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We find the extreme points of the set of convex functions � : [0, 1] → [0, 1] with a 
fixed area and �(0) = 0, �(1) = 1. This collection is formed by Lorenz curves with a 
given value of their Gini index. The analogous set of concave functions can be viewed 
as Receiver Operating Characteristic (ROC) curves. These functions are extensively 
used in economics (inequality and risk analysis) and machine learning (evaluation 
of the performance of binary classifiers). We also compute the maximal L1-distance 
between two Lorenz (or ROC) curves with specified Gini coefficients. This result 
allows us to introduce a bidimensional index to compare two of such curves, in a more 
informative and insightful manner than with the usual unidimensional measures 
considered in the literature (Gini index or area under the ROC curve). The analysis 
of real income microdata illustrates the practical use of this proposed index in 
statistical inference.

© 2022 The Authors. Published by Elsevier Inc. This is an open access article 
under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Given a non-empty, compact and convex set of a locally convex space, the collection of its extreme points 
plays a prominent role in optimization and mathematical programming. By Bauer’s maximum principle 
(see, e.g., Phelps [25, Proposition 16.6] or Aliprantis and Border [1, 7.69]) any convex, upper-semicontinuous 
functional defined on this set attains its maximum at an extreme point. In other words, we can search for 
maximizers of such functionals within the set of extreme points. The relevance of extreme points can be 
also comprehended through the Krein–Milman theorem (see, e.g., Simon [30, Theorem 8.14]), which is a 
central result in convex analysis. This theorem affirms that the original set is actually the closed convex 
hull of its extreme points. Therefore, we can retrieve the entire convex set by knowing the (usually much 
smaller) subset of extreme points. The practical application of these powerful results goes through the 
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explicit computation of the extreme points of the convex set under study, which is usually a difficult task 
in infinite-dimensional spaces.

As a matter of fact, one of the aims of this work is to find the extremal points of some infinite-dimensional 
collections of functions. Specifically, we define

L = {� : [0, 1] → [0, 1] : � convex and �(0) = 0, �(1) = 1}, (1)

R = {r : [0, 1] → [0, 1] : r concave and r(0) = 0, r(1) = 1}, (2)

and we consider

La = {� ∈ L : ‖�‖ = (1 − a)/2}, a ∈ [0, 1], (3)

Ra = {r ∈ R : ‖r‖ = a}, a ∈ [1/2, 1], (4)

where ‖ · ‖ is the usual norm in L1 = L1([0, 1]). We will provide a detailed description of the main properties 
of La and Ra, which are actually compact and convex sets in the space L1; see Proposition 1.

Our main motivation lies in the fact that the curves in La and Ra appear repeatedly in many applied 
disciplines. On the one hand, an important interpretation of the functions in L is as Lorenz curves of positive 
and integrable random variables. In addition, La is the collection of Lorenz curves with Gini index a. In 
economics, Lorenz curves are extensively used to provide a graphical representation of the distributions of 
income or wealth in populations, while the Gini index is perhaps the most prominent inequality measure. On 
the other hand, R can be viewed as the set of Receiver Operating Characteristic (ROC) curves. ROC curves 
are employed to evaluate the quality of classifiers in probability forecasts (see for example Fawcett [15]) and 
appear in many scientific disciplines in which classification of binary outcomes is relevant (medical diagnostic, 
credit scoring, classification of financial transactions, and so on). The Gini coefficient of a ROC curve is 
defined as twice its area minus 1. However, the area under the ROC curve (AUC scoring) is used more 
frequently as a measure of the global accuracy of the underlying classifier; see Section 2 for details.

A second goal of this work is to quantify how “far” two of the curves in (1) (or (2)) can be from 
one another. Specifically, given two Lorenz (or ROC) curves with fixed Gini indices, we want to compute 
the maximal L1-distance between them. In other words, for a, b ∈ [0, 1], we are interested in computing 
the distance between the sets La and Lb (or Ra and Rb, for a, b ∈ [0, 1/2]). This question turns out to 
be an infinite-dimensional convex maximization problem with two linear constraints. We will solve this 
optimization problem by a careful analysis of the distance between the extreme points of the considered 
sets. This approach also allows us to identify the maximizers of the underlying functional.

This paper is structured as follows: Section 2 reviews the main interpretations of the elements in La and 
Ra. We recall the definition of the Lorenz curve and the Gini index of an integrable variable, as well as 
the main elements to describe ROC curves. In Section 3, we determine the set of extreme points of La and 
Ra. Section 4 is devoted to the computation of the maximal L1-distance between two of these sets. We 
also identify extremal curves, that is, functions for which this maximal distance is attained, and show their 
connection with stochastic orderings. As an application, in Section 5 we introduce a bidimensional inequality 
index to compare different characteristics of two Lorenz or ROC curves and enumerate its main properties. In 
the case of Lorenz curves, this new index measures simultaneously inequality and dissimilarity, while for ROC 
curves, it indicates accuracy and dissimilarity as well. We consider the empirical version of this inequality 
index to be used in practice. We also propose to combine a bootstrap approach with a non-parametric set 
estimation technique to obtain a confidence region for the population index. The procedure can be further 
applied to test simple hypotheses related to the index. These techniques have been implemented in the 
software R and are illustrated via the analysis of some real income microdata samples from Spain. Finally, 
the proofs of the main results are collected in Section 6.
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2. Lorenz and ROC curves and the Gini index

In this section we recall the definitions of Lorenz and ROC curves and the Gini index, as well as their 
connections with the sets La (in (3)) and Ra (in (4)). Also, we briefly describe the scientific fields in which 
these concepts are widely used.

2.1. Lorenz curves and the Gini index in economics

Let X be a positive random variable with finite mean μ > 0 and cumulative distribution function 
F (x) = P(X ≤ x), for x ≥ 0. The Lorenz curve of the variable X (or of the distribution F ) is

�(t) = 1
μ

t∫
0

F−1(x) dx, 0 ≤ t ≤ 1, (5)

where

F−1(x) = inf{y ≥ 0 : F (y) ≥ x} (6)

(0 < x < 1) is the quantile function of X, that is, the generalized inverse of F .
If X measures income in a population, for each value t ∈ [0, 1], the function in (5) gives us the (normalized) 

total income accumulated by the proportion t of the poorest in that population. Note that F−1 is non-
decreasing, μ =

∫ 1
0 F−1(x) dx and �′(t) = F−1(t)/μ a.e. t ∈ (0, 1). In particular, � is continuous except 

perhaps at the point 1 and has positive second derivative �′′ a.e. Moreover, as the quantile function in (6)
characterizes the probability distribution, � determines the distribution of the underlying variable up to a 
(positive) scale transformation. Explicit analytic expressions for the Lorenz curves of the usual parametric 
distributions can be found in Kleiber and Kotz [20, Section 2.1.2].

It is easy to check that the set L in (1) is the closure (with respect to the pointwise convergence) of 
the set of Lorenz curves of positive and integrable random variables with strictly positive expectation. For 
simplicity, we will refer to L as the class of Lorenz curves. By convexity, for every � ∈ L it holds that

�pi ≤ � ≤ �pe, (7)

where

�pe(t) = t (0 ≤ t ≤ 1) and �pi(t) =
{

0, if 0 ≤ t < 1,
1, if t = 1.

(8)

Fig. 1 shows a graphical representation of the inequalities in (7). The function �pe is called the perfect 
equality curve as it corresponds to the Lorenz curve of a Dirac delta measure, i.e., the probability measure 
corresponding to a population in which all individuals have equal (and positive) incomes. Additionally, �pi
is the perfect inequality curve because it can be viewed as the limit (when the total number of individuals 
tends to infinity) of Lorenz curves in finite populations where only one person accumulates all the wealth. 
Note that the function �pi defined in (8) (see also Fig. 1), which is not a proper Lorenz curve, belongs to L.

In practice, it is very common to synthesize the information of the Lorenz curve in a single numerical 
value that quantifies income inequality. Different characteristics, functionals and values of the Lorenz curve 
are employed to construct those inequality indices; see Arnold and Sarabia [4]. The most popular inequality 
measure derived from the Lorenz curve is the Gini index. This index has a vast number of interesting 
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Fig. 1. A Lorenz curve together with the perfect equality and inequality curves.

interpretations and representations; see Yitzhaki and Schechtman [35, Chapter 2]. One possible way to 
define it is the following:

G(�) = 2
1∫

0

(t− �(t)) dt = 1 − 2‖�‖. (9)

Therefore, we have that for a ∈ [0, 1], the set La defined in (3) is precisely

La = {� ∈ L : G(�) = a}, (10)

the collection of Lorenz curves with Gini index a.
Observe that

G(�) = ‖�− �pe‖
‖�pe − �pi‖

. (11)

The denominator in (11) equals 1/2 (the maximum L1-distance between Lorenz curves) and acts as a 
normalizing constant so that 0 ≤ G(X) ≤ 1. Graphically, G(�) is twice the shaded area in Fig. 1.

The Gini index has many convenient properties: it is scale-free (because the Lorenz curve is itself invariant 
under positive scaling); it can be computed whenever the considered random variable is integrable (so finite 
second moment is not necessary); it is normalized so that it takes values between 0 (perfect equality) and 
1 (perfect inequality); it has a simple and effective interpretation (small values of this index amount to fair 
income distributions, whereas high values indicate unequal distributions).

Another important instrument to compare distributions according to inequality is the so-called Lorenz 
ordering. Let X1 and X2 be two variables with Lorenz curves �1 and �2, respectively. It is said that X1 is 
less than or equal to X2 in the Lorenz order, written X1 ≤L X2, if �1(t) ≥ �2(t), for all t ∈ [0, 1]. In this 
case, we have that �pe ≥ �1 ≥ �2, where �pe is the perfect equality curve defined in (8). In other words, 
income is distributed in a more equitable manner in X1 than in X2.

2.2. ROC curves in machine learning

Binary supervised classification is one of the main statistical techniques in machine learning; see Hastie 
et al. [17]. In this context, we want to classify an object in one of two groups labelled 0 and 1. We observe 
a random vector (X, Y ), where X is the predictor, usually a multidimensional (or functional) variable, and 
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Y ∈ {0, 1} indicates the group membership. Usual procedures in machine learning combine the information 
in X to construct a score or marker S to predict Y . This score is typically an estimate of the posterior 
probability P(Y = 1|X = x) or some increasing function of this quantity. We can assume that members of 
the class {Y = 0} have often smaller values of the score; if not, we can interchange the labels. Then, higher 
values of S provide stronger evidence in favour of the event {Y = 1}.

We denote by Fi(t) = P(S ≤ t|Y = i), i = 0, 1 and t ∈ R, the conditional distribution functions of 
the score in the groups. Any reasonable x ∈ R can be used as a cut-off to obtain a classification rule by 
assigning {Y = 1} whenever {S > x}, and {Y = 0} if {S ≤ x}. In practice, the selected value for the cut-off 
point x typically depends on the prior probability of the groups and misclassification costs. The probability 
of detection of the classifier generated by the threshold x is

PD(x) = P(S > x|Y = 1) = 1 − F1(x)

and the probability of false detection is

PFD(x) = P(S > x|Y = 0) = 1 − F0(x).

The functions PD(x) and PFD(x) are also known as hit rate and false alarm rate, respectively.
In this context, ROC curves are commonly used to evaluate the predictive ability of binary classifiers. 

Formally, the ROC curve is the parametric curve in [0, 1]2 given by {(PFD(x), PD(x)) : x ∈ R}. If Fi, 
i = 0, 1 are continuous and strictly increasing, the ROC curve is the graph of the function

r(t) = 1 − F1(F−1
0 (1 − t)), t ∈ (0, 1),

with r(0) = 0 and r(1) = 1.
We observe that a good classifier should have a high probability of detection and low probability of 

false detection. Therefore, classifiers with ROC curves close to the constant 1 are preferible. A perfect 
classifier has the ROC curve r(0) = 0 and r(x) = 1, x ∈ (0, 1], while a random classifier has a ROC 
curve on the diagonal of [0, 1]2. Therefore, the ROC curve gives information about the precision of a binary 
classifier. Further, ROC curves are concave (see Lloyd [22]) and the area under the ROC curve (AUC) is 
used to evaluate the performance of the classifier. In particular, Ra in (4) is the set of ROC curves with 
AUC scoring a. At this point it should be commented that within the machine learning community ROC 
curves are considered convex, as they are viewed from the line {(x, 1) : x ∈ (0, 1]}. We follow here the 
usual terminology in mathematics. Finally, if two classifiers have ordered ROC curves, the above curve 
corresponds to the classifier that is uniformly better than the other one; that is, it gives better results for 
each cut-off point x that is selected to carry out the classification procedure.

3. Extreme points of La and Ra

The sets La defined in (3) (see also (10)) and Ra in (4) are clearly convex. The following result asserts 
that they are also compact in L1.

Proposition 1. For each a ∈ [0, 1] and b ∈ [1/2, 1], the sets La and Rb are compact in L1.

As La and Rb are convex and compact, their extreme points acquire special relevance. We recall that 
an extreme of a convex set is a point that cannot be expressed as a proper convex combination of other 
points within the set. Formally, given a convex set C, x ∈ C is an extreme point of C if x = tx1 + (1 − t)x2, 
for some t ∈ (0, 1) and x1, x2 ∈ C, implies that x1 = x2. In the following we denote by Ext(C) the set of 
extreme points of C.
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Fig. 2. The functions �ax1
, with a = 0.5 and x1 = 0.25 (left panel), ma

x2
, with a = 0.5 and x2 = 0.7 (central panel) and na

x1,x2
, with 

a = 0.5 and x1 = 0.3, x2 = 0.9 (right panel).

The next theorem determines the set of extreme points of La.

Theorem 1. For a ∈ [0, 1], we have that

Ext(La) =
{
�ax1

: x1 ∈ [0, a]
}
∪
{
ma

x2
: x2 ∈ (a, 1)

}
∪
{
na
x1,x2

: x1 ∈ (0, a), x2 ∈ (a, 1)
}
,

where �ax1
, ma

x2
and na

x1,x2
are the piecewise affine functions of La such that

�ax1
:

⎧⎪⎪⎨⎪⎪⎩
0 �→ 0
x1 �→ 0
1− �→ 1−a

1−x1
,

ma
x2

:

⎧⎪⎪⎨⎪⎪⎩
0 �→ 0
x2 �→ x2 − a

1 �→ 1,
na
x1,x2

:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 �→ 0
x1 �→ 0
x2 �→ x2−a

1−x1

1 �→ 1

(12)

(with the notation �ax1
(1−) = limt↑1 �ax1

(t) and the convention �11 = �pi in (8)).

Theorem 1 summarizes the information of La (an infinite-dimensional collection) in the set of its extreme 
points, which has only dimension 2. Furthermore, as La is compact in L1, it identifies all possible maximizers 
of convex and continuous functionals. To prove Theorem 1 (Section 6) we first show that twice differentiation 
determines an affine isomorphism between La and the set of non-negative measures on (0, 1) with some 
restrictions. Afterwards, we identify those combinations of delta measures that are extreme points.

In Fig. 2 we have depicted various extreme points of La, with a = 0.5. The probabilistic and economic 
meaning of some of these Lorenz curves is described in Section 4.

Remark 1. Let us consider the map

T�(x) = 1 − �(1 − x), � ∈ L, x ∈ [0, 1]. (13)

Observe that, for a ∈ [0, 1], T defines a natural bijection between La and R(1+a)/2 whose inverse is itself. 
Further, for t ∈ [0, 1] and �1, �2 ∈ L, it holds that

T (t�1 + (1 − t)�2) = tT (�1) + (1 − t)T (�2).

Therefore, T preserves extreme points and the set Ext(Ra) is directly obtained from Theorem 1:

Ext(Ra) = {T (�) : � ∈ Ext(L2a−1)}, for a ∈ [1/2, 1].
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4. Maximum distance between Lorenz or ROC curves

Given two Lorenz (or ROC) curves with fixed Gini indices, in this section we quantify how “far” they 
can be from one another. We only consider the problem for Lorenz curves, as the corresponding question 
for ROC curves is analogous (see Remark 3). We also show another property of those curves for which the 
maximal distance is attained, which is connected with stochastic orders.

4.1. Computation of the maximum distance

We are interested in computing the value d(La, Lb) (a, b ∈ [0, 1]), for a suitable metric d on L ×L, where 
L is defined in (1), and La and Lb as in (3) (see also (10)). Theorem 1 is extremely useful for this purpose. If 
d is defined through a norm, d is a convex and continuous functional on (the convex set) La×Lb. Therefore, 
as long as La and Lb are compact, by Bauer’s maximum principle, the supremum of d on La×Lb is attained 
in Ext(La × Lb) = Ext(La) × Ext(Lb). Thus, thanks to Theorem 1, we reduce the calculation of d(La, Lb)
to a finite-dimensional problem.

The exact computation of d(La, Lb) will eventually depend on the particular choice of the metric d. We 
note that the Gini coefficient itself is defined in terms of a (normalized) L1-distance between Lorenz curves; 
see formula (11). This is indeed a sensible and convenient choice to measure dissimilarities between Lorenz 
curves (and their associated probability distributions). The L1 distance between Lorenz curves has also 
been used in Zheng [36] related to almost stochastic dominance of Leshno and Levy [21]. Explicitly, endow 
the set L in (1) (or, analogously, the set R in (2)) with the Lorenz distance

dL(�1, �2) = ‖�1 − �2‖
‖�pe − �pi‖

= 2‖�1 − �2‖ = 2
1∫

0

|�1 − �2|, �1, �2 ∈ L. (14)

Remark 2. Let us consider X1, X2 two positive and integrable random variables with positive expectation 
and Lorenz curves �1 and �2, respectively. We can define d(X1, X2) = dL(�1, �2). We have that d is actually 
a pseudo-metric (on the space of positive and integrable random variables) because d(X1, X2) = 0 holds if 
and only if X1 =st cX2, where c > 0 is a constant and ‘=st’ stands for stochastic equality.

By (7), the diameter of L with respect to the metric dL is

diam(L) = sup{dL(�1, �2) : �1, �2 ∈ L} = dL(�pe, �pi) = 1.

We further observe that La in (10) is the set of � ∈ L such that dL(�, �pe) = a. For any fixed a, b ∈ [0, 1], La

and Lb are compact sets in L1 (see Proposition 1). Therefore, from Theorem 1, the maximum

M(a, b) = max{dL(�1, �2) : �1 ∈ La and �2 ∈ Lb} (15)

is attained at Ext(La) × Ext(Lb).
Note that

M(a, b) = max
�1,�2∈L

2 ‖�1 − �2‖ subject to
1∫

0

�1 = 1 − a

2 and
1∫

0

�2 = 1 − b

2 .

Therefore, the computation of (15), which in principle is an infinite-dimensional convex maximization prob-
lem with two linear constraints, is reduced to a finite-dimensional optimization problem.
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Fig. 3. The functions �−0.4 (left panel) and �+0.5 (right panel).

Definition 1. We say that the pair (�1, �2) ∈ L × L is extremal if

dL(�1, �2) = M(G(�1), G(�2)).

The pair of probability distributions associated to an extremal pair of Lorenz curves will also be called 
extremal distributions.

For notational convenience, we rename the functions �aa and �a0 in (12) as �−a and �+a , respectively. In other 
words, for 0 ≤ a ≤ 1, �−a , �+a ∈ La are defined as

�−a (t) = max
{

0, t− a

1 − a

}
and �+a (t) =

{
(1 − a)t, if 0 ≤ t < 1,
1, if t = 1

(16)

(with the agreement that �−1 ≡ �pi defined in (8)). These two functions will play an essential role in the rest 
of the section. In Fig. 3 we display two of these functions.

The following theorem, which is the main theoretical result of this section, provides an explicit expression 
for M(a, b) and shows that this maximum distance is precisely attained at functions of the form (16). The 
computation of M(a, b), which begins at Theorem 1 and is collected in Section 6, reveals that this issue is 
more delicate and complex than expected.

Theorem 2. For 0 ≤ a, b ≤ 1, let M(a, b) be as in (15). We have that

M(a, b) = (1 − a)b2 + (1 − b)a2

a + b− ab
(17)

(the value M(0, 0) = 0 is taken by continuity). Moreover, (�−a , �+b ) and (�+a , �−b ) are pairs of extremal Lorenz 
curves within the set La × Lb.

Theorem 2 asserts that the maximum distance in (15) is attained at the pairs (�−a , �+b ) and (�+a , �−b ). 
Hence, the associated probability distributions (unique up to positive scale transformations) are extremal. 
The function �−a is the Lorenz curve of a population in which a proportion a of the people have 0 income 
and the rest, a proportion 1 − a, have equal and positive income. In other words, (up to positive scale 
transformations) �−a is the Lorenz curve of a variable X−

a with Bernoulli (1 − a) distribution, that is, 
P(X−

a = 0) = a and P(X−
a = 1) = 1 − a. On the other hand, �+b is not a proper Lorenz curve, but it can be 

expressed as the limit (as n goes to infinity) of Lorenz curves of populations with n individuals where n − 1
of them fairly share a proportion (1 −b) of the wealth and there is only one “lucky person” who accumulates 
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the rest of the total wealth (the proportion b). Hence, �+b can be obtained as the limit (as n goes to infinity) 
of the Lorenz curves of a sequence of random variables X+

b (n) taking the values (1 − b)n/(n − 1) (with 
probability 1 − 1/n) and bn (with probability 1/n).

The minimum value of dL(�1, �2) for �1 ∈ La and �2 ∈ Lb is easily seen to be |b− a| (see Lemma 1 in 
Section 6). With this and Theorem 2 we can see the range of values of the distance dL(�1, �2).

Corollary 1. For 0 ≤ a, b ≤ 1, we have that

{dL(�1, �2) : �1 ∈ La and �2 ∈ Lb} = [|b− a| ,M(a, b)] ,

where M(a, b) is given in (17).

Proof. The minimum and maximum of dL(�, m) among � ∈ La and m ∈ Lb are |b− a| and M(a, b), as 
calculated in Lemma 1 and Theorem 2, respectively. Now, the set {dL(�, m) : � ∈ La and m ∈ Lb} is 
compact and connected as it is the image by the continuous function dL of the compact and connected set 
La × Lb (in the space L1). The result follows. �

Theorem 2 also allows us to compute the maximum distance between Lorenz curves with a given difference 
of their Gini indices.

Corollary 2. For −1 ≤ c ≤ 1, let us consider

M∗(c) = max{M(a, b) : a, b ∈ [0, 1] and b− a = c}.

We have that

M∗(c) = M(ac, ac + c) with ac = (4 − c−
√

8 + c2)/2 (18)

and

M∗(c) = 8 − 8 + (c2 + 8)3/2

c2 + 4 . (19)

Definition 2. We say that the pair (�1, �2) ∈ L2 is super-extremal if

dL(�1, �2) = M∗(G(�1) −G(�2)).

The associated pairs of probability distributions will be also called super-extremal distributions.

Obviously, each super-extremal pair is extremal because it always holds that

M(a, b) ≤ M∗(a− b), for 0 ≤ a, b ≤ 1.

However, from Theorem 2 and for any 0 ≤ c ≤ 1, among all the pairs (�−a , �+a+c) and (�−a+c, �
+
a ) (with 

a ∈ [0, 1 − c]) of extreme Lorenz curves with a value c for the difference of their Gini indices there are only 
two super-extremal curves. Namely, the pairs corresponding to a = ac in (18).

Observe that M∗(0) is the maximum possible distance between Lorenz curves with equal Gini indices. 
By Theorem 2 and Corollary 2, we have that the maximum distance between two income distributions both 
with Gini indices equal to a is
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Fig. 4. The function M(a, a) (0 ≤ a ≤ 1) in (20) and its maximum value M∗(0).

Fig. 5. Lorenz curves with equal Gini indices and maximal distance.

M(a, a) = 2a(1 − a)
2 − a

, for a ∈ [0, 1], (20)

which attains its maximum at the point a0 = 2 −
√

2 ≈ 0.59. Therefore,

M∗(0) = max
0≤a≤1

M(a, a) = M(a0, a0) = 6 − 4
√

2 ≈ 0.34.

Additionally, M(a, a) is the dL-diameter of La. A graphical representation of M(a, a) and M∗(0) is presented 
in Fig. 4. The Lorenz curves �−a0

and �+a0
are hence super-extremal Lorenz curves with equal Gini indices; 

see Fig. 5.

Remark 3. The mapping T given in (13) is an isometry, that is, for �1, �2 ∈ L, it holds that

‖T (�1) − T (�2)‖ = ‖�1 − �2‖.

Therefore, all the results obtained in this section for Lorenz curves can be immediately translated to ROC 
curves.
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4.2. An extremal property related to stochastic orders

The curves �−a and �+a satisfy another extremal property within the class La which is related to inequality 
and stochastic orderings. Its proof is also postponed to Section 6.

Proposition 2. Let a ∈ [0, 1] be fixed. For all � ∈ La and all t ∈ [0, 1], it holds that

t∫
0

�+a (x) dx ≥
t∫

0

�(x) dx ≥
t∫

0

�−a (x) dx. (21)

Proposition 2 leads naturally to introduce new stochastic orders to compare random variables in terms 
of inequality. First, for r ∈ N and 0 ≤ t ≤ 1, we define

�[1](t) = �(t) and �[r](t) =
t∫

0

�[r−1](x) dx, r = 2, 3, . . .

Upon integration by parts, this function can be expressed as

�[r](t) = 1
μΓ(r)

t∫
0

(t− x)r−1F−1(x) dx, 0 ≤ t ≤ 1, r ≥ 1, (22)

where Γ is the Euler gamma function. We note that this alternative representation of the function �[r] is valid 
for real values of r ≥ 1. If the underlying variable measures income, the quantity (22) is a weighted average 
of the income accumulated by the proportion t of the poorest in that population. The weight function, 
wr(x) = (t − x)r−1, for 0 ≤ x ≤ t and r > 1, places more weight on the poorest. The parameter r ≥ 1
modifies the form of the weight function; the higher the value of r, the greater importance is given to the 
lower part of the distribution.

Given two random variables X1 and X2 with Lorenz curves �1 and �2, respectively, we can define a 
stochastic order by comparing the curves �[r]1 and �[r]2 . We say that X1 is less than (or equal to) X2 in the 
Lorenz order of degree r if �[r]1 ≥ �

[r]
2 , and we write X1 ≤L(r) X2. Obviously, the case r = 1 corresponds to 

the usual Lorenz ordering. Further, if X1 ≤L(r) X2, then X1 ≤L(r+1) X2. Hence, ‘≤L(r)’ is a nested family 
of stochastic orders.

The orders ‘≤L(r)’ are closely related to inverse stochastic dominance rules in the econometric literature. 
Inverse stochastic orders were introduced in Muliere and Scarsini [23] to analyze social inequality and they 
have also been considered in different contexts; see Zoli [37], Dentcheva and Ruszczyński [9], de la Cal 
and Cárcamo [7] and Andreoli [3], among others. Inverse dominance is defined through the comparison of 
successive integrals of the quantile functions of the variables and it is easy to check that

X1 ≤L(r) X2 if and only if X2

μ2
≤ISD(r+1)

X1

μ1
,

where ‘≤ISD(r+1)’ stands for the inverse dominance of degree r+ 1. Therefore, Lorenz orders are equivalent 
to inverse rules after a normalization of the variables to ensure that they have equal mean.

We observe that inequalities in (21) provide the extreme elements with respect to the Lorenz ordering of 
degree 2 within the set of variables with equal Gini index a. Recall the interpretation of �−a and �+a explained 
after Theorem 2: �−a is the Lorenz curve of the Bernoulli (1 − a) variable X−

a , while �+a is the limit (as n
goes to infinity) of the Lorenz curves of the random variables X+

a (n). In particular, from Proposition 2 it 
can be shown that for n ≥ 1/a
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X+
a (n) ≤L(2) Xa ≤L(2) X

−
a ,

for each random variable Xa with Gini index a. In other words, the Lorenz curve �+a (respectively, �−a ) is 
the most (respectively, least) equitable within the class La with respect to the Lorenz order of degree 2.

5. A bidimensional inequality index

In the literature there is a great amount of statistics to assess economic inequality. In addition to the 
ubiquitous Gini index, we can also mention the well-known Theil, Hoover, Amato, Atkinson and generalized 
entropy indices. These are only a few examples among many others, and even new measures are introduced 
from time to time; see Prendergast and Staudte [27] for a recent proposal. The interested reader might 
consult the book by Cowell [8] or Eliazar and Sokolov [13] for a panoramic overview on equality measures, 
their relevance and applications.

In this section we introduce a two-dimensional index for pairs of Lorenz or ROC curves that combines the 
Gini coefficients of two curves with the Lorenz distance defined in (14). Since the results and the underlying 
ideas are equivalent for Lorenz or ROC curves, we will only illustrate those concepts with Lorenz curves. 
The proposed index simultaneously measures relative inequality and dissimilarity between two populations. 
It is well known (see, e.g., De Maio [10]) that two very different income or wealth distributions can have the 
same Gini indices, the most popular summary of income inequality. The advantage of the new bidimensional 
index introduced in this section is that we can distinguish dissimilar variables yet with similar Gini indices. 
In addition, this index allows us to detect in a simple way the possible Lorenz ordering between two variables 
(see Section 2.1). In Section 5.1 we define the population version of the bidimensional inequality index and 
we sketch out its main properties. In Section 5.2 we propose a plug-in estimator of the new index to use 
in practice. In Section 5.3 we apply the estimated bidimensional index to compare income inequality in 
Spain from 2009 onwards with the year 2008, the onset of the biggest economic crisis of the last decades 
in that country. In Section 5.4 we propose to blend a standard bootstrap scheme with a set-estimation 
technique to construct a confidence region for the unknown population index. These ideas allow testing 
statistical hypotheses related to the values of the index. We illustrate the performance of these procedures 
with Spanish income data from 2008 and 2019.

5.1. Definition of the population index I

Let �1 and �2 be two Lorenz curves in L. As a measure of relative inequality we simply consider the 
difference of the Gini indices, that is, G(�2) − G(�1). To quantify dissimilarity we employ the distance 
dL(�1, �2) in (14). Therefore, a natural proposal for a new two-dimensional inequality index is the following:

I(�1, �2) = (G(�2) −G(�1), dL(�1, �2)). (23)

From the results in Section 4 we obtain the region of R2 where I takes values.

Proposition 3. Let I be defined in (23) and let us consider the region of R2 defined by

Δ = I(L × L) ≡ {I(�1, �2) : �1, �2 ∈ L}.

We have that

Δ = {(x, y) ∈ [−1, 1] × [0, 1] : |x| ≤ y ≤ M∗(x)} , (24)

where the function M∗ is defined in (19).
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Fig. 6. The region Δ in (24).

Proof. This result follows from Corollaries 1 and 2. �
In Fig. 6 we have plotted the region Δ specified in (24). This graphical representation is very informative 

because we see how different the Gini indices of two variables can be in accordance with the distance between 
their Lorenz curves. Fig. 6 also reveals that if two distributions are very different, that is, dL(�1, �2) is large, 
then the difference of their Gini indices cannot vary too much.

Lorenz curves and Gini indices satisfy many desirable properties that can be translated to the index 
I(�1, �2) in (23). The Gini index satisfies the population principle and the Pigou-Dalton principle of transfers
(see Shorrocks and Foster [29]). The population principle states that if we compare a distribution that takes 
n values with another one taking the 2n values obtained by repeating twice the values of the first distribution, 
there should be no difference in inequality between the two distributions. This is still valid for I(�1, �2) as 
the Lorenz curves do no change under this replication. The next proposition provides some other properties 
of I(�1, �2) that are related to its bidimensional character.

Proposition 4. Let (X1, X2) be a pair of random variables with Lorenz curves �1 and �2. We consider the 
index I = (I1, I2) defined in (23). The following properties hold:

(i) I(�1, �2) ∈ Δ. Moreover, I1(�1, �2) ≥ 0 if and only if G(�1) ≤ G(�2), whereas I1(�1, �2) ≤ 0 if and only 
if G(�2) ≤ G(�1). In other words, positive (respectively, negatives) values of the first component of I
indicates that �1 (respectively, �2) is fairer than �2 (respectively, �1) according to the Gini index.

(ii) Symmetry: We have that I(�2, �1) = (−I1(�1, �2), I2(�1, �2)).
(iii) Extreme values (frontier of Δ):

(1) I(�1, �2) ∈ L1 = {(x, x) : x ∈ [0, 1]} if and only if �1 ≥ �2, i.e., X1 ≤L X2.
(2) I(�1, �2) ∈ L2 = {(−x, x) : x ∈ [0, 1]} if and only if �1 ≤ �2, i.e., X2 ≤L X1.
(3) I(�1, �2) ∈ L3 = {(x, M∗(x)) : x ∈ [−1, 1]} if and only if (�1, �2) is super-extremal, i.e., dL(�1, �2) =

M∗(G(�1) −G(�2)), where M∗ is given in (19).
(iv) Value at extreme points of Δ:

(1) I(�1, �2) = (0, 0) if and only if �1 = �2. Therefore, the value at the origin means that the associated 
distributions satisfy that X1 =st cX2, where c > 0 is a constant.
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(2) I(�1, �2) = (1, 1) if and only if �1 = �pe and �2 = �pi.
(3) I(�1, �2) = (−1, 1) if and only if �1 = �pi and �2 = �pe.

(v) Continuity: If {�1,n1}n1≥1 ⊂ L and {�2,n2}n2≥1 ⊂ L are sequences such that �1,n1 → �1 and �2,n2 → �2
pointwise as n1, n2 → ∞, then I(�1,n1 , �2,n2) → I(�1, �2).

5.2. Estimation of the bidimensional inequality index I

In practice, inequality measures are computed using a sample of income or wealth microdata from each 
population. Here we briefly explain how to define the plug-in estimator of the index (23). Let X1, X2
be the two random variables of interest with distribution functions F1 and F2 and Lorenz curves �1 and 
�2, respectively. For j = 1, 2, we consider random samples from Xj, {Xj,i}nj

i=1, nj ∈ N. To estimate the 
inequality index, the starting point is the natural estimator of the distribution function of the sample. 
Namely, for j = 1, 2, we denote by F̂j the empirical distribution functions of the samples, i.e.,

F̂j(x) = 1
nj

nj∑
i=1

1{Xj,i≤x}, x ∈ [0,∞),

where 1A stands for the indicator function of the set A. The corresponding empirical quantile functions are 
F̂−1
j (x) = inf{y ≥ 0 : F̂j(y) ≥ x} (0 < x < 1) and the empirical Lorenz curves are

�̂j(t) = 1
μ̂j

t∫
0

F̂−1
j (x) dx, t ∈ [0, 1],

where μ̂j = 1
nj

∑nj

i=1 Xj,i are the sample means. Therefore, the plug-in estimator of the index I in (23) is 
given by

Î(�1, �2) = I(�̂1, �̂2). (25)

5.3. Application to Spanish income data

To illustrate the practical performance of the bidimensional inequality index introduced in (23), we have 
computed its estimated value (25) using Spanish cross-sectional income microdata (at the household level) 
in the period 2008–2020. The data were obtained from the Living Conditions Survey (LCS) carried out by 
the Instituto Nacional de Estadística (INE), the administrative organism in charge of the official statistics 
of Spain.

The random variable X under consideration is the equivalised disposable income, the total disposable 
income of a private household divided by the equivalised household size. The total disposable income repre-
sents the total income of a household which is available for saving or spending. The equivalised household 
size is the number of household members converted into “equivalised” adults by the modified OECD (Organ-
isation for Economic Co-operation and Development) equivalence scale. The equivalised disposable income 
is one of the variables describing income at the household level which is used by Eurostat to compute Gini 
coefficients and other inequality indicators.

We can use the empirical bidimensional index Î in (25) to carry out a cross-temporal comparison within 
the same country (Spain in this case). The idea is to fix a reference year (here 2008) and analyze the 
evolution of the index in that country (relative to the initial year) over a span of years (here 2009–2020). 
Thus, in this case, the two random variables of interest X1 and X2 are the Spanish income in 2008 and in a 
posterior year, respectively. This gives insight into the evolution of income inequality in that specific society 
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Fig. 7. Evolution of mean income and Gini coefficient in Spain (2008–2020).

along the period under study. Another possible analysis of practical interest is to take X1 (respectively, X2) 
as the equivalised disposable income in country 1 (respectively, country 2) and compute the corresponding 
index Î to compare the relative income inequality between the two countries. This relative inequality index 
can be computed for several years and the graphical evolution of the bidimensional Î along the span of 
years under study is easy to interpret.

First, to gain better understanding of the analyzed income data, we give some background on the period 
under study in Spain. Year 2008 was the onset of a severe Spanish financial and economic crisis, officially 
ending in 2014. There was a first recession period between 2008 and 2010 and a second one between 2011 
and 2013. Fig. 7 plots the evolution of the mean equivalised disposable income and the Gini index from 2008 
to 2020 and clearly reflects this abrupt crisis. Fig. 7 also shows the hard climb towards a recovery of the 
pre-crisis level, which took more than 9 years (IMF [18]). Although in 2017 Spanish GDP went beyond its 
pre-crisis peak of 2007 and many indicators reflected the recovery, it was generally agreed that the country 
was more unequal than in 2008 (The Economist [11]). Thus, it is interesting to analyze the evolution of 
inequality in Spanish society from 2008 onwards (see Blavier [5]), in particular to compare the distribution 
of income between 2008 (held fixed) and the following years. Microdata from INE cover up to year 2020 
(included).

We have computed the empirical inequality index Î for the equivalised disposable income in Spain in 
2008 (X1) and in any of the years in the span 2009–2019 (X2). The resulting indices (see Fig. 8) show 
the devastating effects of the crisis on the distribution of income. From 2011 to 2017 the indices of the 
corresponding years were either on the frontier L1 (years 2011 and 2016) or very near it, meaning the curves 
were strictly ordered �1 ≥ �2 (or almost so). Indeed, the curve �2 for the rest of the years from 2011 to 2017 is 
below �1 except for a rightmost interval contained in [0.8,1] where �1(t) < �2(t). Income distribution in 2008 
is therefore almost more equitable than that of the years 2012, 2013. . . (in the sense defined by Zheng [36]). 
This would support the generalized social perception that the 2008 crisis in Spain struck not only the lowest 
income class but also the middle class (see Alonso et al. [2]), broadening the gap between both groups and 
the richest (last income decile). The indices Î corresponding to years 2018 and 2019 are remarkably near 
the index of 2009, that is, income distribution slowly approached the pre-crisis level. Note that, although 
the Gini indices are nearly the same in 2008 and 2019, the Lorenz curves are still not coincident, as Î (for 
2008 and 2019) is not (0, 0). Indeed, in 2019 the poorest half of society had a lower proportion of the total 
income than in 2008.
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Fig. 8. The inequality index Î for Spanish equivalised disposable income corresponding to year 2008 (X1) and each of the years in 
the span 2009–2020 (X2).

We finally give some insight on the surprising value of Î for 2020, that would indicate a reduction in 
Spanish income inequality with respect to 2008, in spite of the economic effects of the Covid-19 pandemic 
on the world economy and, particularly, on the Spanish one (see, e.g., IMF [19]). As explained by the INE in 
a press release, the LCS collects information from a sample of households regarding their living conditions 
at the time of the interview (fourth trimester of the year) as well as their income in the previous year. Thus, 
the impact of the pandemic on the LCS-2020 is only partially reflected.

5.4. A confidence region for the inequality index I(�1, �2)

In this section, we employ a standard bootstrap scheme (see Efron [12]), a widely used statistical technique 
based on plug-in estimation and resampling, combined with a non-parametric set estimation technique to 
obtain a confidence region for the bidimensional relative inequality index I in (23).

Let xj1, . . . , xjnj
denote the observations from population Xj for j = 1, 2. Based on the samples we 

construct a confidence region for the population index I(�1, �2) at the confidence level 1 −α in the following 
way. First, we extract B bootstrap samples from each of the original samples {xji}nj

i=1, j = 1, 2, and we 
compute the corresponding bootstrap version of the empirical inequality index:

Original samples Bootstrap samples Bootstrapped indices
x11, . . . , x1n1

x21, . . . , x2n2

−→
−→

x∗b
11, . . . , x

∗b
1n1

x∗b
21, . . . , x

∗b
2n2

}
−→ Î∗b, b = 1, . . . , B

Bootstrap usually gives good results with commonly large sample sizes available in inequality analysis and 
machine learning settings. After obtaining the bootstrap sample Î∗1, . . . , Î∗B of empirical inequality indices, 
we use the local convex hull (LoCoH) (also called k-nearest neighbour convex hull in the literature of set 
estimation, see Getz and Wilmers [16]) to construct a confidence region for I(�1, �2). The LoCoH provides 
results that adapt well to the bootstrap sample and to the shape of the region Δ where I takes values. The 
construction of the LoCoH is as follows. For a fixed integer k > 0, we construct the convex hull of each 
Î∗b and its k − 1 nearest neighbours. Then these hulls are ordered according to their area, from smallest 
to largest. The LoCoH is the polygonal region that results of progressively taking the union of the hulls 
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Table 1
Values of k and p(k) for Spanish income data in 2008 and 2019 (in bold the values of k
and p(k) such that this proportion is closest to 95%).

k 100 200 300 400 500 600 700 800 900
p(k0.05) 0.923 0.932 0.935 0.936 0.942 0.933 0.938 0.934 0.938

from the smallest upwards, until a proportion 1 − α of Î∗b’s is included in the region. We use the notation 
Ŝ(k) = LoCoHk(Î∗1, . . . , Î∗B) to denote the resulting confidence region.

Selecting an adequate value for the number of neighbours k is a relevant matter, as it critically affects the 
shape of the LoCoH, but no automatized selection procedures have yet been considered in the literature. 
We propose to use a leave-one-out scheme to select the “optimal” k among the values in a grid k1, . . . , kM . 
The idea is to determine, for each b = 1, . . . , B, the LoCoH Ŝ(b)(k) = LoCoHk(Î∗β , β = 1, . . . , B, β �= b)
based on the sample of bootstrapped inequality indices from which the b-th one has been removed. Then, 
we compute the proportion of times that Ŝ(b)(k) contains the left-out Î∗b

p(k) =
B∑

b=1

1Ŝ(b)(k)(Î∗b)/B.

Our proposal for choosing the number of neighbours in the LoCoH is

kα = arg min
k∈{k1,...,kM}

|p(k) − (1 − α)|. (26)

We use the procedure described above to compute a bootstrap confidence region for the inequality index 
I corresponding to two of the samples considered in Section 5.3. We have chosen the equivalised disposable 
income of Spain in 2008 (n1 = 12987) and in 2019 (n2 = 15861). The Gini index in this case takes the 
value 32.9% for both years, and the empirical bidimensional inequality index is Î = (−10−4, 0.006). As the 
components of the index are not both close to the origin (0,0), we can conclude that the distribution of 
income was not exactly the same in 2008 and 2019. Indeed, this is confirmed by the two empirical Lorenz 
curves and their difference (re-scaled by the maximum absolute difference to improve the visualization) 
plotted in Fig. 9: in 2019 the poorest half of the Spanish population had a smaller cumulative proportion of 
income than in 2008. Regarding the proximity of the two Lorenz curves in Fig. 9(a) and the low values of 
the two components of Î, let us note that Lorenz curves for the income of the same country in two different 
years are never radically different.

We have extracted B = 1000 bootstrap samples from each of the data sets corresponding to 2008 and 2019 
and computed the resulting empirical indices Î∗b, b = 1, . . . , 1000. We have determined the bootstrap LoCoH 
confidence region Ŝ(k0.95), at the confidence level of 95%, for the relative inequality index I comparing 2008 
and 2019. The value of k0.95 was selected from the grid (100, 200, . . . , 900) via the leave-one-out procedure 
described before and according to (26) with 1 −α = 0.95. Table 1 displays the proportion p(k) of times that 
the left-out index Î∗b is contained in the LoCoH Ŝ(b)(k) constructed with the remaining 999 indices. The 
number k0.95 = 500 of nearest neighbours yielding the proportion p(k) nearest to 0.95 results in the LoCoH 
Ŝ(500) of Fig. 10. Remark the contrast with Fig. 11, where we have plotted the bootstrap inequality indices 
corresponding to years 2008 and 2016 in Spain and the confidence region constructed using the LoCoH with 
k0.95 = 600.

5.5. Hypothesis tests for the inequality index I(�1, �2)

Once determined a confidence region for I(�1, �2) at a level (1 −α) (as explained in the previous section), 
we can use it to carry out the statistical test (with significance level α)



18 A. Baíllo et al. / J. Math. Anal. Appl. 514 (2022) 126335
Fig. 9. (a) Empirical Lorenz curves, �̂1 and �̂2, for the equivalised household income in Spain in 2008 and 2019 respectively; (b) 
Difference �̂1 − �̂2 re-scaled by ‖�̂1 − �̂2‖∞.

Fig. 10. Confidence region for the bidimensional relative inequality index I of Spain in 2008 and 2019. The crossed point in white 
is the empirical index Î.

H0 : I(�1, �2) = I0 versus H1 : I(�1, �2) �= I0,

where I0 is a known fixed value in the region Δ given in (24). The procedure to test the simple hypothesis 
H0 : I = I0 follows by the duality between confidence regions and hypothesis tests: we reject H0 at level α
whenever I0 does not belong to the confidence region for I(�1, �2) at a level (1 − α).

For instance, the confidence region at level 95% in Fig. 10 does not intersect the left diagonal L2, which 
means that there is evidence to reject that the relative inequality index I comparing 2008 and 2019 lies 
on any point of the left diagonal. In other words, we can affirm (with significance level 5%) that 2019 did 
not distribute income more fairly than 2008. However, for the same years, the confidence region Ŝ(500)
intersects the right diagonal L1, so we cannot reject that the 2019 Lorenz curve is below that of 2008. The 
situation is even more clear for the years 2008 and 2016 (see Fig. 11).
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Fig. 11. Confidence region for the bidimensional relative inequality index I of Spain in 2008 and 2016. The crossed point in white 
is the empirical index Î.

6. Proofs: extremal points and maximum distance

Here we collect the proofs of Proposition 1 and Theorems 1 and 2. First, we enumerate some regularity 
properties of the functions in the set L defined in (1) that will be useful throughout this section.

6.1. Regularity properties and compactness of La

We start with a slight change in the definition of the functions in the set L of (1). Given � ∈ L we 
redefine the value of � at 1 as �(1) = sup[0,1) �. This redefinition is motivated by the fact that, as shown in 
the following proposition, functions in L become continuous in [0, 1]. In addition, the convexity of L and 
La remains true. With this definition, L becomes the set of convex � : [0, 1] → [0, 1] such that �(0) = 0 and 
�(1) = sup[0,1) �.

In the following proposition we denote by W 1,1(0, 1) the Sobolev space W 1,1 in the interval (0, 1), which 
is equivalent to the set of absolutely continuous functions in [0, 1]; it is endowed with the norm

‖�‖W 1,1(0,1) = ‖�‖ + ‖�′‖ ,

where �′ is the distributional derivative of �, which coincides a.e. with the derivative of �. For α ∈ (0, 1)
we denote by W 1,∞(0, α) the Sobolev space W 1,∞ in the interval (0, α), which is equivalent to the set of 
Lipschitz continuous functions in [0, α]; it is endowed with the norm

‖�‖W 1,∞(0,α) = sup
(0,α)

|�| + ess sup
(0,α)

|�′| .

See, e.g., Brezis [6, Chapter 8] or Evans and Gariepy [14, Chapter 4] for the definition and properties of 
these spaces.

Proposition 5. Let a ∈ [0, 1] and � ∈ La. Then

(a) The function � is non-decreasing, absolutely continuous in [0, 1] and Lipschitz in [0, α] for each α ∈ (0, 1). 
Moreover,

‖�‖W 1,1(0,1) ≤ 1 + 1 − a
,
2
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and for each α ∈ (0, 1),

‖�‖W 1,∞(0,α) ≤ 1 + 1 − a

(1 − α)2 .

(b) The function �′ is locally of bounded variation, the right derivative �′(x+) exists for all x ∈ [0, 1) and is 
non-decreasing. Moreover, �′(0+) ≥ 0.

(c) �′′ is a non-negative Radon measure.

Proof. Convex functions are locally Lipschitz (see Evans and Gariepy [14, Theorem 6.3.1] or Simon [30, 
Theorem 1.19]), have a first derivative locally of bounded variation (see Evans and Gariepy [14, Theorem 
6.3.3]) and have a second derivative in the sense of distributions (see Evans and Gariepy [14, Theorem 6.3.2]
or Simon [30, Theorem 1.29]), which in fact is a non-negative Radon measure. Further, the right derivative 
�′(x+), exists for all x ∈ [0, 1) and is non-decreasing (see Simon [30, Theorem 1.26]). As �(0) = 0 and � ≥ 0, 
we necessarily have that �′(0+) ≥ 0, so �′(x+) ≥ 0 for all x ∈ [0, 1). By the version of the fundamental 
theorem of calculus for convex functions (see Simon [30, Theorem 1.28]), � is non-decreasing. In addition, 
the derivative of � exists a.e. and coincides a.e. with the right derivative, so �′ ≥ 0 a.e. In particular,

‖�′‖ =
1∫

0

�′(t) dt = �(1) − �(0) ≤ 1.

We conclude that ‖�‖W 1,1(0,1) ≤ 1 + 1−a
2 .

On the other hand, we observe that the affine function s : [0, 1] → R given by s(x) = �′(α+)(x −α) +�(α)
is a supporting line of � at the point (α, �(α)). By convexity, we hence have that s ≤ � and then,

1 − a

2 = ‖�‖ ≥
1∫

α

�(t) dt ≥

1∫
α

s(t) dt = �′(α+) (1 − α)2

2 + �(α)(1 − α) ≥ �′(α+) (1 − α)2

2 .

We conclude that

ess sup
(0,α)

�′ ≤ �′(α+) ≤ 1 − a

(1 − α)2 .

Consequently, ‖�‖W 1,∞(0,α) ≤ 1 + 1−a
(1−α)2 . �

The set La is clearly convex. We are now ready to prove Proposition 1.

Proof of Proposition 1 in Section 3 (Compactness of La and Rb). Let {�n}n∈N be a sequence in La. By 
Proposition 5, {�n}n∈N is bounded in W 1,1(0, 1), so by the Rellich–Kondrachov theorem (see Brezis [6, 
Theorem 8.8]), there exists a subsequence (not relabelled) and an � ∈ L1 such that �n → � in L1 as n → ∞. 
This also implies that G(�) = a.

On the other hand, for each α ∈ (0, 1) we have by Proposition 5 (a) that {�n}n∈N is bounded in 
W 1,∞(0, α), so by the Ascoli–Arzelà theorem (see Brezis [6, Theorems 4.25 and 8.8]), for a further subse-
quence, �n → � uniformly in [0, α] as n → ∞. In particular, �(0) = 0 and 0 ≤ � ≤ 1 in [0, α]. As the pointwise 
limit of convex function is a convex function, we obtain that � is convex in [0, α]. Therefore, 0 ≤ � ≤ 1 in 
[0, 1) and � is convex in [0, 1). We redefine �(1) as �(1) = sup[0,1), so that � becomes continuous in [0, 1]. We 
also obtain that 0 ≤ � ≤ 1 in [0, 1] and � is convex in [0, 1]. Therefore, � ∈ La and the proof is finished. �
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6.2. Proof of Theorem 1 in Section 3 (extreme points of La)

We will use an alternative description of the elements in La in terms of positive measures concentrated on 
the interval (0, 1). The main idea is based on the following fact: any curve � ∈ La is univocally determined by 
its second derivative, �′′, together with the conditions �(0) = 0 and G(�) = a (or, equivalently, ‖�‖ = 1−a

2 ).
Given a ∈ [0, 1], we denote by Ma the set of non-negative Radon measures μ concentrated on the interval 

(0, 1) and such that

1∫
0

(1 − s)2 dμ(s) ≤ 1 − a and
1∫

0

s(1 − s) dμ(s) ≤ a. (27)

Proposition 6. For a ∈ [0, 1], the map Ta : La → Ma defined by Ta(�) = �′′ is an affine isomorphism with 
inverse T−1

a : Ma → La given by

T−1
a μ(x) =

⎡⎣1 − a−
1∫

0

(1 − s)2 dμ(s)

⎤⎦x +
x∫

0

(x− s) dμ(s), x ∈ [0, 1]. (28)

Proof. First we see that the map Ta is well defined. Given � ∈ La, we have from Proposition 5 that �′′ is a 
non-negative Radon measure. As �′ is locally of bounded variation,

�′(t) = �′(0+) +
t∫

0

d�′′(s), a.e. t ∈ (0, 1).

As � is locally Lipschitz and �(0) = 0, for x ∈ [0, 1], we have that

�(x) =
x∫

0

�′(t) dt =
x∫

0

⎡⎣�′(0+) +
t∫

0

d�′′(s)

⎤⎦ dt

= �′(0+)x +
x∫

0

(x− s) d�′′(s),

(29)

where for the last equality we have used Fubini’s theorem. Integrating in x ∈ (0, 1) equality (29) (and by 
Fubini’s theorem again) we obtain the restriction

1 − a

2 = ‖�‖ = �′(0+)
2 + 1

2

1∫
0

(1 − s)2 d�′′(s). (30)

As �′(0+) ≥ 0, from (30) we directly obtain the first inequality of (27). On the other hand, (29) and (30)
show that

�(x) =

⎡⎣1 − a−
1∫

0

(1 − s)2 d�′′(s)

⎤⎦x +
x∫

0

(x− s) d�′′(s), x ∈ [0, 1]. (31)

Hence, imposing �(1) ≤ 1 we have the second inequality of (27).
Now, for μ ∈ Ma, we define � as in the right-hand side of (28) and we will check that � ∈ La. First, 

�(0) = 0 and
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1∫
0

�(x) dx = 1
2

⎡⎣1 − a−
1∫

0

(1 − s)2 dμ(s)

⎤⎦+
1∫

0

1∫
s

(x− s) dx dμ(s) = 1 − a

2 .

Further, thanks to the second inequality of (27), we obtain that

�(1) = 1 − a +
1∫

0

s(1 − s) dμ(s) ≤ 1.

By Leibniz integral rule (differentiation under the integral sign), it can also be checked that

�′(x) = 1 − a−
1∫

0

(1 − s)2 dμ(s) +
x∫

0

dμ(s), a.e. x ∈ (0, 1) (32)

and hence

�′′ = μ as measures. (33)

As μ is positive, from (32) we have that �′ is essentially non-decreasing, � is convex and

�′(x) ≥ 1 − a−
1∫

0

(1 − s)2 dμ(s) ≥ 0, a.e. x ∈ (0, 1),

by the first inequality of (27), so � is non-decreasing. In particular, � ≥ 0. This shows that � ∈ La.
Finally, we prove that the maps Ta and (28) are mutually inverse. Given � ∈ La, if we apply first Ta and 

then (28) we get � back thanks to (31). Conversely, given μ ∈ Ma, if we apply first (28) and then Ta we 
recover μ by (33). Since Ta is affine, the proof is concluded. �

Next we calculate Ext(Ma). We denote by δx the Dirac measure at x ∈ [0, 1].

Proposition 7. For a ∈ [0, 1], we have that

Ext(Ma) ={0} ∪
{

1 − a

(1 − x1)2
δx1 : x1 ∈ (0, a]

}
∪
{

a

x2(1 − x2)
δx2 : x2 ∈ (a, 1)

}
∪
{

x2 − a

(1 − x1)(x2 − x1)
δx1 + a− x1

(x2 − x1)(1 − x2)
δx2 : x1 ∈ (0, a), x2 ∈ (a, 1)

}
.

Proof. The proof is divided into several smaller results.

Step 1: The null measure μ ≡ 0 ∈ Ext(Ma).
This is direct as all the measures in Ma are non-negative.

Step 2: For all x1 ∈ (0, a], the measure μ = 1−a
(1−x1)2 δx1 ∈ Ext(Ma).

Clearly, μ ∈ Ma. Assume that μ = t1μ1 + t2μ2, for some t1, t2 > 0 with t1 + t2 = 1 and μ1, μ2 ∈ Ma. 
Then μi = βiδx1 and, due to (27),

βi ≥ 0, βi(1 − x1)2 ≤ 1 − a, βix1(1 − x1) ≤ a, i = 1, 2.
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Thus,

1 − a

(1 − x1)2
= t1β1 + t2β2 ≤ t1

1 − a

(1 − x1)2
+ t2

1 − a

(1 − x1)2
= 1 − a

(1 − x1)2
,

so, necessarily, β1 = β2 = 1−a
(1−x1)2 , and, hence, μ1 = μ2. Therefore, μ ∈ Ext(Ma).

Step 3: For all x2 ∈ (a, 1), the measure a
x2(1−x2)δx2 ∈ Ext(Ma).

The proof is similar to the one of the previous step and it is therefore omitted.

Step 4: If for some x1 ∈ (0, a] and α ∈ R \ {0, 1−a
(1−x1)2 }, μ = αδx1 ∈ Ma, then μ /∈ Ext(Ma).

The fact μ ∈ Ma implies that 0 < α < 1−a
(1−x1)2 . Therefore, for ε > 0 small enough, we have that 

μ ± εδx1 ∈ Ma since both are positive measures and the restrictions (27) are satisfied; indeed,

1∫
0

(1 − s)2 d(μ± εδx1)(s) = (α± ε)(1 − x1)2 < 1 − a

and

1∫
0

s(1 − s) d(μ± εδx1) = (α± ε)x1(1 − x1) <
1 − a

1 − x1
x1 ≤ a.

Finally, we can write μ = 1
2 (μ + εδx1) + 1

2 (μ − εδx1), and, hence, μ /∈ Ext(Ma).

Step 5: If for some x2 ∈ (a, 1) and α ∈ R \ {0, a
x2(1−x2)}, μ = αδx2 ∈ Ma, then μ /∈ Ext(Ma).

The proof is similar to that of Step 4 and it is left to the reader.

Step 6: For all x1 ∈ (0, a) and x2 ∈ (a, 1), μ = x2−a
(1−x1)(x2−x1)δx1 + a−x1

(x2−x1)(1−x2)δx2 ∈ Ext(Ma).

It is immediate to check that

1∫
0

(1 − s)2 dμ(s) = 1 − a and
1∫

0

s(1 − s) dμ(s) = a.

Therefore, μ ∈ Ma. Moreover, if μ = t1μ1 + t2μ2 for some t1, t2 > 0 with t1 + t2 = 1 and μ1, μ2 ∈ Ma, then

1∫
0

(1 − s)2 dμi(s) = 1 − a and
1∫

0

s(1 − s) dμi(s) = a, i = 1, 2.

Furthermore, as μi =
∑2

j=1 βijδxj
for some βij ≥ 0 (for i, j = 1, 2), we have that

2∑
j=1

βij(1 − xj)2 = 1 − a and
2∑

j=1
βijxj(1 − xj) = a, i = 1, 2,

and, hence,
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βi1 = x2 − a

(1 − x1)(x2 − x1)
, βi2 = a− x1

(x2 − x1)(1 − x2)
, i = 1, 2.

Therefore, μ1 = μ2. Consequently, μ ∈ Ext(Ma).

Step 7: If for some α1, α2 > 0 and 0 < x1 < x2 < 1 with

α1 �= x2 − a

(1 − x1)(x2 − x1)
or α2 �= a− x1

(x2 − x1)(1 − x2)

the measure μ =
∑2

i=1 αiδxi
∈ Ma, then μ /∈ Ext(Ma).

By (27), we have that

2∑
i=1

αi(1 − xi)2 ≤ 1 − a and
2∑

i=1
αixi(1 − xi) ≤ a. (34)

If both inequalities in (34) were equalities, we necessarily have that

α1 = x2 − a

(1 − x1)(x2 − x1)
and α2 = a− x1

(x2 − x1)(1 − x2)
,

against our assumption. Therefore, at least one of the two inequalities of (34) is strict. If 
∑2

i=1 αi(1 −xi)2 <

1 − a, then we consider the signed measure defined by

μ0 = x2(1 − x2)δx1 − x1(1 − x1)δx2 .

Then, it is straightforward to check that, for small enough ε > 0, μ ± εμ0 ∈ Ma and

μ = 1
2(μ + εμ0) + 1

2(μ− εμ0). (35)

Therefore, μ /∈ Ext(Ma).
If, instead, 

∑2
i=1 αixi(1 − xi)2 < a, we then consider the signed measure

μ0 = (1 − x2)2δx1 − (1 − x1)2δx2 .

Again, we have that, for small enough ε > 0, μ ± εμ0 ∈ Ma and equality (35) holds. We conclude that 
μ /∈ Ext(Ma).

Step 8: If μ ∈ Ma is supported in more than two points, then μ /∈ Ext(Ma).

In this case, there exist Borel disjoint sets Ai ⊂ (0, 1) such that μ|Ai
�= 0, for i = 1, 2, 3. Let (α1, α2, α3) ∈

R3 \ {(0, 0, 0)} be such that

3∑
i=1

αi

∫
Ai

(1 − s)2 dμ(s) = 0 and
3∑

i=1
αi

∫
Ai

s(1 − s)2 dμ(s) = 0.

We consider the signed measure μ0 =
∑3

i=1 αiμ|Ai
. For ε > 0 small enough, define μ+ and μ− as μ± =

μ ± εμ0. Then μ = 1μ+ + 1μ− with μ± �= μ. Moreover, μ± are positive measures since
2 2
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μ± = μ|Ac
1∩Ac

2∩Ac
3 +

3∑
i=1

(1 ± εαi)μ|Ai
,

where Ac stands for the complement of the set A in (0, 1). In fact, μ± ∈ Ma since

1∫
0

(1 − s)2 dμ±(s) =
1∫

0

(1 − s)2 dμ(s) ≤ 1 − a and
1∫

0

s(1 − s) dμ±(s) =
1∫

0

s(1 − s) dμ(s) ≤ a.

Therefore, we conclude that μ /∈ Ext(Ma).
The eight steps above complete the proof. �
Step 8 of the previous proof is related to the works by Winkler [33] and Pinelis [26], where they analyze 

the set of extreme points of subset of measures defined through some inequalities.

Proof of Theorem 1 in Section 3 (Extreme points of La). By Proposition 6, we have the equality

Ext(La) = T−1
a (Ext(Ma)).

Now, we can use Proposition 7 to determine the set Ext(La). By (28) and Proposition 7, we obtain three 

families of extreme curves in La. First, for x1 ∈ (0, a], let �ax1
= T−1

a

(
1−a

(1−x1)2 δx1

)
and �a0 = T−1

a (0). More 

explicitly, we have that, for x1 ∈ [0, a]

�ax1
(x) = 1 − a

(1 − x1)2
max{0, x− x1}, x ∈ [0, 1].

Second, for x2 ∈ (a, 1), we set ma
x2

= T−1
a

(
a

x2(1−x2)δx2

)
. We obtain that

ma
x2

(x) = 1
x2

[
(x2 − a)x + a

1 − x2
max{0, x− x2}

]
, x ∈ [0, 1].

Finally, for x1 ∈ (0, a) and x2 ∈ (a, 1), let na
x1,x2

= T−1
a

(
x2−a

(1−x1)(x2−x1)δx1 + a−x1
(x2−x1)(1−x2)δx2

)
. In this case 

we have that

na
x1,x2

(x) = 1
x2 − x1

[
x2 − a

1 − x1
max{0, x− x1} + a− x1

1 − x2
max{0, x− x2}

]
, x ∈ [0, 1].

These curves admit the characterization as piecewise affine functions given in (12).
Therefore, the proof of Theorem 1 is complete. �

6.3. Proof of Theorem 2 in Section 4 (maximal distance)

Here we compute the exact value of M(a, b) in (15). The proof of this theorem is long and we have divided 
it into several results. It is based on following proposition.

Proposition 8. For a, b ∈ [0, 1], let M(a, b) be defined in (15). We have that

M(a, b) = max{dL(�1, �2) : �1 ∈ Ext(La) and �2 ∈ Ext(Lb)}. (36)
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Proof. The distance dL : La×Lb → R is a convex and continuous functional in L1. Further, by Proposition 1, 
the convex sets La and Lb are compact in L1. Therefore, by Bauer’s maximum principle (see, e.g., Phelps [25, 
Proposition 16.6]), the maximum of dL is attained at the set Ext(La × Lb) = Ext(La) × Ext(Lb). �

Proposition 8 together with Theorem 1 reduce the calculation of M(a, b) to a finite-dimensional problem, 
in fact, to several problems of dimension at most 4. Although in principle these problems can be solved 
using elementary analytic techniques, the computations are extremely cumbersome. For this reason, in the 
following we present several auxiliary results to simplify the calculations.

6.3.1. Proof of Proposition 2 in Section 4 (maximality property)
Let a ∈ [0, 1] and � ∈ La. To prove the inequalities in (21), we will first show that there exist c+, c− ∈ [0, 1]

(depending on �) such that

�(x) ≤ �+a (x) if 0 ≤ x ≤ c+ and �(x) ≥ �+a (x) if c+ ≤ x ≤ 1, (37)

�−a (x) ≤ �(x) if 0 ≤ x ≤ c− and �−a (x) ≥ �(x) if c− ≤ x ≤ 1. (38)

To check (37), we note that the right derivative of � at 0, �′(0+), is necessarily less than or equal to 1 − a. 
Further, �′(0+) = 1 −a if and only if � = �+a , as in this case �+a is a supporting line of � at 0. If �′(0+) < 1 −a, 
then � − �+a is a continuous and convex function in [0, 1), starting at 0, with negative derivative at 0, and 
zero integral. Hence, there exists c+ satisfying (37). To prove (38), observe that �−a − � ≤ 0 in [0, a). Also, 
�(a) = 0 if and only if � = �−a . If �(a) > 0, then �−a − � is a continuous and concave function in [a, 1) such 
that �−a (1) − �(1−) ≥ 0. As �−a − � has zero integral, there exists c− ∈ (a, 1) satisfying (38).

Now, for 0 ≤ t ≤ c+, by (37), we directly have that 
∫ t

0 �+a (x) dx ≥
∫ t

0 �(x) dx. For c+ ≤ t ≤ 1, as � and �+a
have the same integral in (0, 1), we have that

t∫
0

�+a (x) dx =
1∫

0

�+a (x) dx−
1∫

t

�+a (x) dx

≥
1∫

0

�(x) dx−
1∫

t

�(x) dx

=
t∫

0

�(x) dx.

An analogous reasoning shows the second inequality in (21) and the proof is complete. �
6.3.2. The case in which � −m has at most one sign change

Firstly, we carry out an analysis of the maximum value of the distance dL(�, m) (for � ∈ La and m ∈ Lb) 
when the number of crossing points of the functions � and m is less than one. In the following lemma we 
consider the simpler case in which the Lorenz curves are ordered.

Lemma 1. For a, b ∈ [0, 1], let � ∈ La and m ∈ Lb. We have that dL(�, m) = |a − b| if and only if � ≤ m or 
m ≤ �. In addition,

min{dL(�,m) : � ∈ La and m ∈ Lb} = |a− b|.
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Proof. By (9) and the triangular inequality, we always have that

|a− b| = 2|‖�1‖ − ‖�2‖| ≤ 2‖�1 − �2‖ = dL(�1, �2).

Moreover, if the inequality above is an equality, we conclude that � and m are ordered since |� −m| −||�| −|m||
is a continuous and non-negative function on (0, 1). The last part follows from the fact that dL(�+a , �+b ) =
|a − b|, where �+a and �+b are defined as in (16). �

Observe that the minimal distance is attained when the curves � ∈ La and m ∈ Lb are (pointwise) 
ordered, i.e., when the underlying variables are ordered in the Lorenz sense.

The second result (Lemma 3 below) analyzes the maximum distance between pairs of curves with only 
one sign switch. We need the following auxiliary lemma.

Lemma 2. For any convex function ϕ : [0, 1] → R, we have that

1∫
0

ϕd�−a ≤
1∫

0

ϕd� ≤
1∫

0

ϕd�+a . (39)

Proof. For this proof we consider the original definition of L given by (1), i.e., any � ∈ L satisfies �(1) = 1
instead of �(1) = sup[0,1) �. In this way, each � ∈ La is itself a distribution function of a random variable, 
say X�, concentrated on the interval [0, 1]. The inequalities in (21) together with the fact that all variables 
X� (� ∈ La) have the same expectation imply (39); see [28, Theorem 3.A.1]. �

We now establish the maximum value of the Lorenz distance for curves with one crossing point.

Lemma 3. Let a, b ∈ [0, 1] and consider � ∈ La, m ∈ Lb and �±a , �±b the curves defined in (16). We have that

(a) If for some t0 ∈ (0, 1) we have � ≤ m in [0, t0] and � ≥ m in [t0, 1], then dL(�, m) ≤ dL(�−a , �+b ).
(b) If for some t0 ∈ (0, 1) we have � ≥ m in [0, t0] and � ≤ m in [t0, 1], then dL(�, m) ≤ dL(�+a , �−b ).

Moreover, it holds that

dL(�−a , �+b ) = dL(�+a , �−b ) = (1 − a)b2 + (1 − b)a2

a + b− ab
. (40)

Proof. As in Lemma 2, in this proof we consider the definition of L given by (1), i.e., any � ∈ L satisfies 
�(1) = 1. Thus, each function in L is a distribution function of a random variable concentrated on [0, 1].

We only show (a), as the proof of (b) is analogous. Let us consider the function st0 : [0, 1] → R defined 
as

st0(x) = t0 − x + 2 max{0, x− t0}.

Clearly, the function st0 is convex, Lipschitz and its distributional derivative is given by s′t0 = −1[0,t0]+1(t0,1], 
where 1A stands for the indicator function of the set A. By integration by parts in the Lebesgue–Stieltjes 
integral, we obtain that

1∫
st0 d(m− �) =

1∫
(�−m) dst0 =

t0∫
(m− �) +

1∫
(�−m) = ‖�−m‖ .
0 0 0 t0
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As st0 is convex, by Lemma 2, we conclude that

1∫
0

st0 d(m− �) ≤
1∫

0

st0 d�+b −
1∫

0

st0 d�−a .

Now, from the expression of the Wasserstein distance between probability distributions on the line (see 
Vallender [31]) and by virtue of the Kantorovich–Rubinstein duality (see Villani [32, eq. (6.3)]), we have 
that

∥∥�+b − �−a
∥∥ = sup

⎧⎨⎩
1∫

0

f d(�+b − �−a ) : f ∈ W 1,∞(0, 1), ‖f ′‖∞ ≤ 1

⎫⎬⎭ .

Putting together the relations above we obtain that

‖�−m‖ =
1∫

0

st0 d(m− �) ≤
1∫

0

st0 d(�+b − �−a ) ≤
∥∥�+b − �−a

∥∥ .
Therefore, part (a) of this lemma is proved.

To finish, we note that the curves �+a and �−b have one sign switch at the point t0 = a/(a + b − ab). The 
Lorenz distance in (40) can be directly computed by elementary geometry (as twice the sum of the areas of 
two triangles; see Fig. 5),

dL(�−a , �+b ) = a(1 − b)t0 + b(1 − t0) = (1 − a)b2 + (1 − b)a2

a + b− ab
,

which completes the proof of the lemma. �
6.3.3. Symmetry properties of the set La

Another observation that simplifies to a great extend the calculations is a symmetry reasoning. Given 
the graph of a function in La, its symmetry along the line y = 1 − x corresponds to the graph of another 
curve in La. The precise definition, statement and proof are as follows.

Lemma 4. For � ∈ L, define �−1 : [0, 1] → [0, 1] as in (6). Let us consider the function �̃ : [0, 1] → [0, 1] given 
by

�̃(x) = 1 − �−1(1 − x), x ∈ [0, 1].

We have that the map � �→ �̃ is a bijective isometry from (L, dL) to (L, dL) whose inverse is itself. That is, 
for any �, m ∈ L, we have that dL(�, m) = dL(�̃, m̃).

Moreover, for a ∈ [0, 1], the map � �→ �̃ is also a bijective isometry from (La, dL) to (La, dL).

Proof. As in the proof of Lemma 3, we consider the original definition of L given by (1), i.e., any � ∈ L
satisfies �(1) = 1.

Let � ∈ L. To check the first assertion we will first show that �̃ ∈ L. Let us consider x� = sup{x ∈ [0, 1] :
�(x) = 0}. We observe that � : (x�, 1) → (0, �(1−)) is a bijection and

�−1(y) =

⎧⎪⎪⎨⎪⎪⎩
0 if y = 0,(
�|(x�,1)

)−1 (y) if y ∈ (0, �(1−)),
1 if y ∈ [�(1−), 1].

(41)
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Indeed, by Proposition 5, � is non-decreasing. We shall see that � : [x�, 1] → R is strictly increasing. Assume, 
by contradiction, that there exist x1, x2 with x� ≤ x1 < x2 ≤ 1 and �(x1) = �(x2). Then, the constant 
function �(x2) is a supporting line of � at (x2, �(x2)), so, by convexity, � ≥ �(x2). Since x2 > x�, by definition 
of x� we have that �(x2) > 0. In particular �(0) > 0, which is a contradiction. We conclude that � : [x�, 1] → R

is strictly increasing. By Proposition 5, �|[0,1) is continuous and, in particular, � : (x�, 1) → (0, �(1−)) is a 
bijection. Moreover, �|[0,x�] = 0 and �(1) = 1. With these properties of �, it is immediate to check that �−1

is given as in (41). Now, from (41), we obtain that

�̃(x) =

⎧⎪⎪⎨⎪⎪⎩
0 if x ∈ [0, 1 − �(1−)],
1 −

(
�|(x�,1)

)−1 (1 − x) if x ∈ (1 − �(1−), 1),
1 if x = 1.

(42)

The inverse of an increasing convex function is concave (see Simon [30, Example 1.6]). Hence, the function 
�−1 in (41) is concave, and this implies that �̃ in (42) is convex. In particular, it follows that �̃ ∈ L.

Next we will check that ˜̃� = �. It can be easily seen that �̃(1−) = 1 − x� and x�̃ = 1 − �(1−). Moreover, (
�̃|(x�̃,1)

)−1 : (0, 1 − x�) → (x�̃, 1) is given by 
(
�̃|(x�̃,1)

)−1 (y) = 1 − �(1 − y). Therefore, by (42), we conclude 

that ˜̃� = �.
Next we need to prove that the map � �→ �̃ is an isometry. We consider m ∈ L and observe first that 

‖�̃ − m̃‖ = ‖�−1 −m−1‖. Further, as � and m are distribution functions of random variables concentrated 
on the interval [0, 1], by using the expression of the Wasserstein distance for real-valued random variables 
(see Vallender [31]), we have that ‖�−1 −m−1‖ = ‖� −m‖. Hence, we conclude that dL(�, m) = dL(�̃, m̃).

Finally, to check the last assertion of the lemma it is enough to verify that, for a ∈ [0, 1] and � ∈ La, one 
has G(�̃) = a. Let us fix � ∈ La. We will equivalently show that ‖�̃‖ = (1 −a)/2. We apply Laisant’s formula 
(see, for instance, Parker [24]) for the integral of the inverse to obtain

�(1−)∫
0

(
�|(x�,1)

)−1 (y) dy = �(1−) −
1∫

x�

�(x) dx = �(1−) − 1 − a

2 .

Therefore,

1∫
0

�−1(y) dy =
�(1−)∫
0

(
�|(x�,1)

)−1 (y) dy + 1 − �(1−) = 1 − 1 − a

2 .

From (42), we finally obtain that

1∫
0

�̃(y) dy = 1 −
1∫

0

�−1(y) dy = 1 − a

2 ,

which completes the proof of the lemma. �
Lemma 4 helps us to disregard some cases in the computation of the value of M(a, b), as the next result 

shows.

Lemma 5. For a, b ∈ [0, 1], let M(a, b) be defined in (15). We have that

M(a, b) = max{d1(a, b), d2(a, b), d3(a, b)},
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where

d1(a, b) = max{dL(�ax1
, �by1

) : x1, y1 ∈ [0, a]},
d2(a, b) = max{dL(ma

x2
,mb

y2
) : x2, y2 ∈ (a, 1)},

d3(a, b) = max{dL(�ax1
,mb

x2
) : x1 ∈ [0, a], x2 ∈ (a, 1)}.

(43)

Proof. We describe first how the extreme points of Theorem 1 are affected under the isometry � �→ �̃ defined 
in Lemma 4. From (12) and (42), we find that they are the piecewise affine functions such that

�̃ax1
:

⎧⎪⎪⎨⎪⎪⎩
0 �→ 0
1 − 1−a

1−x1
�→ 0

1 �→ 1 − x1,

m̃a
x2

:

⎧⎪⎪⎨⎪⎪⎩
0 �→ 0
1 − (x2 − a) �→ 1 − x2

1 �→ 1,
ña
x1,x2

:

⎧⎪⎪⎨⎪⎪⎩
0 �→ 0
1 − x2−a

1−x1
�→ 1 − x2

1 �→ 1 − x1.

In other words,

�̃ax1
= �aa−x1

1−x1
, m̃a

x2
= ma

a+1−x2
, ña

x1,x2
/∈ Ext(La).

As ña
x1,x2

/∈ Ext(La), by Proposition 8 and since � �→ �̃ is an isometry (see Lemma 4), we can exclude the 
functions na

x1,x2
in the computation of the maximum given in (36). �

6.3.4. Computation of M(a, b)
Here, we will combine all the previous results to prove Theorem 2. We start with the following lemma.

Lemma 6. For a, b ∈ [0, 1], let d1(a, b) and d2(a, b) be defined in (43). We have that

d1(a, b), d2(a, b) ≤ dL(�−a , �+b ) = dL(�+a , �−b ),

where the curves �±a , �±b are defined as in (16).

Proof. It is easy to see that the curves �ax1
and �by1

cannot have two crossing points, and neither can ma
x2

and mb
y2

. Therefore, the conclusion follows from Lemmas 1 and 3. �
We are then led to the computation of d3(a, b), i.e., the maximum of value of dL(�ax1

, mb
x2

), when x1 ∈ [0, a]
and x2 ∈ (b, 1). This question is addressed in the following result.

Lemma 7. For a, b ∈ [0, 1], let d3(a, b) be defined in (43). We have that

d3(a, b) ≤ dL(�−a , �+b ) = dL(�+a , �−b ).

Proof. Let x1 ∈ [0, a] and x2 ∈ (b, 1). Thanks to Lemmas 1 and 3, we can assume that the curves �ax1
and 

mb
x2

cross each other twice; Fig. 12 represents this situation. This happens if and only if the triangle with 
vertices

(x1, 0) , (x2, x2 − b) ,
(

1, 1 − a

1 − x1

)
has positive orientation; equivalently, if and only if

(1 − a)(x2 − x1) − (x2 − b)(1 − x1) + x1(1 − x1)(x2 − b) > 0.
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Fig. 12. A graphical representation of the functions �ax1
(in black) and ma

x2
(in blue), as well as their crossing points, (x∗

1 , y∗
1 ) and 

(x∗
2 , y∗

2 ). (For the coloured version of the figure, the reader is referred to the web version of this article.)

In this case, they cross each other at the points (x∗
1, y

∗
1) and (x∗

2, y
∗
2), with x∗

1 ≤ x∗
2 and

x∗
1 = (1 − a)x1x2

(1 − a)x2 − (1 − x1)2(x2 − b) , y∗1 = (1 − a)x1(x2 − b)
(1 − a)x2 − (1 − x1)2(x2 − b) ,

x∗
2 = (1 − a)x1x2(1 − x2) − b(1 − x1)2x2

(1 − a)x2(1 − x2) − (1 − x1)2(x2 − b)(1 − x2) − b(1 − x1)2
,

y∗2 = (1 − a) [x1(x2 − b)(1 − x2) − b(x2 − x1)]
(1 − a)x2(1 − x2) − (1 − x1)2(x2 − b)(1 − x2) − b(1 − x1)2

.

For simplicity, from now on we will call A = A(x1, x2) = dL
(
�ax1

,mb
x2

)
. The value of A can be therefore 

calculated as twice the sum of the areas of the three triangles (see Fig. 12)

(0, 0), (x1, 0), (x∗
1, y

∗
1), (x∗

1, y
∗
1), (x2, x2 − b), (x∗

2, y
∗
2), (x∗

2, y
∗
2),
(

1, 1 − a

1 − x1

)
, (1, 1).

Elementary geometry shows that

A = x1 y
∗
1 + x∗

1(x2 − b− y∗2) + x2(y∗2 − y∗1) + x∗
2(y∗1 − (x2 − b)) + (a− x1)(1 − x∗

2)
1 − x1

.

So are led to the maximization of A = A(x1, x2) under the constraints

0 ≤ x1 ≤ a, b < x2 < 1, (1 − a)(x2 − x1) − (x2 − b)(1 − x1) + x1(1 − x1)(x2 − b) > 0. (44)

Obviously, the supremum under (44) coincides with the maximum under the analogous inequalities of 
(44) but replacing the ‘<’ with ‘≤’, and ‘>’ with ‘≥’. Observe that A is a rational function, and, hence, 
the computation of its maximum in region (44) can be done by elementary techniques. Nevertheless, the 
computations are extremely long, so we have used the programme [34] in the rest of the proof to avoid 
unnecessary details.

We find that the only solution of ∂A
∂x1

= ∂A
∂x2

= 0 under (44) is

x1 = 1 −
√

1 − a, x2 = 1 + b

2 ,

which in fact requires a + b2 < 2b. The corresponding value of A is
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A

(
1 −

√
1 − a,

1 + b

2

)
=

4
(√

1 − a− 1
)
b + a(b− 2) − 4

√
1 − a + b2 + 4

b
,

which is seen to be less than the value of dL(�−a , �+b ) (computed in Lemma 3), thanks to the restriction 
a + b2 < 2b.

After having checked the value of A at the critical points in the interior of region (44), we analyze the 
value of A on the boundary. Describing the boundary of region (44) is cumbersome since it involves several 
cases, according to the values of a, b. In any case, the boundary is clearly contained in the set

{
(x1, x2) ∈ [0, a] × [b, 1] : x1 = 0 or x1 = a or x2 = b or x2 = 1

or (1 − a)(x2 − x1) − (x2 − b)(1 − x1) + x1(1 − x1)(x2 − b) = 0
}
.

When (1 − a)(x2 − x1) − (x2 − b)(1 − x1) + x1(1 − x1)(x2 − b) = 0 the curves �ax1
and mb

x2
do not have a 

proper crossing, so, by Lemma 1, A = |b − a|, which does not release a maximum. Therefore, we are led to 
the maximization of A(x1, x2) in the set

{
(x1, x2) ∈ [0, a] × [b, 1] : x1 = 0 or x1 = a or x2 = b or x2 = 1

}
The value of A when x1 = 0 is

A(0, x2) = a + b− 2ab
a + b− ax2

,

which is decreasing in x2, so the maximum is attained at x2 = b and equals

A(0, b) = a + b− 2ab
a + b− ab

= (1 − a)b2 + (1 − b)a2

a + b− ab
= dL(�−a , �+b ).

The value of A when x1 = a is

A(a, x2) = a + b− 2ab
ax2 + b− ab

which is increasing in x2, so the maximum is attained at x2 = 1 and equals

A(a, 1) = (1 − a)b2 + (1 − b)a2

a + b− ab
= dL(�−a , �+b ).

The value of A when x2 = b is

A(x1, b) = a2b− a2 + ab2 − b2 + (−4ab + 2a + 2b)x1 + (a + b− 2)x2
1

ab− a− b + 2x1 − x2
1

,

which is decreasing in x1, so the maximum is attained at x1 = 0 and equals

A(0, b) = (1 − a)b2 + (1 − b)a2

a + b− ab
= dL(�−a , �+b ).

The value of A when x2 = 1 is

A(x1, 1) =
a2b− a2 + ab− b2 +

(
a + 2b2 − 3ab

)
x1 +

(
a− b2

)
x2

1 + (b− 1)x3
1

2 ,

ab− a− b + 2x1 − x1
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which is increasing in x1. Therefore, the maximum is attained at x1 = a and equals

A(a, 1) = (1 − a)b2 + (1 − b)a2

a + b− ab
.

This concludes the proof. �
We finally observe that the proof of Theorem 2 directly follows from Lemmas 3, 5, 6, and 7.
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