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Abstract

The low and medium complexity SoCs used for sensing and networking in Critical Sectors, like Energy,
Industry, Transportation, and A&D, are typically built using mature 65-22nm technologies. The demand for more
specialized, secure, and safe devices is growing due to the high specialization demanded by these strategic sectors.
In this context, in the R&D project SoC4cris, we are working on a SoC subsystem based on a 32-bit RISC-V for
65-22nm technologies that could be easily adapted to new SoCs oriented to these sectors.

The testing stage of the ASIC, once it is manufactured and in prototype stages, is very important. Thus, the
main aim of the presented work is to automate this testing stage by developing a flexible and cost-effective scan
chain Design-for-Test (DfT) verification method that looks for flexibility and facilitates the testing of the ASIC.
Furthermore, this method will allow us to test communication standards typically used in the industry.

As the level of integration in digital ICs increases and transistor size decreases, the post-silicon verification of
the chips becomes critical. However, the usage of complex Automatic Test Equipment (ATE) is highly expensive, and
sometimes very inflexible for little production volumes or multi-project wafers, which complicates its verification.
In this paper we propose a low-cost, highly flexible ATE, capable of testing DUTs that integrate Scan Chain as
Design-for-Test (DfT) architecture.

Our ATE can be used for little production volumes and prototypes where the verification time is not critical,
but a exhaustive testing is needed. Together with a SW library based on Python, it is fast and easy to deploy,
maintain and modify. Furthermore, it targets a wide range of DUTs as its working frequency can be dynamically
modified by user.
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I. INTRODUCTION

The demand for more specialized, secure, and safe devices in Critical Sectors, like Energy, Industry, 
Transportation, and A&D is growing. The high specialization demanded by these strategic sectors requires
new and sovereign devices. In this context, in the R&D project SoC4cris, we are working on a SoC
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subsystem based on a 32-bit RISC-V for 65-22nm technologies that could be easily adapted to new SoCs
oriented to these sectors.

A. RISC-V for Edge Computing applications
RISC-V is an open-source instruction set architecture (ISA). Its modular design includes a compact

base integer ISA and optional standard extensions. This design allows for hardware customization based
on the system’s requirements. Additionally, it allows Custom Extensions to tailor the ISA for specific
applications, fostering innovation and adaptability. In SoC architecture, to this flexibility level, it is added
the capability to accelerate or implement custom computation using on-chip bus-connected hardware IP
cores. This adaptability of RISC-V makes it suitable for developing small or large applications and enables
compilers to generate more reliable code. The flexibility of RISC-V makes it particularly attractive for
customized accelerators and educational purposes. Consequently, research groups worldwide are showing
a growing interest in developing processing architectures, System-on-Chips (SoCs), and instruction group
extensions to be used in any embedded system design [1]. This growing interest is reflected in the
expanding ecosystem of RISC-V cores and SoCs, which are well-documented on the initiative repository
[2]

In the context of edge computing applications, RISC-V implementations include small 32-bit CPUs.
Edge Implementations for Industry, Energy, and Aerospace are mainly based on this type of microcon-
troller.

The Parallel Ultra Low Power (PULP) Platform is a notable example of open-source academic research
on processors using RISC-V. PULP is an advanced microcontroller system with a multi-core platform that
can achieve excellent energy efficiency and performance based on the open-source RISC-V architecture
[3]. The simplest PULP-based systems are microcontrollers that can be configured to use any supported
32-bit core from the PULP platform, along with adding memory and some peripherals. This RISC-V
compatible cores are Ibex, CV32E40P and Micro-riscy.

Ibex is a small and simple core. The development of this core began in 2015 under the name “Zero-
Riscy” as part of the PULP platform for energy-efficient computing. This compact 32-bit in-order core with
a two-stage pipeline implements the RV32IMC ISA [4]. Ibex is designed to operate either independently
in a single-core system or as a co-processor in a multi-core system. It fully adheres to the RISC-V
ISA specification and has been verified using the RISC-V compliance test suite. Furthermore, Ibex is
compatible with the RISC-V GNU Compiler Toolchain (GCC) and Low-Level Virtual Machine (LLVM)
Compiler Infrastructure.

Micro-Riscy is a variation of Zero-Riscy with a minimal area, designed to create a smallest-possible
RISC-V core. This core is implemented with a two-stage pipeline and has no hardware support for multi-
plication and division. To further reduce the area footprint, it implements the RVE RISC-V specification
which allows to use only 16 general-purpose registers. Within the PULP ecosystem, this core is employed
as a control core for PUPLPino and PULPissimo microcontrollers.

CV32E40P is a small and efficient in-order core based on the RISC-V architecture [5] with a four-
stage pipeline. In 2016, under the name ”RI5CY, it became a RISC-V core, and in 2020, it started being
maintained by the PULP platform, contributing to the “Open Hardware Group”. RI5CY was implemented
to address energy efficiency in applications deployed on Digital Signal Processors (DSPs).

Several 32-bit microcontroller solutions are available in the RISC-V single-core context, including
NEORV32 [6]. NEORV32 is designed to be user-friendly for both beginners and advanced users in
FPGA/RISC-V architectures. The project has built-in execution safety measures to ensure predictable
behavior. It can execute any C program, including CoreMark and FreeRTOS. Besides, it can be synthesized
for any target technology, making it a versatile and powerful microcontroller solution suitable for several
applications.

The NEORV32 CPU is an area-optimized RISC-V core that implements the rv32i_zicsr_zifencei
base ISA and supports several additional/optional ISA extensions. This microarchitecture is based on a
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Von-Neumann machine built upon a mixture of multi-cycle and two-stage pipelined execution schemes.
The CPU provides independent interfaces for instruction fetch and data access. However, these two bus
interfaces are merged into a single processor-internal bus via a prioritizing bus switch.

B. SoC4cris p1: 32-bit RISC-V SoC for Edge Computing
Figure 1 shows the Block Diagram of the ASIC prototype SoC4cris p1 developed in the project [7].

The University of the Basque Country provides the TxIKI CPU and a White Rabbit [8] experimental IP
in the front-end design. This RISC-V SoC subsystem is based on neorv32 RISC-V CPU implementation
[6]. CEIT research center contributes with Peripheral IP. This is a Sync1 IP to test the interfaces
with RISC-V CPU and a digital blinking output.
SoC4cris p1 is completed with the IPs Convolution and Sync2 to experiment with the accel-

eration of convolutional arithmetics and the connection of time-aware peripherals.

32bit RISC-V
CPU

SoC subsystem
ROM bootloader

16KB RAM (instructions)
16KB RAM (Data)

SoC4cris PROTO1

IP0 SYNC2

AXIM

UART0

GPIO

PWM

JTAG

IP2 PERIPHERAL 

IP3 SYNC1

TxIKI
cpu

SPI

XIP

1-WIRE
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XIRQ
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Figure 1: SOC4cris P1 architecture block diagram.

These IPs are used to verify the overall ASIC methodology validating the functionality of the IPs once
the ASIC Back-end design is manufactured in UMC™ 65nm technology. On the other hand, the testing
stage of the ASIC, once is manufactured, is very important. Thus, the main aim of the presented work is
to automate this testing stage developing a low-cost scan chain Design-for-Test (DfT) verification method
looking for flexibility and facilitating the testing of the ASIC. Furthermore, this method will allow us to
test communication standards typically used in the industry.

This paper is organized as follows. Section II introduces previously developed work in scan chain
emulation techniques. Section III presents the developed low-cost Automatic Testing Equipment (ATE)
and its mode of operation. Section IV contains the verification procedure followed to test the ATE and
the results of the implementation and verification. Finally, Section V concludes the paper and define the
work to be performed on the future.

II. STATE-OF-THE-ART

In [9], a FPGA-based ATE for ASIC verification is discussed. The authors describe an ATE to be
used with ASICs where a scan chain has been added as Design-for-Test (DfT) architecture. This solution
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showed good results for the verification of ICs whose production volume remain low. However, the ATE
is focused on defect verification based on fault models detectable by the scan chain (e.g. stuck-at fault
model), lacking the possibility of performing both functional and timing verification under real conditions.

In [10], another low-cost FPGA-based ATE is proposed. Authors emphasized the re-configurable ca-
pacity of the ATE taking advantage of the FPGA design flow. This design does not focus on an specific
DfT architecture, rather on the possibility of inserting test vectors using every DUT GPIO and measuring
DUT pinout values and timing behaviour.

Our design merges both scan chain DfT verification method into a low-cost solution easy to deploy
and utilise, as it is presented in Section III-A. Besides, as described in Section V it will allow to test
communication standards typically used in the industry, as well as to use those interfaces to control the
DUT or charge an specific configuration or software (functional verification).

III. SCAN CHAIN EMULATION SYSTEM VIA JTAG
A. Architecture

To reduce silicon area and increase yield and design flexibility, the Test Access Port is not implemented
on the ASIC but in an external carrier. This approach, which maintains an external JTAG Test Access
Port (TAP) and emulates the Scan Chain (SC) for Automatic Test Pattern Generation (ATPG), could be
adopted as a future design strategy for low or medium-complexity SoCs based on Chiplets. As [11] states,
it may help to overcome one of the critical drawbacks of Chiplet-based design, the need for standardized
testing among different providers. Indeed, the support for the test provided by IEEE 1149.1 EXTEST
instructions in each Chiplet is recommended, since replicating JTAG TAPs in each semiconductor chunk
may be impractical.

In the current project, the ASIC implements a Design-for-Test structure, manifested as a single SC
(SDI-SDO), which is driven by the Test Mode (TM) and Scan Chain Enable (SCEN) inputs. These two
control signals enables two types of test points, the observation points (OP) and the control points (CO)
that are distributed over the combinational logic of the ASIC. By instantiating SC as DfT, the defect
detection centers on stuck-at and bridging fault models, that is, identification of shorts between a specific
data path and VDD or VSS, and shorts between two nets. In contrast, transition or path delay fault models
will be covered by DUT functional testing as SC utilization is limited to information capture on TCK
edges.

As long as the sequential elements employed in the ASIC implementation process have their data and
clock inputs multiplexed with the help of the aforementioned SCEN and TM signals, the SCEN signal
either toggles the input between the scan input port (SDI) and the normal data input port (DataIn), thus
routing the signal through the Design for Test (DFT) combinational test logic or through the normal data
path, as shown in Figure 2.

Concurrently, the TM input signal sets up the ASIC into verification mode, consequently, the clock
source changes to TCK, signal controlled by the Scan Chain Emulation System, and distributing the TCK
signal through all scan chain sequential elements. Simultaneously, hard macros are bypassed to avoid
shadowing logic around them.

The Scan Emulation System is based on a commercial TE0726-03M ZynqBerry™ board, being com-
posed of 3 main modules: Test Access Port (TAP), TAP Controller (TAPC) and Zynq Processing System
(PS) [12] [13]. The selection of ZynqBerry™ has been driven by its SoC capabilities (ARM Core +
FPGA + peripherals) together with its competitive price (˜130C), which makes it a flexible and low-cost
solution. The architecture of the Scan Emulation System is presented in Figure 3.

The TAP controls the SDI and SCEN outputs as well as acquires the SDO input, hence performing the
link between the JTAG connection and the DUT Scan Chain Register (SCR). For this application, only
the mandatory IEEE1149.1 functions are implemented into the TAP (Table I) [14]. Aiming to control
the SCR, SCEN output is only asserted while data is being shifted in, that is, when the TAP Finite State
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Figure 2: ASIC Scan Chain architecture

Machine is in SHIFT-DR state, as illustrated in Figure 4. Therefore, SAMPLE and PRELOAD instructions
can be executed as one (SAMPLE/PRELOAD).

DUT register elements sampling is performed at SCEN rising edge, that is, once the register element
multiplexer selection signal toggles from DI to SI, as depicted in Figure 2. On the contrary, a known
state (SCR value) is loaded into the system when the register element multiplexer selection signal toggles
from SI to DI, i.e., at SCEN falling edge.

In order to ensure a correct capture of SDI input by the DUT at TCK rising edge, SDI and SCEN
values are updated at TCK falling edge following same behavior than JTAG TDI signal as specified by
IEEE1149.1 standard [14]. Thus, half the TCK clock cycle is provided for SDI to become stable before
being captured by the DUT. This strategy greatly reduces internal and board delays calculations as timing
constrains can be relaxed just by reducing TCK frequency.

Table I: IEEE1149.1 implemented instructions on Scan Chain Emulation System.

Name Code Description

BYPASS 0b1111 It connects TDI input to TDO output through a 1b shift-register.

SAMPLE 0b1010 It allows a snapshot of the normal operation of the component to be taken and examined.

PRELOAD 0b1011 It allows data values to be loaded onto the latched parallel outputs of the boundary-scan register (BSR).

EXTEST 0b0010 It allows testing of off-chip circuitry and board-level interconnections.

IDCODE 0b0110 It provides the device identification register value.
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Figure 3: Scan Chain Emulation System architecture.

The TAP Controller (TAPC) acts as master in the JTAG FPGA internal connection to the TAP, generating
TCK, TMS and TDI outputs and acquiring TDO input. Additionally, Test Mode (TM) output is controlled
by TAPC and configurable by the user. This holds special significance for functional verification, where
the system must be taken into a known state, sometimes unreachable by any other means, and then the
system must be let free.

The TAP Controller has an AXI4 Lite interface controlled by the Zynq PS, whose local register map
is presented in Table II [15]. This module is capable of generating the TCK output with configurable
frequency between 12kHz and 25 MHz, targeting a wide range of DUTs. TAPC allows data with arbitrary
length to be shifted in, prior division into 32b data vectors. Once the TAP Controller has registered the
32b vector to be shifted in, a write acknowledgement flag is raised and the user can provide the next 32b
vector. If data were not provided fast enough, the TAP Controller would raise a underflow flag and the
system (TAPC + TAP) would enter into pause state (PAUSE-DR, Figure 4). When dealing with shifted out
data (coming from SDO input), a 32bx32 FIFO is utilized to minimize the chance of non-read data being
overwritten, thereby providing users ample time to retrieve data and consequently freeing FIFO space.

Table II: TAP Controller AXI Register Interface (C: Control, S: Status, D: Data).

Address Type Name Description
0x00 C TAPC CTRL Control register
0x01 C TAPC TCK DIV CLK to TCK dividing factor
0x02 S TAPC STAT Status register
0x03 S/D TAPC DATA LEN Data length (Write: to send; Read: received)
0x04 D TAPC DATA Data (Write:to send; Read:received)
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Figure 4: TAP Finite State Machine [14]

The Zynq Processing System is fed by a 33.33MHz external oscillator. ARM processor runs at 666.66MHz
while a 50MHz clock is provided to the Zynq Programmable Logic (PL). The PS executes a Petalinux™
OS image, employing a two-stage boot process that begins with flash memory and then transitions to an
external Micro-SD card. The Petalinux™ OS is commanded through an UART connection. Besides, the
OS instantiates a SCP server available for file transfer through a 10/100Mbs Ethernet connection.

B. Mode of Operation
The Scan Chain Emulation System has two operational modes: directed and autonomous. On directed

mode, the Zynq PS acts as bridge between the commands send by an external computer through UART
connection and the TAP Controller. The SW link between these two modules is performed by an in-house
developed Python library capable of reading and writing TAP Controller registers as well as executing
JTAG instructions.
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In autonomous mode, a Python script runs the test file (located into the Micro-SD card) and compares
the generated output with the predefined expected value, recording the test log and result along the process.
In order to ease parsing by the Python script, the test file is JSON formatted. For each test the instructions
to be executed, the data input and the expected value are specified in the test file, as depicted in Figure 5.

{
"Mode" : ATP, test:
[
{"instr": "IDCODE", "dataIn": "0x00000000", "expData": "0x000009DD"},
{"instr": "SAMPLE", "dataIn": "0x00000000", "expData": "0xCE172024"}

]
}

Figure 5: Test file JSON format.

Additionally, for each test, test mode option must be selected between two possibilities: ATPG and
Functional.

ATPG verification aims to detect defects on the DUT typically associated to the manufacturing process.
In this verification mode, a test pattern is initially shifted into the DUT for its values to be propagated
through the DUT’s logic (see Figure 2). Test pattern propagation is limited to one clock cycle as depicted
in Figure 7a (2). This way the logic function to be verified is reduced to a single data path between two
register elements.

For this DUT in particular (RISCV SoC ASIC), the Scan Chain Emulation System (SCES) is not
capable of setting all DUT inputs into a known state. However, the consequences of this drawback are
limited as the SCES is capable of controlling the communication interfaces, leaving uncontrolled general
purpose inputs which are registered after input, thus limiting the non-controllable logic to a negligible
portion of the DUT’s logic.

On the other hand, functional verification aims to take the DUT to a known state (through test vector
and controllable I/Os) and let it run freely, being the expected behavior checked by other interfaces apart
from the Scan Chain. This verification mode is specially relevant to test error modes not capable of being
excited by any other means.

IV. IMPLEMENTATION RESULTS

The Scan Chain Emulation System (SCES) Programmable Logic resources usage are presented in Table
III.

Table III: Scan Chain Emulation System resources usage.

Resources Used Available Percent
6-Input LUT (LUTRAM included) 574 17600 3.24 %

LUTRAM (512b) 58 6000 0.97 %
Flip-Flop 773 35200 2.20 %

Block RAMs (36Kb) 0.5 60 0.83 %

Verification of the system has been conducted using a ZedBoard to emulate the DUT. The complete
test set-up is shown in Figure 6.

Verification activities focused on 2 main points: functional correctness and timing. ZedBoard scan chain
register elements were pre-loaded with a known pattern in order to verify that the SCES is able to retrieve
SDO value at the correct time over a wide range of frequencies. Additionally, the delay between TCK
falling edge and, SCEN, SDI signals changes have been checked to ensured that there is enough time
available for the signals to become stable at the DUT side. This parameter has been called fly-time (Tfly,
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Figure 6: Scan Chain emulation System verification Set-up. (1) SCES (ZynqBerry) (2) DUT (ZedBoard)

presented in Eq 1) and it has great relevance as it limits the maximum frequency of the complete system
(SCES + DUT). Tfly depends on 3 parameters:

• TTCK/2. TCK half period, it represents the total available time in a ideal case. Half a period is taken
because signals are generated-captured at TCK falling edge on TAP side, but at the rising edge on
DUT side.

• ∆TCK-SE,∆TCK-SDI. Output delay of SCEN or SDI signal with respect to TCK (this delay may be
negative).

• TDUT
SU . External Set-Up time of SDI with respect to the TCK input. This value must be respected in

order to avoid metastability issues.

Tfly = TTCK/2−max(∆TCK-SE,∆TCK-SDI)− TDUT
SU (1)

The following test procedure was conducted for the TCK frequencies shown in Table IV with a DUT
scan chain length of 32b:

1) Set TCK frequency to the desired value by configuring TAPC TCK DIV register value.
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2) Shift In scan chain value to be loaded. JTAG SAMPLE/PRELOAD instruction is used for this goal.
3) Check the previous/reset scan chain value has been correctly shifted out (through SDO output) by

reading TAPC DATA register.
4) Shift in the 32b wide 0x0 value and check that the previously shifted in value has been received

by reading the TAPC DATA register.
Figure 7 shows TCK, SCEN, SDI and SDO oscilloscope measurement and terminal capture for the test

with TCK at 1MHz frequency.

(a) 1MHz Shift Data Test

(b) Capture of Petalinux OS terminal

Figure 7: Test Measurements. (1) Shift In (SDI): 0xCE17CE17 Shift Out (SDO): 0xFACEFEED. (2)
Update TCK cycle with SCEN de-asserted

Table IV shows the result of the tests performed on the Scan Chain Emulation System. As it can be
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seen, the 25MHz test failed. Tfly was greater than the maximum available time, hence the capture value
was not stable and reliable. It can be observed that working with the same set-up and reducing the working
frequency solved the problem as previously expected.

Table IV: Scan Chain Emulation System verification results

TCK Freq Shift In Value SC Reset Value Reading SC Shift Out Value Reading 32b Shift Time
25MHz 0xA5A5A5A5 FAIL FAIL N/A
5MHz 0xCAFE2024 PASS (0xFEEDFACE) PASS ∼690 µs
1MHz 0xCE17CE17 PASS (0xFEEDFACE) PASS ∼710 µs
100kHz 0xABCDEF01 PASS (0xFEEDFACE) PASS ∼1100 µs

V. CONCLUSION

This work introduced a new low-cost FPGA-based ATE to be used in the verification of ASICs where
the scan chain is accessible via DUT pinout. The proposed solution avoids the need of implementing a
Test Access Port (TAP) on the ASIC design, hence reducing its area and incrementing its flexibility. This
system reduces the cost by an order of magnitude compared with other previously proposed solutions as
[9]. Furthermore, it does not rely on proprietary SW or HW other than the carrier board, and it has been
developed on well-known, highly used programming languages as Python (for SW) and VHDL (for HW).

On a future release of the Scan Chain Emulation System, it is intended to add a communication protocol
test interface, capable of verifying the DUT compliance with the following commonly used protocols:
UART, SPI, I2C and ONEWIRE. Moreover, it will be able to read/write GPIOs and external interrupts
(XIRQ). These interfaces would be connected to the Scan Emulation System using the 2x20 pin header
(same disposition as RaspBerry™ connector, Figure 8). An independent Python library will be developed
for each interface, thus facilitating its use and simplifying its modification in case of adaptation need to
new DUTs.

Furthermore, it is planned to adapt the test patterns input format to Standard Test Interface Language
(STIL) to avoid the need of translation between ATPG output format and JSON.
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Figure 8: Zynqberry 2x20 connector disposition.




