<|x|≤R

|u|2dx

)
.

and for n ≥ 4

sup
R≤1

1

Rα

∫
BR

|∇Au|2dx+

∫
|x|≤1

|∇Au|2

|x|α
dx+ sup

R≤1

1

Rα+1

∫
|x|=R

|u|2dσR(x)(2.47)

+

∫
|x|≤1

|u|2

|x|α+2
dx ≤ C

(
‖f‖Lp‖u‖Lq + sup

R≥1

1

R

∫
1<|x|≤R

|u|2dx

)
.

Now, we are going to apply all the obtained results in order to get the desired
estimate. From the analysis for the cases R ≤ 1 and R ≥ 1 we have that, for n ≥ 3,
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from (2.45), (2.46) in the 3-D case, and from (2.45),(2.47) for higher dimensions,
we can ensure that for the point Q′ it holds

‖u‖Lq(Rn) ≤ C‖f‖Lp(Rn) + C1

(
‖f‖Lp‖u‖Lq + sup

R≥1

1

R

∫
1<|x|≤R

|u|2dx

) 1
2

.

Then, we remind (2.31). It verifies that, whenever 1
n+1 ≤

1
p −

1
2 we have

|||u||| ≤ C‖f‖Lp(Rn).

By using this inequality, we have that, for the point Q′, it holds

‖u‖Lq(Rn) = ‖(∆ + (1± iε))−1(f + 2iA · ∇Au− |A|2u− V u)‖Lq(Rn)

≤ C‖f‖Lp + λ‖u‖Lq + C(λ)‖f‖Lp .

for λ,C(λ) > 0. We choose λ sufficiently small and conclude the desired bound for
the point Q′

(2.48) ‖u‖Lq(Rn) ≤ C‖f‖Lp(Rn).

We also have that (2.48) is true for the points in the segment QQ′, (see Figure
4), since the coordinate p is the same for all that points, and the boundedness of
the solution when the coordinates p and q belong to points in the segment QQ′ is
derived from the corresponding one for Q′.

Now, by duality, the same holds for the points in the segment QQ′′ and finally,
by an interpolation argument, we have that, if ( 1

p ,
1
q ) ∈ ∆0(n), we get the desired

bound

‖u‖Lq(Rn) ≤ C‖f‖Lp(Rn).

The proof is complete. �

We have that, due to the presence of the first order term associated to the gradi-
ent, the region where we prove the estimates for the solution of the electromagnetic
Helmholtz equation is smaller than the one valid in the free case. Therefore it is
natural to wonder if, whenever A ≡ 0 (i.e., we deal with the Helmholtz equation
with electric potential), this region can be extended to the whole ∆(n). Therefore,
we will pass to consider the case of Helmholtz equation with electric potential V .
Logically, outside ∆0(n), the assumed decay for V will not be enough in order to
get the estimates.

In the following result we extend the boundedness of the solution to the whole
∆(n). We obtain the next result.

Theorem 2.2. Let u ∈ H1(Rn) be a solution of

(2.49) ∆u+ (1± iε)u+ V (x)u = f, in Rn, n ≥ 3, ε 6= 0.

Let V satisfies assumptions (1.22)-(1.24) for n ≥ 3 in Theorem 1.3, and suppose
that there exist positive constants C, γ, δ such that

(2.50) |V (x)| ≤

{
C
|x|γ , if |x| ≤ 1,
C
|x|δ , if |x| ≥ 1

where γ and δ satisfies for
(

1
p ,

1
q

)
∈ ∆(n) \∆0(n),

(2.51) γ <


1
2 + n

{
2

n+1 − ( 1
2 −

1
q )
}
, 1

2n <
1
2 −

1
q <

1
n+1 ,

1
2 + n

{
2

n+1 − ( 1
p −

1
2 )
}
, 1

2n <
1
p −

1
2 <

1
n+1 ,
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(2.52) δ >


1
2 + n

{
2

n+1 − ( 1
2 −

1
q )
}
, 1

2n <
1
2 −

1
q <

1
n+1 ,

1
2 + n

{
2

n+1 − ( 1
p −

1
2 )
}
, 1

2n <
1
p −

1
2 <

1
n+1 .

Then, there exists a constant C, independent of ε, such that

(2.53) ‖u‖Lq(Rn) ≤ C‖f‖Lp(Rn).

Proof. As for the proof of Theorem 2.1, this will be divided in three steps. The
first two steps are the same, so we will skip them. The main difference appears in
Step 3.

Remark 2.5. As we have seen in Theorem 2.1, for
(

1
p ,

1
q

)
∈ ∆0(n), the short-range

decay assumptions for the electric potential V and the magnetic potential A are
sufficient in order to prove the Lp-Lq estimates. As we will see, outside this region,
more decay for the electric potential V potential is needed.

Step 3. Now let us consider
(

1
p ,

1
q

)
∈ ∆(n) such that 1

2n <
1
2 −

1
q <

1
n+1 . Then,

from Theorem 1.1 and observing that, since the dual estimate of (1.21) in Theorem
1.2 can not be applied for the perturbative term V u because we are outside the
allowed range for q, we conclude that the Lq norm of the solution of the equation
(2.49) can be bounded as follows

‖u‖Lq(Rn) = ‖(∆ + (1± iε))−1(f − V u)‖Lq(Rn)(2.54)

≤ C(‖f‖Lp(Rn) + ‖V u‖Lp1 (Rn)).

where C does not depend on ε.
Here p1 is given by

1

p1
− 1

q
=

2

n+ 1
,

1

2n
<

1

2
− 1

q
<

1

n+ 1
.

We have taken the point p1 being in the line 1/p1 − 1/q = 2/(n+ 1) since we want
to require the smallest decay at infinity for V .

In order to give the necessary conditions that must satisfy the electric potential,
namely, the admissible singularity at the origin and the decay at infinity, we analyze
separately the Lp1 norm of V u.

We have that ∫
|x|≤1

|V u|p1dx =
∑
j<0

∫
C(j)

|V u|p1dx

where, C(j) was the annulus given by

C(j) = {x ∈ Rn : 2j ≤ |x| ≤ 2j+1},

Therefore, if |V (x)| ≤ C/|x|γ , |x| ≤ 1, we get∫
|x|≤1

|V u|p1dx =
∑
j<0

∫
C(j)

|V u|p1dx ≤ C
∑
j<0

∫
C(j)

∣∣∣∣ u|x|γ
∣∣∣∣p1 dx.

Now, we apply Hölder inequality for

(2.55)
1

p1
=

1

q
+

2

n+ 1
=

2

n+ 1
−
(

1

2
− 1

q

)
+

1

2
=

1

r
+

1

2
,
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and we obtain the following.

∑
j<0

∫
C(j)

∣∣∣∣ u|x|γ
∣∣∣∣p1 dx ≤ C∑

j<0

(
1

2j

∫
C(j)

|u|2dx

) p1
2
(∫

C(j)

dx

(2j)(γ− 1
2 )r

) p1
r

≤ C
(

sup
R≤1

1

R

∫
BR

|u|2dx
) p1

2 ∑
j<0

(∫
C(j)

dx

(2j)(γ− 1
2 )r

) p1
r

.

Then, we have that

‖V u‖Lp1 (|x|≤1) ≤ C
(

sup
R≤1

1

R

∫
BR

|u|2dx
) 1

2 ∑
j<0

(∫
C(j)

dx

(2j)(γ− 1
2 )r

) 1
r

≤ C
(

sup
R≤1

1

R

∫
BR

|u|2dx
) 1

2 ∑
j<0

(2j)
n
r−(γ− 1

2 ).

Hence, by imposing

(2.56)
n

r
− (γ − 1

2
) > 0,

we get that

‖V u‖Lp1 (|x|≤1) ≤ C
(

sup
R≤1

1

R

∫
BR

|u|2dx
) 1

2

.

Remind that, from (2.55)

1

r
=

2

n+ 1
−
(

1

2
− 1

q

)
.

Therefore, (2.56) is satisfied whenever

(2.57) γ <
1

2
+ n

{
2

n+ 1
− (

1

2
− 1

q
)

}
.

Now, we proceed with the term ‖V u‖Lp1 (|x|≥1). We have that∫
|x|≥1

|V u|p1dx =
∑
j≥0

∫
C(j)

|V u|p1dx.

Now, since |V (x)| ≤ C/|x|δ, |x| ≥ 1, we get∫
|x|≥1

|V u|p1dx =
∑
j≥0

∫
C(j)

|V u|p1dx ≤ C
∑
j≥0

∫
C(j)

∣∣∣∣ u|x|δ
∣∣∣∣p1 dx.

As before, if we apply Hölder inequality with the exponents

1

p1
=

1

q
+

2

n+ 1
=

2

n+ 1
−
(

1

2
− 1

q

)
+

1

2
=

1

r
+

1

2
,

we obtain

∑
j≥0

∫
C(j)

∣∣∣∣ u|x|δ
∣∣∣∣p1 dx ≤ C∑

j≥0

(
1

2j

∫
C(j)

|u|2dx

) p1
2
(∫

C(j)

dx

(2j)(δ− 1
2 )r

) p1
r

≤ C

(
sup
R≥1

1

R

∫
1<|x|≤R

|u|2dx

) p1
2 ∑
j≥0

(∫
C(j)

dx

(2j)(δ− 1
2 )r

) p1
r

.
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Hence, it holds

‖V u‖Lp1 (|x|≥1) ≤ C

(
sup
R≥1

1

R

∫
1<|x|≤R

|u|2dx

) 1
2 ∑
j≥0

(∫
C(j)

dx

(2j)(δ− 1
2 )r

) 1
r

≤ C

(
sup
R≥1

1

R

∫
1<|x|≤R

|u|2dx

) 1
2 ∑
j≥0

(2j)
n
r−(δ− 1

2 ).

Then, if we assume that

(2.58)
n

r
− (δ − 1

2
) < 0,

we have that

‖V u‖Lp1 (|x|≥1) ≤ C

(
sup
R≥1

1

R

∫
1<|x|≤R

|u|2dx

) 1
2

.

This is satisfied if

(2.59) δ >
1

2
+ n

{
2

n+ 1
− (

1

2
− 1

q
)

}
.

Now, from (2.54) and under the assumptions (2.57) and (2.59) for V (x), we
conclude

‖u‖Lq(Rn) = ‖(∆ + (1± iε))−1(f − V u)‖Lq(Rn)

≤ C(‖f‖Lp(Rn) + ‖V u‖Lp1 (Rn))

≤ C

‖f‖Lp(Rn) +

(
sup
R≤1

1

R

∫
BR

|u|2dx
) 1

2

+

(
sup
R≥1

1

R

∫
1<|x|≤R

|u|2dx

) 1
2

 .

Finally, reminding that |||u||| is still bounded for
(

1
p ,

1
q

)
∈ ∆(n) such that 1

2n <
1
2 −

1
q <

1
n+1 , we can conclude the final estimate

‖u‖Lq(Rn) ≤ C‖f‖Lp(Rn).

Now, by applying duality we have that the result is true whenever
(

1
p ,

1
q

)
∈ ∆(n)

such that 1
2n <

1
p −

1
2 <

1
n+1 . This ends the proof. �

Remark 2.6. Notice that the necessary decay for V given by δ in (2.59) grows as we
approach the upper frontier of ∆(n) (See line segment AB in Figure 4). However,
we can always take for |x| ≥ 1, |V (x)| ≤ C/|x|α, α < 2, where C is not necessarily
small.
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[G] Garćıa, A., Lp-Lq estimates for electromagnetic Helmholtz equation, J. Math. Anal.
Appl, 384 2 409–420, (2011).

[Gut] Gutiérrez, S., Un problema de contorno para la ecuación de Ginzburg-Landau. PhD.
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[KRS] Kenig, C.E., Ruiz, A., Sogge, D., Uniform Sobolev inequalities and unique continuation

for second order constant coefficient differential operators, Duke Math. J., 55, 329–347,

(1987).
[LS] Leinfelder, H., Simander, C., Schrödinger operators with singular magnetic vector

potentials, Math. Z., 176, 1–19, (1981).

[R] Regbaoui, R., Strong Uniqueness for Second Order Differential Operators, J. Differen-
tial Equations, 141, 201–217, (1997).

[RV] Ruiz, A., Vega, L., On local regularity of Schrödinger equations, Internat. Math. Res.

Notices, 13–27, (1993).
[Z] Zubeldia, M., Limiting absorption principle for the electromagnetic Helmholtz equation

with singular potentials, arXiv:1104.4237.

[Z1] Zubeldia, M., The forward problem for electromagnetic Helmholtz equation, Phd. The-
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