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a b s t r a c t

The relationship between classical and quantum mechanics is
usually understood via the limit h̄ → 0. This is the underlying
idea behind the quantization of classical objects. The apparent
incompatibility of general relativity with quantum mechanics
and quantum field theory has challenged for many decades this
basic idea. We recently showed (Bru and de Siqueira Pedra,
0000; Bru and de Siqueira Pedra, 2021 [46,47]) the emergence
of classical dynamics for very general quantum lattice systems
with mean-field interactions, without (complete) suppression of
its quantum features, in the infinite volume limit. This leads
to a theoretical framework in which the classical and quantum
worlds are entangled. Such an entanglement is noteworthy and is
a consequence of the highly non-local character of mean-field in-
teractions. Therefore, this phenomenon should not be restricted
to systems with mean-field interactions only, but should also
appear in presence of interactions that are sufficiently long-
range, yielding effective, classical background fields, in the spirit
of the Higgs mechanism of quantum field theory. In order to
present the result in a less abstract way than in its original
version, here we apply it to a concrete, physically relevant,
example and discuss, by this means, various important aspects
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of our general approach. The model we consider is not exactly
solvable and the particular results obtained are new.

© 2021 The Author(s). Published by Elsevier Inc. This is an open
access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The limit h̄ → 0 of Planck’s constant refers in mathematics to the semi-classical analysis, a well-
eveloped and matured research field [1–6]. In physics, quantum systems are, in some cases, related
o classical counterparts with h̄ appearing as a small deformation parameter, like, for instance, in
eyl’s quantization. See, e.g., [7, Chapter 13]. This is the common understanding1 of the relationship
etween quantum and classical mechanics, which is formally seen as a limit case2 of quantum
echanics, even if there exist physical features (such as the spin of quantum particles) which do
ot have a clear classical counterpart.
Nevertheless, classical mechanics does not only show up in the limit h̄ → 0, but also in quantum

ystems with mean-field interactions, as explained in the present paper. Theoretical physicists are
f course aware of this fact. See, e.g., [11] . This can be traced back, at least, down to the seminal
aper [12], by Hepp and Lieb who made explicit, for the first time in 1973, the existence of Poisson
rackets in some (commutative) algebra of functions, related to a classical effective dynamics.
his research line was further developed by many other authors, at least until the nineties. See,
.g., [13–32].
We focus here on Bóna’s approach, referring to his impressive series of papers, starting in 1975

ith [13]. Based on his decisive progresses [17,19–21] on permutation-invariant quantum-spin
ystems with mean-field interactions, Bóna presents a full-fledged abstract theory3 in 1991 [25]
nd later in a mature textbook published in 2000 (revised in 2012) [34], named by him “extended
uantum mechanics”. See also his new book [35] on the subject, published in 2020.
Following [34, Section 1.1-a], Bóna’s original motivation was to “understand connections be-

ween quantum and classical mechanics more satisfactorily than via the limit h̄ → 0.” His major
onceptual contribution is to highlight the appearance of classical mechanics without necessarily
he complete suppression of the quantum world, offering a general formal mathematical framework
o understand physical phenomena with macroscopic quantum coherence.

Bóna’s view point is different from recent approaches of theoretical physics like [36–41] (see
lso references therein), which propose a general formalism to get a consistent description of inter-
ctions between classical and quantum systems, having in mind chemical reactions, decoherence
r the quantum measurement theory. The approaches [36–41] (see also references therein) refer to

1 At least in many textbooks on quantum mechanics. See for instance [7, Section 12.4.2, end of the 4th paragraph
of page 178]. In fact, the nowadays usual correspondence principle (which is, by the way, not precisely the original
principle that Bohr had in mind [8, Section 4.2]) says that the classical world can appear for large quantum numbers via
a statistical interpretation of quantum mechanics. Nonetheless, this does not necessarily mean that one has to perform
the limit h̄ → 0, as Bohr himself stressed. Quoting [9, p. 313]: “Edward M. Purcell informed me that Niels Bohr made a
imilar comment during a visit to the Physics Department at Harvard University in 1961. The place was Purcell’s office
here Purcell and others had taken Bohr for a few minutes of rest. They were in the midst of a general discussion when
ohr commented: People say that classical mechanics is the limit of quantum mechanics when h goes to zero. Then, Purcell
ecalled, Bohr shook his finger and walked to the blackboard on which he wrote e2/hc . As he made three strokes under
, Bohr turned around and said, you see h is in the denominator. ” A picture of the blackboard can be found in [9, p.
13]. See also [8,10] and references therein for an exhaustive discussions on relations between classical and quantum
echanics.
2 This limit case h̄ → 0 corresponds in fact to the so-called semiclassical mechanics, referring to “putting quantum

lesh on classical bones” [8, Section 5.1].
3 The construction given in the recent paper [33] for a Hamiltonian flow associated with Schrödinger’s dynamics of
ne quantum particle corresponds to a particular case of Bóna’s theory. However, the author of [33] does not seem to
e aware of Bóna’s works.
2
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quantum–classical hybrid theories for which the classical space exists by definition, in a ad hoc way,
ecause of measuring instruments for instance. By contrast, in Bóna’s view point, the classical world
merges intrinsically from macroscopic quantum systems, like in [42]. This is also similar to [43],
hich is however a much more elementary example4 referring to the Ehrenfest dynamics.
In [44] we revisit Bóna’s conceptual lines, but propose a new method to mathematically

mplement them, with a much broader domain of applicability than his original version [34] (see
lso [10,35,45] and references therein). In fact, similar to Bóna, who constructs a general abstract
heory [34] based on previous progress [17,19–21] on permutation-invariant quantum-spin systems
ith mean-field interactions, we also base our abstract theory [44] on our own (completely new)
esults [46–48] on the dynamical properties of (possibly non-permutation-invariant) quantum
attice systems with mean-field interactions. Our approach gives, in the infinite volume limit, an
xplicit representation of the full dynamics of such systems as entangled classical and quantum
hort-range dynamics. In particular, in contrast to Bóna’s one, we highlight the relation between the
hase space of the corresponding classical dynamics and the state space of the non-commutative
lgebra where the quantum short-range dynamics meanwhile runs, making meanwhile explicit the
entral role played by self-consistency. Our viewpoint is meanwhile different from recent rigorous
tudies within the C∗-algebraic approach to the classical limit in the context of mean-field quantum
heories, like [49,50], which refer rather to semi-classical analysis.

The general theory can be found in [44], which is a rather long mathematical paper (72 pages).
he aim of the current paper is thus to illustrate, in a simple manner, the entanglement of classical
nd quantum short-range dynamics, as well as important aspects our the general approach. This is
one via the so-called strong-coupling BCS-Hubbard model, which serves here as a paradigm. From
technical viewpoint, the dynamical properties of this model are easy to study, albeit non-trivial,
he model being not exactly solvable. From the physical point of view, this model is also interesting
ecause it highlights the possible thermodynamic impact of the (screened) Coulomb repulsion on
s-wave) superconductivity, in the strong-coupling approximation. Its behavior at thermodynamical
quilibrium is already rigorously known [51], but not its infinite volume dynamics. In fact, note
hat [52] is merely a concise introduction to this problem and the particular results presented
ere are new. The precise definition of the model and all its dynamical properties are explained in
ection 2. The entanglement of classical and quantum (short-range) dynamics in this prototypical
odel is then made explicit in Section 3.
For convenience of the reader interested in the mathematical results [46,47] on the macroscopic

ynamics of fermion and quantum-spin systems with mean-field interactions, we provide an
ppendix, since [46,47] are altogether about 126 pages long. Appendix A explains [46,47] in
oncise, albeit mathematically precise, terms. In Appendix A.4, note that we formulate the results
n the special context of permutation-invariant models, making the link with the strong-coupling
CS-Hubbard model and previous results on permutation-invariant quantum-spin systems. Ap-
endix A.4 contains new material that cannot be found in our previous papers [46–48,51,52] on
he subject.

emark 1. In all the paper, we focus on lattice-fermion systems, but all the results and discussions
an be translated to quantum-spin systems via obvious modifications.

. The strong-coupling BCS-hubbard model

.1. Presentation of the model

The dynamics of the (reduced) BCS Hamiltonian can be explicitly computed by means of [46,47],
ut we prefer to consider here a BCS-type model including the Hubbard interaction. In fact, it
s a much richer new example while the BCS Hamiltonian was already been extensively studied

4 It corresponds to a quantum systems with two species of particles in an extreme mass ratio limit: one species
becomes, in this limit, infinitely more massive than the other one. In this limit, the massive species, like nuclei, becomes
classical while the other one, like electrons, stays quantum.
3
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in the literature, via various approaches. Observe, in particular, that the (usual, reduced) strong-
coupling BCS model is exactly solvable, whereas its extension considered here is not. We call this
new model the strong-coupling BCS-Hubbard Hamiltonian. Its equilibrium states were rigorously
studied in [51], in order to understand the possible thermodynamic impact of the Coulomb repulsion
on (s-wave) superconductivity. An interesting outcome of [51] is a mathematically rigorous proof
of the existence of a superconductor-Mott insulator phase transition for the strong-coupling BCS-
Hubbard Hamiltonian, like in cuprates, which must be doped in order to avoid the insulating (Mott)
phase and become superconductors.

The results of [51] refer to an exact study of the phase diagram of the strong-coupling BCS-
ubbard model, whose Hamiltonian is defined in any cubic box ΛL := {Z ∩ [−L, L]}d (d ∈ N) of
olume |ΛL|, L ∈ N0, by

HL :=

∑
x∈ΛL

hx −
γ

|ΛL|

∑
x,y∈ΛL

a∗

x,↑a
∗

x,↓ay,↓ay,↑ (1)

or real parameters µ, h ∈ R and λ, γ ≥ 0, where, for all x ∈ Zd,

hx := 2λnx,↑nx,↓ − µ
(
nx,↑ + nx,↓

)
− h

(
nx,↑ − nx,↓

)
. (2)

Recall that the operator a∗
x,s (ax,s) creates (annihilates) a fermion with spin s ∈ {↑, ↓} at lattice

position x ∈ Zd, d = 1, 2, 3, . . ., whereas nx,s := a∗
x,sax,s is the particle number operator at position

and spin s. They are linear operators acting on the fermion Fock space FΛL , where

FΛ :=

⋀
CΛ×{↑,↓}

≡ C2Λ×{↑,↓}

(3)

for any Λ ⊆ Zd and d ∈ N.
The first term of the right-hand side of (2) represents the (screened) Coulomb repulsion as in the

celebrated Hubbard model. The second term corresponds to the strong-coupling limit of the kinetic
energy, also called “atomic limit” in the Hubbard model community, the real parameter µ being
the so-called chemical potential. The third term is the interaction between spins and the external
magnetic field h.

The last term in (1) is the (homogeneous) BCS interaction written in the position space (see,
e.g., [51, Eq. (1.3)]). The long-range character of this interaction is apparent for it is an infinite-range
hopping term (for fermion pairs). In fact, it is a mean-field interaction, since

1
|ΛL|

∑
x,y∈ΛL

a∗

x,↑a
∗

x,↓ay,↓ay,↑ =

∑
y∈ΛL

⎛⎝ 1
|ΛL|

∑
x∈ΛL

a∗

x,↑a
∗

x,↓

⎞⎠ ay,↓ay,↑ .

This is a simple example of the far more general case studied in [46,47]. It is however a non-trivial
and a very interesting mean-field model since, even when µ = h = λ = 0, the Hamiltonian
HL qualitatively displays most of basic properties of real conventional type I superconductors.
See, e.g. [53, Chapter VII, Section 4]. Note that the precise mediators leading to the effective
BCS interaction are not relevant here, i.e., they could be phonons, as in conventional type I
superconductors, or anything else.

2.2. Approximating Hamiltonians

The thermodynamic impact of the Coulomb repulsion on s-wave superconductors is analyzed
in [51], via a rigorous study of equilibrium and ground states of the strong-coupling BCS-Hubbard
Hamiltonian: At any L ∈ N and inverse temperature β > 0, for any linear operator A acting on
0 0

4
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the fermion Fock space5 FΛL0
(3), we prove that

lim
L→∞

ω(L) (A) = ω (A) , (4)

here, for L ∈ N0,

ω(L) (·) := TraceFΛL

(
(·)

e−βHL

TraceFΛL

(
e−βHL

)) (5)

is the Gibbs states associated with HL, while ω is an explicitly given (infinite volume) equilibrium
state, defined as being a (global, space-homogeneous) minimizer of the free energy density (i.e., free
energy per unit volume). See [51, Section 6.2] for more details.

An important point in such an analysis is the study of an associate variational problem over
complex numbers: By the so-called approximating Hamiltonian method [54–56], one defines an
approximation of the Hamiltonian, which is, in the case of the strong-coupling BCS-Hubbard
Hamiltonian, the c-dependent Hamiltonian

HL (c) :=

∑
x∈ΛL

{
hx − γ

(
ca∗

x,↑a
∗

x,↓ + c̄ax,↓ax,↑
)}

(6)

here c ∈ C. The main advantage of using this c-dependent Hamiltonian, in comparison with HL, is
he fact that it is a sum of shifts of the same on-site operator. For an appropriate choice of (order)
arameter c ∈ C, it leads to the exact pressure of the strong-coupling BCS-Hubbard model, in the
imit L → ∞: At inverse temperature β > 0,

lim
L→∞

p [HL] = sup
c∈C

{
−γ |c|2 + lim

L→∞

p [HL (c)]
}

(7)

ith p [H] being the pressure

p [H] :=
1

β |ΛL|
ln TraceFΛL

(
e−βH) , β > 0,

ssociated with any Hamiltonian H acting on the fermion Fock space FΛL . In fact, the (exact)
ibbs state ω(L) converges6 to a convex combination of the thermodynamic limit L → ∞ of the
approximating) Gibbs state ω(L,d) defined by

ω(L,d) (·) := TraceFΛL

(
(·)

e−βHL(d)

TraceFΛL

(
e−βHL(d)

)) , (8)

the complex number d ∈ C being a solution to the variational problem (7).
Since γ ≥ 0, this can heuristically be seen from the inequality

γ |ΛL| |c|2 + HL (c) − HL = γ

(
c∗0 −

√
|ΛL|c̄

)(
c0 −

√
|ΛL|c

)
≥ 0,

here

c0 :=
1

√
|ΛL|

∑
x∈ΛL

ax,↓ax,↑ (9)

5 For any finite subset Λ ⊆ Zd , the (finite-dimensional) C∗-algebra B(FΛ) of linear operators acting on the
antisymmetric Fock space FΛ is ∗-isomorphic to the CAR (unital) C∗-algebra UΛ generated by anticommuting elements
{ax,s}x∈Λ,s∈S , which are identified with annihilation operators acting on FΛ , associated to the canonical basis of CΛ×{↑,↓} .
Therefore, by identifying the generators {ax,s}x∈Λ∩Λ′,s∈S in two such C∗-algebras UΛ and UΛ′ , {B(FΛ)}Λ⊂Zd, |Λ|<∞ is a net
of C∗-algebras with respect to inclusion (of finite subsets of Zd).
6 In the sense of (4), or, in the mathematical jargon, in the weak∗ topology.
5
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(c∗0) annihilates (creates) one Cooper pair within the condensate, i.e., in the zero-mode for fermion
pairs. This suggests the (rigorously proven) fact [51, Theorem 3.1] that

|d|2 = lim
L→∞

ω(L)
(
c∗0c0

)
|ΛL|

(10)

for any7 d ∈ C solution to the variational problem (7). The parameter |d|2 is the condensate density
of Cooper pairs and so, d ̸= 0 corresponds to the existence of a superconducting phase, which is
shown to exist for sufficiently large γ ≥ 0. See also [51, Figs. 1,2,3].

2.3. Dynamical problem

As is usual, a Hamiltonian like the strong-coupling BCS-Hubbard Hamiltonian drives a dynamics
in the Heisenberg picture of quantum mechanics: The corresponding time-evolution is, for L ∈ N0,
a continuous group (τ (L)

t )t∈R of automorphisms of the algebra B(FΛL ) of linear operators acting on
the fermion Fock space FΛL (see (3)), defined by

τ
(L)
t (A) := eitHLAe−itHL (11)

for any A ∈ B(FΛL ) and t ∈ R. The generator8 of this time evolution is the linear operator δL defined
on B(FΛL ) by

δL (A) := i[HL, A] := i (HLA − AHL) .

If γ = 0 then, for any time t ∈ R and linear operator A acting on the fermion Fock space FΛL0
(3), L0 ∈ N0,

limL→∞ τ
(L)
t (A) = τ

(L0)
t (A) ,

limL→∞ δL (A) = i[HL0 , A],
(12)

because HL|γ=0 is the sum of on-site terms. In particular, (12) uniquely defines an infinite volume
dynamics in this case. Nonetheless, as soon as γ > 0, the thermodynamic limit (12) of the
mean-field dynamics does not exist in general (even along subsequences).

One can try to approximate τ
(L)
t by τ

(L,c)
t , where

τ
(L,c)
t (A) := eitHL(c)Ae−itHL(c) (13)

for any L ∈ N0, A ∈ B(FΛL ) and some complex number c ∈ C. In this case, the linear operator

δL,c (·) := i[HL (c) , ·] (14)

on B(FΛL ) is the generator of the dynamics (τ (L,c)
t )t∈R. In this case, since local Hamiltonians (6) are

sums of on-site terms, for any c ∈ C, t ∈ R, L0 ∈ N0 and A ∈ FΛL0
,

limL→∞ τ
(L,c)
t (A) = τ

(L0)
t (A) ,

limL→∞ δL,c (A) = i[HL0 (c), A],
(15)

like in the case γ = 0 with (12). In other words, there is an infinite volume dynamics for such
approximating interactions.

A natural choice for c ∈ C would be a solution to the variational problem (7), but what about
if the solution is not unique? Observe, moreover, that the variational problem (7) depends on the
temperature whereas the time evolution (11) does not!

The validity of the approximation with respect to the primordial dynamics was an open question
that Thirring and Wehrl [57,58] solve in 1967 for the special case HL|µ=λ=h=0, which is an exactly
solvable permutation-invariant model for any γ ∈ R. An attempt to generalize Thirring and Wehrl’s
results to a general class of fermionic models, including the BCS theory, has been done in 1978 [59],

7 This implies that any solution d to the variational problem (7) must have the same absolute value.
8 That is, τ

(L)(A) = exp itδ .
t ( L)

6
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but at the cost of technical assumptions that are difficult to verify in practice. This research direction
has been strongly developed by many authors until 1992, see [13–32] . All these papers study
dynamical properties of permutation-invariant quantum-spin systems with mean-field interactions.
ur results [46,47], summarized in Appendix A, represent a significant generalization of such
revious results to possibly non-permutation-invariant lattice-fermion or quantum-spin systems. In
rder to illustrate how our results [46,47] are used to control the infinite volume dynamics of mean-
ield Hamiltonians, we now come back to our pedagogical example, that is, the strong-coupling
CS-Hubbard model.

.4. Dynamical self-consistency

Instead of considering the Heisenberg picture, let us consider the Schrödinger picture of quantum
echanics. In this case, recall that, at fixed L ∈ N0, a (finite volume) state ρ(L) is a positive and
ormalized functional acting on the algebra B(FΛL ) of linear operators on the fermion Fock space
ΛL . By finite dimensionality of FΛL ,

ρ(L) (·) := TraceFΛL

(
(·) d(L)) ,

or a uniquely defined positive operator d(L)
∈ B(FΛL ) satisfying TraceFΛL

(d(L)) = 1 and named the
density matrix of ρ(L). Compare with (5) and (8). See also Appendix A.2.1. At L ∈ N0, the expectation
of any A ∈ B(FΛL ) at time t ∈ R is, as usual, equal to

ρ
(L)
t (A) := TraceFΛL

(
eitHLAe−itHLd(L)) . (16)

I.e., the time evolution of any finite volume state is

ρ
(L)
t := ρ(L)

◦ τ
(L)
t , t ∈ R , (17)

which corresponds to a time-dependent density matrix equal to d(L)
t = τ

(L)
−t (d(L)). Compare with (77).

The thermodynamic limit of (16) for periodic states can be explicitly computed, as explained in
Appendix A.3.2. It refers to a non-autonomous state-dependent dynamics related to self-consistency:
By (3) with Λ = Λ0 = {0}, recall that

F{0} :=

⋀
C{0}×{↑,↓}

≡ C4 (18)

is the fermion Fock space associated with the lattice site (0, . . . , 0) ∈ Zd and so, B
(
F{0}

)
can be

identified with the algebra Mat(4,C) of complex 4 × 4 matrices, in some orthonormal basis9. For
any continuous family ω := (ωt )t∈R of states acting on B

(
F{0}

)
, we define the (infinite volume)

non-autonomous dynamics (τ (ω)
t,s )s,t∈R by the Dyson–Phillips series10

τ
(ω)
t,s := 1 +

∑
k∈N

∫ t

s
dt1 · · ·

∫ tk−1

s
dtk δωtk ◦ · · · ◦ δωt1 , (19)

where

δρ
:= lim

L→∞

δL,ρ(a0,↑a0,↓) (·) (20)

is the generator of the infinite volume dynamics associated with the approximating Hamiltonian
HL(c) for c = ρ(a0,↑a0,↓). See (6) and (15). Note that the precise definition of the generator δρ –
both acting on the CAR algebra U of the infinite lattice – is not necessary here to understand the
action of the mappings (19)–(20) on local elements A ∈ B(FΛL0

), L0 ∈ N0, since in this case

δρ (A) = i[HL0 (ρ(a0,↑a0,↓)), A],

9 For instance, (1, 0, 0, 0) is the vacuum; (0, 1, 0, 0) and (0, 0, 1, 0) correspond to one fermion with spin ↑ and ↓,
respectively; (0, 0, 0, 1) refers to two fermions with opposite spins.
10 That is, τ

(ω) is a time-ordered exponential.
t,s

7
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i

thanks to Equation of (15). In particular,

τ
(ω)
t,s

(
B(FΛL0

)
)

⊆ B(FΛL0
), L0 ∈ N0.

Observe that the particular value ρ(a0,↑a0,↓) ∈ C, which is taken here for the complex parameter
, is reminiscent of (9)–(10).
Now, by (75) and (101), for any fixed initial (even) state ρ0 on B

(
F{0}

)
at t = 0, there is a unique

family (ϖ(t; ρ0))t∈R of on-site states acting on B
(
F{0}

)
such that

ϖ(t; ρ0) = ρ0 ◦ τ
ϖ(·;ρ0)
t,0 , t ∈ R . (21)

This is a self-consistency equation on a finite-dimensional space, by (18).

2.5. Infinite volume dynamics for product states

For simplicity, at initial time t = 0, take a finite volume product11 state ⊗ΛLρ associated with
a fixed even12 state ρ on B

(
F{0}

)
. An example of finite volume product states is given by the

approximating Gibbs states (8). Then, in this case, as explained in Appendix A.4, for any t ∈ R,
the thermodynamic limit

ρt (A) := lim
L→∞

(
⊗ΛLρ

)
◦ τ

(L)
t (A) (22)

of the expectation of any linear operator A ∈ B(FΛL0
) for L0 ∈ N0 exists and corresponds to the

time-dependent product13 state

ρt =
(
⊗Zdρ

)
◦ τ

ϖ(·;ρ)
t,0 = ⊗Zdϖ(t; ρ0), (23)

where ϖ(·; ρ) is defined by (21). In other words, for any time t ∈ R, the limit state is in this case
completely determined by its restriction to the single lattice site (0, . . . , 0) ∈ Zd. Below, we give
the explicit time evolution of the most important physical quantities related to this model, in this
situation:

Proposition 2 (Infinite Volume Dynamics). One has the following assertions:
(i) Electron density:

d(ρ) := ρ
(
n0,↑ + n0,↓

)
= ρt=0

(
n0,↑ + n0,↓

)
= ρt

(
n0,↑ + n0,↓

)
∈ [0, 2].

(ii) Magnetization density:

m(ρ) := ρ
(
n0,↑ − n0,↓

)
= ρt=0

(
n0,↑ − n0,↓

)
= ρt

(
n0,↑ − n0,↓

)
∈ [−1, 1].

(iii) Coulomb correlation density:

w(ρ) := ρ
(
n0,↑n0,↓

)
= ρt=0

(
n0,↑n0,↓

)
= ρt

(
n0,↑n0,↓

)
∈ [0, 1].

(iv) Cooper-field and condensate densities:

ρt
(
a0,↓a0,↑

)
=

√
κ(ρ)ei(tν(ρ)+θ (ρ))

with

ν(ρ) := 2 (µ − λ) + γ (1 − d(ρ))

and κ(ρ) ∈ [0, 1], θ (ρ) ∈ [−π, π ) such that, at initial time, ρ
(
a0,↓a0,↑

)
=

√
κ(ρ)eiθ (ρ).

11 The product state ρ(L) is well-defined by ρ(L)(αx1 (A1) · · · αxn (An)) = ρ(A1) · · · ρ(An) for all A1, . . . , An ∈ B
(
F{0}

)
and all

1, . . . , xn ∈ ΛL such that xi ̸= xj for i ̸= j, where αxj (Aj) ∈ B
(
F{xj}

)
is the xj-translated copy of Aj for all j ∈ {1, . . . , n}.

ee (43) and (95)–(96) for more details.
12 Even means that the expectation value of any odd monomials in {a∗

0,s, a0,s}s∈{↑,↓} with respect to the on-site state ρ

s zero. Even states are the physically relevant ones.
13 For any even state ρ̃ on B

(
F{0}

)
, ⊗Zd ρ̃ is a state acting on the CAR algebra of the infinite lattice, which includes all
B(FΛL ), L ∈ N0 . The restriction of ⊗Zd ρ̃ to B(FΛL ) is of course equal to ⊗ΛL ρ̃.

8
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Proof. Recall that [A, B] := AB−BA is the commutator of A and B and, for any s ∈ {↑, ↓}, ns := a∗
s as

is the spin-s particle number operator on the lattice site 0 (with “0” being omitted in the notation for
simplicity). We now prove Assertions (i)-(iv): By the canonical anti-commutation relations (CAR),
for any s ∈ {↑, ↓},

[dh (ρ) , ns] = γ
(
ρ
(
a↓a↑

)
a∗

↑
a∗

↓
− ρ

(
a∗

↑
a∗

↓

)
a↓a↑

)
with dh (ρ) defined from (2) by

dh (ρ) := h0 − γ
(
a∗

↑
a∗

↓
ρ
(
a↓a↑

)
+ ρ

(
a∗

↑
a∗

↓

)
a↓a↑

)
. (24)

By (23), (i)-(ii) straightforwardly follow. (iii) is a direct consequence of the following computation:[
dh (ρ) , n↑n↓

]
= γ a∗

↑
a∗

↓
ρ
(
a↓a↑

)
− γ ρ

(
a∗

↑
a∗

↓

)
a↓a↑.

To obtain (iv), observe that[
dh (ρ) , a↓a↑

]
= 2 (µ − λ) a↓a↑ − γ ρ

(
a↓a↑

) (
n↑ + n↓ − 1

)
,

sing again the CAR. Then, by combining this with (i), one computes that the function zt :=

t
(
a0,↓a0,↑

)
, t ∈ R, satisfies the elementary ODE

∂tzt (ρ) = iν (ρ) zt (ρ) , z0 (ρ) = ρ
(
a↓a↑

)
,

from which (iv) directly follows. ■

In the special case λ = 0, i.e., without the Hubbard interaction, Proposition 2 reproduces the
esults of [20, Section A] on the strong-coupling BCS model, written in that paper as a permutation-
nvariant quantum-spin model. Observe also that κ(ρ) :=

⏐⏐ρ (a↓a↑

)⏐⏐2 is the Cooper-pair-condensate
density, which, in this situation, stays constant for all times, by Proposition 2 (iv).

Proposition 2 leads to the exact dynamics of the considered physical system prepared in a
product state at initial time, driven by the strong-coupling BCS-Hubbard Hamiltonian, in the
infinite volume limit. This set of states is still restrictive and our results [44,46,47], summarized
in Appendix A, go far beyond this simple case, by allowing us to consider general periodic states as
initial states, in contrast with all previous results on lattice-fermion or quantum-spin systems with
mean-field interactions.

2.6. From product to periodic states as initial states

The strong-coupling BCS-Hubbard model is clearly permutation-invariant.14 First, take a
permutation-invariant15 state ρ as initial state. As is explained in Appendix A.4.2, any permutation-
invariant state can be written (or approximated, to be more precise) as a convex combination
of product states (cf. the Størmer theorem). Thus, let ρ1, . . . , ρn be n ∈ N product states and
u1, . . . , un ∈ [0, 1] such that u1 + · · · + un = 1, and

ρ =

n∑
j=1

ujρj . (25)

At fixed L ∈ N0, we take the restriction ρ(L) of ρ to B(FΛL ), which is thus a finite volume
permutation-invariant state, like the Gibbs state (5) associated with the strong-coupling
BCS-Hubbard model. Then, in this case, we infer from (22)–(23) that, for any time t ∈ R,

lim
L→∞

ρ(L)
◦ τ

(L)
t =

n∑
j=1

ujρj ◦ τ
ϖ(·;ρj)
t,0 , (26)

14 It is invariant under the transformation pπ : ax,s ↦→ aπ (x),s with x ∈ Zd and s ∈ {↑, ↓}, for all bijective mappings
π : Zd

→ Zd which leave all but finitely many elements invariant. See Appendix A.4.1.
15 I.e., ρ ◦ p = ρ for all bijective mappings π : Zd

→ Zd which leave all but finitely many elements invariant. See (93).
π

9
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where by a slight abuse of notation, ϖ(·; ρ) = ϖ(·; ρ|B(F{0})). Note that all limits on states refer to
the weak∗ topology, basically corresponding to apply all states of (26) on fixed elements of B(FΛL ),
L ∈ N0, to perform the limit.

For general permutation-invariant states, one has to replace the finite sum (25) by an integral
with respect to a probability measure µρ on the set E⊗ of product states in order to generalize (26):
Formally, for any time t ∈ R,

lim
L→∞

ρ(L)
◦ τ

(L)
t =

∫
E⊗

ρ̂ ◦ τ
ϖ(·;ρ̂)
t,0 dµρ

(
ρ̂
)
. (27)

See, e.g., (103) for more details. As a consequence, by combining Proposition 2 with such a decom-
position of permutation-invariant states into product states, we obtain all dynamical properties of
the strong-coupling BCS-Hubbard model, in any permutation-invariant initial state.

For instance, taking the state (25) and combining (26) with Proposition 2 applied to the product
states ρj, j ∈ {1, . . . , n}, we obtain the Cooper-field and condensate densities:

ρt
(
a0,↓a0,↑

)
=

n∑
j=1

uj
√

κ(ρj)e
i(tν(ρj)+θρj ). (28)

In particular, the Cooper-pair-condensate density defined by κ(ρt ) :=
⏐⏐ρt
(
a↓a↑

)⏐⏐2 at time t ∈ R
is not anymore necessarily constant and can have a complicated, highly non-trivial, time evolution,
in particular when ρ is not a finite sum like (25), but only the barycenter of a general probability
measure on the set of product states, see (27). Physically speaking, Eq. (28) expresses an interference
phenomenon on the Cooper-field densities in each pure state ρj for j ∈ {1, . . . , n}.

The permutation-invariant case already applies to the (weak∗) limit ω(∞) of the Gibbs state
ω(L)(5) which is proven to exist as a permutation-invariant state ω(∞) because, by [51, Theorem
6.5], away from the superconducting critical point, it is formally given by

ω(∞)
=

1
2π

∫ 2π

0
ω(∞,reiθ )dθ (29)

with {d = reiθ , θ ∈ [0, 2π ]} being all solutions to the variational problem (7) and where the product
state ω(∞,d) is the thermodynamic limit L → ∞ of the Gibbs state ω(L,d) (·) defined by (8). In this
case, by [51, Theorem 6.4 and previous discussions],

ω(∞,reiθ ) (a↓a↑

)
= reiθ = d , θ ∈ [0, 2π ] , (30)

and if one has a superconducting phase, i.e., r > 0, then, by [51, Eq. (3.3) and Theorem 6.4 (i)], one
always has the equality

ω(∞,reiθ ) (n↓ + n↑

)
= 1 + 2γ −1 (µ − λ) (31)

for all θ ∈ [0, 2π ]. In fact, any equilibrium state is a state in the closed convex hull of {ω(∞,reiθ ), θ ∈

[0, 2π ]}. Eqs. (30)–(31) imply that, for any equilibrium state ω, like ω(∞), the frequency ν(ω), defined
in Proposition 2 (iv), vanishes, i.e., ν(ω) = 0. Hence, in this case, by Proposition 2, all densities are
constant in time for any equilibrium state. The same property is also true at the superconducting
critical point, by [51, Theorem 6.5 (ii)]. This is of course coherent with the well-known stationarity
of equilibrium states. For more details on equilibrium states of mean-field models, see [48].

The results presented above could still have been deduced from Bóna’s ones, as it is done in [20,
Section A] for the strong-coupling BCS model, for HL|λ=h=0 to be precise. Of course, in this case, one
has to represent the lattice-fermion systems as a permutation-invariant quantum-spin system and
a permutation-invariant state would again be required as initial state.

Using [46,47] one can easily extend this study of the strong-coupling BCS-Hubbard model to
a much larger class of initial states: In fact, product states are only a particular case of so-called
ergodic translation-invariant16 states and if the initial finite volume state ρ(L) is the restriction to

16 I.e., it is invariant, for any x ∈ Zd , under the transformation a ↦→ a , y ∈ Zd , s ∈ {↑, ↓}. See Section A.2.3.
x,s x+y,s

10
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B(FΛL ) of an extreme or, equivalently, ergodic translation-invariant state17, then Eq. (103) also tells
s that, for any time t ∈ R,

lim
L→∞

ρ(L)
◦ τ

(L)
t = ρ ◦ τ

ϖ(·;ρ)
t,0

(in the weak∗ sense, as before), where, again by a slight abuse of notation, ϖ(·; ρ) = ϖ(·; ρ|B(F{0})).
What is more, since

τ
ϖ(·;ρ)
t,0

(
B
(
F{0}

))
⊆ B

(
F{0}

)
,

because (6) is a sum of on-site terms, the time evolution of the electron, magnetization, Coulomb
correlation, Cooper-pair-condensate and the Cooper-field densities can directly be deduced from
Proposition 2, for extreme (ergodic), translation-invariant, initial states. Similar to (25)–(26), these
quantities can be derived for general translation-invariant states, by using their decompositions (72)
in terms of extreme (or ergodic) translation-invariant states.

All these outcomes can be extended to the case of general periodic initial states, via straightfor-
ward modifications: for any (ℓ1, . . . , ℓd) ∈ Nd and initial (ℓ1, . . . , ℓd)- periodic18 state ρ, replace in
all the above discussions on translation-invariant initial states terms like ρ

(
a↓a↑

)
= ρ

(
a0,↓a0,↑

)
by

1
ℓ1 · · · ℓd

∑
x=(x1,...,xd), xi∈{0,...,ℓi−1}

ρ
(
ax,↓ax,↑

)
. (32)

Cf. (73)–(74). This goes far beyond all previous studies on lattice-fermion or quantum-spin systems
with mean-field interactions.

3. Entanglement of classical and quantum dynamics

Quoting [8, p. 106], the “research in semiclassical mechanics, and especially in the subfield of
quantum chaos, has revealed that the relationship between classical and quantum mechanics is
much more subtle and intricate than the simple statement h̄ → 0 might lead us believe.” In this
section, we explicitly show an intricate combination of classical and quantum dynamics in mean-
field systems. In order to illustrate this fact in a simple manner, we again use our pedagogical
example, that is, the strong-coupling BCS-Hubbard model. We start by describing the classical part
of the dynamics.

3.1. Emergence19 of Classical Mechanics

In the previous sections we rigorously derive the infinite volume dynamics of the BCS-Hubbard
model, which is a model comprising mean-field interactions, and now one may ask how a classical
dynamics appears in this scope. To unveil it, first observe from Proposition 2 that we recover the
equation of a symmetric rotor: Fix an even on-site state ρ. For any t ∈ R, define the 3D vector
(Ω1(t), Ω2(t), Ω3(t)) by

ρt
(
a0,↓a0,↑

)
= Ω1(t) + iΩ2(t)

and

Ω3 (t) := 2 (µ − λ) + γ
(
1 − ρt

(
n0,↑ + n0,↓

))
. (33)

17 This state acts on the CAR algebra U of the lattice. See (38).
18 See Appendix A.2.3 for more details.
19 In physics, “emergence” may refer to different concepts, one possible meaning of this term being the very opposite
f the so-called “reduction”. For more details, see, e.g., [60, Beginning of Chap. 10]. Here, with “emergence” we simply
ean the process of appearance. Note however that the theory of entangled classical and quantum mechanics, described

n this section, could be seen as an example of asymptotically emergent theory, in the sense of [60, Definition 10.1].
11
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Then, this time-dependent 3D vector satisfies, for any time t ∈ R, the following system of ODEs:⎧⎨⎩ Ω̇1 (t) = −Ω3 (t) Ω2 (t) ,

Ω̇2 (t) = Ω3 (t) Ω1 (t) ,

Ω̇3 (t) = 0 .

(34)

t describes the time evolution of the angular momentum of a symmetric rotor in classical mechan-
cs. This is not accidental.

As a matter of fact, the equation governing the (infinite volume) mean-field dynamics can be
ritten in terms of Poisson brackets, i.e., as some Liouville’s equation of classical mechanics: In the
lgebraic approach to classical mechanics [7, Chapter 12], it is natural to consider real- or complex-
alued functions on a phase space P . Because of the self-consistency equation (21), we thus define

a classical algebra of observables to be the real part of the (commutative C∗-)algebra C(P;C) of
ontinuous functions on the space P ≡ E+

{0} of all even states acting on B(F{0}). The self-consistency
quation leads to a group20 (Vt )t∈R of automorphisms of C(P;C) defined by

[Vt f ] (ρ) := f (ϖ(t; ρ)) (35)

or any state ρ ∈ P , function f ∈ C(P;C) and time t ∈ R. The equation governing this dynamics
an be written in terms of Poisson brackets:

oisson bracket. Similar to (81), for any n ∈ N, A1, . . . , An ∈ B(F{0}) and g ∈ C1 (Rn,C), we define
he function Γg ∈ C(P;C) by

Γg (ρ) := g (ρ (A1) , . . . , ρ (An)) , ρ ∈ P.

polynomial function in C(P;C) is a function f of the form Γg for some polynomial g of n ∈ N
ariables. Similar to (82), for such a function and any ρ ∈ P , define

DΓg (ρ) :=

n∑
j=1

(
Aj − ρ

(
Aj
)
1B(F{0})

)
∂xjg (ρ (A1) , . . . , ρ (An)) .

ote that DΓg (ρ) ∈ B(F{0}). This definition comes from a notion of convex derivative introduced by
us, as explained in [44, Section 3.4]. Then, for all functions of the form Γh and Γg with g ∈ C1 (Rn,C)

and h ∈ C1 (Rm,C) (n,m ∈ N), we define the continuous function
{
Γh, Γg

}
∈ C(P;C) by{

Γh, Γg
}
(ρ) := ρ

(
i
[
DΓh (ρ) ,DΓg (ρ)

])
for any ρ ∈ P . This defines a Poisson bracket on the space of all (local) polynomial functions on P .
See [44, Proposition 3.11] for a general proof.

Liouville’s equation. The classical Hamiltonian h ∈ C(P;C) related to the strong-coupling BCS-
ubbard model is a polynomial in C(P;C) defined in a very natural way by

h (ρ) := ρ (h) − γ
⏐⏐ρ (a↑a↓

)⏐⏐2 , ρ ∈ P,

ith h ≡ h0 defined by (2) for x = 0, the 0 indices of operators acting on F{0} having been omitted
or notational simplicity. It leads to a state-dependent Hamiltonian equal to

Dh (ρ) = h − γ
(
a∗

↑
a∗

↓
ρ
(
a↓a↑

)
+ ρ

(
a∗

↑
a∗

↓

)
a↓a↑

)
+

(
2γ
⏐⏐ρ (a↓a↑

)⏐⏐2 − ρ (h)
)
1B(F{0}) (36)

for any ρ ∈ P . Compare with (24). Then, we can rigorously derive Liouville’s equation (see, e.g., [61,
Proposition 10.2.3]) for any polynomial f in C(P;C):

∂tVt (f ) = Vt ({h, f }) = {h, Vt (f )} , t ∈ R. (37)

See Eq. (104). Liouville’s equation is written here on a finite-dimensional phase space and can easily
be studied analytically. Its solution at fixed initial state gives access to all dynamical properties

20 The fact it is a group is not that obvious, a priori. See [44, Proposition 4.4] for a general proof.
12
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of product states driven by the strong-coupling BCS-Hubbard model in the thermodynamic limit.
In particular, it is straightforward to check the validity of Proposition 2 from this equation: (i)
Vt (d) = d; (ii) Vt (m) = m; (iii) Vt (w) = w; (iv) Vt (z0) = zt with zt (ρ) := ρt

(
a0,↓a0,↑

)
for

ρ ∈ P and t ∈ R.
The time evolution Vt (pn) of the non-affine polynomials

pn(ρ) :=
⏐⏐ρ (a↓a↑

)⏐⏐2n =
1
4n (ρ

(
a↓a↑ + a∗

↑
a∗

↓

)2
+ ρ

(
ia↓a↑ − ia∗

↑
a∗

↓

)2)n, ρ ∈ P,

or any integer n ≥ 1 can be obtained by using (37). In particular, for n = 1, since the (convex)
erivative of p1 at ρ ∈ P equals

Dp1 (ρ) = a∗

↑
a∗

↓
ρ
(
a↓a↑

)
+ ρ

(
a∗

↑
a∗

↓

)
a↓a↑ − 2

⏐⏐ρ (a↓a↑

)⏐⏐2 1B(F{0}),

ne directly recovers from Liouville’s equation, combined with the CAR and (36), that the Cooper-
air-condensate density is static. Compare with Proposition 2 (iv). Moreover, by considering
omplex-valued polynomials g in the space{

(x, y) ∈ R2
: x2 + y2 ≤ 1

}
× [2 (µ − λ) − γ , 2 (µ − λ) + γ ],

f (Ω1, Ω2, Ω3)-coordinates one can recover the classical dynamics of a symmetric rotor, as stated
n (34). In fact, one can write a(nother) Liouville’s equation on a convenient reduced (or effective)
hase space. The real and imaginary parts of ρ

(
a↓a↑

)
(Cooper-field densities), respectively Ω1 and

2, and the shifted particle density Ω3(33) represent three physical quantities that can be seen as
acroscopic in the fermionic system under consideration. See, e.g., (10).
To conclude this subsection, recall that the classical dynamics presented above has the space
≡ E+

{0} of all even states acting on B(F{0}) as phase space, i.e., this dynamics is defined on
(P;C). Taking a broader perspective, a classical dynamics can also be defined on C(EΠ ;C), with
Π being the space of permutation-invariant states on U , the CAR algebra of the infinite lattice. For
ore details, see Appendix A.4. In this case, the classical dynamics constructed on C(EΠ ;U) can
e pushed forward, through the restriction mapping EΠ → P , from C(EΠ ;C) to C(P;C). For an
ven more general definition of classical dynamics, which can be extended to periodic states, see
ppendix A.3.3.

.2. Classical versus quantum pictures

For product states at initial time, in the case of the strong-coupling BCS-Hubbard model, it is
atural to restrict the quantum observables to the algebra B(F{0}) of linear operators on the fermion
ock space F{0}. This keeps things simple. In this case, for any even state ρ on B(F{0}), we can
efine a non-autonomous quantum dynamics by the continuous evolution21 family (τ (ϖ(·;ρ))

t,s )s,t∈R
f automorphisms of B(F{0}), defined by (19) for ω = ϖ(·; ρ). The physical relevance of this
ynamics comes from Eqs. (23). Therefore, for initial product states and on on-site observables,
he mean-field dynamics can be seen either as a classical one on C(P;C) or as a non-autonomous
uantum dynamics on B(F{0}). The classical dynamics uniquely defines the quantum dynamics and
onversely.
For initial states that are not product states, the situation is more involved, but also much more

nteresting, since interference phenomena on macroscopic quantities may take place. See, e.g., (28).
Let us consider general permutation-invariant states (i.e., not necessarily product states) as initial

tates. In this case, the quantum world refers to all local observables of the infinite lattice and we
hus have to consider the CAR C∗-algebra

U ⊋
⋃
L∈N

B(FΛL ) ⊋ B(F{0}), (38)

21 It satisfies the reverse cocycle property: τ
(ϖ(·;ρ))

= τ
(ϖ(·;ρ))

◦ τ
(ϖ(·;ρ)) for any s, r, t ∈ R.
t,s r,s t,r

13
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which is the C∗-algebra generated by all finite volume quantum observables for fermions in the
lattice. See Appendix A.1.1. This algebra corresponds to what we call the “primordial” quantum
lgebra in our general abstract setting, introduced in [44]
Still in relation to the terminology we introduce in [44], the secondary quantum algebra corre-

ponds here to the C∗-algebra C(EΠ ;U) of all continuous U-valued functions on the space EΠ of
ermutation-invariant states on U . This is nothing else22 than the following tensor product:

C(EΠ ;U) ≡ C(EΠ ;C) ⊗ U . (39)

Having in mind that a classical dynamics can be defined on C(EΠ ;C), this is similar to quantum–
classical hybrid theories of theoretical physics, described for instance in [36–41]. With this definition
we naturally have the inclusions U ⊆ C(EΠ ;U) and C(EΠ ;C) ⊆ C(EΠ ;U), by identifying elements
of U with constant functions and elements of C(EΠ ;C) with functions whose values are scalar
multiples of the unit of the primordial algebra U .

The quantum (short-range) dynamics on the secondary quantum algebra C(EΠ ;U) refers to the
ontinuous evolution23 family (Tt,s)s,t∈R of ∗-automorphisms24 of C(EΠ ;U) defined by

[Tt (f )] (ρ) := τ
ϖ(·;ρ)
t,0 (f (ρ)) , ρ ∈ EΠ ,

or any function f ∈ C(EΠ ;U) and time t ∈ R, where, again by a slight abuse of notation,
(·; ρ) = ϖ(·; ρ|B(F{0})). This state-dependent dynamics lets every element of the classical algebra

C(EΠ ;C) invariant, i.e., Tt (f ) = f for any classical function f ∈ C(EΠ ;C). In other words, the
lassical algebra C(EΠ ;C) is a subalgebra of the so-called fix point algebra of the family (Tt )t∈R of
-automorphisms of C(EΠ ;U).
The physical relevance of the above mathematical structure comes from the fact that, for each

ime t ∈ R, permutation-invariant state ρ ∈ EΠ and any element A ∈ U ⊆ C(EΠ ;U),

lim
L→∞

ρ(L)
◦ τ

(L)
t (A) =

∫
E⊗

ρ̂ ◦ τ
ϖ(·;ρ̂)
t,0 (A) dµρ

(
ρ̂
)

= ρ ◦ Tt (A) ,

y Eq. (27), where in the last equality ρ is seen as a state of C(EΠ ;U) via the definition

ρ (f ) .
=

∫
E⊗

ρ̂
(
f
(
ρ̂
))

dµρ

(
ρ̂
)

or any f ∈ C(EΠ ;U). See [47, Theorem 4.3] for the general mathematical statement. The classical
art of the full mean-field dynamics explicitly appears in the time evolution of product states ρ̂ ∈ E⊗

cf. the Størmer theorem) and is related to a Liouville’s equation in the classical (i.e., commutative)
lgebra of continuous functions C(P;C), as explained in the previous subsection.
In the theoretical framework we present here, the classical and quantum worlds are intrinsically

nterdependent, in the following manner:

• The quantum (short-range) dynamics on C(EΠ ;U) yields a well-defined classical dynamics on
C(P;C), by restriction on product states.

• Conversely, the classical dynamics on C(P;C) uniquely defines a quantum (short-range)
dynamics on C(EΠ ;U).

his is a mathematical fact proven for general quantum systems in [44, Sections 4.2–4.3 and 5.2].
On the one hand, the classical world, represented by the commutative (sub)algebra C(EΠ ;C), is

mbedded in the quantum world, as mathematically expressed by the above inclusion C(EΠ ;C) ⊆

(EΠ ;U). On the other hand, our theory entangles the quantum and classical worlds through self-
onsistency. As a result, (effective) non-autonomous short-range dynamics can emerge. Seeing
oth entangled worlds, quantum and classical, as “two sides of the same coin” looks like an

22 Up to an isomorphism. See [44, Section 1] for very general mathematical arguments proving that fact.
23 It satisfies the reverse cocycle property: Tt,s = Tr,s ◦ Tt,r for any s, r, t ∈ R.
24 The mathematical fact that it is a continuous evolution family of automorphisms is not obvious, a priori. The proof
ses that E is a metrizable weak∗-compact space, by separability of U . See [44, Lemma 5.2] for a general proof.
Π

14



J.-B. Bru and W. de Siqueira Pedra Annals of Physics 434 (2021) 168643

t
r
r
l

m

oxymoron, but there is no contradiction there, for everything refers to a primordial quantum world
mathematically encoded in the structure of U . For instance, the phase space P and state space EΠ

are imprints left by U ⊋ B(F{0}) in the classical world, see (39).
Note that if U was a commutative algebra, the corresponding Poisson bracket and, hence, the

dynamics would have been trivial. Observe also that, if the primordial algebra would be B(F{0}),
instead of U , then all the above construction would be still relevant for the case of initial states
being product states. In this situation, the introduction of the secondary quantum algebra is
superfluous to derive the mean-field dynamics, whereas it becomes essential when the initial state
is permutation-invariant, but not a product state.

All the above construction can be extended to periodic states and general lattice-fermion or
quantum spin systems. For more details, see Appendix A.3.4.

4. Conclusions

The dynamics of the strong-coupling BCS-Hubbard model has been exactly derived, in the
infinite volume limit. It explicitly determines, among other things, the dynamical impact of the
(screened) Coulomb repulsion on (s-wave) superconductivity. For non-pure phases, we also prove
that the Cooper-pair-condensate density is not anymore necessarily constant in time and can have
a complicated time evolution, as a consequence of interference phenomena.

Much more importantly, this model illustrates the general behavior of mean-field dynamics at
infinite volume, as rigorously explained in Appendix A. We demonstrate via this example that a
classical mechanics does not only appear in the limit h̄ → 0, as explained for instance in [10,11]. This
was already observed by various mathematical physicists. In particular, Bóna’s major conceptual
contribution [34] is to highlight the emergence of classical mechanics without necessarily the
disappearance of the quantum world. However, we propose here a new method to mathematically
implement it, with a broader domain of applicability than Bóna’s original version [34] (see also [10,
35,45] and references therein). For detailed explanations, see [44, Section 3].

In contrast with all previous approaches, including those of theoretical physics (see, e.g., [11,36–
42] ), in ours the classical and quantum worlds are entangled, with backreaction25 (that is,
feedbacks), as expected. Differently from Bóna’s setting, our perspective has the advantage to
highlight inherent self-consistency aspects, which are absolutely not exploited in [34], as well as
in quantum–classical hybrid theories of physics described, for instance, in [36–43].

Remark that the theoretical construction presented here is not useful when the macroscopic26
time evolution in the Heisenberg picture is not state-dependent, as in quantum lattice systems with
short-range interactions. Nevertheless, quantum many-body systems in the continuum are expected
to have, in general, only a state-dependent Heisenberg dynamics, as explained for instance in [64,
Section 6.3]. Additionally, we show that such a mathematical framework is generally imperative to
describe the macroscopic dynamics of quantum many-body systems with mean-field interactions,
because of the necessity of coupled quantum–classical evolution equations, implementing self-
consistency when long-range order take place. The phenomenological aspects of quantum dynamics
in presence of mean-field interactions discussed here and that are highlighted by our original
approach to this problem, are very likely not restricted to mean-field case only, but should also
appear in presence of interactions that are sufficiently long-range27 to yield non-vanishing28

25 We do not mean here the so-called quantum backreaction, commonly used in physics, which refers to the backreaction
effect of quantum fluctuations on the classical degrees of freedom. Note further that the phase spaces we consider are,
generally, much more complex than those related to the position and momentum of simple classical particles.
26 “Macroscopic” can still mean short (even atomic) length scales. For lattice systems, it should quantitatively be
measured in terms of lattice units (l.u.), which is typically a few ångstr öms. For instance, a length L ≃ 1000 refers
o a few hundreds of nanometers, only. One thousand is a priori a large number, but everything depends of course on the
ate of convergence of microscopic dynamics in the thermodynamic limit L → ∞. In general, this may be an exponential
ate (with respect to the volume |ΛL|), similar to what is proven in [62,63] for electric current densities in non-interacting
attice fermions with disorder.
27 In fact, the existence of long-range order in quantum systems with sufficiently long-range interactions can be
athematically proven by using the celebrated Bishop–Phelps theorem.

28 In a given representation of the observable algebra, which is fixed by the initial state.
15
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background fields, in the spirit of the Higgs mechanism of quantum field theory. We therefore think
that our mathematical framework for long-range dynamics, outlined here by means of a pedagogical
explicit example, opens new theoretical perspectives29 in the understanding of the classical word
ithin the quantum one.
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ppendix A. Mathematical foundations

The entanglement of classical and quantum short-range dynamics in mean-field systems refers to
esults obtained in [46,47] on the dynamics of quantum lattice systems with mean-field interactions.
hey are far more general than previous ones because the invariance under permutations of lattice
ites is not required anymore:

• The short-range part of the corresponding Hamiltonian is very general since only a sufficiently
strong polynomial decay of its interactions and a translation invariance are necessary.

• The mean-field part is also very general, being an infinite sum (over n) of mean-field terms
of order n ∈ N. In fact, even for permutation-invariant systems, the class of mean-field
interactions we are able to handle is much larger than what was previously studied.

• The initial state is only required to be periodic. By [46, Proposition 2.3], observe that the set
of all such initial states is dense within the set of all even states, the physically relevant ones.

The papers [46,47] are altogether about 126 pages long. Therefore, the aim of the appendix
s to present, in a concise way, their key points, being meanwhile mathematically rigorous. Note,
owever, that the contents of Appendix A.4 are new and cannot be found in [46–48,51,52].

29 Even after a few centuries, the Newtonian gravitational constant is still not accurately known, in comparison with
ll other fundamental constants. See [65] for an account of recent experiment. It is also very difficult to detect gravity
t scales below micrometers, still a macroscopic scale as compared with atomic ones. On the other hand, interference
henomena for gravitational waves appear (2017 Nobel Prize in Physics). Gravitation looks like a macroscopic background
Higgs-like) field (cf. Bogoliubov approximation), similar to the Cooper-field densities in the strong-coupling BCS-Hubbard
odel on which classical mechanics applies.
16
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A.1. C∗-Algebraic setting

A.1.1. CAR algebra of lattices
Let Zd be the d-dimensional cubic lattice and Pf ⊆ 2Z

d
the set of all non-empty finite subsets of

d. In order to define the thermodynamic limit, for simplicity, we use cubic boxes

ΛL := {Z ∩ [−L, L]}d , L ∈ N0 . (40)

Let S be a fixed (once and for all) finite set (of orthonormal spin modes). For any Λ ∈ Pf ∪{Zd
}, UΛ

is the universal unital C∗-algebra30 generated by the elements {ax,s}x∈Λ,s∈S satisfying the canonical
anti-commutation relations (CAR): for any x, y ∈ Zd and s, t ∈ S,

ax,say,t + ay,tax,s = 0, ax,sa∗

y,t + a∗

y,tax,s = δs,tδx,y1. (41)

Here, δk,l is the Kronecker delta, that is, the function of two variables defined by δk,l := 1 if k = l
and δk,l = 0 otherwise. By identifying the generators {ax,s}x∈Λ∩Λ′,s∈S of both C∗-algebras UΛ and UΛ′ ,
{UΛ}

Λ∈2Zd is a net of C∗-algebras with respect to inclusion: For all pairs of subsets Λ, Λ′
⊆ Zd with

Λ ⊆ Λ′, one has UΛ ⊆ UΛ′ .31 Note that we use the notation U ≡ UZd and define

U0 :=

⋃
Λ∈Pf

UΛ, (42)

which is a dense normed ∗-subalgebra of U . In particular, U is separable, since, for every finite
region Λ ∈ Pf , UΛ has finite dimension. Elements of U0 are called local elements. The (real) Banach
subspace of all self-adjoint elements of U is denoted by UR ⊊ U .

Translations are represented by a group homomorphism x ↦→ αx from Zd to the group of
∗-automorphisms of U , which is uniquely defined by the condition

αx(ay,s) = ay+x,s, y ∈ Zd, s ∈ S. (43)

The mapping x ↦→ αx is used below to define symmetry groups of states as well as translation-
invariant interactions of lattice-fermion systems.

The results presented in the current paper also hold true in the context of quantum-spin systems,
but we focus on lattice-fermion systems which are, from a technical point of view, slightly more
difficult. In fact, the additional difficulty in Fermi systems is that, for any disjoint Λ(1), Λ(2)

∈ Pf
and elements B1 ∈ UΛ(1) , B2 ∈ UΛ(2) , the commutator

[B1, B2] := B1B2 − B2B1

may be non-zero, in general. For instance, the CAR (41) trivially yield [ax,s, ay,t] = 2ax,say,t ̸= 0 for
any x, y ∈ L and s, t ∈ S, (x, s) ̸= (y, t). Because of the CAR (41), the commutation property of
disjoint lattice regions is satisfied for all even elements, which are defined as follows: The condition

σ (ax,s) = −ax,s, x ∈ Λ, s ∈ S , (44)

defines a unique ∗-automorphism σ of the C∗-algebra U . The subspace

U+
:= {A ∈ U : A = σ (A)} (45)

is the C∗-subalgebra of so-called even elements of U . Then, for any disjoint Λ(1), Λ(2)
∈ Pf ,

[B1, B2] = 0, B1 ∈ UΛ(1) ∩ U+, B2 ∈ UΛ(2) .

This last condition is the expression of the principle of locality in quantum field theory. Using
well-known constructions,32 the C∗-algebra U , generated by anticommuting elements, can be

30 UΛ ≡ B(C2Λ×S
) is equivalent to the algebra of 2|Λ×S|

× 2|Λ×S| complex matrices, when Λ ∈ Pf .
31 In fact, strictly speaking, there is a canonical injective ∗-homomorphism UΛ → UΛ′ (identifying generators) that
llows one to see UΛ as being a C∗-subalgebra of UΛ′ .
32 More precisely, the so-called sector theory of quantum field theory.
17
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recovered from U+. As a consequence, the C∗-algebra U+ should thus be seen as more fundamental
han U in physics. In fact, U corresponds in this context to the so-called local field algebra. See,
.g., [66, Sections 4.8 and 6].
The principle of locality of quantum field theory, usually invoked to see the algebra U+ as being

ore fundamental than U , does not prevent us from considering mean-field interactions as possibly
undamental interactions, as explained in [47, Section 1]. The choice of U+ only refers to the fact that
easurable physical quantities (observables) are local. By contrast, the full energy of lattice-fermion
ystems with short-range and mean-field interactions are generally inaccessible to measurements,
n infinite volume. In fact, the mean-field part yields possibly non-vanishing (effective) background
ields, in the spirit of the Higgs mechanism of quantum field theory, in a given representation of
he observable algebra, which is fixed by the initial state.

.1.2. Short-range interactions
A (complex) interaction is a mapping Φ : Pf → U+ such that ΦΛ ∈ UΛ for all Λ ∈ Pf . The set

f all interactions can be naturally endowed with the structure of a complex vector space. By using
he norm

∥Φ∥W := sup
x,y∈Zd

∑
Λ∈Pf , Λ⊇{x,y}

∥ΦΛ∥U

F (x, y)
, (46)

where, given some fixed parameters ϵ, ς > 0, for any x, y ∈ Zd,

F (x, y) := e2ς |x−y| (1 + |x − y|)(d+ϵ) . (47)

We then define a separable Banach space W of short-range interactions, which are, by definition,
those interactions that have finite norm. Here, |· − ·| stands for the Euclidean metric. The particular
choice of function (47) defining the norm (46) is made only for simplicity and a much more general
class of space decays could be considered, as discussed in [46, Section 3.1]. We use in the sequel
three important properties of short-range interactions:

(i) Self-adjointness: There is a natural involution Φ ↦→ Φ∗
:= (Φ∗

Λ)Λ∈Pf defined on the Banach
space W of short-range interactions. Self-adjoint interactions are, by definition, interactions Φ

satisfying Φ = Φ∗. The (real) Banach subspace of all self-adjoint short-range interactions is denoted
by WR ⊊ W , similar to UR ⊊ U .

(ii) Translation invariance: By definition, the interaction Φ is translation-invariant if

ΦΛ+x = αx (ΦΛ) , x ∈ Zd, Λ ∈ Pf ,

where

Λ + x :=
{
y + x ∈ Zd

: y ∈ Λ
}
.

Here, {αx}x∈Zd is the family of (translation) ∗-automorphisms of U defined by (43). We then denote
y W1 ⊊ W the (separable) Banach subspace of translation-invariant, short-range interactions on
Zd.

(iii) Finite range: For any R ∈ [0, ∞), we define the closed subspace

WR
:=

{
Φ ∈ W1 : ΦΛ = 0 for Λ ∈ Pf such that max

x,y∈Λ
{|x − y|} > R

}
(48)

of finite-range, translation-invariant interactions. For R = 0, we obtain the space WΠ := W0 of
permutation-invariant interactions described in Appendix A.4.

Short-range interactions define sequences of local (complex) energy elements: For any Φ ∈ W
and L ∈ N0,

UΦ
L :=

∑
Λ⊆ΛL

ΦΛ ∈ UΛL ∩ U+, (49)

where we recall that ΛL := {Z ∩ (−L, L)}d is the cubic box used to define the thermodynamic limit
(see (40)). The energy elements UΦ , L ∈ N , refer to an extensive quantity since their norm are
L 0

18
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proportional to the volume of the region they correspond to: In fact, for any L ∈ N0 and Φ ∈ W ,UΦ
L


U ≤ C |ΛL| ∥Φ∥W , (50)

here

C :=

∑
x∈Zd

1
(1 + |x|)d+ϵ

< ∞. (51)

Moreover, for any self-adjoint interaction Φ ∈ WR, UΦ
L ∈ UR (i.e., UΦ

L = (UΦ
L )∗), L ∈ N0, is a

sequence of local Hamiltonians.
Each local Hamiltonian associated with Φ ∈ WR leads to a local dynamics on the full C∗-algebra

U via the group (τ (L,Φ)
t )t∈R of ∗-automorphisms of U defined by

τ
(L,Φ)
t (A) = eitU

Φ
L Ae−itUΦ

L , A ∈ U . (52)

It is the continuous group which is the solution to the evolution equation

∀t ∈ R : ∂tτ
(L,Φ)
t = τ

(L,Φ)
t ◦ δΦ

L ,

where τ
(L,Φ)
0 = 1U is the identity mapping on U . Here, at each L ∈ N0 and Φ ∈ WR, δΦ

L is defined
on U by

δΦ
L (A) := i

[
UΦ
L , A

]
:= i

(
UΦ
L A − AUΦ

L

)
for any A ∈ U . This corresponds to a quantum dynamics in the Heisenberg picture. Note that, for
every L ∈ N0 and Φ ∈ WR, δΦ

L is a so-called symmetric derivation which belongs to the Banach
space B(U) of bounded operators acting on the C∗-algebra U , see, e.g., [46, Section 3.3].

More generally, for possibly time-dependent interactions, the (generally non-autonomous) local
dynamics is defined, for any continuous function Ψ ∈ C(R;WR) and L ∈ N0, as the unique
fundamental) solution (τ (L,Ψ )

t,s )s,t∈R in the Banach space B(U) to the (finite volume) non-autonomous
volution equation33

∀s, t ∈ R : ∂tτ
(L,Ψ )
t,s = τ

(L,Ψ )
t,s ◦ δ

Ψ (t)
L (53)

with τ
(L,Ψ )
s,s = 1U . The solution to (53) can be explicitly written as a Dyson–Phillips series: For any

s, t ∈ R,

τ
(L,Ψ )
t,s = 1U +

∑
k∈N

∫ t

s
dt1 · · ·

∫ tk−1

s
dtkδ

Ψ (tk)
L ◦ · · · ◦ δ

Ψ (t1)

L . (54)

By [67, Corollary 5.2], in the thermodynamic limit L → ∞, for any Ψ ∈ C(R;WR), the group
τ
(L,Ψ )
t,s )s,t∈R, L ∈ N0, strongly converges, at any fixed s, t , to a strongly continuous two-parameter

family (τΨ
t,s)s,t∈R of ∗-automorphisms of U:

lim
L→∞

τ
(L,Ψ )
t,s (A) =: τΨ

t,s (A) , A ∈ U, s, t ∈ R. (55)

In other words, (time-dependent) self-adjoint interactions lead to an infinite volume (possibly
non-autonomous) dynamics on the CAR algebra of the lattice.

A.1.3. Mean-field models
We start with some preliminary definitions: Let S be the unit sphere of W1. For any n ∈ N and

signed Borel measure of finite variation a on the Cartesian product Sn (endowed with its product

33 Let H be some Hilbert space and (Ht )t∈R some continuous family of bounded Hamiltonians acting on H. The
orresponding Schrödinger equation with h̄ = 1 reads i∂tϕt = Htϕt and so, ϕt = Ut,sϕs with Ut,s being the solution
o ∂tUt,s = HtUt,s . Then, in the Heisenberg picture, the time-evolution of any (bounded) observable B acting on H at
nitial time t = s ∈ R is B = τ B .

= U∗ B U for s, t ∈ R, which yields ∂ τ = τ ◦ δ with δ A .
= i[H , A].
t t,s ( s) t,s s t,s t t,s t,s t t ( ) t
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topology), we define the signed Borel measure (of finite variation) a∗ to be the pushforward of a
hrough the self-homeomorphism(

Ψ (1), . . . , Ψ (n))
↦→ ((Ψ (n))∗, . . . , (Ψ (1))∗) ∈ Sn (56)

of Sn. A finite signed Borel measure a on Sn is, by definition, self-adjoint whenever a∗
= a. For any

n ∈ N, the real Banach space of self-adjoint signed Borel measures a of finite variation on Sn with
the norm of total variation

∥a∥S(Sn) := |a|(Sn), n ∈ N,

is denoted by S(Sn). We define a norm for sequences a ≡ (an)n∈N of finite signed Borel measures
an ∈ S(Sn) as follows:

∥a∥S :=

∑
n∈N

n2Cn−1
∥an∥S(Sn) , a ≡ (an)n∈N ∈ S, (57)

where the constant C > 0 is defined by (51). The sequences which are finite in this norm form a
(real) Banach space that we denote by S.

The (separable) Banach space of mean-field models is then defined by

M := WR
× S (58)

with the norm of M being defined from (46) and (57) by

∥m∥M := ∥Φ∥W + ∥a∥S , m := (Φ, a) ∈ M. (59)

he spaces WR and S are seen as subspaces of M. In particular, Φ ≡ (Φ, 0) ∈ M for Φ ∈ WR.
Using the subspace WR of finite-range interactions defined by (48) for R ∈ [0, ∞), we introduce
the subspace

S∞
:=

⋃
R∈[0,∞)

{
(an)n∈N ∈ S : ∀n ∈ N, |an|(Sn) = |an|((S ∩ WR)n)

}
. (60)

Long-range dynamics are studied for models in the following two subspaces

M∞
:= WR

× S∞, M∞

1 :=
(
WR

∩ W1
)
× S∞. (61)

Clearly, WR
⊆ M∞

⊆ M and
(
WR

∩ W1
)

⊆ M∞

1 ⊆ M∞.
Similar to self-adjoint short-range interactions, each mean-field model leads to a sequence of

local Hamiltonians: For any L ∈ N0 and m ∈ M,

Um
L := UΦ

L +

∑
n∈N

1
|ΛL|

n−1

∫
Sn

UΨ (1)

L · · ·UΨ (n)

L an
(
dΨ (1), . . . , dΨ (n)) (62)

with UΦ
L and UΨ (k)

L been defined by (49). Note that Um
L = (Um

L )∗ and straightforward estimates yield
the upper boundUm

L


U ≤ C |ΛL| ∥m∥M , L ∈ N0. (63)

Compare with (50).
Similar to (52), each model m ∈ M leads to finite volume dynamics defined, for any L ∈ N0, by

τ
(L,m)
t (A) = eitU

m
L Ae−itUm

L , A ∈ U . (64)

In contrast with short range interactions (see (55)), for any fixed A ∈ U and t ∈ R, the
thermodynamic limit L → ∞ of τ

(L,m)
t (A) does not necessarily exist in the C∗-algebra U . However,

by [47, Theorem 4.3], for any m ∈ M∞

1 , it converges in the σ -weak topology within some
representation of U . This is reminiscent of the fact that the energy–density observable UΦ

L /|ΛL|

does not converge in U , as L → ∞, but its expectation value with respect to any periodic state
does. See Appendix A.3 for more details.
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A.2. State spaces

A.2.1. Finite volume state space
For any (non-empty) finite subset Λ ⊆ Zd, i.e., Λ ∈ Pf , let U∗

Λ be the dual space of the local
∗-algebra UΛ. For every Λ ∈ Pf , we denote by

EΛ := {ρΛ ∈ U∗

Λ : ρΛ ≥ 0, ρΛ(1) = 1} (65)

he space of all states on UΛ. For all Λ ∈ Pf , the space EΛ is a norm-compact convex subset of the
ual space U∗

Λ and, for any ρΛ ∈ EΛ, there is a unique, positive, trace-one operator dΛ ∈ B(FΛL )
atisfying

ρΛ (A) := TraceFΛL
(dΛA) , A ∈ UΛ, (66)

named the density matrix of ρΛ. In fact, EΛ is affinely equivalent to the set of all states on the
algebra of 2|Λ|×|S|

× 2|Λ|×|S| complex matrices. The structure of states for infinite systems is more
subtle, as demonstrated in [44,68].

Note that the physically relevant finite volume states ρΛ, Λ ∈ Pf , are even, i.e., ρΛ ◦ σ |UΛ
= ρΛ

with σ |UΛ
being the restriction to UΛ of the unique ∗-automorphism σ of U satisfying (44). It means

that ρΛ vanishes on all odd monomials in {ax,s, a∗
x,s}x∈Λ,s∈S. For any Λ ∈ Pf , we define

E+

Λ :=
{
ρΛ ∈ EΛ : ρΛ ◦ σ |UΛ

= ρΛ

}
⊆ EΛ (67)

as being the space of all finite volume even states.

A.2.2. Infinite volume state spaces
For the infinite system, let U∗

≡ U∗

Zd be the dual space of U ≡ UZd . In contrast with UΛ, Λ ∈ Pf ,
U has infinite dimension and the natural topology on U∗ is the weak∗ topology34 (and not the norm
topology). Thus, the topology of U∗ considered here is always the weak∗ topology and, in this case,
U∗ is a locally convex space, by [69, Theorem 3.10].

Similar to (65), the state space on U is defined by

E ≡ EZd := {ρ ∈ U∗
: ρ ≥ 0, ρ(1) = 1}. (68)

It is a metrizable, convex and compact subset of U∗, by [69, Theorems 3.15 and 3.16]. It is also the
state space of the classical dynamics we define in [44]. By the Krein–Milman theorem [69, Theorem
3.23], E is the closure of the convex hull of the (non-empty) set of its extreme points, which are
meanwhile dense in E, by [46, Eq. (13)].

As explained below Eq. (45), recall that the C∗-algebra U+ should be considered as more
fundamental than U in physics, because of the principle of locality in quantum field theory. As a
consequence, states on the C∗-algebra U+ should be seen as being the physically relevant ones. The
set of states on U+ is canonically identified with the metrizable, convex and compact set of even
states defined by

E+
≡ E+

Zd :=
{
ρ ∈ U∗

: ρ ≥ 0, ρ(1) = 1, ρ ◦ σ = ρ
}
, (69)

σ being the unique ∗-automorphism of U satisfying (44). This space and the full state space, E,
are equivalent convex topological spaces, i.e., there is an affine homeomorphism between them. In
particular, E+ is the closure of the convex hull of the (non-empty) set of its extreme points, which
are dense in E+. See [46, Proposition 2.1] and its proof.

Note that the spaces E and E+, having a dense set of extreme points – i.e., having a dense extreme
boundary – has a much more peculiar structure than the finite volume state space EΛ for Λ ∈ Pf .
At first glance, it may look very strange for a non-expert on convex analysis, but it should not be
that surprising: For instance, the unit ball of any infinite-dimensional Hilbert space has clearly a
dense extreme boundary in the weak topology. In fact, the existence of convex compact sets with

34 Recall that the weak∗ topology of U∗ is the coarsest topology on U∗ that makes the mapping ρ ↦→ ρ (A) continuous
or every A ∈ U . See [69, Sections 3.8, 3.10, 3.14] for more details.
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dense extreme boundary is not an accident in infinite-dimensional spaces, but rather generic, in
he topological sense. This has been first proven [70] in 1959 for convex norm-compact sets within
separable Banach space. Recently, in [44, Section 2.3] and more generally in [68], the property
f having dense extreme boundary is proven to be generic for weak∗-compact convex sets within
he dual space of an infinite-dimensional topological space. As a matter of fact, all state spaces
f infinite volume systems one is going to encounter in the current paper have a dense extreme
oundary, except the set of permutation-invariant states described in Appendix A.4, because these
an be reduced to states of finite-dimensional matrix algebras, via de Finetti-type results.

.2.3. Periodic state spaces
Consider the subgroups (Zd

ℓ⃗
, +) ⊆ (Zd, +), ℓ⃗ ∈ Nd, where

Zd
ℓ⃗

:= ℓ1Z× · · · × ℓdZ.

t fixed ℓ⃗ ∈ Nd, a state ρ ∈ E satisfying ρ ◦ αx = ρ for all x ∈ Zd
ℓ⃗
is called Zd

ℓ⃗
-invariant on U or

⃗-periodic, αx being the unique ∗ -automorphism of U satisfying (43). Translation-invariant states
efer to (1, . . . , 1)-periodic states. For any ℓ⃗ ∈ Nd, let

Eℓ⃗ :=

{
ρ ∈ E : ρ ◦ αx = ρ for all x ∈ Zd

ℓ⃗

}
(70)

be the space of ℓ⃗-periodic states. By [71, Lemma 1.8] , periodic states are always even and, by [46,
Proposition 2.3], the set of all periodic states

Ep :=

⋃
ℓ⃗∈Nd

Eℓ⃗ ⊆ E+ (71)

is dense in the space E+ of even states.
For each ℓ⃗ ∈ Nd, Eℓ⃗ is metrizable, convex and compact and, by the Krein–Milman theorem [69,

Theorem 3.23], it is the closure of the convex hull of the (non-empty) set Eℓ⃗ of its extreme points,
hich is a Gδ subset of Eℓ⃗ (in particular it is Borel measurable). In fact, by [71, Theorem 1.9] (which
ses the Choquet theorem [72, p. 14]), for any ρ ∈ Eℓ⃗, there is a unique probability measure µρ on

Eℓ⃗ with support in Eℓ⃗ such that35

ρ =

∫
E

ℓ⃗

ρ̂ dµρ

(
ρ̂
)
. (72)

The set Eℓ⃗ can be characterized by an ergodicity property of states, see [71, Theorem 1.16]. Moreover,
Eℓ⃗ is dense in Eℓ⃗, by [71, Corollary 4.6]. In other words, like the sets E and E+, Eℓ⃗ has dense extreme
boundary for any ℓ⃗ ∈ Nd.

A.3. Long-range dynamics

A.3.1. Self-consistency equations
Generically, as already discussed in the main part of the paper, mean-field dynamics in infinite

volume are intricate combinations of a classical and quantum dynamics. Similar to [44, Theorem
4.1], both dynamics are related the existence of a solution to a (dynamical) self-consistency equation.
In order to present such equations we need some preliminary definitions: For ℓ⃗ ∈ Nd, m = (Φ, a) ∈

M and ρ ∈ E, we define the approximating (self-adjoint, short-range) interaction Φ(m,ρ)
∈ WR by

Φ(m,ρ)
:= Φ +

∑
n∈N

∫
Sn

an
(
dΨ (1), . . . , dΨ (n)) n∑

m=1

Ψ (m)
∏

j∈{1,...,n},j̸=m

ρ(eΨ (j),ℓ⃗), (73)

35 The integral in (72) means that ρ ∈ Eℓ⃗ is the (unique) barycenter of the normalized positive Borel regular measure
on E . See, e.g., [71, Definition 10.15, Theorem 10.16, and also Lemma 10.17].
ρ ℓ⃗
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where

eΦ,ℓ⃗ :=
1

ℓ1 · · · ℓd

∑
x=(x1,...,xd), xi∈{0,...,ℓi−1}

∑
Λ∈Pf , Λ∋x

ΦΛ

|Λ|
. (74)

ecall meanwhile that M∞
:= WR

× S∞, see (60)–(61). Then, by [46, Theorem 6.5], for any
∈ M∞, there is a unique continuous36 mapping ϖm from R to the space of automorphisms37 (or

elf-homeomorphisms) of E such that

ϖm (t; ρ) = ρ ◦ τΨ (m,ρ)

t,0 , t ∈ R, ρ ∈ E, (75)

with Ψ (m,ρ) ∈ C(R;WR), ρ ∈ E, defined by

Ψ (m,ρ)(t) := Φ(m,ϖm(t;ρ)), t ∈ R, (76)

and where the strongly continuous two-parameter family (τΨ (m,ρ)

t,s )s,t∈R is the strong limit, at any

fixed s, t ∈ R, of the local dynamics (τ (L,Ψ (m,ρ))
t,s )s,t∈R defined by (53) for Ψ = Ψ (m,ρ), see (55) and [67,

Corollary 5.2]. Eq. (75) is named here the (dynamical) self-consistency equation.

A.3.2. Quantum part of mean-field dynamics
Recall that any model m ∈ M leads to finite volume dynamics (τ (L,m)

t )t∈R, L ∈ N0, defined by
(64). Therefore, at L ∈ N0, the time-evolution (ρ(L)

t )t∈R of any finite volume state ρ(L)
∈ EΛL is given

y

ρ
(L)
t := ρ(L)

◦ τ
(L,m)
t . (77)

The corresponding time-dependent density matrix is d(L)
t = τ

(L,m)
−t (d(L)). Eq. (77) refers to the

Schrödinger picture of quantum mechanics.
As already mentioned, for any fixed A ∈ U and t ∈ R, the thermodynamic limit L → ∞ of

τ
(L,m)
t (A) does not necessarily exist in U , but the limit L → ∞ of ρ

(L)
t can still make sense: Fix once

and for all a translation-invariant model m ∈ M∞

1 , see (61). Take ℓ⃗ ∈ Nd and recall that Eℓ⃗ is the
space of ℓ⃗-periodic states defined by (70), whose set of extreme points is denoted Eℓ⃗. Recall also
(72), i.e., that, for any ρ ∈ Eℓ⃗, there is a unique probability measure µρ on Eℓ⃗ with support in Eℓ⃗

such that

ρ =

∫
E

ℓ⃗

ρ̂ dµρ

(
ρ̂
)
.

From the fact that the set Eℓ⃗ is characterized by an ergodicity property (see [71, Theorem 1.16]),
one can prove that, for any A ∈ U ,

lim
L→∞

ρ ◦ τ
(L,m)
t (A) =

∫
E

ℓ⃗

ϖm
(
t; ρ̂

)
(A) dµρ

(
ρ̂
)

=

∫
E

ℓ⃗

ρ̂ ◦ τΨ (m,ρ̂)

t,0 (A) dµρ

(
ρ̂
)
, (78)

where ϖm is the solution to the self-consistency equation (75). See [47, Proposition 4.2, Theorem
4.3]. Using in particular, for any L ∈ N0, the restriction ρ(L)

:= ρ|UΛL
of a state ρ ∈ Eℓ⃗ to UΛL then

(78) can also be seen as the thermodynamic limit L → ∞ of the expectation value ρ
(L)
t (A) of any

local element A ∈ U0, the time-dependent state ρ
(L)
t been defined by (77).

Eq. (78) means in fact that the thermodynamic limit L → ∞ of τ
(L,m)
t (A) exists in the GNS

representation38
(
Hρ, πρ, Ωρ

)
of U associated with the initial state ρ. More precisely, one obtains

36 We endow the set C (E; E) of continuous functions from E to itself with the topology of uniform convergence. See [46,
q. (100)] for more details.
37 I.e., elements of C (E; E) with continuous inverse.
38 Recall that Hρ is an Hilbert space, πρ : U → B

(
Hρ

)
is a representation of U and Ωρ ∈ Hρ is a cyclic vector for

U .
ρ ( )
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a dynamics (Tm
t )t∈R defined by

Tm
t ◦ πρ (A) = lim

L→∞

πρ ◦ τ
(L,m)
t (A) , A ∈ U,

n the (von Neumann) subalgebra πρ(U)′′ of the algebra B
(
Hρ

)
of bounded operators on the Hilbert

space Hρ . The above limit has to be understood in the σ -weak topology within B(Hρ) (and in many
ases one could even prove strong convergence). This refers to the quantum part of the mean-field
ynamics (in some representation), which is generally non-autonomous, although the primordial
ocal dynamics is autonomous.

.3.3. Classical part of mean-field dynamics
For any ℓ⃗ ∈ Nd, the infinite volume mean-field dynamics of ℓ⃗-periodic states, as given by (78),

nvolves the knowledge of a continuous flow39 on Eℓ⃗. Seeing Eℓ⃗ or Eℓ⃗ = Eℓ⃗ as a (classical) phase
pace, it becomes natural to study the classical Hamiltonian dynamics associated with this flow, as
s usual in classical mechanics. Note that, for a (possibly non-translation-invariant) model m ∈ M∞,
for any t ∈ R, ϖm (t; ·) preserves the space E+ of even states defined by (69), but not necessarily Eℓ⃗.
If m ∈ M∞

1 then, for any ℓ⃗ ∈ Nd, the flow lets the sets Eℓ⃗ and Eℓ⃗ invariant. See (87). Here, we adopt a
broader perspective by taking the full state space E, defined by (68), because the classical dynamics
described below can be easily pushed forward, through the restriction map, from C(E;C) to C(E+

;C)
for general m ∈ M∞, and also to C(Eℓ⃗;C) for any ℓ⃗ ∈ Nd, when m ∈ M∞

1 is translation-invariant.
Note that C(E;C), C(E+

;C) and C(Eℓ⃗;C), endowed with the point-wise operations and complex
conjugation as well as the supremum norm, are unital commutative C∗-algebras. For any model
m ∈ M∞, the mapping ϖm, the solution to the self-consistency equation (75), yields a family
(Vm

t )t∈R of ∗-automorphisms on C(E;C) defined by

Vm
t (f ) := f ◦ ϖm (t) , f ∈ C (E;C) , t ∈ R. (79)

It is a Feller group: (Vm
t )t∈R is a strongly continuous group of ∗-automorphisms of C(E;C), which is

obviously positivity preserving and has operator norm equal to one. See [46, Proposition 6.8]. When
restricted to the dense subspace Ep ⊆ E+(71) of all periodic states, the ones we are interested in (cf.
(78)), for any translation-invariant model m ∈ M∞

1 , the one-parameter group (Vm
t )t∈R is generated

by a Poissonian symmetric derivation:
(i) Local polynomials: Elements of the C∗-algebra U naturally define continuous and affine

functions Â ∈ C(E;C) by

Â (ρ) := ρ (A) , ρ ∈ E, A ∈ U .

This is the well-known Gelfand transform. Recall that U0 is the normed ∗-algebra of local elements
of U defined by (42). We denote by

P := C[{Â : A ∈ U0}] ⊆ C(E;C) (80)

the subspace of (local) polynomials in the elements of {Â : A ∈ U0}, with complex coefficients.
(ii) Poisson structure: For any n ∈ N, A1, . . . , An ∈ U and g ∈ C1 (Rn,C) we define the function

Γg ∈ C(E;C) by

Γg (ρ) := g (ρ (A1) , . . . , ρ (An)) , ρ ∈ E. (81)

Functions of this type are known in the literature as cylindrical functions. For such a function and
any ρ ∈ E, define

DΓg (ρ) :=

n∑
j=1

(
Aj − ρ

(
Aj
)
1
)
∂xjg (ρ (A1) , . . . , ρ (An)) (82)

39 That is, the continuous mapping ϖm from R to the space of automorphisms (or self-homeomorphisms) of E defined
y (75).
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U

for any ρ ∈ E. This definition comes from a notion, introduced by us, of a convex weak∗-continuous
ateaux derivative, as explained in [46, Section 5.2]. Then, for any n,m ∈ N, A1, . . . , An, B1, . . . , Bm ∈

, g ∈ C1 (Rn,C) and h ∈ C1 (Rm,C), we define the continuous function
{
Γh, Γg

}
∈ C(E;C) by{

Γh, Γg
}
(ρ) := ρ

(
i
[
DΓh (ρ) ,DΓg (ρ)

])
(83)

for any ρ ∈ E, where A1, . . . , An ∈ U and B1, . . . , Bm respectively determine Γg and Γh via (81).
This defines a Poisson bracket on the space P of all (local) polynomial functions acting on E. By
construction, for any ℓ⃗ ∈ Nd,{

Γh|E+ , Γg |E+

}
:=
{
Γh, Γg

}
|E+

{Γh|E
ℓ⃗
, Γg |E

ℓ⃗
} :=

{
Γh, Γg

}
|E

ℓ⃗

{Γh|E
ℓ⃗
, Γg |E

ℓ⃗
} :=

{
Γh, Γg

}
|E

ℓ⃗

(84)

also define a Poisson bracket on polynomials of C(E+
;C), C(Eℓ⃗;C) and C(Eℓ⃗;C), respectively. This

definition can be extended to the space

Y ≡ C1 (E;C) ⊆ C (E;C)

of continuously differentiable functions. See [46, Section 5.2] and [44, Section 3] for a more detailed
construction of such Poisson structures.

(iii) Liouville’s equation: Local classical energy functions [46, Definition 6.9] associated with
m ∈ M are defined, for any L ∈ N0, by

hm
L := ÛΦ

L +

∑
n∈N

1
|ΛL|

n−1

∫
Sn

ÛΨ (1)
L · · · ÛΨ (n)

L an
(
dΨ (1), . . . , dΨ (n)) . (85)

Note that hm
L ∈ C1 (E;C). Compare with the local Hamiltonian Um

L defined by (62). Then, by [46,
Corollary 6.12] , for each translation-invariant model m ∈ M∞

1 , any time t ∈ R and all local
polynomials f ∈ P, one has Vm

t (f ) ∈ C1(E;C) and

∂tVm
t (f ) = Vm

t

(
lim
L→∞

{hm
L , f }

)
= lim

L→∞

{
hm
L , Vm

t (f )
}
, (86)

where all limits have to be understood point-wise on the dense subspace Ep ⊆ E+ of all periodic
states. We thus obtain the usual (autonomous) dynamics of classical mechanics written in terms of
Poisson brackets. See, e.g., [61, Proposition 10.2.3]. This corresponds to Liouville’s equation.

By [46, p. 34, e.g., Eq. (114)], observe additionally that, for any m ∈ M∞

1 and ℓ⃗ ∈ Nd, the flow
preserves the sets E+, Eℓ⃗ and Eℓ⃗, i.e.,⋃

t∈R

ϖm
(
t; E+

)
⊆ E+

⋃
t∈R

ϖm
(
t; Eℓ⃗

)
⊆ Eℓ⃗⋃

t∈R

ϖm
(
t; Eℓ⃗

)
⊆ Eℓ⃗.

(87)

Therefore, Vm
t,s can be seen as a mapping from C(E+

;C), C(Eℓ⃗;C) or C(Eℓ⃗;C) to itself:

Vm
t (f |E+ ) := (Vm

t f )|E+

Vm
t (f |E

ℓ⃗
) := (Vm

t f )|E
ℓ⃗

Vm
t (f |E

ℓ⃗
) := (Vm

t f )|E
ℓ⃗

(88)

for any t ∈ R, f ∈ C(E;C), m ∈ M∞

1 and ℓ⃗ ∈ Nd. By using the Poisson brackets (84), Liouville’s
equation (86) can be written on C(E+

;C), C(Eℓ⃗;C) or C(Eℓ⃗;C) for any m ∈ M∞

1 and ℓ⃗ ∈ Nd.

Remark 3. The mathematically rigorous derivation of Liouville’s equation (86) is non-trivial and
results from Lieb–Robinson bounds for multi-commutators [67], first derived in 2017.
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A.3.4. Entanglement of quantum and classical dynamics
In the thermodynamic limit, the “primordial” algebra is the separable unital C∗-algebra U , gen-

rated by fermionic annihilation and creation operators satisfying the canonical anti-commutation
elations, as explained in Appendix A.1.1. Fix once and for all m ∈ M∞

1 . Let K = E, E+ or Eℓ⃗ = Eℓ⃗

or some ℓ⃗ ∈ Nd, which is, in each case, a metrizable, convex (weak∗-) compact subset of the dual
pace U∗.

i) Classical dynamics. The classical (i.e., commutative) unital C∗-algebra is the algebra C (K ;C)

f continuous and complex-valued functions on K . The mapping ϖm, the solution to the self-
onsistency equation (75), yields a strongly continuous group (Vm

t )t∈R of ∗-automorphisms of
(K ;C), satisfying Liouville’s equation as previously explained.

ii) Quantum dynamics. Similar to quantum–classical hybrid theories of theoretical physics, de-
cribed for instance in [36–41], consider now a secondary quantum algebra C(K ;C) ⊗ U , which is
othing else (up to isomorphism) than the C∗-algebra C(K ,U) of all (weak∗) continuous U-valued
unctions on states. By [46, Proposition 6.2] and (87), the mapping ϖm from R to the space of
utomorphisms (or self-homeomorphisms) of K leads to a (state-dependent) quantum dynamics
m

:= (Tm
t )t∈R on

C (K ,U) ≡ C (K ;C) ⊗ U,

ia the strongly continuous, state-dependent two-parameter family (τΨ (m,ρ)

t,s )s,t∈R with Ψ (m,ρ) de-
ined by (76):[

Tm
t (f )

]
(ρ) := τΨ (m,ρ)

t,0 (f (ρ)) , ρ ∈ K ,

or any function f ∈ C(K ,U) and time t ∈ R.

iii) Quantum–classical dynamical entanglement. By following arguments of [44, End of Sec-
ion 5.2], any (state-dependent) quantum dynamics on C(K ,U) letting every single element of
(K ;C1) ⊆ C(K ,U) invariant yields a classical dynamics, which, in the case of Tm, is exactly (Vm

t )t∈R.
ore interestingly, as we remark in [44, Section 4.2], each classical Hamiltonian, i.e., a continuously
ifferentiable function of C(K ;R), leads to a state-dependent quantum dynamics. If the classical
amiltonian equals (85) then the limit quantum dynamics, when L → ∞, is precisely Tm. In
ther words, one can recover the classical dynamics from the quantum one, and vice versa. The
lassical and quantum systems are completely interdependent, i.e., entangled. This view point is
ery different from the common understanding40 of the relation between quantum and classical
echanics, which is widely seen as a limiting case of quantum mechanics, even if there exist
hysical features (such as the spin of quantum particles) which do not have a clear classical
ounterpart.
The physical relevance of the mathematical framework we present here comes from the fact that

t is able to encode the infinite volume dynamics of very general mean-field models, for initial states
hich are only required to be periodic in space. In fact, the classical part of the mean-field dynamics
xplicitly appears in the time evolution of extreme periodic states in (78), while the quantum part
orresponds to the last integral over extreme states of (78). The fact that the initial state must
e a periodic state does not represent a serious constraint since any initial even state ρ can be
pproximated by a periodic state constructed41 from its restriction ρ|UΛl

to UΛl for sufficiently large
∈ N0. See, e.g., [46, Proof of Proposition 2.3]. Since l ∈ N0 is arbitrarily large, hence there is no
eal physical restriction in assuming that the initial state is a periodic one, noting that the physical
tates of fermion systems are always even42.

40 At least in many textbooks on quantum mechanics. See for instance [7, Section 12.4.2, end of the 4th paragraph of
age 178].
41 This is possible because of [73, Theorem 11.2].
42 If the initial state is not even, we cannot a priori construct a periodic state from its restriction ρ| for any Λ ∈ P .
UΛ f
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A.4. Permutation-invariant lattice fermi systems

A.4.1. Permutation-invariant mean-field models
Recall that WΠ := W0 is the space of permutation-invariant (or on-site) interactions, defined

y Eq. (48) for R = 0. Define

MΠ :=
(
WR

∩ WΠ

)
× S0. (89)

We name it the space of permutation-invariant mean-field models, because all associated local
Hamiltonians are invariant under permutations: Let Π be the set of all bijective mappings from
Zd to itself which leave all but finitely many elements invariant. It is a group with respect to the
composition of mappings. The condition

pπ : ax,s ↦→ aπ (x),s, x ∈ Zd, s ∈ S, (90)

defines a group homomorphism π ↦→ pπ from Π to the group of ∗-automorphisms of the C∗-
algebra U . Then, for any m ∈ MΠ and L ∈ N0, the local Hamiltonian Um

L defined by (62) is
permutation-invariant, that is,

pπ

(
Um
L

)
= Um

L , π ∈ Π, π (ΛL) = ΛL. (91)

An example of permutation-invariant model is given by the strong-coupling BCS-Hubbard model:
Fix S = {↑, ↓}. Let ΦHubb, Ψ BCS

∈ WΠ ∩ WR be defined by

ΦHubb
{x} := −µ

(
nx,↑ + nx,↓

)
− h

(
nx,↑ − nx,↓

)
+ 2λnx,↑nx,↓

Ψ BCS
{x} := ax,↓ax,↑

for x ∈ Zd and ΦHubb
Λ := 0 =: Ψ BCS

Λ otherwise. Let aBCS ∈ S0 be defined, for all Borel subset B ⊆ S,
by

aBCS (B) := −γ 1
[
Ψ BCS

∈ B
]
. (92)

for some γ ≥ 0, with 1 [·] being the indicator function43. Then,

m0 := (ΦHubb, aBCS) ∈ MΠ

is the strong-coupling BCS-Hubbard model since, in this case, the local Hamiltonian Um0
L is equal to

the strong-coupling BCS-Hubbard Hamiltonian HL defined by (1).

A.4.2. Permutation-invariant state space
The set of all permutation-invariant states is defined by

EΠ := {ρ ∈ E : ρ = ρ ◦ pπ for all π ∈ Π}, (93)

pπ being the unique ∗-automorphism of U satisfying (90). Obviously,

EΠ ⊆

⋂
ℓ⃗∈Nd

Eℓ⃗ ⊆ E+.

Furthermore, EΠ is metrizable, convex and compact and, by [71, Theorem 5.3], for any ρ ∈ EΠ , there
is a unique probability measure µρ on EΠ with support in the (non-empty) set EΠ of its extreme
points such that

ρ =

∫
EΠ

ρ̂ dµρ

(
ρ̂
)
. (94)

The set EΠ can be characterized by a version of the Størmer theorem for permutation-invariant
states on the C∗-algebra U . This theorem is a non-commutative version of the celebrated de Finetti
theorem of (classical) probability theory. It is proven in the case of quantum-spin systems in [74]

43 1 [p] = 1 if the proposition p holds true and 1 [p] = 0 otherwise.
27



J.-B. Bru and W. de Siqueira Pedra Annals of Physics 434 (2021) 168643

s

1

ρ

and for the fermion algebra U in [51, Lemmata 6.6–6.8]. It asserts that extreme permutation-
invariant states ρ ∈ EΠ are product states defined as follows: First recall that the space E+

Λ of
finite volume even states is defined by (67) for any Λ ∈ Pf . Then, via [73, Theorem 11.2], for any
ρ0 ∈ E+

{0}, there is a unique even state

ρ := ⊗Zdρ0 ∈ E+ (95)

satisfying

ρ(αx1 (A1) · · · αxn (An)) = ρ0(A1) · · · ρ0(An) (96)

for all A1 . . . An ∈ U{0} and all x1, . . . , xn ∈ Zd such that xi ̸= xj for i ̸= j. Recall that αx, x ∈ Zd,
defined by (43), are the ∗-automorphisms of U that represent translations. The set of all states of
the form (95), called product states, is denoted by E⊗. It is nothing else but the set EΠ of extreme
points of EΠ , i.e.,

E⊗ = EΠ . (97)

This identity refers to the Størmer theorem, see, e.g., [71, Theorem 5.2].
Since product states are particular extreme states44 of Eℓ⃗ for any ℓ⃗ ∈ Nd, it follows from (97)

that

EΠ = E⊗ ⊆

⋂
ℓ⃗∈Nd

Eℓ⃗ (98)

and the set EΠ ⊆ Eℓ⃗ is thus a closed metrizable face45 of Eℓ⃗. For a more thorough exposition on this
subject, see [71, Section 5.1]. By (97), the extreme boundary EΠ of EΠ is also closed and, in contrast
with E, E+ and Eℓ⃗ for any ℓ⃗ ∈ Nd, EΠ is not a dense subset of EΠ . This is not surprising since states
of EΠ = E⊗ are in one-to-one correspondence with even states on the finite-dimensional C∗-algebra
U{0}.

A.4.3. Quantum part of permutation-invariant mean-field dynamics
Fix once and for all m ∈ MΠ . If ρ ∈ E1 := E(1,...,1), i.e., it is translation-invariant, then the

approximating interaction (73) satisfies

Φ (m,ρ)
= Φ

(m,ρ|U{0} ) ∈ WΠ ∩ WR (99)

and the infinite volume dynamics constructed from this interaction, as defined by (55), preserves
the local C∗-algebra UΛ for any Λ ∈ Pf . By (53)–(55) and (75)–(76), it also follows that⋃

t∈R

ϖm (t; EΠ ) ⊆ EΠ ⊆ E1⋃
t∈R

ϖm (t; E⊗) ⊆ E⊗ ⊆ EΠ

(100)

(compare with (87)) and, for any Λ ∈ Pf , t ∈ R and translation-invariant state ρ ∈ E1 ⊇ EΠ ,

ϖm (t; ρ) |UΛ
= ϖm

(
t; ρ|UΛ

)
|UΛ

∈ E+

Λ (101)

with E+

Λ being the space of finite volume even states defined by (67) for any Λ ∈ Pf .
If the initial state ρ ∈ EΠ is permutation-invariant, then, by (78), (94) and (98), there is a unique

probability measure µρ on EΠ with support in EΠ = E⊗ such that, for any A ∈ U ,

lim
L→∞

ρ ◦ τ
(L,m)
t (A) =

∫
E⊗

ϖm
(
t; ρ̂

)
(A) dµρ

(
ρ̂
)

=

∫
E⊗

ρ̂ ◦ τΨ (m,ρ̂)

t,0 (A) dµρ

(
ρ̂
)

(102)

44 By [71, Theorem 5.2], all product states are strongly mixing, which means [71, Eq. (1.10)]. They are, in particular,
trongly clustering and thus ergodic with respect to any sub-groups (Zd

ℓ⃗
, +) ⊆ (Zd, +), where ℓ⃗ ∈ Nd . By [71, Theorem

.16], all product states belong to Eℓ⃗ for any ℓ⃗ ∈ Nd .
45 A face F of a convex set K is defined to be a subset of K with the property that, if ρ = λ1ρ1 + · · · + λnρn ∈ F with
, . . . , ρ ∈ K , λ , . . . , λ ∈ (0, 1) and λ + · · · + λ = 1, then ρ , . . . , ρ ∈ F .
1 n 1 n 1 n 1 n
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with ϖm being the solution to the self-consistency equation (75). In particular, by (100), the
ime-evolution of a permutation-invariant state is uniquely determined by its restriction to the
inite-dimensional subalgebra U{0} (dimension 22|S|).

If the initial state ρ ∈ E1 ⊇ EΠ is translation-invariant, then Eq. (78) restricted to the
inite-dimensional C∗-algebra UΛ with Λ ∈ Pf reads46

lim
L→∞

ρ|UΛ
◦τ

(L,m)
t (A) =

∫
E+

Λ

ϖm
(
t; ρ̂

)
(A) dµρ

(
ρ̂
)

(103)

or any A ∈ UΛ. For each fixed Λ ∈ Pf , this gives now a family of equations on the finite-dimensional
lgebra UΛ (dimension 22|Λ|×|S|). These equations completely determine the time-evolution of a
ranslation-invariant initial states.

For any ℓ⃗-periodic state ρ ∈ Eℓ⃗ (ℓ⃗ ∈ Nd), the approximating interaction (73) also belongs to
Π ∩ WR. The only difference with respect to translation-invariant states is that the on-site state
|U{0} in (99) has to be replaced with the finite volume state ρ|UZ

ℓ⃗
, where, for ℓ⃗ = (ℓ1, . . . , ℓd) ∈ Nd,

Zℓ⃗ :=
{
(x1, . . . , xd) ∈ Zd

: xi ∈ {0, . . . , ℓi − 1}
}
.

ompare, as an example, with (32). Hence, if the initial state is periodic then Eq. (78) leads again
o a family of equations on the finite-dimensional algebra UΛ (dimension 22|Λ|×|S|) for each Λ ∈ Pf
uch that47 Λ ⊇ Zℓ⃗. These equations again determine the time-evolution of a periodic initial state.

.4.4. Classical part of permutation-invariant mean-field dynamics
Fix again once and for all m ∈ MΠ . By (100), the strongly continuous group (Vm

t )t∈R of ∗-
utomorphisms defined by (79) can be restricted to the unital C∗-algebra C(E⊗;C) of continuous
unctions on the compact space E⊗ of product states. See also [44, Section 5.4 with B = U{0}].
ithout any risk of confusion, we denote the restriction of (Vm

t )t∈R to E⊗ again by (Vm
t )t∈R.

Using (95)–(97) we identify E⊗ with the space E+

{0} of on-site even states and see now (Vm
t )t∈R

s acting on the algebra C(E+

{0};C). Similar to (80), the set of polynomials in this space of functions
s denoted by

P{0} := C[{Â|E+

{0}
: A ∈ U{0}}] ⊆ C(E+

{0};C).

ocal classical energy functions [46, Definition 6.9] on U{0} are defined by hm
0 |E+

{0}
, where, by (49) and

85),

hm
0 = Φ̂{0} +

∑
n∈N

∫
Sn

Ψ̂
(1)
{0} · · · Ψ̂

(n)
{0} an

(
dΨ (1), . . . , dΨ (n)) .

hen, for any time t ∈ R and polynomials f ∈ P{0}, Liouville’s equation (86) restricted to the algebra
(E+

{0};C) equals

∂tVm
t (f ) = Vm

t

(
{hm

0 , f }
)

=
{
hm
0 , Vm

t (f )
}
, (104)

here, for any n,m ∈ N, A1, . . . , An ∈ U , B1, . . . , Bm ∈ U , g ∈ C1 (Rn,C) and h ∈ C1 (Rm,C),

{Γh|U{0} , Γg |U{0}} := {Γh, Γg}|U{0}∈ C(E+

{0},C) (105)

efines again a Poisson bracket, which can be extended to the space C1(E+

{0};C) of continuously
ifferentiable functions. Similar to (102), Liouville’s equation (104) is now written on the finite-
imensional algebra U{0} (dimension 22|S|) and completely determines a continuous flow on the
ompact space E⊗ of product states.

46 Note that µρ in (78) is a probability measure on E1 ⊆ E+ , but since the restriction mapping ρ ↦→ ρ|UΛ
is continuous

or any Λ ∈ Pf , µρ can be pushed forward to a probability measure on E+

Λ , which we also denote µρ .
47 The restriction Λ ⊇ Zℓ⃗ can also be easily understood by seeing ℓ⃗-periodic states as a translation-invariant state on
the CAR C∗-algebra with new spin set Z × S.
ℓ⃗
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