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A complete theory of the relationship between the minimal 
bases and indices of rational matrices and those of their strong 
linearizations is presented. Such theory is based on estab-
lishing first the relationships between the minimal bases and 
indices of rational matrices and those of their polynomial sys-
tem matrices under the classical minimality condition and 
certain additional conditions of properness. This is related 
to pioneering results obtained by Verghese, Van Dooren and 
Kailath in 1979-1980, which were the first proving results of 
this type. It is shown that the definitions of linearizations 
and strong linearizations do not guarantee any relationship 
between the minimal bases and indices of the linearizations 
and the rational matrices in general. In contrast, simple rela-
tionships are obtained for the family of strong block minimal 
bases linearizations, which can be used to compute minimal 
bases and indices of any rational matrix, including rectangular 
ones, via algorithms for pencils. These results extend the cor-
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responding ones for other families of linearizations available 
in recent literature for square rational matrices.
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1. Introduction

Rational matrices, i.e., matrices whose entries are rational functions have been studied 
intensively since the 1950s in connection with linear systems and control theory [27,32]. 
The pioneering work of Rosenbrock [32] showed that some properties of a rational matrix 
G(λ) can be studied from its polynomial system matrices, that is, polynomial matrices 
of the form

P (λ) =
[

A(λ) B(λ)
−C(λ) D(λ)

]
(1)

with A(λ) regular, i.e., detA(λ) �≡ 0, and with transfer function matrix G(λ) = D(λ) +
C(λ)A(λ)−1B(λ). A classical result of Rosenbrock states that if P (λ) has least order 
(equivalently, is minimal or irreducible), i.e., [ A(λ) B(λ) ] and 

[
A(λ)
−C(λ)

]
have no finite

zeros, then the finite pole structure of G(λ) is given by the finite zero structure of 
A(λ) and the finite zero structure of G(λ) is given by the finite zero structure of P (λ). 
Thus, the finite pole and zero structures of a rational matrix can be obtained from 
any of its minimal polynomial system matrices. However, rational matrices have other 
structural data that are interesting in applications and that cannot be obtained, in 
general, from its minimal polynomial system matrices. Actually, rational matrices have 
poles and zeros at infinity [27, pp. 449-450] (see also [33] for applications and some 
classical algorithms for computing the structure at infinity). Moreover, singular, i.e., 
nonregular, rational matrices have minimal bases and indices [26], [27, Section 6.5.4], 
which form their null-space or singular structure. Minimal bases of rational matrices 
have a number of important applications, as, for instance, in the solution of minimal 
design problems, originally proposed in [41], and further studied in [26, Section 8] and 
[28]. In this type of problems one must solve G1(λ)X(λ) = G2(λ) for a rational unknown 
X(λ) with special properties, where G1(λ) and G2(λ) are given rational matrices. When 
the solution exists, it can be constructed from a minimal basis of [G1(λ), −G2(λ)].

Motivated by the previous discussion, the pioneering work of Verghese, Van Dooren 
and Kailath established in [39,38] sufficient conditions on a polynomial system matrix 
as in (1) that allow to obtain from P (λ) the pole and zero structures at infinity and the 
minimal bases and indices of its transfer function matrix G(λ), in addition to the finite 
pole and zero structures. In [39], the authors considered polynomial system matrices in 
generalized state-space form (GSSF), that is, A(λ) = λE −A and B(λ) = B, C(λ) = C

http://creativecommons.org/licenses/by-nc-nd/4.0/
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and D(λ) = D are constant matrices. These polynomial system matrices were defined to 
be strongly irreducible if [ λE−A B ] and 

[
λE−A
−C

]
have no finite or infinite zeros. Under 

these conditions, it was shown in [39] that the pole and zero structures at infinity and 
the minimal bases and indices of P (λ) and G(λ) are very easily related to each other. 
One year later, Verghese extended in [38] the results of [39] to general polynomial system 
matrices. However, the definition of strong irreducibility in this case is more complicated 
since it involves checking not only the finite zeros of [A(λ) B(λ) ] and 

[
A(λ)
−C(λ)

]
but also 

the infinite zeros of two extensions of P (λ).
The results in [39] were fundamental for the development of efficient and stable numer-

ical algorithms for computing the complete list of structural data of any rational matrix 
G(λ), i.e., its finite and infinite pole and zero structures and its minimal indices. The 
reason is that Van Dooren presented in [36, Section V] stable algorithms for constructing 
strongly irreducible polynomial system matrices in GSSF, starting from an easily con-
structible one in GSSF that is not strongly irreducible. Since a polynomial system matrix 
in GSSF is a pencil, the staircase algorithm in [35] can be applied to compute its struc-
tural data, which are related to those of G(λ) as established in [39]. The minimal bases of 
this pencil can be computed by combining the output of [35] with the method in [9, Sec-
tions 3 and 4] and, finally, one can recover the minimal bases of G(λ) as explained in [39].

Despite of its importance and major impact, the results in [36,39] are not always the 
most convenient tools for computing the complete list of structural data of a rational 
matrix G(λ) and its minimal bases. One reason of this is that in recent years a number 
of new linearizations of rational matrices arising in applications have been developed for 
computing their structural data via algorithms for pencils and that these linearizations 
are neither in GSSF nor are they necessarily strongly irreducible in the sense of [38]. In 
plain words, these new linearizations are minimal linear polynomial system matrices of a 
rational matrix Ĝ(λ), not necessarily equal to G(λ), but related to G(λ). This motivates 
to look for some conditions that can replace Verghese’s strong irreducibility conditions 
at infinity in [38], that are useful in this new setting, and that guarantee that a minimal 
polynomial system matrix as in (1) allows to obtain the pole and zero structures at 
infinity and the minimal bases and indices of its transfer function matrix, in addition to 
the finite pole and zero structures. As a first contribution, we will prove in this paper 
that C(λ)A(λ)−1 and A(λ)−1B(λ) being proper rational matrices are such conditions, 
which have the advantage of being directly checked on the polynomial system matrix 
itself. Moreover, we will show that these conditions do not imply Verghese’s conditions 
and vice versa. These properness conditions were in fact introduced in [6, Lemma 2.4 and 
Corollary 2.5], where it is proved that they allow to recover the pole and zero structures 
at infinity of a rational matrix from its polynomial system matrices satisfying these 
conditions. We will prove in Section 3 that they also allow to recover the minimal indices 
and bases and will use this fact for proving other results in this paper.

In recent years, rational matrices have received considerable attention in the context 
of nonlinear eigenvalue problems (NLEPs), either because they arise directly in some 
of these problems or because they are used for approximating matrices of nonlinear 
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functions in order to solve numerically NLEPs [24,31]. Thus, the numerical solution of a 
NLEP reduces in practice to computing the finite zeros that are not poles of a rational 
matrix G(λ). An effective approach for doing so is to apply an eigenvalue algorithm to 
a linearization of G(λ), i.e., a pencil that allows to recover the information of interest of 
G(λ), in the spirit of Van Doreen’s approach [36]. In NLEPs, this approach started in 
[34], continued in [25], and influenced the search for rigorous definitions of linearizations 
of rational matrices and the development of new families of linearizations, as it has been 
done before for polynomial matrices (see the references in [11,30]).

The first formal definition of linearization of a rational matrix was given in [1]. A dif-
ferent definition of linearization was introduced in [6], together with the first definition 
of strong linearization of a rational matrix (i.e., a linearization that allows to recover 
the infinite pole and zero structures, in addition to the finite ones). The definition of 
linearization in [6] includes the one in [1]. A comparison between both definitions can be 
found in [5, Section 5]. One of the differences between both definitions is that both are 
linear polynomial system matrices, but the off-diagonal blocks in [1] are forced to be con-
stant matrices, while this is not the case in [6]. Another definition of strong linearization 
was introduced in [13], that is equivalent to the one in [6], except for the fact that the 
off-diagonal matrices are constant. Since the definitions mentioned above do not capture 
some of the pencils that have been used recently in the numerical solution of NLEPs 
[25,29], the concept of local linearizations of rational matrices was introduced in [20].

Simultaneously to the definitions of linearizations of rational matrices, different fam-
ilies of linearizations that can be constructed without any numerical operation have 
been developed. Some of them are restricted to square rational matrices, as the differ-
ent Fiedler-like linearizations presented in [1,3,12,14], and the affine-spaces and M1 and 
M2-strong linearizations introduced in [13] and in [19], respectively, which are closely 
connected to each other. In contrast, the family of strong block minimal bases lineariza-
tions introduced in [6] is valid for general rational matrices, i.e., rectangular or square. 
An important property of this wide family is that it contains modulo permutations the 
Fiedler-like linearizations mentioned above. This is proved in Section 8 and extends 
to rational matrices a well-known result for polynomial matrices [11]. Moreover, it is 
known that the M1 and M2-strong linearizations are very simply connected to strong 
block minimal bases linearizations [19]. Thus, the properties of strong block minimal 
bases linearizations imply results for other families of linearizations and for more general 
rational matrices.

The main focus of this paper is on the relationship of the minimal bases and indices of a 
rational matrix and its linearizations. Previous works on this problem deal with strongly 
irreducible pencils in GSSF [39], strongly irreducible polynomial system matrices when 
they are linear [38] (the pencils in [39,38] are particular cases of linearizations in the sense 
of [6], though not strong) and, recently, Fiedler-like linearizations [12,14] and affine spaces 
of linearizations [13]. The results in [12–14] have the advantage with respect to those 
in [39,38] of dealing with linearizations that can be constructed without computational 
cost from certain representations of the rational matrix. However, the results in [12–14]
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have a disadvantage for computing minimal indices and bases, since they only work for 
square rational matrices while the applications where minimal indices and bases are of 
interest very often include rectangular matrices. This is the case, for example, for transfer 
function matrices of systems with different numbers of inputs and outputs and in the 
minimal design problems mentioned at the beginning of this section. In this setting, a 
second contribution of this paper is to establish for the first time simple relationships 
between the minimal bases and indices of a rational matrix and its strong block minimal 
bases linearizations. The proof of these results is presented in Section 6 based on those 
in Section 3 and allow to use strong block minimal bases linearizations for computing 
minimal bases and indices via algorithms for pencils [35,9]. Since many strong block 
minimal bases linearizations can be constructed without computational cost and are 
valid for rectangular matrices, this approach is advantageous with respect to the previous 
ones. In addition, due to the relation of this family of linearizations with other families 
of linearizations, the results in Section 6 allow to obtain as corollaries the corresponding 
ones for Fiedler-like pencils, already presented in [12,14], in Subsection 8.4 and the ones 
for M1 and M2-strong linearizations in Section 7. This approach constitutes a unified 
treatment of the relationships between minimal bases and indices of rational matrices 
and those of most classes of linearizations developed in the recent literature.

The paper is completed with the study in Sections 4 and 5 of a question of a fun-
damental nature: what is the relationship between the minimal bases and indices of a 
rational matrix and those of any of its linearizations or strong linearizations? Here and 
in what follows by linearizations and strong linearizations we will mean those defined 
in [6]. For linearizations, our conclusions are that we can recover polynomial bases, but 
not minimal ones, and that the dimension of the left (right, respectively) nullspace of 
any rational matrix and that of its linearizations coincide. Using Van Dooren’s index 
sum theorem [39], we can obtain the sums of the right and left minimal indices of any 
rational matrix from any of its strong linearizations. However, as far as the minimal 
indices themselves are concerned, we will show that the minimal indices of a rational 
matrix may differ arbitrarily from those of its strong linearizations.

The paper is organized as follows: Section 2 contains the notation and some prelim-
inary results. In Section 3 the relationship between the minimal bases and indices of 
a rational matrix and its minimal polynomial system matrices satisfying some condi-
tions of properness is given. Section 4 relates polynomial bases of rational matrices and 
their linearizations in general. Section 5 shows that the minimal indices of a rational 
matrix and of its strong linearizations may differ arbitrarily, but that there is a con-
nection between the sums of their left and right minimal indices. Section 6 is devoted 
to obtain minimal bases and indices of any rational matrix from its strong block mini-
mal bases linearizations and vice versa. The same goal is pursued in Section 7 for M1
and M2-strong linearizations. Connections between strong block minimal bases lineariza-
tions and Fiedler-like linearizations are investigated in Section 8. Some brief remarks on 
eigenvectors are included for completeness in Section 9. Finally, some conclusions are 
discussed in Section 10.
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2. Preliminaries

Most of the results included in this section are classic and can be found in standard 
references as [27,32,37], together with much more information on rational matrices.

Let F be an arbitrary field and F its algebraic closure. Let F [λ] be the ring of polyno-
mials with coefficients in F and F(λ) the field of fractions of F [λ], i.e., the field of rational 
functions over F . The elements of F(λ) with the degree of the numerator at most the 
degree of the denominator are called proper rational functions. The set of proper ratio-
nal functions over F form a ring denoted Fpr(λ). If the degree of the denominator of 
a rational function is strictly larger than the degree of its numerator then the rational 
function is called strictly proper.

Vectors with entries in F [λ] are called vector polynomials. F(λ)p stands for the vec-
tor space of p-tuples of rational functions. We denote by F [λ]p×m (resp., F(λ)p×m, 
Fpr(λ)p×m) the set of p ×m matrices with entries in F [λ] (resp., F(λ), Fpr(λ)). Matrices 
in F [λ]p×m are called polynomial matrices or matrix polynomials indistinctly. The degree 
of a polynomial matrix is the highest degree of all its entries. The square polynomial 
matrices whose inverses are polynomial matrices are called unimodular matrices. Matri-
ces in F(λ)p×m are known as rational matrices and matrices with entries in Fpr(λ) are 
termed as proper rational matrices. In particular, if the entries are all strictly proper then 
they are called strictly proper rational matrices. Invertible matrices in Fpr(λ)p×p, that 
is, square proper rational matrices whose inverses are also proper, are called biproper. 
Equivalently, biproper matrices are square proper rational matrices whose determinants 
are biproper rational functions. In denotes the n ×n identity matrix and 0p×m the p ×m

zero matrix, which reduces to 0p when p = m. We will write just I or 0 when the size is 
clear from the context.

2.1. Spectral structure of rational matrices

We introduce now the spectral structure (both finite and infinite) of rational matrices. 
Recall that two rational matrices G1(λ), G2(λ) ∈ F(λ)p×m are unimodularly equivalent 
if there exist unimodular matrices U1(λ) ∈ F [λ]p×p and U2(λ) ∈ F [λ]m×m such that 
G2(λ) = U1(λ)G1(λ)U2(λ). Any rational matrix is unimodularly equivalent to its finite 
Smith–McMillan form (see, for example, [32, Chapter 3, Section 4] or [27, Section 6.5.2]). 
That is to say, if G(λ) ∈ F(λ)p×m then there are unimodular matrices U1(λ) ∈ F [λ]p×p

and U2(λ) ∈ F [λ]m×m such that

U1(λ)G(λ)U2(λ) =
[

Diag
(

ε1(λ)
ψ1(λ) , . . . ,

εr(λ)
ψr(λ)

)
0

0 0

]
(2)

where ε1(λ), . . . , εr(λ), ψ1(λ), . . . , ψr(λ) are nonzero monic (leading coefficient equal to 1) 
polynomials, εi(λ), ψi(λ) are pairwise coprime for all i = 1, . . . , r, and ε1(λ) | · · · | εr(λ)
while ψr(λ) | · · · | ψ1(λ), where | stands for divisibility. The index r is the normal rank 
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of G(λ), which we denote by rankG(λ). The finite zeros of G(λ) are the roots in F of 
εr(λ) and its finite poles are the roots in F of ψ1(λ). If λ0 ∈ F is a zero of G(λ) then, 
for i = 1, . . . , r, we can write εi(λ) = (λ − λ0)mi ε̂i(λ) with ε̂i(λ0) �= 0 and mi ≥ 0. 
The nonzero elements in (m1, . . . , mr) are called the partial multiplicities of λ0 as a zero 
of G(λ). In the same way, if λ0 ∈ F is a pole of G(λ) then, for i = 1, . . . , r, we can 
write ψi(λ) = (λ − λ0)ni ψ̂i(λ) with ψ̂i(λ0) �= 0 and ni ≥ 0. The nonzero elements in 
(n1, . . . , nr) are called the partial multiplicities of λ0 as a pole of G(λ). We understand 
by finite zero structure of G(λ) its finite zeros together with their respective partial 
multiplicities. Analogously, the finite pole structure of G(λ) consists of its finite poles 
each with its partial multiplicities.

Rational matrices may have structure at infinity as well. Recall (see, for example, 
[37]) that two rational matrices of the same size G1(λ), G2(λ) ∈ F(λ)p×m are equivalent 
at infinity if there exist biproper matrices B1(λ) ∈ Fpr(λ)p×p and B2(λ) ∈ Fpr(λ)m×m

such that G2(λ) = B1(λ)G1(λ)B2(λ). Any rational matrix is equivalent at infinity to 
its Smith–McMillan form at infinity. That is to say, if G(λ) ∈ F(λ)p×m then there are 
biproper matrices B1(λ) ∈ Fpr(λ)p×p and B2(λ) ∈ Fpr(λ)m×m such that

B1(λ)G(λ)B2(λ) =
[

Diag
(
( 1
λ )q1 , . . . , ( 1

λ )qr
)

0
0 0

]

where r = rankG(λ) and q1 ≤ · · · ≤ qr are integers. These are called the invariant orders 
at infinity of G(λ). They determine the zeros and poles at infinity of G(λ), also called 
infinite zeros and poles. Namely, if q1 ≤ · · · ≤ qk < 0 = qk+1 = · · · = qu−1 < qu ≤ · · · ≤
qr are the invariant orders at infinity of G(λ) then G(λ) has r − u + 1 zeros at infinity 
each one of order qu, . . . , qr and k poles at infinity each one of order −qk, . . . , −q1. Notice 
that proper rational matrices have all nonnegative invariant orders at infinity, that is, 
they do not have poles at infinity. Moreover, all the invariant orders at infinity of strictly 
proper rational matrices are positive.

Note that any rational matrix can be decomposed uniquely as G(λ) = D(λ) +Gsp(λ)
with D(λ) a polynomial matrix and Gsp(λ) a strictly proper matrix. When G(λ) is not 
strictly proper, that is, when D(λ) �= 0, the first invariant order at infinity of G(λ), q1, 
turns out to be minus the degree of the polynomial part of G(λ), i.e., q1 = − deg(D(λ))
(see [6, Section 2]), where deg(·) stands for “degree of”.

2.2. Polynomial system matrices

Any rational matrix G(λ) ∈ F(λ)p×m can be written as G(λ)=D(λ) +C(λ)A(λ)−1B(λ)
where A(λ) ∈ F [λ]n×n is regular, i.e., detA(λ) �≡ 0, B(λ) ∈ F [λ]n×m, C(λ) ∈ F [λ]p×n

and D(λ) ∈ F [λ]p×m. The polynomial matrix formed with these matrices

P (λ) =
[

A(λ) B(λ)
−C(λ) D(λ)

]
(3)
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is called a polynomial system matrix of (or giving rise to) G(λ) (see [32]). The rational 
matrix G(λ) is called the transfer function matrix of P (λ) and deg(detA(λ)) is known 
as the order of P (λ). We allow n to be equal to 0 in the definition of polynomial system 
matrix. In this case we say that P (λ) = D(λ) is a polynomial system matrix giving rise 
to G(λ) = D(λ), that is, A(λ), B(λ) and C(λ) are empty matrices. Besides, when A(λ) is 
a monic linear matrix polynomial, say A(λ) = λIn−A, and B(λ) = B and C(λ) = C are 
constant matrices, P (λ) is said to be a polynomial system matrix of G(λ) in state-space 
form.

Different polynomial system matrices may exist with different orders giving rise to the 
same transfer function matrix. A polynomial system matrix of G(λ) is said to have least 
order, or to be minimal, if its order is the smallest integer for which matrix polynomials 
A(λ) (regular), B(λ), C(λ) and D(λ) giving rise to G(λ) = D(λ) + C(λ)A(λ)−1B(λ)
exist ([32, Chapter 3, Section 5.1] or [37, Section 1.10]). In consequence, associated with 
any rational matrix G(λ) there is a unique least order, which is the order of any minimal 
polynomial system matrix giving rise to G(λ), and is denoted by ν(G(λ)). Interested 
readers can find three algorithms in [32, Chapter 3, Section 5.1] to compute ν(G(λ))
without going to the length of finding a least order polynomial system matrix giving rise 
to G(λ).

One of the many characterizations of when a polynomial system matrix has least 
order is given in terms of coprimeness. Two polynomial matrices A(λ) ∈ F [λ]p×m, 
C(λ) ∈ F [λ]q×m with p + q ≥ m are called right coprime if their only right common 
divisors are unimodular matrices. That is to say, if there exist Â(λ) ∈ F [λ]p×m, Ĉ(λ) ∈
F [λ]q×m, X(λ) ∈ F [λ]m×m such that A(λ) = Â(λ)X(λ) and C(λ) = Ĉ(λ)X(λ), then 
X(λ) is unimodular. Let us recall some equivalent conditions that characterize when two 
polynomial matrices are right coprime (see, for example, [32, Chapter 2, Section 6], [37, 
Chapter 1], [4]):

Proposition 2.1. Let A(λ) ∈ F [λ]p×m and C(λ) ∈ F [λ]q×m with p +q ≥ m. The following 
conditions are equivalent:

(i) A(λ) and C(λ) are right coprime.
(ii) There exist matrices X(λ) ∈ F [λ]m×p, Y (λ) ∈ F [λ]m×q such that X(λ)A(λ) +

Y (λ)C(λ) = Im.
(iii) rank

[
A(λ0)
C(λ0)

]
= m for all λ0 ∈ F .

On the other hand, A(λ) ∈ F [λ]m×p and C(λ) ∈ F [λ]m×q, p + q ≥ m, are left coprime 
if their transposes A(λ)T and C(λ)T are right coprime.

It turns out that the polynomial system matrix in (3) has least order if and only if 
A(λ) and B(λ) are left coprime and A(λ) and C(λ) are right coprime ([32, Chapter 3]).

A celebrated result by Rosenbrock [32, Chapter 3, Theorem 4.1] relates the finite 
structure (zero and pole structure) of a rational matrix with the finite structure of its 
minimal polynomial system matrices. Namely, when the polynomial system matrix in 
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(3) giving rise to G(λ) has least order, the finite zero structure of G(λ) is the finite zero 
structure of P (λ) and the finite pole structure of G(λ) is the finite zero structure of A(λ). 
A consequence of this fact is that the least order of G(λ), ν(G(λ)), which is the degree 
of the determinant of A(λ), is equal to the sum of the partial multiplicities of the finite 
poles of G(λ). In other words, ν(G(λ)) is the sum of the degrees of the denominators in 
the finite Smith–McMillan form of G(λ).

2.3. Singular structure of rational matrices

Let us introduce now the singular structure of a rational matrix. Denote by N�(G(λ))
and Nr(G(λ)) the left and right null-spaces over F(λ) of G(λ), respectively, i.e., if G(λ) ∈
F(λ)p×m,

N�(G(λ)) = {x(λ) ∈ F(λ)p : x(λ)TG(λ) = 0},
Nr(G(λ)) = {x(λ) ∈ F(λ)m : G(λ)x(λ) = 0}.

These sets are vector subspaces of F(λ)p and F(λ)m, respectively. For any subspace 
of F(λ)p, it is always possible to find a basis consisting of vector polynomials; simply 
take an arbitrary basis and multiply each vector by the least common multiple of the 
denominators of its entries. The order of a polynomial basis is defined as the sum of 
the degrees of its vectors (see [26]). If V is a subspace of F(λ)p, a minimal basis of 
V is a polynomial basis of V with least order among all polynomial bases of V. The 
fundamental result in this setting is that the non-decreasing ordered list of degrees of 
the vector polynomials in any minimal basis of V is always the same (see [26]). These 
degrees are called the minimal indices of V.

We refer to a polynomial matrix N(λ) ∈ F [λ]m×l itself as a right polynomial basis 
of a rational matrix G(λ) ∈ F(λ)p×m if the columns of N(λ) form a basis of Nr(G(λ)). 
If the columns of N(λ) form a minimal basis of Nr(G(λ)) then N(λ) is referred to as a 
right minimal basis of G(λ). Notice that l = dimNr(G(λ)) ≤ m. Moreover, l = m if and 
only if G(λ) = 0.

Analogously, a polynomial matrix N(λ) ∈ F [λ]p×q is a left polynomial (resp., minimal) 
basis of a rational matrix G(λ) ∈ F(λ)p×m if the columns of N(λ) form a polynomial 
(resp., minimal) basis of N�(G(λ)). As above, q = dimN�(G(λ)) ≤ p, and q = p if and 
only if G(λ) = 0.

The right (resp., left) minimal indices of a rational matrix G(λ) are the minimal 
indices of Nr(G(λ)) (resp., N�(G(λ))). If N(λ) is a right (resp., left) minimal basis of 
G(λ) then the right (resp., left) minimal indices of G(λ) are the degrees of the columns 
of N(λ) when ordered non-decreasingly.

One of the most usual characterizations of minimal bases is a slightly modified version 
of the Main Theorem given in [26], which can be also found in [16, Theorem 2.14]. 
Before presenting this theorem let us recall what a column proper or column reduced 
matrix is. Let N(λ) ∈ F [λ]m×l. We denote by deg(colj(N(λ))) the degree of the j-
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th column of N(λ), that is, the degree of the highest degree entry in column j. Put 
dj = deg(colj(N(λ))). The matrix N(λ) can always be written (see [27, Section 6.3.2]) 
as

N(λ) = Nh Diag(λd1 , . . . , λdl) + L(λ) (4)

where Nh is the highest column degree coefficient matrix of N(λ), and L(λ) is a poly-
nomial matrix collecting the remaining terms, which has lower column degrees than the 
corresponding ones of N(λ). The polynomial matrix N(λ) is called column proper or 
column reduced if rankNh = l.

Theorem 2.2. ([16, Theorem 2.14]) The columns of a matrix polynomial N(λ) over a field 
F are a minimal basis of the subspace they span if and only if N(λ0) has full column 
rank for all λ0 ∈ F and N(λ) is column reduced.

3. Minimal bases and indices of polynomial system matrices

The goal of this section is to show that if the blocks of a minimal polynomial system 
matrix P (λ) of a rational matrix G(λ) satisfy certain properness conditions, then the 
right (resp. left) minimal indices of P (λ) and G(λ) are the same and the right (resp. 
left) minimal bases of P (λ) and G(λ) are easily related to each other through a simple 
bijection. This is stated in Corollary 3.9, which is the final result in this section and is 
obtained as a consequence of a number of intermediate results that deal independently 
with the left and the right minimal indices and bases. The properness conditions men-
tioned above are satisfied, in particular, by many classes of linearizations of rational 
matrices introduced recently [1,3,6,12–14,19], which are minimal linear polynomial sys-
tem matrices of some rational matrices Ĝ(λ) different from G(λ), in general, but related 
to G(λ). The results of this section are used in Section 6 to establish the relationships 
between the minimal indices and bases of G(λ) and those of its strong block minimal 
bases linearizations, which in turn imply the corresponding results for M1 and M2-strong 
linearizations and Fiedler-like linearizations of G(λ) in Sections 7 and 8. This provides 
a unified treatment of all these results and alternative proofs to the results in [12,14].

The properness conditions used in this section have been introduced in [6, Lemma 2.4 
and Corollary 2.5] with the purpose of obtaining the invariant orders at infinity of G(λ)
from those of P (λ). The new result is that they also allow to recover the minimal indices 
and bases of G(λ) from those of P (λ). Thus the coprimeness conditions of the blocks of 
P (λ) guaranteeing its minimality and the properness conditions together allow to recover 
the complete finite eigenstructure of G(λ) from P (λ), as a consequence of the classical 
result of Rosenbrock [32] (see the comments following Proposition 2.1), the complete 
infinite eigenstructure of G(λ) from P (λ), as a consequence of the results in [6], and the 
minimal bases and indices of G(λ) from P (λ), as a consequence of the results in this 
section.
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As outlined in the introduction, another set of conditions on a polynomial system 
matrix P (λ) that allow to recover the complete finite and infinite spectral structures 
and the minimal indices and bases of its transfer function matrix G(λ) from P (λ) is 
the strong irreducibility introduced in [38]. The polynomial system matrix P (λ) in (3) is 
strongly irreducible if [ A(λ) B(λ) ] and 

[
A(λ)
−C(λ)

]
have no finite zeros, and 

[
A(λ) B(λ) 0
−C(λ) D(λ) −Ip

]
and 

[
A(λ) B(λ)
−C(λ) D(λ)

0 Im

]
have no infinite zeros.3 The former two conditions are equivalent to 

A(λ) and B(λ) be left coprime and A(λ) and C(λ) be right coprime, i.e., the classical 
Rosenbrock’s minimality of P (λ) (see Proposition 2.1). And the latter two conditions 
are used in [38] to relate the invariant orders at infinity and the minimal bases and 
indices of P (λ) and G(λ). We substitute in this section the conditions on the infinite 
zeros by the easier to check conditions that C(λ)A(λ)−1 and A(λ)−1B(λ) are proper 
rational functions. However, we remark that these pairs of conditions, the one on the 
infinite zeros and the one on properness, are not equivalent, and, even more, that none of 
them implies the other one, as we show at the end of this section via two examples. This 
is consistent with the fact that the rules for recovering the invariant orders at infinity 
are different under the properness conditions [6, Corollary 2.5] that under the strong 
irreducibility conditions [38, Result 1].

The proofs of the following two lemmas follow the same pattern as the first part of 
the proofs of Theorem 2 in [39] and Result 2 in [38] and they are omitted.

Lemma 3.1. Let P (λ) of (3) be a polynomial system matrix of a rational matrix G(λ). 
Then rankP (λ) = n + rankG(λ), dimN�(G(λ)) = dimN�(P (λ)) and dimNr(G(λ)) =
dimNr(P (λ)).

Lemma 3.2. Under the assumptions of Lemma 3.1, if 
[
H1(λ)
H2(λ)

]
is a right polynomial basis 

of P (λ) then H2(λ) is a right polynomial basis of G(λ) and H1(λ) = −A(λ)−1B(λ)H2(λ).

Lemma 3.1 means that any polynomial system matrix and its transfer function have 
the same number of right minimal indices and the same number of left minimal indices. 
In turns, Lemma 3.2 shows how to obtain a right polynomial basis of a rational matrix 
from a right polynomial basis of any of its polynomial system matrices. The extension of 
this result to right minimal bases under coprimeness and properness conditions requires 
some technical preliminary lemmas.

Lemma 3.3. Let N1(λ) ∈ F [λ]n×l and N2(λ) ∈ F [λ]m×l.

(i) If N1(λ) = R(λ)N2(λ) with R(λ) ∈ Fpr(λ)n×m then deg(colj(N1(λ))) ≤
deg(colj(N2(λ))) for j = 1, . . . , l.

3 In the case B(λ), C(λ) and D(λ) are constant matrices these conditions are equivalent to the strong 
irreducibility originally introduced in [39].
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(ii) If N1(λ) = R(λ)N2(λ) with R(λ) strictly proper then deg(colj(N1(λ))) <

deg(colj(N2(λ))) for j = 1, . . . , l.

Proof. Let p(λ)
q(λ) be a proper rational function and let n(λ) be a polynomial. Notice that

deg(p(λ)) + deg(n(λ)) − deg(q(λ)) ≤ deg(n(λ)). (5)

Let n(1)
ij (λ) be an arbitrary element of the j-th column of N1(λ). As N1(λ) = R(λ)N2(λ), 

we can write n(1)
ij (λ) =

∑m
k=1

pik(λ)
qik(λ)n

(2)
kj (λ) where pik(λ)

qik(λ) is the element in position (i, k)
of R(λ) and n(2)

kj (λ) is the element in position (k, j) of N2(λ). It follows from (5) that 
for each element of the j-th column of N1(λ)

deg
(
n

(1)
ij (λ)

)
= deg

(∑m
k=1

pik(λ)
qik(λ)n

(2)
kj (λ)

)
≤ maxk{deg(pik(λ)) + deg(n(2)

kj (λ)) − deg(qik(λ))}
≤ maxk{deg(n(2)

kj (λ))} = deg(colj(N2(λ)), for all i = 1, . . . , n.

Then deg(colj(N1(λ))) = maxi{deg(n(1)
ij (λ))} ≤ deg(colj(N2(λ))) and (i) follows. If R(λ)

is strictly proper the previous inequality is strict. �
The following corollary is an immediate consequence of Lemma 3.3.

Corollary 3.4. With the same assumptions and notation of Lemma 3.2, if A(λ)−1B(λ)
is proper then deg(colj(H1(λ))) ≤ deg(colj(H2(λ))) for all j. The inequality is strict if 
A(λ)−1B(λ) is strictly proper.

The following lemma relates the minimal bases of a rational matrix and its transpose 
as well as their minimal indices. It also states that the transpose of a polynomial system 
matrix gives rise to the transpose of its transfer function. It can be proved straightfor-
wardly and, therefore, the proof is omitted.

Lemma 3.5.

(a) For any rational matrix G(λ), N�(G(λ)) = Nr(G(λ)T ) and Nr(G(λ)) = N�(G(λ)T ). 
Moreover, H(λ) is a left minimal basis of G(λ) if and only if it is a right minimal 
basis of G(λ)T . Also the left minimal indices of G(λ) and the right minimal indices 
of G(λ)T coincide.

(b) If P (λ) is a (minimal) polynomial system matrix giving rise to G(λ) then P (λ)T is 
a (minimal) polynomial system matrix giving rise to G(λ)T .

As announced, the following result shows how to obtain a minimal basis of a rational 
matrix from a minimal basis of those of its polynomial system matrices that satisfy 
coprimeness and properness conditions, and relates their minimal indices.
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Theorem 3.6. Let P (λ) of (3) be a polynomial system matrix of a rational matrix G(λ).

(a) If A(λ) and C(λ) are right coprime, A(λ)−1B(λ) is proper and 
[
H1(λ)
H2(λ)

]
∈

F [λ](n+m)×l is a right minimal basis of P (λ), then H2(λ) is a right minimal ba-
sis of G(λ) and H1(λ) = −A(λ)−1B(λ)H2(λ). Moreover, the right minimal indices 
of P (λ) and G(λ) are the same.

(b) If A(λ) and B(λ) are left coprime, C(λ)A(λ)−1 is proper and 
[
H1(λ)
H2(λ)

]
∈ F [λ](n+p)×q

is a left minimal basis of P (λ), then H2(λ) is a left minimal basis of G(λ) and 
H1(λ) = (C(λ)A(λ)−1)TH2(λ). Moreover, the left minimal indices of P (λ) and G(λ)
are the same.

Proof. We prove part (a). By Lemma 3.2, H2(λ) is a right polynomial basis of G(λ)
and H1(λ) = −A(λ)−1B(λ)H2(λ). We show that H2(λ) is a minimal basis of G(λ) by 
applying Theorem 2.2. Let us prove first that H2(λ0) has full column rank for all λ0 ∈ F . 
If this were not true, there would exist λ1 ∈ F and a vector, v �= 0, such that H2(λ1)v = 0. 
But since 

[
H1(λ)
H2(λ)

]
is a right minimal basis for P (λ), 

[
H1(λ1)
H2(λ1)

]
v = [ w0 ] with w �= 0 and

P (λ1)
[
H1(λ1)
H2(λ1)

]
v =

[
A(λ1) B(λ1)
−C(λ1) D(λ1)

] [
w
0

]
=

[
A(λ1)
−C(λ1)

]
w = 0.

This would be a contradiction because A(λ) and C(λ) are right coprime, i.e., 
[

A(λ1)
−C(λ1)

]
has full column rank (see Proposition 2.1).

Next, let us see that H2(λ) is column reduced. By hypothesis and Theorem 2.2, we 

know that 
[
H1(λ)
H2(λ)

]
is column reduced. Our goal is to express the highest column degree 

coefficient matrix of 
[
H1(λ)
H2(λ)

]
in terms of the highest column degree coefficient matrix 

of H2(λ), which is denoted by H2h. For this purpose, note that the assumption that 
A(λ)−1B(λ) is proper implies that −A(λ)−1B(λ) = J + R(λ), where J is a constant 
matrix and R(λ) is strictly proper. Thus, H1(λ) = JH2(λ) + R(λ)H2(λ) and

colj
([

H1(λ)
H2(λ)

])
=

[
J colj(H2(λ)) + R(λ) colj(H2(λ))

colj(H2(λ))

]
. (6)

Bear in mind that colj(H2(λ)) �= 0 since H2(λ) is a right polynomial basis of G(λ). More-
over, R(λ) colj(H2(λ)) is a vector polynomial, because colj(H1(λ)) and J colj(H2(λ)) are 
both vector polynomials. Then, Lemma 3.3 (ii) guarantees that deg(R(λ) colj(H2(λ))) <
deg(colj(H2(λ))). Therefore, the highest degree coefficient of (6) is 

[
J colj(H2h)
colj(H2h)

]
, the de-

gree dj of (6) is dj = deg(colj(H2(λ))) and the highest column degree coefficient matrix 

of 
[
H1(λ)
H2(λ)

]
is 

[
JH2h
H2h

]
. This latter matrix has full column rank, which implies that H2h

has also full column rank, since otherwise there would exist a nonzero constant vector 
v such that H2hv = 0 and 

[
JH2h
H

]
v = 0, which is a contradiction. This proves that 
2h
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H2(λ) is column reduced and, so, a right minimal basis of G(λ). Since the degrees of 
the corresponding columns of H2(λ) and 

[
H1(λ)
H2(λ)

]
coincide, the right minimal indices of 

G(λ) and P (λ) are the same.
Part (b) is a consequence of part (a) and Lemma 3.5. �
We have shown so far how to obtain a minimal basis of the transfer function matrix 

of a polynomial system matrix out of a minimal basis of the latter, which is the most 
interesting scenario in applications. For completeness, we consider now the reciprocal 
problem. In this respect, Lemma 3.2 motivates the following result.

Lemma 3.7. Let P (λ) of (3) be a polynomial system matrix of a rational matrix G(λ)
where A(λ) and C(λ) are right coprime. Let H2(λ) be a right polynomial basis of G(λ)
and let H1(λ) = −A(λ)−1B(λ)H2(λ). Then 

[
H1(λ)
H2(λ)

]
is a right polynomial basis of P (λ).

Proof. Note that

P (λ)
[
H1(λ)
H2(λ)

]
=

[
A(λ) B(λ)
−C(λ) D(λ)

] [
−A(λ)−1B(λ)H2(λ)

H2(λ)

]
=

[
0

G(λ)H2(λ)

]
= 0.

Let us see first that H1(λ) is polynomial. As A(λ) and C(λ) are right coprime, by 
Bezout’s identity (see Proposition 2.1), there exist polynomial matrices X(λ) and Y (λ)
of appropriate sizes such that

[X(λ) −Y (λ) ]
[

A(λ)
−C(λ)

]
= In.

Put H(λ) = X(λ)B(λ) − Y (λ)D(λ). Then,

[X(λ) −Y (λ)]
[

A(λ) B(λ)
−C(λ) D(λ)

] [
H1(λ)
H2(λ)

]
= [In H(λ) ]

[
H1(λ)
H2(λ)

]
= 0.

Hence H1(λ) = −H(λ)H2(λ) is a matrix polynomial. Moreover, 
[
H1(λ)
H2(λ)

]
is a right poly-

nomial basis of P (λ), because its columns belong to Nr(P (λ)), its columns are linearly 
independent, since H2(λ) is a basis of Nr(G(λ)), and dimNr(G(λ)) = dimNr(P (λ)). �

We can now prove the reciprocal of Theorem 3.6, which shows that, under certain 
assumptions, minimal bases of polynomial system matrices can be obtained from minimal 
bases of their transfer functions.

Theorem 3.8. Let G(λ) ∈ F(λ)p×m be a rational matrix and let P (λ) of (3) be a polyno-
mial system matrix of G(λ).
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(a) If A(λ) and C(λ) are right coprime, A(λ)−1B(λ) is proper, H2(λ) is a right minimal 
basis of G(λ) and H1(λ) = −A(λ)−1B(λ)H2(λ) then 

[
H1(λ)
H2(λ)

]
is a right minimal basis 

of P (λ). Moreover, the right minimal indices of P (λ) and G(λ) are the same.
(b) If A(λ) and B(λ) are left coprime, C(λ)A(λ)−1 is proper, H2(λ) is a left minimal 

basis of G(λ) and H1(λ) = (C(λ)A(λ)−1)TH2(λ) then 
[
H1(λ)
H2(λ)

]
is a left minimal basis 

of P (λ). Moreover, the left minimal indices of P (λ) and G(λ) are the same.

Proof. We prove part (a). By Lemma 3.7 and Theorem 2.2, we just need to prove that [
H1(λ0)
H2(λ0)

]
has full column rank for all λ0 ∈ F and 

[
H1(λ)
H2(λ)

]
is column reduced. As H2(λ)

is a right minimal basis of G(λ), H2(λ0) has full column rank for all λ0 ∈ F , which 

implies that the matrix 
[
H1(λ0)
H2(λ0)

]
has full column rank as well. Moreover, H2(λ) is column 

reduced. Write H2(λ) = H2h Diag(λd1 , . . . , λdl) + L2(λ) with H2h of full column rank, 
d1, . . . , dl the right minimal indices of G(λ) and the degree of the j-th column of L2(λ)
less than dj for each j. Since H1(λ) = −A(λ)−1B(λ)H2(λ), with A(λ)−1B(λ) proper, it 
follows from Corollary 3.4 that each column of H1(λ) has degree less than or equal to 
the degree of the same column of H2(λ). Therefore, there is a matrix H1h such that the 

highest column degree coefficient matrix of 
[
H1(λ)
H2(λ)

]
is 

[
H1h
H2h

]
, a full column rank matrix. 

Moreover, its column degrees are those of H2(λ).
Part (b) follows from (a) and Lemma 3.5. �
Theorems 3.6 and 3.8 together provide our next result.

Corollary 3.9. Let G(λ) ∈ F(λ)p×m be a rational matrix and let P (λ) of (3) be a mini-
mal polynomial system matrix of G(λ). If both A(λ)−1B(λ) and C(λ)A(λ)−1 are proper 
matrices then 

[
H1(λ)
H2(λ)

]
is a right (resp., left) minimal basis of P (λ) if and only if H2(λ)

is a right (resp., left) minimal basis of G(λ) and H1(λ) = −A(λ)−1B(λ)H2(λ) (resp., 
H1(λ) = (C(λ)A(λ)−1)TH2(λ)). Moreover, the right (resp., left) minimal indices of P (λ)
and G(λ) are the same.

Remark 3.10. As announced at the beginning of this section, we show that the conditions 
on properness in Theorems 3.6 and 3.8 and Verghese’s conditions on infinite zeros in 
[38] are not equivalent. More precisely, we prove by means of two examples that for 
a polynomial system matrix P (λ) as in (3), C(λ)A(λ)−1 being proper does not imply [

A(λ) B(λ) 0
−C(λ) D(λ) −I

]
having no infinite zeros and vice versa, even when A(λ) and B(λ) are 

left coprime. The same two examples prove that A(λ)−1B(λ) being proper does not 

imply 
[

A(λ) B(λ)
−C(λ) D(λ)

0 I

]
having no infinite zeros and vice versa, even when A(λ) and C(λ)

are right coprime.

Example 3.11. Let A(λ) =
[
λ+1 λ2

1 λ

]
, B(λ) = [ 1

0 ], C(λ) = [ 0 1 ], D(λ) = 0. It is easy to 

check that G(λ) = − 1 , A(λ) and B(λ) are left coprime and C(λ)A(λ)−1 = [ − 1
λ , 1+ 1

λ ]
λ
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is proper. However, 
[

A(λ) B(λ) 0
−C(λ) D(λ) −1

]
has an infinite zero, because its invariant orders at 

infinity are q1 = −2, q2 = 0 and q3 = 1. Moreover, A(λ) and C(λ) are right coprime, 

A(λ)−1B(λ) is proper, but 
[

A(λ) B(λ)
−C(λ) D(λ)

0 1

]
has again an infinite zero, because its invariant 

orders at infinity are also q1 = −2, q2 = 0 and q3 = 1. Thus, P (λ) of (3) is not strongly 
irreducible, but allows to recover the complete finite and infinite eigenstructures of G(λ)
as well as its minimal indices and bases, since it satisfies the coprimeness and properness 
conditions.

Example 3.12. Let A(λ) =
[
λ 0 0
0 1 0
0 1 1

]
, B(λ) =

[ 1
λ
1

]
, C(λ) = [ 1 0 λ ], D(λ) = 0. It is easy 

to check that G(λ) = 1
λ − λ2 + λ, and A(λ) and B(λ) are left coprime. The matrix [

A(λ) B(λ) 0
−C(λ) D(λ) −1

]
has no infinite zeros since its invariant orders at infinity are q1 = −1, 

q2 = −1, q3 = −1 and q4 = 0. Nevertheless, C(λ)A(λ)−1 = [ 1
λ , −λ, λ ] is not proper. 

Moreover, A(λ) and C(λ) are right coprime, but the matrix 
[

A(λ) B(λ)
−C(λ) D(λ)

0 1

]
has no infinite 

zeros, since its invariant orders at infinity are again q1 = −1, q2 = −1, q3 = −1 and 
q4 = 0. However, the matrix A(λ)−1B(λ) = [ 1

λ , λ, −λ+1 ] is not proper. Thus, P (λ) of (3)
is strongly irreducible and, so, allows to recover the complete finite and infinite eigen-
structures of G(λ) as well as its minimal indices and bases, but none of the properness 
conditions hold.

4. Polynomial bases of linearizations of rational matrices

The aim of this section is to study the relationship between the polynomial bases of a 
rational matrix and the polynomial bases of its linearizations. It is not possible to extend 
this relationship to minimal bases because it was already proved in [15, Theorem 4.10 
(b)] that the minimal bases and indices of a polynomial matrix can not be obtained from 
the minimal bases and indices of its linearizations in general, and polynomial matrices 
are particular cases of rational matrices.

A linear pencil

L(λ) =
[

A1λ + A0 B1λ + B0
−(C1λ + C0) D1λ + D0

]
(7)

is said to be a linearization of a rational matrix G(λ) (see [6, Definition 3.2]) if it is a 
minimal polynomial system matrix of a rational matrix Ĝ(λ) such that, for some non-
negative integers s1, s2, Diag(Ĝ(λ), Is2) and Diag(G(λ), Is1) are unimodularly equivalent. 
Without loss of generality we can assume that s1 = s and s2 = 0. This assumption will 
be adopted in the rest of the paper every time we deal with linearizations.

A first consequence of this definition is that, by the rank-nullity theorem, dimNr(Ĝ(λ))
= dimNr(G(λ)) and dimN�(Ĝ(λ)) = dimN�(G(λ)). Therefore, G(λ) and Ĝ(λ) have 
the same number of right minimal indices and the same number of left minimal in-
dices. Furthermore, by Lemma 3.1, dimNr(Ĝ(λ)) = dimNr(L(λ)) and dimN�(Ĝ(λ)) =
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dimN�(L(λ)). Thus, a rational matrix and any of its linearizations have the same number 
of right minimal indices and the same number of left minimal indices.

Proposition 4.1 relates right polynomial bases of G(λ) and Ĝ(λ). An analogous result 
holds for left polynomial bases of G(λ) and Ĝ(λ) as a consequence of Lemma 3.5. Such 
“left” result is omitted for brevity.

Proposition 4.1. Let G(λ) ∈ F(λ)p×m and let Ĝ(λ) ∈ F(λ)(p+s)×(m+s), s ≥ 0. Let 
U(λ) ∈ F [λ](p+s)×(p+s) and V (λ) ∈ F [λ](m+s)×(m+s) be unimodular matrices such that 
U(λ)Ĝ(λ)V (λ) = Diag(G(λ), Is).

(a) If H(λ) is a right polynomial basis of G(λ) then V (λ)
[
H(λ)

0

]
is a right polynomial 

basis of Ĝ(λ).
(b) If Ĥ(λ) is a right polynomial basis of Ĝ(λ) then V (λ)−1Ĥ(λ) =

[
H(λ)

0

]
and H(λ)

is a right polynomial basis of G(λ).

Proof. In order to prove (a) assume that G(λ)H(λ) = 0. We obtain, via a direct multi-
plication, that

Ĝ(λ)V (λ)
[
H(λ)

0

]
= U(λ)−1

[
G(λ) 0

0 Is

] [
H(λ)

0

]
= 0.

So, V (λ)
[
H(λ)

0

]
is a right polynomial basis of Ĝ(λ), because its columns are linearly 

independent and dimNr(Ĝ(λ)) = dimNr(G(λ)).
For proving (b) assume that Ĝ(λ)Ĥ(λ) = 0. Therefore,

[
G(λ) 0

0 Is

]
V (λ)−1Ĥ(λ) = 0.

Write V (λ)−1 =
[
V1(λ)
V2(λ)

]
, where V1(λ) ∈ F [λ]m×(m+s) and V2(λ) ∈ F [λ]s×(m+s). Thus, 

G(λ)V1(λ)Ĥ(λ) = 0 and V2(λ)Ĥ(λ) = 0. Set H(λ) = V1(λ)Ĥ(λ). It follows that 
V (λ)−1Ĥ(λ) =

[
H(λ)

0

]
and G(λ)H(λ) = 0. Thus, the columns of H(λ) form a right 

polynomial basis of G(λ). �
Remark 4.2. Proposition 4.1 cannot be extended to right minimal bases, i.e., if H(λ) is 
a right minimal basis of G(λ), V (λ)

[
H(λ)

0

]
may not be a right minimal basis of Ĝ(λ), 

and if Ĥ(λ) is a right minimal basis of Ĝ(λ), V (λ)−1Ĥ(λ) may not contain a minimal 
basis of G(λ) in its first m rows. Otherwise, if Proposition 4.1 could be extended to right 
minimal bases, taking G(λ) polynomial and Ĝ(λ) a linearization of G(λ), then their right 
minimal bases and indices would be always related, which is in contradiction with [15, 
Theorem 4.10 (b)].
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The next result relates the polynomial bases of a rational matrix and its linearizations 
through the unimodular matrices that connect the rational matrix and the transfer 
function matrix of the linearizations.

Theorem 4.3. Let G(λ) ∈ F(λ)p×m and let L(λ) of (7) be a linearization of G(λ) with 
transfer function matrix Ĝ(λ). Let U(λ) ∈ F [λ](p+s)×(p+s), V (λ) ∈ F [λ](m+s)×(m+s) be 
unimodular matrices such that U(λ)Ĝ(λ)V (λ) = Diag(G(λ), Is).

(a)
[
H1(λ)
H2(λ)

]
is a right polynomial basis of L(λ) if and only if H2(λ) = V (λ)

[
H(λ)

0

]
for some right polynomial basis H(λ) of G(λ) and H1(λ) = −(A1λ + A0)−1(B1λ +
B0)H2(λ).

(b)
[
H1(λ)
H2(λ)

]
is a left polynomial basis of L(λ) if and only if H2(λ) = U(λ)T

[
H(λ)

0

]
for some left polynomial basis H(λ) of G(λ) and H1(λ) = ((C1λ + C0)(A1λ +
A0)−1)TH2(λ).

Proof. As L(λ) is a linearization of G(λ), L(λ) is a minimal polynomial system matrix 
and, therefore, A1λ + A0 and C1λ + C0 are right coprime and A1λ + A0 and B1λ + B0
are left coprime. Thus we can apply Lemmas 3.2 and 3.7 and Proposition 4.1 to prove 
part (a). To prove part (b), use Lemma 3.5 and part (a). �
5. Minimal indices of strong linearizations of rational matrices

In this section we begin to study the relationship between the minimal indices of a 
rational matrix and the minimal indices of its strong linearizations. As discussed in [6, 
Remark 3.5], strong linearizations are particular cases of linearizations and, therefore, 
we know that the number of right (resp., left) minimal indices of a rational matrix and 
of its strong linearizations coincide. However, we will show in this section that it is not 
possible to obtain the right (resp., left) minimal indices of a rational matrix from those 
of its strong linearizations in general. Nevertheless, we will prove in Theorem 5.9 that the 
total sum of the right and left minimal indices of a rational matrix can be easily obtained 
from the total sum of the right and left minimal indices of any of its strong linearizations. 
It has been recently shown in [12–14] that for the families of Fiedler-like and affine spaces 
of strong linearizations of square rational matrices it is possible to recover easily the 
minimal bases and indices of the rational matrix from these linearizations. We prove in 
Section 6 that the same is possible for any rational matrix, i.e., possibly rectangular, 
from its strong block minimal bases linearizations. As corollaries, analogous results are 
proved in Section 7 for M1 and M2-strong linearizations.

We start by recalling the definition of strong linearization of a rational matrix.

Definition 5.1. ([6, Definition 3.4]) Let G(λ) ∈ F(λ)p×m. Let q1 be its first invariant 
order at infinity and g = min(0, q1). Let n = ν(G(λ)). A strong linearization of G(λ) is 
a linear polynomial matrix
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L(λ) =
[

A1λ + A0 B1λ + B0
−(C1λ + C0) D1λ + D0

]
∈ F [λ](n+q)×(n+r)

such that the following conditions hold:

(a) if n > 0 then det(A1λ + A0) �= 0, and
(b) if Ĝ(λ) = (D1λ +D0) + (C1λ +C0)(A1λ +A0)−1(B1λ +B0), q̂1 is its first invariant 

order at infinity and ĝ = min(0, ̂q1) then:
(i) there are integers s1, s2 ≥ 0 and unimodular matrices U1(λ) ∈ F [λ](p+s1)×(p+s1)

and U2(λ) ∈ F [λ](m+s1)×(m+s1) so that s1 − s2 = q − p = r −m and

U1(λ) Diag(G(λ), Is1)U2(λ) = Diag(Ĝ(λ), Is2), and

(ii) there are biproper matrices B1(λ) ∈ Fpr(λ)(p+s1)×(p+s1) and B2(λ) ∈
Fpr(λ)(m+s1)×(m+s1) such that

B1(λ) Diag(λgG(λ), Is1)B2(λ) = Diag(λĝĜ(λ), Is2).

As in the case of linearizations, we can also assume without loss of generality that 
s1 = s and s2 = 0 in the definition of strong linearizations. We will adopt such assumption 
in the rest of the paper.

Remark 5.2. As commented in [6, Remark 3.5], the requirement n = ν(G(λ)) in Defini-
tion 5.1 might seem very restrictive. Thus, it is worth to emphasize that such requirement 
may be replaced by the assumptions that L(λ) is a minimal polynomial system matrix 
and A1 is invertible when n > 0, as a consequence of the discussion in [6, Remark 3.5], 
which are more direct requirements. We have decided to state Definition 5.1 exactly as 
in [6] in order to avoid confusions.

Recall that any rational matrix can be written uniquely as G(λ) = D(λ) +Gsp(λ) with 
D(λ) a polynomial matrix and Gsp(λ) a strictly proper matrix. Moreover, if D(λ) �= 0
then the first invariant order at infinity of G(λ), q1, is equal to − deg(D(λ)); otherwise, 
if G(λ) is strictly proper, q1 > 0. We define

d = −min(0, q1) =
{

deg(D(λ)) if D(λ) �= 0
0 if D(λ) = 0

. (8)

Notice that g in Definition 5.1 is equal to −d.
We now show with Example 5.4 that the minimal indices of a strong linearization of 

a rational matrix may be arbitrarily different than the minimal indices of the rational 
matrix in general. In order to develop Example 5.4, we present the following lemma first.
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Lemma 5.3. Let

Ku(λ) =

⎡⎢⎢⎣
1 λ

1 λ
. . . . . .

1 λ

⎤⎥⎥⎦ ∈ F [λ]u×(u+1)

for any positive integer u and let 0u×1 be the u × 1 zero matrix. Then,

(i) Ku(λ) is unimodularly equivalent to [Iu 0u×1 ].
(ii) λ−1Ku(λ) is equivalent at infinity to [Iu 0u×1 ].

Proof. In order to prove (i), multiply Ku(λ) on the right by the unimodular matrix⎡⎢⎢⎢⎢⎢⎢⎣

1 −λ λ2 (−λ)3 · · · (−λ)u
1 −λ λ2 · · · (−λ)u−1

. . . . . . . . .
...

1 −λ λ2

1 −λ
1

⎤⎥⎥⎥⎥⎥⎥⎦ .

To prove (ii), multiply λ−1Ku(λ) on the right by the biproper matrix⎡⎢⎢⎢⎢⎢⎢⎣

0 0 0 · · · 0 1
1 0 0 · · · 0 −1/λ

−1/λ 1 0 · · · 0 (−1/λ)2
(−1/λ)2 −1/λ 1 · · · 0 (−1/λ)3

...
...

. . .
...

...
(−1/λ)u−1 (−1/λ)u−2 · · · 1 (−1/λ)u

⎤⎥⎥⎥⎥⎥⎥⎦ . �

Example 5.4. Let G(λ) =
[
λ+λ−1 0

0 0

]
∈ F(λ)2×2. We may consider infinitely many strong 

linearizations of G(λ). Let

Lε,η(λ) =

⎡⎢⎢⎢⎣
λ 1
−1 λ

Kε(λ)
Kη(λ)T

⎤⎥⎥⎥⎦ ∈ F [λ](1+(2+ε+η))×(1+(2+ε+η)).

We prove now that for each pair of positive integers ε and η, Lε,η(λ) is a strong lin-
earization of G(λ). First, notice that Lε,η(λ) is a minimal polynomial system matrix 
with transfer function matrix

Ĝε,η(λ) =

⎡⎣λ + λ−1

Kε(λ)
K (λ)T

⎤⎦ .
η
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Using Lemma 5.3, it is easy to prove that Ĝε,η(λ) is unimodularly equivalent to

⎡⎢⎣λ + λ−1

Iε 0ε×1
Iη

01×η

⎤⎥⎦ ,

which is unimodularly equivalent to 
[
G(λ) 0

0 Iε+η

]
. Thus, Lε,η(λ) is a linearization of G(λ). 

Furthermore, G(λ) can be written as

G(λ) =
[
λ 0
0 0

]
+

[
λ−1 0
0 0

]

and Ĝε,η(λ) can be written as

Ĝε,η(λ) =
[
λ

Kε(λ)
Kη(λ)T

]
+

[
λ−1

0
0

]
.

Therefore, with the notation of Definition 5.1, g = ĝ = −1. The matrix λ−1Ĝε,η(λ) is

⎡⎣1 + λ−2

λ−1Kε(λ)
λ−1Kη(λ)T

⎤⎦ ,

which, by Lemma 5.3, is equivalent at infinity to

⎡⎢⎣1 + λ−2

Iε 0ε×1
Iη

01×η

⎤⎥⎦ and to
[
λ−1G(λ) 0

0 Iε+η

]
.

Hence, Lε,η(λ) is a strong linearization of G(λ). Notice that the unique right minimal 
index of G(λ) is 0 and the unique left minimal index of G(λ) is 0 as well, while the 
unique right minimal index of Lε,η(λ) is ε and the unique left minimal index of Lε,η(λ)
is η. Thus, strong linearizations do not preserve minimal indices.

Denote by μ(G(λ)) the sum of the right and left minimal indices of a rational matrix 
G(λ). Our next goal is to analyze how this is related with the sum of the right and left 
minimal indices of any of its strong linearizations. In order to study this relationship, 
we will make use of Van Dooren’s index sum theorem, proved for the first time in [39, 
Theorem 3], and that we rewrite in a way convenient for our purposes in Lemma 5.5. 
Interested readers are referred to the recent paper [7] for more information on this fun-
damental result.
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Lemma 5.5. Let G(λ) ∈ F(λ)p×m be any rational matrix with finite Smith–McMillan 

form Diag
(

ε1(λ)
ψ1(λ) , . . . ,

εr(λ)
ψr(λ) , 0(p−r)×(m−r)

)
. Let q1 ≤ · · · ≤ qr be its invariant orders at 

infinity. Then

μ(G(λ)) =
r∑

i=1
deg(ψi(λ)) −

r∑
i=1

deg(εi(λ)) −
r∑

i=1
qi. (9)

Proof. By the index sum theorem (see [39, Theorem 3] or [27, Theorem 6.5-11]) μ(G(λ))
is equal to the total number of poles (finite and at infinity) of G(λ) minus the total 
number of zeros (finite and at infinity) of G(λ). The total number of finite zeros of G(λ)
is the sum of all partial multiplicities of all finite zeros of G(λ), that is, 

∑r
i=1 deg(εi(λ)). 

In the same way, the total number of finite poles of G(λ) is the sum of all partial 
multiplicities of all finite poles of G(λ), i.e., 

∑r
i=1 deg(ψi(λ)). Therefore, the total number 

of finite poles minus the total number of finite zeros is 
∑r

i=1 deg(ψi(λ)) −
∑r

i=1 deg(εi(λ)). 
On the other hand, the total number of infinite poles minus the total number of infinite 
zeros is − 

∑r
i=1 qi since the positive qi are the orders of the infinite zeros while minus 

the negative qi are the orders of the infinite poles. Thus, equation (9) is obtained. �
Let G(λ) ∈ F(λ)p×m be any rational matrix, let d be defined as in (8) and let

L(λ) =
[

A1λ + A0 B1λ + B0
−(C1λ + C0) D1λ + D0

]
∈ F [λ](n+(p+s))×(n+(m+s)) (10)

be a linear minimal polynomial system matrix with A1 invertible if n > 0. We say that 
L(λ) preserves the finite and infinite structures of poles and zeros of G(λ) if the following 
conditions simultaneously hold:

(i) the finite poles of G(λ) are the finite zeros of A1λ + A0, with the same partial 
multiplicities in both matrices,

(ii) the finite zeros of G(λ) are the finite zeros of L(λ), with the same partial multiplic-
ities, and

(iii) the number and orders of the infinite zeros of λ−1L(λ) are the same as the num-
ber and orders of the infinite zeros of λ−dG(λ) if D1 + C1A

−1
1 B1 �= 0 or of 

Diag(λ−1Is, λ−d−1G(λ)) otherwise.

Theorem 5.6. ([6, Theorem 3.10]) Let G(λ) ∈ F(λ)p×m and n = ν(G(λ)). Let L(λ) be 
the pencil of (10). Then L(λ) is a strong linearization of G(λ) if and only if the following 
two conditions hold:

(I) dimNr(G(λ))=dimNr(L(λ)) (which is equivalent to dimN�(G(λ))=dimN�(L(λ))), 
and

(II) L(λ) preserves the finite and infinite structures of poles and zeros of G(λ).
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The following result relates the invariant orders at infinity of a rational matrix and 
its a strong linearization. We remark that although Lemma 5.7 was not explicitly stated 
in [6], it is related to discussions in [6, pp. 1682–1683].

Lemma 5.7. Let G(λ) ∈ F(λ)p×m be any rational matrix with invariant orders at infinity 
q1 ≤ · · · ≤ qr and d be defined as in (8). Let L(λ) of (10) be any strong linearization of 
G(λ) and qL1 ≤ . . . ≤ qL� be the invariant orders at infinity of L(λ). Then � = n + s + r

and

(i) If D1 + C1A
−1
1 B1 �= 0 then qLi = −1 for i = 1, . . . , n + s, and qLn+s+i = qi + d − 1

for i = 1, . . . , r.
(ii) If n > 0 and D1 + C1A

−1
1 B1 = 0 then qLi = −1 for i = 1, . . . , n, qLn+i = 0 for 

i = 1, . . . , s, and qLn+s+i = qi + d for i = 1, . . . , r.
(iii) If n = 0 and D1 = 0 then L(λ) = D0, qLi = 0 for i = 1, . . . , s + r, and qi = −d for 

i = 1, . . . , r.

Proof. By Theorem 5.6 (I) and the rank-nullity theorem, � = n +s +r is the rank of L(λ). 
As q1 ≤ · · · ≤ qr are the invariant orders at infinity of G(λ), there exist two biproper 
matrices B1(λ) ∈ Fpr(λ)p×p and B2(λ) ∈ Fpr(λ)m×m such that

G(λ) = B1(λ) Diag
((

1
λ

)q1

, . . . ,

(
1
λ

)qr

, 0(p−r)×(m−r)

)
B2(λ). (11)

We distinguish two cases:
Suppose first that D1 +C1A

−1
1 B1 �= 0. By Theorem 5.6 again, the number and orders 

of the infinite zeros of λ−1L(λ) are the same as the number and orders of the infinite 
zeros of λ−dG(λ). Since λ−1L(λ) and λ−dG(λ) are both proper rational matrices and 

rankL(λ) −rankG(λ) = n +s, λ−1L(λ) must be equivalent at infinity to 
[
λ−dG(λ) 0

0 In+s

]
. 

Thus L(λ) is equivalent at infinity to 
[
λ−d+1G(λ) 0

0 λIn+s

]
, that is, there exist two 

biproper matrices B3(λ) ∈ Fpr(λ)(p+n+s)×(p+n+s) and B4(λ) ∈ Fpr(λ)(m+n+s)×(m+n+s)

such that

L(λ) = B3(λ)
[
λ−d+1G(λ) 0

0 λIn+s

]
B4(λ) = B3(λ)λ−d+1

[
G(λ) 0

0 λdIn+s

]
B4(λ).

Put B1(λ) = B3(λ)
[
B1(λ) 0

0 In+s

]
and B2(λ) =

[
B2(λ) 0

0 In+s

]
B4(λ), which are biproper 

matrices. Using (11),

L(λ) = B1(λ)λ−d+1
[
Diag

(
( 1
λ )q1 , . . . , ( 1

λ )qr , 0
)

0
0 λdIn+s

]
B2(λ)

= B1(λ)
[
Diag

(
( 1
λ )q1+d−1, . . . , ( 1

λ )qr+d−1, 0
)

0
0 ( 1

λ )−1In+s

]
B2(λ).
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Notice, by (8), that q1 + d ≥ 0. Therefore −1 ≤ q1 + d − 1 ≤ · · · ≤ qr + d − 1. Thus, 
qLi = −1 for i = 1, . . . , n + s, and qLn+s+i = qi + d − 1 for i = 1, . . . , r.

Suppose now that D1 + C1A
−1
1 B1 = 0. By Theorem 5.6, the number and orders 

of the infinite zeros of λ−1L(λ) are the same as those of Diag(λ−1Is, λ−d−1G(λ)). As 
both matrices are proper and their rank difference is n, λ−1L(λ) must be equivalent at 

infinity to 
[
λ−d−1G(λ) 0 0

0 λ−1Is 0
0 0 In

]
. Thus L(λ) is equivalent at infinity to 

[
λ−dG(λ) 0 0

0 Is 0
0 0 λIn

]
, 

that is, there exist two biproper matrices B5(λ) ∈ Fpr(λ)(p+n+s)×(p+n+s) and B6(λ) ∈
Fpr(λ)(m+n+s)×(m+n+s) such that

L(λ) = B5(λ)λ−d

⎡⎣G(λ) 0 0
0 λdIs 0
0 0 λd+1In

⎤⎦B6(λ).

By using (11) and proceeding as in the previous case, if n > 0 then the invariant orders at 
infinity of L(λ) are qLi = −1 for i = 1, . . . , n, qLn+i = 0 for i = 1, . . . , s, and qLn+s+i = qi+d

for i = 1, . . . , r. Otherwise, if n = 0 then D1 = 0, L(λ) = D0 and, therefore, qLi = 0 for 
i = 1, . . . , s + r. Moreover, since D0 = B5(λ)

[
λ−dG(λ) 0

0 Is

]
B6(λ), the invariant orders at 

infinity of λ−dG(λ) must be 0 and, in consequence, qi = −d for i = 1, . . . , r. �
The following lemma gives μ(L(λ)), the sum of the right and left minimal indices of 

a strong linearization L(λ) of a rational matrix G(λ), in terms of the spectral invariants 
of G(λ).

Lemma 5.8. Let G(λ) ∈ F(λ)p×m be any rational matrix with ε1(λ), . . . , εr(λ) as numer-
ators in its finite Smith–McMillan form and with q1 ≤ · · · ≤ qr as invariant orders at 
infinity. Let d be defined as in (8). Let L(λ) of (10) be any strong linearization of G(λ).

(i) If D1 + C1A
−1
1 B1 �= 0 then

μ(L(λ)) = s + r(1 − d) + n−
∑r

i=1 deg(εi(λ)) −
∑r

i=1 qi.

(ii) If n > 0 and D1 + C1A
−1
1 B1 = 0 then

μ(L(λ)) = −dr + n−
∑r

i=1 deg(εi(λ)) −
∑r

i=1 qi.

(iii) If n = 0 and D1 = 0 then L(λ) = D0, μ(L(λ)) = 0, and εi(λ) = 1 for i = 1, . . . , r.

Proof. We aim to apply Lemma 5.5 to L(λ). As seen in Lemma 5.7, rankL(λ) = n +s +r. 
Since L(λ) is a polynomial matrix it has no finite poles. Moreover, by Theorem 5.6, its 
total number of finite zeros is 

∑r
i=1 deg(εi(λ)). Denote by qLi , i = 1, . . . , n + s + r, the 

invariant orders at infinity of L(λ). By Lemma 5.5,
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μ(L(λ)) = −
r∑

i=1
deg(εi(λ)) −

n+s+r∑
i=1

qLi .

By Lemma 5.7:

(i) If D1 + C1A
−1
1 B1 �= 0 then

μ(L(λ)) = −
∑r

i=1 deg(εi(λ)) − (
∑n+s

i=1 (−1) +
∑r

i=1(qi + d− 1))
= −

∑r
i=1 deg(εi(λ)) + n + s + r − dr −

∑r
i=1 qi.

(ii) If n > 0 and D1 + C1A
−1
1 B1 = 0 then

μ(L(λ)) = −
∑r

i=1 deg(εi(λ)) − (
∑n

i=1(−1) +
∑r

i=1(qi + d))
= −

∑r
i=1 deg(εi(λ)) + n− dr −

∑r
i=1 qi.

(iii) If n = 0 and D1 = 0 then L(λ) = D0 and μ(L(λ)) = − 
∑r

i=1 deg(εi(λ)) − 0. But 
since L(λ) is constant its total number of finite zeros is 0 and, therefore, εi(λ) = 1
for i = 1, . . . , r. �

Finally, the following result shows the relationship between the sum of the right and 
left minimal indices of a rational matrix and of its strong linearizations.

Theorem 5.9. Let G(λ) ∈ F(λ)p×m be any rational matrix of rank r. Let d be defined as 
in (8). Let

L(λ) =
[

A1λ + A0 B1λ + B0
−(C1λ + C0) D1λ + D0

]
∈ F [λ](n+(p+s))×(n+(m+s))

be any strong linearization of G(λ). Then

μ(G(λ)) =

⎧⎪⎨⎪⎩
μ(L(λ)) + dr − (r + s), if D1 + C1A

−1
1 B1 �= 0

μ(L(λ)) + dr, if n > 0 and D1 + C1A
−1
1 B1 = 0

dr, if n = 0 and D1 = 0
.

Proof. Let Diag
(

ε1(λ)
ψ1(λ) , . . . ,

εr(λ)
ψr(λ) , 0(p−r)×(m−r)

)
be the finite Smith–McMillan form of 

G(λ) and q1 ≤ · · · ≤ qr be its invariant orders at infinity. By definition of strong 
linearization, n = ν(G(λ)). Moreover, ν(G(λ)) =

∑r
i=1 deg(ψi(λ)) and, therefore, 

n =
∑r

i=1 deg(ψi(λ)). By using Lemma 5.5, μ(G(λ)) = n −
∑r

i=1 deg(εi(λ)) −
∑r

i=1 qi. 
Now, by Lemma 5.8:

(i) If D1 + C1A
−1
1 B1 �= 0 then μ(L(λ)) = s + r(1 − d) + μ(G(λ)).

(ii) If n > 0 and D1 + C1A
−1
1 B1 = 0 then μ(L(λ)) = −dr + μ(G(λ)).
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(iii) If n = 0 and D1 = 0 then μ(L(λ)) = 0 and, by Lemmas 5.7 and 5.8, μ(G(λ)) =
dr. �

Example 5.10. We show that, certainly, the previous result is satisfied for the matrices 
in Example 5.4. It was proved that the matrices Lε,η(λ) are strong linearizations of 
G(λ) =

[
λ+λ−1 0

0 0

]
. Notice that, under the same notation as above, r = 1, d = 1, n = 1, 

s = ε + η, A1 = 1, B1 = 0, C1 = 0 and D1 + C1A
−1
1 B1 �= 0. As we proved μ(G(λ)) = 0

and μ(Lε,η(λ)) = ε + η. Thus, μ(G(λ)) = μ(Lε,η(λ)) + dr − (r + s), as claimed.

6. Minimal bases and indices of strong block minimal bases linearizations of rational 
matrices

The aim of this section is to study the relationship between the minimal bases and 
indices of a rational matrix and the minimal bases and indices of its strong block minimal 
bases linearizations. This family of strong linearizations is a rather general family intro-
duced in [6, Theorem 5.11]. It will be shown in Section 8 that the families of Fiedler-like 
linearizations of rational matrices introduced in [1,3,12,14] are, modulo permutations, 
particular instances of strong block minimal bases linearizations. Actually, this is a con-
sequence of the corresponding results for polynomial matrices in [11] and [19, Lemma 2.7]. 
Moreover, the strong block minimal bases linearizations are closely connected to those 
introduced in [19]. In contrast to Fiedler-like linearizations, affine spaces of linearizations 
[13] and the linearizations in [19], which are only defined for square rational matrices, 
strong block minimal bases linearizations are valid for general rectangular rational ma-
trices. Strong block minimal bases linearizations of rational matrices are built on strong 
block minimal bases linearizations of polynomial matrices, presented previously in [18, 
Definition 3.1] (see [17] for an expanded version of this latter reference). In order to 
introduce these families of linearizations and prove the results in this section, we need 
to recall first a number of concepts in the next paragraphs.

A matrix polynomial N(λ) ∈ F [λ]m×l with m < l is a minimal basis if the columns 
of N(λ)T form a minimal basis of the subspace they span. Moreover, two matrix poly-
nomials K(λ) ∈ F [λ]m1×l and N(λ) ∈ F [λ]m2×l are dual minimal bases if they are both 
minimal bases satisfying m1 + m2 = l and K(λ)N(λ)T = 0 (see [18,26]).

Let us recall the definition of strong block minimal bases pencils associated to a 
polynomial matrix (see [18, Definition 3.1 and Theorem 3.3] or [6, Definition 5.2]). Let 
P (λ) ∈ F [λ]p×m be a polynomial matrix. A strong block minimal bases pencil associated 
to P (λ) is a linear polynomial matrix with the following structure

L(λ) =
[
M(λ) K2(λ)T
K1(λ) 0

] }
p+p̂

} m̂

︸ ︷︷ ︸ ︸ ︷︷ ︸ , (12)
m+m̂ p̂
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where K1(λ) ∈ F [λ]m̂×(m+m̂) (respectively K2(λ) ∈ F [λ]p̂×(p+p̂)) is a minimal basis with 
all its row degrees equal to 1 and with the row degrees of a minimal basis N1(λ) ∈
F [λ]m×(m+m̂) (respectively N2(λ) ∈ F [λ]p×(p+p̂)) dual to K1(λ) (respectively K2(λ)) all 
equal, and such that

P (λ) = N2(λ)M(λ)N1(λ)T . (13)

If, in addition, deg(P (λ)) = deg(N2(λ)) +deg(N1(λ)) +1 then L(λ) is said to be a strong 
block minimal bases pencil associated to P (λ) with sharp degree. The key property is 
that any strong block minimal bases pencil associated to P (λ) is a strong linearization 
of P (λ) [18, Theorem 3.3].

Let G(λ) = D(λ) + Gsp(λ) be the unique decomposition of G(λ) ∈ F(λ)p×m into its 
polynomial part D(λ) ∈ F [λ]p×m and its strictly proper part Gsp(λ) ∈ Fpr(λ)p×m, and 
let Gsp(λ) = C(λIn −A)−1B be a minimal order state-space realization of Gsp(λ) with 
n = ν(G(λ)). Assume4 that deg(D(λ)) > 1 and let (12) be a strong block minimal bases 
pencil associated to D(λ) with sharp degree, with N1(λ) ∈ F [λ]m×(m+m̂) and N2(λ) ∈
F [λ]p×(p+p̂) minimal bases dual to K1(λ) and K2(λ), respectively, such that D(λ) =
N2(λ)M(λ)N1(λ)T . Let K̂1 ∈ Fm×(m+m̂), N̂1(λ) ∈ F [λ]m̂×(m+m̂), K̂2 ∈ Fp×(p+p̂) and 
N̂2(λ) ∈ F [λ]p̂×(p+p̂) be matrices such that for i = 1, 2

Ui(λ) =
[
Ki(λ)
K̂i

]
and Ui(λ)−1 =

[
N̂i(λ)T Ni(λ)T

]
(14)

are unimodular (see in [6, Lemma 5.5] the result that guarantees that all these matrices 
exist and are well-defined). Let T, S ∈ Fn×n be any nonsingular constant matrices. By 
[6, Theorem 5.11] the linear polynomial matrix

L(λ) =

⎡⎢⎣ T (λIn −A)S TBK̂1 0
− K̂T

2 CS M(λ) K2(λ)T

0 K1(λ) 0

⎤⎥⎦ (15)

is a strong linearization of G(λ) and is called strong block minimal bases linearization 
of G(λ).

Furthermore, by [6, Theorem 5.7], there are matrices X(λ) ∈ F [λ]p̂×m (X(λ) =
N̂2(λ)M(λ)N1(λ)T ), Y (λ) ∈ F [λ]p×m̂ (Y (λ) = N2(λ)M(λ)N̂1(λ)T ), and Z(λ) ∈
F [λ]p̂×m̂ (Z(λ) = N̂2(λ)M(λ)N̂1(λ)T ) such that

V (λ) =
[
N1(λ)T N̂1(λ)T 0
−X(λ) 0 Ip̂

]
and U(λ) =

⎡⎣N2(λ) −Y (λ)
0 Im̂

N̂2(λ) −Z(λ)

⎤⎦ (16)

4 If deg(D(λ)) ≤ 1, then the polynomial system matrix 
[
λIn−A B

−C D(λ)

]
with transfer function matrix G(λ)

gives directly a strong linearization of G(λ), as discussed in [6], and the idea of strong block minimal bases 
linearizations is of no interest.
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are unimodular matrices and

U(λ)
[
M(λ) K2(λ)T
K1(λ) 0

]
V (λ) = Diag(D(λ), Im̂+p̂),

as can be easily checked through a direct matrix multiplication. Moreover, U(λ)
[
−K̂T

2 CS
0

]
=

[−CS
0

]
and 

[
TBK̂1 0

]
V (λ) = [TB 0]. Thus,

[
T−1 0
0 U(λ)

]
L(λ)

[
S−1 0
0 V (λ)

]
=

[
λIn −A B 0
−C D(λ) 0
0 0 Im̂+p̂

]
.

Let Ĝ(λ) be the transfer function matrix of L(λ), i.e.,

Ĝ(λ) =
[
M(λ) + K̂T

2 C(λIn −A)−1BK̂1 K2(λ)T
K1(λ) 0

]
. (17)

Taking into account the developments above, a straightforward computation yields

U(λ)Ĝ(λ)V (λ) = Diag(G(λ), Im̂+p̂), (18)

which implies, among other properties, dimNr(Ĝ(λ)) = dimNr(G(λ)) and dimN�(Ĝ(λ))
= dimN�(G(λ)), in agreement with the properties of any (strong) linearization of G(λ).

In order to investigate the relationship between the minimal bases and indices of 
a rational matrix and those of its strong block minimal bases linearizations, we prove 
Lemma 6.1. This lemma first establishes the relationship between vectors in the right 
null-space of the rational matrix and in the right null-spaces of the transfer functions of 
any of its strong block minimal bases linearizations. Secondly, it relates the right minimal 
bases of the rational matrix and those of the transfer functions of its strong block minimal 
bases linearizations. Lemma 6.1 is based on [18, Lemma A.1], which is a similar result 
corresponding to strong block minimal bases pencils of polynomial matrices.

Lemma 6.1. Let G(λ) ∈ F(λ)p×m and let L(λ) as in (15) be a strong block minimal bases 
linearization of G(λ). Let Ĝ(λ) be its transfer function matrix, as in (17). Let N1(λ) be 
a minimal basis dual to K1(λ) and let N̂2(λ) be the matrix in (14).

(a) If h(λ) ∈ Nr(G(λ)) then

z(λ) =
[

N1(λ)T

−N̂2(λ)M(λ)N1(λ)T

]
h(λ) ∈ Nr(Ĝ(λ)).

Moreover, if 0 �= h(λ) ∈ Nr(G(λ)) is a vector polynomial then z(λ) is also a vector 
polynomial and
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deg(z(λ)) = deg(N1(λ)Th(λ)) = deg(N1(λ)) + deg(h(λ)). (19)

(b) If {h1(λ), . . . , hl(λ)} is a right minimal basis of G(λ) then{[
N1(λ)T

−N̂2(λ)M(λ)N1(λ)T

]
h1(λ), . . . ,

[
N1(λ)T

−N̂2(λ)M(λ)N1(λ)T

]
hl(λ)

}

is a right minimal basis of Ĝ(λ).

Proof. By Proposition 4.1, equation (18) and using the structure of V (λ) in (16) (recall 
that X(λ) = N̂2(λ)M(λ)N1(λ)T ) we obtain the first part of (a). Now, we are going to 
prove (19) following the ideas of [18, Lemma A.1]. It can be seen as in the proof of [18, 
Lemma A.1] that for any vector polynomial g(λ) �= 0

deg(N1(λ)T g(λ)) = deg(N1(λ)) + deg(g(λ)), (20)

for any vector polynomial y(λ) �= 0

deg(K2(λ)T y(λ)) = deg(K2(λ)) + deg(y(λ)) = 1 + deg(y(λ)), (21)

and

deg(z(λ)) = max{deg(N1(λ)Th(λ)),deg(X(λ)h(λ))}. (22)

If X(λ)h(λ) = 0 then (19) follows. Otherwise, use 0 = Ĝ(λ)z(λ) and consider the 
expression of Ĝ(λ) in (17)

0 =
[
M(λ) + K̂T

2 C(λIn −A)−1BK̂1 K2(λ)T
K1(λ) 0

][
N1(λ)T
−X(λ)

]
h(λ)

=
[
M(λ)N1(λ)T + K̂T

2 C(λIn −A)−1B −K2(λ)TX(λ)
0

]
h(λ).

Therefore, M(λ)N1(λ)Th(λ) −K2(λ)TX(λ)h(λ) = −K̂T
2 C(λIn −A)−1Bh(λ). Since the 

expression on the left hand side of this equality is polynomial, the expression on the right 
hand side must be polynomial. Moreover, by Lemma 3.3, deg(K̂T

2 C(λIn−A)−1Bh(λ)) <
deg(h(λ)) since K̂T

2 C(λIn −A)−1B is strictly proper. Write the previous expression as

K2(λ)TX(λ)h(λ) = M(λ)N1(λ)Th(λ) + K̂T
2 C(λIn −A)−1Bh(λ).

Notice that (21) implies that

1 + deg(X(λ)h(λ)) = deg(M(λ)N1(λ)Th(λ) + K̂T
2 C(λIn −A)−1Bh(λ)).
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By using the previous expression, we now show

deg(X(λ)h(λ)) ≤ deg(N1(λ)Th(λ)). (23)

If deg(K̂T
2 C(λIn −A)−1Bh(λ)) ≤ deg(M(λ)N1(λ)Th(λ)) then

1 + deg(X(λ)h(λ)) ≤ deg(M(λ)N1(λ)Th(λ)) ≤ 1 + deg(N1(λ)Th(λ)).

Otherwise, if deg(K̂T
2 C(λIn −A)−1Bh(λ)) > deg(M(λ)N1(λ)Th(λ)) then

1 + deg(X(λ)h(λ)) = deg(K̂T
2 C(λIn −A)−1Bh(λ)) < deg(h(λ)) and

deg(X(λ)h(λ)) < deg(h(λ)) − 1 < deg(h(λ)) + deg(N1(λ)) = deg(N1(λ)Th(λ)).

Therefore, (20), (22) and (23) prove that deg(z(λ)) = deg(N1(λ)) + deg(h(λ)).
The proof of part (b) is similar to the proof of [18, Lemma A.1] taking into account 

that dimNr(Ĝ(λ)) = dimNr(G(λ)). Therefore, the details are omitted. �
As a corollary of Lemma 6.1 we get the following result on the relationship between 

the minimal indices of a rational matrix and of the transfer function of any of its strong 
block minimal bases linearizations.

Corollary 6.2. Let G(λ) ∈ F(λ)p×m and let L(λ) as in (15) be a strong block minimal 
bases linearization of G(λ). Let Ĝ(λ) be its transfer function matrix, as in (17). Let 
N1(λ) be a minimal basis dual to K1(λ) and N2(λ) be a minimal basis dual to K2(λ).

(a) If ε1 ≤ · · · ≤ εl are the right minimal indices of G(λ) then ε1 + deg(N1(λ)) ≤ · · · ≤
εl + deg(N1(λ)) are the right minimal indices of Ĝ(λ).

(b) If η1 ≤ · · · ≤ ηq are the left minimal indices of G(λ) then η1 + deg(N2(λ)) ≤ · · · ≤
ηq + deg(N2(λ)) are the left minimal indices of Ĝ(λ).

Proof. Part (a) follows from part (b) of Lemma 6.1 and (19). Suppose now that η1 ≤
· · · ≤ ηq are the left minimal indices of G(λ). By Lemma 3.5, η1 ≤ · · · ≤ ηq are the right 
minimal indices of G(λ)T . Notice that L(λ)T is a strong block minimal bases linearization 
of G(λ)T with transfer function matrix Ĝ(λ)T . Observe that ST , AT , TT , BT , CT , K̂1, 
K̂2, M(λ)T , K1(λ), K2(λ) in L(λ)T play the role of T , A, S, −C, −B, K̂2, K̂1, M(λ), 
K2(λ), K1(λ) in L(λ) respectively. In particular, K2(λ) in L(λ)T plays the role of K1(λ)
in L(λ). Thus, by part (a), η1+deg(N2(λ)) ≤ · · · ≤ ηq+deg(N2(λ)) are the right minimal 
indices of Ĝ(λ)T . By Lemma 3.5 again, η1 +deg(N2(λ)) ≤ · · · ≤ ηq +deg(N2(λ)) are the 
left minimal indices of Ĝ(λ). �

Now, we provide a recovery result for the minimal bases of a rational matrix from 
the minimal bases of the transfer functions of any of its strong block minimal bases 
linearizations, i.e., the converse of Lemma 6.1-(b).
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Lemma 6.3. Let G(λ) ∈ F(λ)p×m and let L(λ) as in (15) be a strong block minimal bases 
linearization of G(λ). Let Ĝ(λ) be its transfer function matrix, as in (17). Let N1(λ) be 
a minimal basis dual to K1(λ), N2(λ) be a minimal basis dual to K2(λ) and N̂1(λ) and 
N̂2(λ) be the matrices appearing in (14).

(a) Any right minimal basis of Ĝ(λ) has the form{[
N1(λ)T

−N̂2(λ)M(λ)N1(λ)T

]
h1(λ), . . . ,

[
N1(λ)T

−N̂2(λ)M(λ)N1(λ)T

]
hl(λ)

}

where {h1(λ), . . . , hl(λ)} is some right minimal basis of G(λ).
(b) Any left minimal basis of Ĝ(λ) has the form{[

N2(λ)T

−N̂1(λ)M(λ)TN2(λ)T

]
j1(λ), . . . ,

[
N2(λ)T

−N̂1(λ)M(λ)TN2(λ)T

]
jq(λ)

}

where {j1(λ), . . . , jq(λ)} is some left minimal basis of G(λ).

Proof. The proof is like the one of [17, Lemma 7.1]. Therefore, it is omitted. �
Remark 6.4. Lemma 6.3 implies that a right (resp., left) minimal basis of G(λ) can 
be obtained, or recovered, from any right (resp., left) minimal basis of Ĝ(λ), as it is 
described in this remark. Let us focus for brevity only on right minimal bases, since 
the procedure for left minimal bases is completely analogous. Note first that the vectors 
{ĥ1(λ), . . . , ̂hl(λ)} obtained by taking the top m + m̂ entries of the vectors of any right 
minimal basis of Ĝ(λ) are always of the form

{ĥ1(λ), . . . , ĥl(λ)} = {N1(λ)Th1(λ), . . . , N1(λ)Thl(λ)}, (24)

with {h1(λ), . . . , hl(λ)} a right minimal basis of G(λ). Then, it is enough to multiply each 
ĥj(λ) by a left inverse of N1(λ)T in order to get the right minimal basis {h1(λ), . . . , hl(λ)}
of G(λ). Such left inverse may be, for instance, the matrix K̂1 in (14). Moreover, in 
some cases important in applications, the matrices N1(λ) and K̂1 are very simple and 
allow us to recover a right minimal basis of G(λ) without the need of performing any 
matrix multiplication. This happens, for instance, if K1(λ) = Lε(λ) ⊗ Im (and K2(λ) =
Lη(λ) ⊗ Ip) in (15), where

Lk(λ) =

⎡⎢⎢⎣
−1 λ

−1 λ
. . . . . .

−1 λ

⎤⎥⎥⎦ ∈ F [λ]k×(k+1), (25)

which corresponds to the well-known block Kronecker linearizations of the polynomial 
part of G(λ) [18, Section 4] (see also [6, Examples 5.3 and 5.6]). In this case,



A. Amparan et al. / Linear Algebra and its Applications 623 (2021) 14–67 45
N1(λ)T =

⎡⎢⎢⎣
λε

...
λ
1

⎤⎥⎥⎦⊗ Im and K̂1 = [0 · · · 0 1] ⊗ Im.

Thus a minimal bases of G(λ) can be obtained just by taking the last m entries of the 
vectors {ĥ1(λ), . . . , ̂hl(λ)} in (24).

The next Theorem 6.5 is the main result in this section, together with Theorem 6.7, 
and one of the most relevant results in this paper. Theorem 6.5 describes the complete 
relationship between the minimal bases of a rational matrix and the minimal bases of its 
strong block minimal bases linearizations in both directions. It follows from combining 
results in Section 3 with results previously obtained in this section.

Theorem 6.5. Let G(λ) ∈ F(λ)p×m and let L(λ) as in (15) be a strong block minimal 
bases linearization of G(λ). Let N1(λ) be a minimal basis dual to K1(λ), N2(λ) be a 
minimal basis dual to K2(λ) and N̂1(λ) and N̂2(λ) be the matrices appearing in (14).

(a)
[
H1(λ)
H2(λ)
H3(λ)

]
is a right minimal basis of L(λ) if and only if

H1(λ) = −S−1(λIn −A)−1BH(λ),

H2(λ) = N1(λ)TH(λ),

H3(λ) = −N̂2(λ)M(λ)N1(λ)TH(λ)

for some right minimal basis H(λ) of G(λ).

(b)
[
H1(λ)
H2(λ)
H3(λ)

]
is a left minimal basis of L(λ) if and only if

H1(λ) = (C(λIn −A)−1T−1)TH(λ),

H2(λ) = N2(λ)TH(λ),

H3(λ) = −N̂1(λ)M(λ)TN2(λ)TH(λ)

for some left minimal basis H(λ) of G(λ).

Proof. Let Ĝ(λ) be the transfer function matrix of L(λ). Notice that both (T (λIn −
A)S)−1 [TBK̂1 0

]
and 

[
−K̂T

2 CS
0

]
(T (λIn − A)S)−1 are strictly proper matrices. By 

Corollary 3.9, 
[
H1(λ)
H2(λ)
H3(λ)

]
is a right minimal basis of L(λ) if and only if 

[
H2(λ)
H3(λ)

]
is a right 

minimal basis of Ĝ(λ) and H1(λ) = −S−1(λIn −A)−1BK̂1H2(λ). Now, by Lemma 6.3, 
H2(λ) = N1(λ)TH(λ) and H3(λ) = −N̂2(λ)M(λ)N1(λ)TH(λ) for some H(λ) right 
minimal basis of G(λ).
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Part (b) is proved similarly. �
Remark 6.6. Theorem 6.5 implies that a right (resp., left) minimal basis of G(λ) can 
be recovered from any right (resp., left) minimal basis of any of its strong block min-
imal bases linearizations. Such recovery procedure is completely analogous to the one 
described in Remark 6.4 except for the following minor variation: in the case of Theo-
rem 6.5 the right (resp., left) minimal bases of G(λ) have to be recovered from the entries 
n + 1, n + 2, . . . , n +m + m̂ (resp., n + 1, n + 2, . . . , n + p + p̂) of the vectors of the right 
(resp., left) minimal bases of its strong block minimal bases linearizations. As in Re-
mark 6.4, the recovery is extremely simple for strong block minimal bases linearizations 
of G(λ) constructed from a block Kronecker linearization of its polynomial part.

In the last result of this section, the relationship between the minimal indices of a 
rational matrix and those of its strong block minimal bases linearizations is established.

Theorem 6.7. Let G(λ) ∈ F(λ)p×m and let L(λ) as in (15) be a strong block minimal 
bases linearization of G(λ). Let N1(λ) be a minimal basis dual to K1(λ) and N2(λ) be a 
minimal basis dual to K2(λ).

(a) If ε1 ≤ · · · ≤ εl are the right minimal indices of G(λ) then ε1 + deg(N1(λ)) ≤ · · · ≤
εl + deg(N1(λ)) are the right minimal indices of L(λ).

(b) If η1 ≤ · · · ≤ ηq are the left minimal indices of G(λ) then η1 + deg(N2(λ)) ≤ · · · ≤
ηq + deg(N2(λ)) are the left minimal indices of L(λ).

Proof. Let Ĝ(λ) be the transfer function matrix of L(λ). If ε1 ≤ · · · ≤ εl are the right 
minimal indices of G(λ) then, by Corollary 6.2, ε1 +deg(N1(λ)) ≤ · · · ≤ εl +deg(N1(λ))
are the right minimal indices of Ĝ(λ). Now, by Theorem 3.6, these are the right minimal 
indices of L(λ).

A similar proof can be done in order to prove (b). �
7. Minimal bases and indices of M1 and M2-strong linearizations of rational matrices

M1 and M2-strong linearizations of square rational matrices have been recently in-
troduced in [19] by combining results from [6] with the M1 and M2 ansatz spaces of 
linearizations of a polynomial matrix developed in [21], which in turn are inspired by 
the pioneer L1 and L2 vector spaces of linearizations of matrix polynomials introduced 
in [30]. Among other properties, M1 and M2-strong linearizations of rational matrices 
allow us to deal very easily with rational matrices whose polynomial part is expressed in 
any orthogonal basis. In this section, we study the minimal bases and indices of M1 and 
M2-strong linearizations of rational matrices. Since these families of linearizations are 
closely connected to strong block minimal bases linearizations, it is not surprising that 
the results of this section are easily obtained from combining those in Section 6 with 
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specific properties of M1 and M2-strong linearizations. Besides, we extend the results 
on minimal indices and bases to the strong linearizations of rational matrices whose 
polynomial part is expressed in other polynomial bases, not only orthogonal. These were 
developed in [19, Section 9]. In order to proceed, we need to recap first some results and 
notations taken from [19].

The following lemma establishes a general result about the relationship between the 
minimal bases and indices of two rational matrices connected by a nonsingular constant 
matrix on the left. We will see that this simple result will allow us to obtain the relation-
ship between the minimal bases and indices of a rational matrix and its M1, M2-strong 
linearizations. The reason is that an M1-strong linearization is a strong block minimal 
bases linearization premultiplied by a nonsingular constant matrix, and an M2-strong 
linearization is a strong block minimal bases linearization postmultiplied by a nonsingu-
lar constant matrix.

Lemma 7.1. Let G1(λ), G2(λ) ∈ F(λ)p×m and X ∈ Fp×p be nonsingular such that 
G2(λ) = XG1(λ). Then, H(λ) is a right minimal basis of G1(λ) if and only if H(λ)
is a right minimal basis of G2(λ) and H(λ) is a left minimal basis of G1(λ) if and only 
if X−TH(λ) is a left minimal basis of G2(λ). Moreover, G1(λ) and G2(λ) have the same 
right minimal indices and the same left minimal indices.

Proof. Notice that G1(λ)H(λ) = 0 if and only if G2(λ)H(λ) = 0. Moreover, by 
Lemma 3.5, H(λ) is a left minimal basis of G1(λ) if and only if H(λ) is a right minimal 
basis of G1(λ)T . Furthermore, G1(λ)TH(λ) = 0 if and only if G2(λ)TX−TH(λ) = 0
and, by [16, Lemma 2.16], X−TH(λ) is a minimal basis with the same column degrees 
as H(λ). Therefore, H(λ) is a right minimal basis of G1(λ)T if and only if X−TH(λ) is 
a right minimal basis of G2(λ)T and, by Lemma 3.5 again, X−TH(λ) is a left minimal 
basis of G2(λ). �

The definitions of the M1 and M2-strong linearizations introduced in Subsections 
7.1 and 7.3 are based on the matrices and vectors presented in the next paragraphs. 
Consider a polynomial basis {φj(λ)}∞j=0 of F [λ], viewed as an F -vector space, with φj(λ)
a polynomial of degree j, that satisfies the following three-term recurrence relation:

αjφj+1(λ) = (λ− βj)φj(λ) − γjφj−1(λ) j ≥ 0 (26)

where αj , βj , γj ∈ F , αj �= 0, φ−1(λ) = 0, and φ0(λ) = 1.
Let G(λ) ∈ F(λ)m×m be a rational matrix, let G(λ) = D(λ) + Gsp(λ) be its unique 

decomposition into its polynomial part D(λ) ∈ F [λ]m×m and its strictly proper part 
Gsp(λ) ∈ Fpr(λ)m×m, and let Gsp(λ) = C(λIn −A)−1B be a minimal order state-space 
realization of Gsp(λ), where n = ν(G(λ)). Assume that deg(D(λ)) ≥ 2. Write D(λ) in 
terms of the polynomial basis {φj(λ)}∞j=0, as

D(λ) = Dkφk(λ) + Dk−1φk−1(λ) + · · · + D1φ1(λ) + D0φ0(λ) (27)
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with Dk �= 0. Let

Φk(λ) = [φk−1(λ) · · ·φ1(λ) φ0(λ)]T , (28)

mD
Φ (λ) =

[
(λ− βk−1)

αk−1
Dk + Dk−1 Dk−2 −

γk−1

αk−1
Dk Dk−3 · · · D1 D0

]
,

MΦ(λ) =

⎡⎢⎢⎢⎢⎢⎢⎣
−αk−2 (λ− βk−2) −γk−2

−αk−3 (λ− βk−3) −γk−3
. . . . . . . . .

−α1 (λ− β1) −γ1
−α0 (λ− β0)

⎤⎥⎥⎥⎥⎥⎥⎦ ,

FD
Φ (λ) =

[
mD

Φ (λ)
MΦ(λ) ⊗ Im

]
. (29)

7.1. Minimal bases and indices of M1-strong linearizations of rational matrices

We investigate first the relationship between the minimal bases and indices of a ra-
tional matrix and its M1-strong linearizations.

For any nonsingular constant matrices T, S ∈ Fn×n the linear polynomial matrix

L(λ) =

⎡⎢⎣ T (λIn −A)S 0n×(k−1)m TB

−CS mD
Φ (λ)

0(k−1)m×n MΦ(λ) ⊗ Im

⎤⎥⎦

=

⎡⎢⎣ T (λIn −A)S 0n×(k−1)m TB

−CS

0(k−1)m×n
FD

Φ (λ)

⎤⎥⎦
(30)

is a strong linearization of G(λ) (see [19, Theorem 3.8]). Taking into account also [19, 
Lemmas 3.3 and 3.7] and their proofs, note that L(λ) is a strong block minimal bases 
linearization of G(λ) as in (15) with M(λ) = mD

Φ (λ), K1(λ) = MΦ(λ) ⊗Im, K2(λ) empty, 
N1(λ) = (Φk(λ) ⊗Im)T = Φk(λ)T ⊗Im, N2(λ) = Im, K̂1 = eTk ⊗Im, K̂2 = Im and N̂2(λ)
empty, where ek is the kth canonical vector of size k× 1. Moreover, N̂1(λ) is of the form 

N̂1(λ) = Q(λ)T ⊗ Im with Q(λ) =
[
MΦ(λ)

eTk

]−1[
Ik−1

0
]
.

Furthermore, let v ∈ Fk, J ∈ Fkm×(k−1)m with [v ⊗ Im J ] nonsingular and let 
L(λ) = [v ⊗ Im J ]FD

Φ (λ). Then, the linear polynomial matrix

L1(λ) =
[
In 0
0 v ⊗ Im J

]⎡⎢⎣ T (λIn −A)S 0n×(k−1)m TB

−CS mD
Φ (λ)

0(k−1)m×n MΦ(λ) ⊗ Im

⎤⎥⎦
=

[
T (λIn −A)S 0n×(k−1)m TB

−(v ⊗ Im)CS L(λ)

]
(31)
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is a strong linearization of G(λ), which is called M1-strong linearization of G(λ) (see 

[19, Theorem 3.9]). Put X =
[
In 0
0 v ⊗ Im J

]
, which is nonsingular. Thus, L1(λ) =

XL(λ).
With all these results at hand, Theorem 7.2 establishes the relationships between the 

minimal bases and indices of a rational matrix and its M1-strong linearizations.

Theorem 7.2. Let G(λ) ∈ F(λ)m×m and let L1(λ) as in (31) be an M1-strong lineariza-
tion of G(λ). Let Φk(λ) be as in (28).

(a)

⎡⎢⎣ H1(λ)
H2(λ)

...
Hk+1(λ)

⎤⎥⎦ is a right minimal basis of L1(λ) if and only if Hk+1(λ) is a right minimal 

basis of G(λ) and

H1(λ) = −S−1(λIn −A)−1BHk+1(λ),

Hi(λ) = φk−i+1(λ)Hk+1(λ), i = 2, . . . , k.

(b) If 
[
H1(λ)
H2(λ)

]
is a left minimal basis of L1(λ) then (vT ⊗ Im)H2(λ) is a left minimal 

basis of G(λ) and H1(λ) = (C(λIn −A)−1T−1)T (vT ⊗ Im)H2(λ).
(c) If H(λ) is a left minimal basis of G(λ) then 

[
H1(λ)
H2(λ)

]
is a left minimal basis of L1(λ)

where

H1(λ) = (C(λIn −A)−1T−1)TH(λ),

H2(λ) = [v ⊗ Im J ]−T

[
H(λ)

−N̂1(λ)mD
Φ (λ)TH(λ)

]

with N̂1(λ) = Q(λ)T ⊗ Im such that Q(λ) =
[
MΦ(λ)

eTk

]−1[
Ik−1

0
]
.

(d) If ε1 ≤ · · · ≤ εl are the right minimal indices of G(λ) then ε1+k−1 ≤ · · · ≤ εl+k−1
are the right minimal indices of L1(λ).

(e) If η1 ≤ · · · ≤ ηl are the left minimal indices of G(λ) then η1 ≤ · · · ≤ ηl are the left 
minimal indices of L1(λ).

Proof. To prove (a), by using Lemma 7.1, we get that 

⎡⎢⎣ H1(λ)
H2(λ)

...
Hk+1(λ)

⎤⎥⎦ is a right minimal basis 

of L1(λ) if and only if it is a right minimal basis of L(λ) in (30). By the fact that L(λ) is 
a strong block minimal basis linearization of G(λ) and Theorem 6.5 (with N̂2(λ) empty), 

this occurs if and only if H1(λ) = −S−1(λIn − A)−1BH(λ) and 

[
H2(λ)

...

]
= (Φk(λ) ⊗
Hk+1(λ)
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Im)H(λ) for some right minimal basis H(λ) of G(λ). But, since φ0(λ) = 1, H(λ) is 
uniquely determined as H(λ) = Hk+1(λ), and Hi(λ) = φk−i+1(λ)Hk+1(λ), i = 2, . . . , k.

The proof of the other parts can be done similarly by using Lemma 7.1 and Theo-
rems 6.5 or 6.7. Observe that in this case G(λ) is square and, therefore, it has a number 
of left minimal indices equal to the number of right minimal indices. �
Remark 7.3. Part (a) of Theorem 7.2, together with the fact that φ0(λ) = 1, provides 
a very simple recovery rule of a right minimal basis of G(λ) from any right minimal 
basis of any of its M1-strong linearizations: simply take the last m rows of the right 
minimal basis of the M1-strong linearization. Part (b) of Theorem 7.2 also provides a 
simple recovery rule of a left minimal basis of G(λ) from any left minimal basis of any of 
its M1-strong linearizations, though in this case some arithmetic operations are required 
unless v is one of the canonical vectors of Fk.

7.2. Minimal bases and indices of extended M1-strong linearizations of rational 
matrices

Similar ideas and techniques to those in Subsection 7.1 can be used to obtain a 
result similar to Theorem 7.2 for the strong linearizations of rational matrices with 
polynomial part expressed in any degree-graded polynomial basis, i.e., one whose jth 
element has degree j. These strong linearizations were introduced in [19, Section 9]. We 
call such linearizations extended M1-strong linearizations. More precisely, suppose as in 
[19, Section 9] that G(λ) = D(λ) +C(λIn−A)−1B with deg(D(λ)) = k ≥ 2 and consider 
a polynomial basis {ψj(λ)}∞j=0 of F [λ], with ψj(λ) a polynomial of degree j, that satisfies 
the linear relation MΨ(λ)Ψk(λ) = 0, where MΨ(λ) ∈ F [λ](k−1)×k is a minimal basis with 
all its row degrees equal to 1, and

Ψk(λ) = [ψk−1(λ) · · · ψ1(λ) ψ0(λ)]T . (32)

Note that Ψk(λ0) �= 0 for all λ0 ∈ F because ψ0(λ) has degree 0. Example 9.2 in 
[19] shows how to construct MΨ(λ) from a recurrence relation that holds under the 
assumption that the polynomials in the basis are monic. Let mD

Ψ(λ) be a pencil such that 
mD

Ψ(λ)(Ψk(λ) ⊗Im) = D(λ) (see again [19, Example 9.2] for an explicit construction). By 

[6, Lemma 5.5], there exists a vector w ∈ Fk such that U(λ) =
[
MΨ(λ)
wT

]
is unimodular, 

and its inverse has the form U(λ)−1 = [R(λ) Ψk(λ)] with R(λ) =
[
MΨ(λ)
wT

]−1[
Ik−1

0
]
. 

Note that in the construction of [19, Example 9.2], one can take simply wT = eTk =

[0 · · · 0 1]T . Let v ∈ Fk, [v⊗Im J ] nonsingular, and L(λ) = [v⊗Im J ] 
[

mD
Ψ(λ)

MΨ(λ) ⊗ Im

]
. 

By [19, Theorem 9.1], for any T and S nonsingular,
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L1(λ) =
[
In 0
0 v ⊗ Im J

]⎡⎢⎣ T (λIn −A)S TB(wT ⊗ Im)
−CS mD

Ψ(λ)
0(k−1)m×n MΨ(λ) ⊗ Im

⎤⎥⎦
=

[
T (λIn −A)S TB(wT ⊗ Im)
−(v ⊗ Im)CS L(λ)

] (33)

is a strong linearization of G(λ), that we call extended M1-strong linearization. Moreover, 
the matrix on the right of the first equality is a strong block minimal bases linearization of 
G(λ) as in (15) with M(λ) = mD

Ψ(λ), K1(λ) = MΨ(λ) ⊗Im, K2(λ) empty, K̂1 = wT ⊗Im, 
and K̂2 = Im. Furthermore, N1(λ) = Ψk(λ)T ⊗ Im, N2(λ) = Im, N̂1(λ) = R(λ)T ⊗ Im, 
and N̂2(λ) is empty. With all this in mind, by using the same techniques as for the proof 
of Theorem 7.2, the following result is obtained.

Theorem 7.4. Let G(λ) ∈ F(λ)m×m and let L1(λ) as in (33) be an extended M1-strong 
linearization of G(λ). Let Ψk(λ) be as in (32).

(a)

⎡⎢⎣ H1(λ)
H2(λ)

...
Hk+1(λ)

⎤⎥⎦ is a right minimal basis of L1(λ) if and only if

H1(λ) = −S−1(λIn −A)−1BH(λ),

Hi(λ) = ψk−i+1(λ)H(λ), i = 2, . . . , k + 1

for some right minimal basis H(λ) of G(λ).
(b) If 

[
H1(λ)
H2(λ)

]
is a left minimal basis of L1(λ) then (vT ⊗ Im)H2(λ) is a left minimal 

basis of G(λ) and H1(λ) = (C(λIn −A)−1T−1)T (vT ⊗ Im)H2(λ).
(c) If H(λ) is a left minimal basis of G(λ) then 

[
H1(λ)
H2(λ)

]
is a left minimal basis of L1(λ)

where

H1(λ) = (C(λIn −A)−1T−1)TH(λ),

H2(λ) = [v ⊗ Im J ]−T

[
H(λ)

−N̂1(λ)mD
Ψ(λ)TH(λ)

]

with N̂1(λ) = R(λ)T ⊗ Im such that R(λ) =
[
Mψ(λ)
wT

]−1[
Ik−1

0
]
.

(d) If ε1 ≤ · · · ≤ εl are the right minimal indices of G(λ) then ε1+k−1 ≤ · · · ≤ εl+k−1
are the right minimal indices of L1(λ).

(e) If η1 ≤ · · · ≤ ηl are the left minimal indices of G(λ) then η1 ≤ · · · ≤ ηl are the left 
minimal indices of L1(λ).

Note that in Theorem 7.4(a), Hk+1(λ) itself is a right minimal basis of G(λ) since 
ψ0(λ) has degree zero and is a constant.
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7.3. Minimal bases and indices of M2-strong linearizations of rational matrices

We investigate now the relationship between the minimal bases and indices of a ra-
tional matrix and its M2-strong linearizations. The developments and results are very 
similar to those in Subsection 7.1 and, therefore, are described briefly.

Let Q(λ) be a km ×lm pencil of the form Q(λ) =
k∑

i=1

l∑
j=1

eie
T
j ⊗Qij(λ) for certain m ×m

pencils Qij(λ), and where ei (resp., ej) is the ith (resp., jth) canonical vector in Fk (resp., 

F l). The lm × km pencil Q(λ)B =
k∑

i=1

l∑
j=1

eje
T
i ⊗Qij(λ) is the block-transpose of Q(λ). 

Notice that the block-transpose of FD
Φ (λ) in (29) is FD

Φ (λ)B = [mD
Φ (λ)B MΦ(λ)T ⊗Im].

For any nonsingular constant matrices T, S ∈ Fn×n the linear polynomial matrix

L(λ) =

⎡⎢⎣ T (λIn −A)S TB 0n×(k−1)m

0(k−1)m×n

−CS
mD

Φ (λ)B MΦ(λ)T ⊗ Im

⎤⎥⎦
=

⎡⎢⎣ T (λIn −A)S TB 0n×(k−1)m

0(k−1)m×n

−CS
FD

Φ (λ)B

⎤⎥⎦
(34)

is a strong linearization of G(λ) (see [19, Theorem 4.3]). Notice that L(λ) is a strong 
block minimal bases linearization of G(λ) as in (15) with M(λ) = mD

Φ (λ)B, K1(λ)
empty, K2(λ) = MΦ(λ) ⊗ Im, N1(λ) = Im, N2(λ) = (Φk(λ) ⊗ Im)T = Φk(λ)T ⊗ Im, 
K̂1 = Im, K̂2 = eTk ⊗ Im and N̂1(λ) empty. Moreover, N̂2(λ) = Q(λ)T ⊗ Im such that 

Q(λ) =
[
MΦ(λ)

eTk

]−1[
Ik−1

0
]
.

Furthermore, let w ∈ Fk, J ∈ Fkm×(k−1)m with 
[
wT⊗Im

JB

]
nonsingular and L(λ) =

FD
Φ (λ)B

[
wT⊗Im

JB

]
. Then, the linear polynomial matrix

L2(λ) =

⎡⎢⎣ T (λIn −A)S TB 0n×(k−1)m

0(k−1)m×n

−CS
mD

Φ (λ)B MΦ(λ)T ⊗ Im

⎤⎥⎦
⎡⎢⎣ In 0

0 wT ⊗ Im
0 JB

⎤⎥⎦

=

⎡⎢⎣ T (λIn −A)S TB(wT ⊗ Im)
0(k−1)m×n

−CS
L(λ)

⎤⎥⎦ (35)

is a strong linearization of G(λ), which is called M2-strong linearization of G(λ) (see [19, 

Theorem 4.4]). Put Y =

⎡⎢⎣ In 0
0 wT ⊗ Im
0 JB

⎤⎥⎦, which is nonsingular. Thus, L2(λ) = L(λ)Y .
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The relationship between the minimal bases and indices of a rational matrix and its 
M2-strong linearizations is given in Theorem 7.5.

Theorem 7.5. Let G(λ) ∈ F(λ)m×m and let L2(λ) as in (35) be an M2-strong lineariza-
tion of G(λ). Let Φk(λ) be as in (28).

(a) If 
[
H1(λ)
H2(λ)

]
is a right minimal basis of L2(λ) then (wT ⊗Im)H2(λ) is a right minimal 

basis of G(λ) and H1(λ) = −S−1(λIn −A)−1B(wT ⊗ Im)H2(λ).
(b) If H(λ) is a right minimal basis of G(λ) then 

[
H1(λ)
H2(λ)

]
is a right minimal basis of 

L2(λ) where

H1(λ) = −S−1(λIn −A)−1BH(λ),

H2(λ) =
[
wT ⊗ Im

JB

]−1
[

H(λ)
−N̂2(λ)mD

Φ (λ)BH(λ)

]

with N̂2(λ) = Q(λ)T ⊗ Im such that Q(λ) =
[
MΦ(λ)

eTk

]−1[
Ik−1

0
]
.

(c)

⎡⎢⎣ H1(λ)
H2(λ)

...
Hk+1(λ)

⎤⎥⎦ is a left minimal basis of L2(λ) if and only if Hk+1(λ) is a left minimal 

basis of G(λ) and

H1(λ) = (C(λIn −A)−1T−1)THk+1(λ),

Hi(λ) = φk−i+1(λ)Hk+1(λ), i = 2, . . . , k.

(d) If ε1 ≤ · · · ≤ εl are the right minimal indices of G(λ) then ε1 ≤ · · · ≤ εl are the 
right minimal indices of L2(λ).

(e) If η1 ≤ · · · ≤ ηl are the left minimal indices of G(λ) then η1 +k−1 ≤ · · · ≤ ηl +k−1
are the left minimal indices of L2(λ).

Proof. The proof can be done by using Lemmas 3.5(a) and 7.1, and Theorems 6.5 and 
6.7, and by following the same pattern as in the proof of Theorem 7.2. �
Remark 7.6. Comments similar to those in Remark 7.3 can be done in order to ap-
ply Theorem 7.5 to recover minimal bases of G(λ) from those of any of its M2-strong 
linearizations. The only difference to be emphasized is that the roles of left and right 
minimal bases are interchanged in Theorems 7.2 and 7.5.

Results completely analogous after obvious modifications to those in Subsection 7.2
can be obtained in the M2-framework. They are omitted for brevity.
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8. Fiedler-like linearizations of rational matrices are block permutations of strong 
block minimal bases linearizations. Consequences

Fiedler pencils (FP), generalized Fiedler pencils (GFP), Fiedler pencils with repeti-
tion (FPR) and generalized Fiedler pencils with repetition (GFPR) of square rational 
matrices G(λ) have been introduced in the references [1,3,12,14], respectively. In simple 
words, the main idea in those definitions is to combine the corresponding class of Fiedler-
like pencils of the polynomial part of G(λ) (introduced originally in [23,8,40,10]) with 
a minimal order state-space realization of its strictly proper part in order to construct 
minimal order linear polynomial system matrices, of other rational matrices Ĝ(λ), which 
are strong linearizations of G(λ). We emphasize that FPRs and GFPRs are strong lin-
earizations of G(λ) under certain non-singularity generic hypotheses that, for simplicity, 
are assumed to hold in this section. We will recall that such assumptions hold by using 
the wordings “FPR linearization” and “GFPR linearization”. Moreover, among the GFPs 
we only consider the proper GFPs (see [3] and the references therein), since nonproper 
ones involve the inversion of some coefficients of the polynomial part of G(λ) and are 
less interesting in applications.

It was proved in [17, Section 4] that every FP of a square polynomial matrix D(λ)
is a (block) permutation of a (particular) strong block minimal bases linearization of 
D(λ). This was extended to proper GFPs, FPR linearizations and GFPR linearizations 
of D(λ) in [11]. This result allows to unify many different classes of strong linearizations 
of polynomial matrices and derive many properties of Fiedler-like linearizations from 
strong block minimal bases linearizations.

We prove in this section that, not surprisingly, FPs, proper GFPs, FPR linearizations 
and GFPR linearizations of a square rational matrix G(λ) are also (block) permutations 
of particular strong block minimal bases linearizations of G(λ). Moreover, the involved 
permutations are direct sums of an identity matrix plus the permutations corresponding 
to the Fiedler-like pencils of the polynomial part of G(λ). We will discuss how the 
structure of the permutations allows us to prove immediately that FPs, proper GFPs, 
FPR linearizations and GFPR linearizations of rational matrices are strong linearizations 
as a consequence of [6, Theorem 5.11] and [19, Lemma 2.7]. In addition, we will obtain as 
corollaries of Theorems 6.5 and 6.7, the recovery rules of the minimal bases and indices 
from FPs, proper GFPs, FPR linearizations and GFPR linearizations of square rational 
matrices previously deduced in [12,14] (see [2] for a related result for eigenvectors).

We remark that the permutation results in this section were mentioned very briefly 
(without proof) in [6,19] and that they are simple consequences of results available in 
the literature for linearizations of polynomial matrices. They set most Fiedler-like lin-
earizations of rational matrices into the unified framework of strong block minimal bases 
linearizations. For proving the results, we need to recall some definitions on strong block 
minimal bases linearizations and Fiedler-like linearizations. In this section we consider 
only square polynomial and rational matrices, since most Fiedler-like pencils have been 
defined only in the square case.
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8.1. Extended block Kronecker linearizations and the antidiagonal sum condition

Let Lk(λ) be the pencil defined in (25), and

Λk(λ) :=
[
λk λk−1 · · · λ 1

]
. (36)

It is well-known and easy to see that Lk(λ) and Λk(λ) are dual minimal bases, as well as 
Lk(λ) ⊗ Ip and Λk(λ) ⊗ Ip for any integer p > 0 [18]. Observe that, for any nonsingular 
constant matrix Y , also Y (Lk(λ) ⊗ Ip) and Λk(λ) ⊗ Ip are dual minimal bases. Moreover 
the row degrees of Y (Lk(λ) ⊗ Ip) are all equal to 1 and the ones of Λk(λ) ⊗ Ip are all 
equal to k.

Given D(λ) = Dqλ
q +Dq−1λ

q−1 + · · ·+D1λ +D0 ∈ F [λ]p×p, we consider the family of 
strong block minimal bases linearizations associated to D(λ) defined by setting in L(λ)
in (12)

K1(λ) = Y (Lε(λ) ⊗ Ip), K2(λ) = Z(Lη(λ) ⊗ Ip), (37)

where Y and Z are nonsingular matrices and q = ε + η + 1, and M(λ) such that

D(λ) = (Λη(λ) ⊗ Ip)M(λ)(Λε(λ)T ⊗ Ip) . (38)

For simplicity, we assume that Dq �= 0, which implies that L(λ) has sharp degree. 
Moreover, if M(λ) = M1λ + M0 is partitioned into (η + 1) × (ε + 1) blocks each of size 
p × p and we denote such blocks by [M(λ)]ij = [M1]ijλ + [M0]ij , 1 ≤ i ≤ η + 1 and 
1 ≤ j ≤ ε + 1, then (38) is equivalent to∑

i+j=q+2−k

[M1]ij +
∑

i+j=q+1−k

[M0]ij = Dk, for k = 0, 1, . . . , q. (39)

This condition follows from [18, Theorem 4.4] and, if (39) is satisfied, it is said in [11, Def-
inition 3.9] that “M(λ) satisfies the antidiagonal sum (AS) condition for D(λ)”. Thus, 
using the terminology in [11, Section 3], we call the strong block minimal bases lin-
earizations defined by (37) and (38) extended (ε, p, η, p)-block Kronecker linearizations 
satisfying the AS condition for D(λ). All of them are strong linearizations of D(λ) and, 
for brevity, we often refer to them simply as extended block Kronecker linearizations5
for D(λ). Obviously, they include the well known block Kronecker linearizations intro-
duced in [18, Section 4] (see also Remark 6.4) just by taking Y and Z identity matrices. 

5 We remark that we are simplifying a bit the terminology used in [11, Section 3]. First, in [11] the term 
“extended block Kronecker pencil” is used since Y and Z in (37) are allowed to be singular. However, see 
[11, Theorem 3.8], such pencils are linearizations only when Y and Z are nonsingular. In addition, in [11]
expressions like “extended block Kronecker pencil with body M(λ) satisfying the AS condition for D(λ)” 
are used instead of “extended block Kronecker linearization satisfying the AS condition for D(λ)”. The 
reason of this is that other AS conditions are investigated in [11].
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Extended block Kronecker linearizations of polynomial matrices have also been analyzed 
(with other name) in [22].

The following very simple corollary of the AS condition (39) is key for obtaining 
the main results of this section. For block Kronecker pencils, it was described in [18, 
eq. (4.5)].

Corollary 8.1. Let D(λ) = Dqλ
q + · · · + D1λ + D0 ∈ F [λ]p×p and let

L(λ) =
[

M(λ) (Z(Lη(λ) ⊗ Ip))T
Y (Lε(λ) ⊗ Ip) 0

]
∈ F [λ]pq×pq

be an extended (ε, p, η, p)-block Kronecker linearization satisfying the AS condition for 
D(λ). If M(λ) = M1λ +M0 is partitioned into (η+1) × (ε +1) blocks each of size p × p, 
then

[M0]η+1,ε+1 = D0.

The AS condition (39) and Corollary 8.1 make it convenient to view any extended 
(ε, p, η, p)-block Kronecker linearization satisfying the AS condition for any polynomial 
matrix D(λ) ∈ F [λ]p×p of degree q partitioned into q × q blocks each of size p × p. 
For brevity we will refer to this partition as the natural partition of a extended block 
Kronecker linearization.

Based on the definitions above, we define extended (ε, p, η, p)-block Kronecker lin-
earizations satisfying the AS condition for a rational matrix G(λ) ∈ F(λ)p×p, which are 
particular cases of strong block minimal bases linearizations of G(λ). For this purpose, 
we first express G(λ) = D(λ) + Gsp(λ) = Dqλ

q + · · · + D1λ + D0 + C(λIn − A)−1B

in terms of the coefficients in the monomial basis of the polynomial part D(λ) of G(λ)
and of a minimal order state-space realization Gsp(λ) = C(λIn − A)−1B of the strictly 
proper part of G(λ). Then we use (15) with K1(λ) and K2(λ) as in (37), with M(λ)
satisfying (38), and K̂1 = eTε+1 ⊗ Ip and K̂2 = eTη+1 ⊗ Ip, where ek is the last column of 
Ik. The expressions for K̂1 and K̂2 follow from [6, Example 5.6] (see also Remark 6.4). 
This leads (for any T, S nonsingular matrices) to

L(λ) =

⎡⎢⎣ T (λIn −A)S eTε+1 ⊗ (TB) 0
− eη+1 ⊗ (CS) M(λ) (Z(Lη(λ) ⊗ Ip))T

0 Y (Lε(λ) ⊗ Ip) 0

⎤⎥⎦ , (40)

which are the desired extended (ε, p, η, p)-block Kronecker linearizations satisfying the 
AS condition for a rational matrix G(λ) ∈ F(λ)p×p. The natural partition of L(λ) in 
Corollary 8.1 induces the natural partition of L(λ) in (40), which has the (1, 1)-block 
of size n × n, the other blocks in the first block row (resp. column) of size n × p (resp. 
p ×n), and the remaining blocks of size p ×p. In the case Y and Z are identity matrices, 
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we simply say that (40) is an (ε, p, η, p)-block Kronecker linearization satisfying the AS 
condition for G(λ) ∈ F(λ)p×p.

Remark 8.2. The simple facts that in the natural partition of L(λ) in (40) the blocks 
−CS and TB are, together with the (1, 1)-block, the only non-identically zero blocks 
in the first block column and row, respectively, and that −CS and TB are located, 
respectively, in the rows and columns corresponding to the block [M0]η+1,ε+1 = D0 in 
Corollary 8.1 will be important for obtaining the results in this section.

8.2. Fiedler-like linearizations

The definitions of the families of Fiedler-like linearizations of polynomial and rational 
matrices require a good number of concepts and notations. Several of them are omitted 
for brevity. For polynomial matrices, we refer to the summary in [11, Section 4], since 
we follow similar notations and definitions.

Given a polynomial matrix D(λ) = Dqλ
q + · · · + D1λ + D0 ∈ F [λ]p×p, its associated 

Fiedler-like pencils are defined in terms of products of the pq × pq elementary matrices 
introduced in [11, pp. 66-67], which are constructed from a p × p matrix X and are 
denoted by Mi(X), where i ∈ {−q, . . . , 0, . . . , q} is an index that determines Mi(X). If the 
matrix X is the coefficient of D(λ) in [11, p. 67], then Mi(X) is denoted simply by MD

i . 
Index tuples, i.e., finite ordered sequences of integers belonging to {−q, . . . , 0, . . . , q}, and 
matrix assignments are used to denote in concise way products of elementary matrices. 
For instance, let t = (t1, t2, t3) and X = (X1, X2, X3) be an index tuple and a matrix 
assignment for t, respectively, then Mt(X ) := Mt1(X1)Mt2(X2)Mt3(X3). Moreover, if 
t is the empty tuple, then we define Mt(X ) := Ipq. As in the case of extended block 
Kronecker linearizations, it is very convenient to view these elementary matrices and 
their products partitioned into q× q blocks each of size p × p. We will call this partition 
again the natural partition of Mt(X ) and [Mt(X )]jk, 1 ≤ j, k ≤ q, will denote the block 
of Mt(X ) in the block position (j, k). A fundamental property is that the products 
Mt(X ) of elementary matrices appearing in the definitions of Fiedler-like pencils are 
operation-free [40] (see also [10, Definition 4.5]), which means that their blocks in the 
natural partition are either the matrices in the matrix assignments, or Ip or 0p and that 
the positions of such blocks only depend on the index tuple t, i.e., do not depend on 
the particular matrix assignment X . In order to guarantee the operation-free property, 
we will require that some of the index tuples involved in the definitions of Fiedler-like 
pencils satisfy the Successor Infix Property (SIP) introduced in [40, Definition 7] (see 
also [11, Definition 4.6]).

Next, we define the FPs, proper GFPs, FPR linearizations and GFPR linearizations 
of the polynomial matrix D(λ) in terms of the following generic pencil (see [11, Defini-
tion 4.29]),

LD(λ) = M�t,�z (X ,Z)(λMD
z −MD

t )Mrz,rt(W,Y). (41)
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• If in (41) �t, �z, rz, rt are empty tuples, z = −q and t is a permutation of {0, 1, . . . , q−
1}, then LD(λ) is a FP associated to D(λ).

• If in (41) �t, �z, rz, rt are empty tuples, t and z are permutations, respectively, of 
C0 and −C1, where {C0, C1} is a partition of {0, 1, . . . , q} such that 0 ∈ C0 and q ∈ C1, 
then LD(λ) is a proper GFP associated to D(λ).

• Let h ∈ {0, 1, . . . , q − 1}. If in (41) t and z are permutations of {0, . . . , h}
and {−q,−q + 1, . . . ,−h− 1}, respectively, �t and rt are tuples with indices from 
{0, . . . , h− 1} such that (�t, t, rt) satisfies the SIP, and �z and rz are tuples with in-
dices from {−q,−q + 1, . . . ,−h− 2} such that (�z, z, rz) satisfies the SIP, then LD(λ) is 
a GFPR associated to D(λ). This pencil is a GFPR linearization whenever the matrices 
M�t,�z (X , Z) and Mrz,rt(W, Y) are nonsingular, or, equivalently, the matrix assignments 
X , Z, W, Y are nonsingular according to [10, Definition 4.1]. The FPRs associated to 
D(λ) are those GFPRs such that X , Z, W, Y are the trivial matrix assignments for 
�t, �z, rz, rt, respectively (see [11, p. 67]).

The operation-free property of the products of elementary matrices in LD(λ) := λL1+
L0 in (41) for FPs, proper GFPs and GFPRs and the definition of the involved index 
tuples imply that for every FP, for every proper GFP, and for every GFPR for which 
the matrix assignments X , Z, W, Y do not contain −D0 (the matrix coefficient of degree 
zero of D(λ)), there is exactly one block position in the natural partition of L0 whose 
entry is identically equal6 to D0. This property is very easy to prove for FPs and proper 
GFPs; for GFPRs, it can be found in [10, Theorem 5.3]. Moreover, this block position 
in the natural partition of L0 is uniquely determined by the index tuples in (41), i.e., 
does not depend on the particular matrix assignment in the case of GFPRs, and we call 
it the intrinsic block position of D0 in L0. We use the word “intrinsic” because for other 
GFPRs with the same index tuples and with some of the matrix assignments X , Z, W, Y
containing −D0, D0 is the entry of the “intrinsic block position” and of other block 
positions of L0. However, under arbitrary changes of the matrix assignments (including 
symbolic changes of variables), D0 only remains in the “intrinsic position”. This allows 
us to define the intrinsic block position of D0 in L0 for the family of all GFPRs sharing 
the same index tuples in (41).

The intrinsic block position of D0 in L0 can be easily determined by using the con-
secutive consecutions and the consecutive inversions at 0 of two index tuples (see [12, 
Definition 5.7] or [14, Definition 2.8] for the definition of consecutive consecutions and 
inversions). This is stated in Lemma 8.3, which is the only new result so far in this 
section.

Lemma 8.3. Let D(λ) = Dqλ
q + · · · + D1λ + D0 ∈ F [λ]p×p be a polynomial matrix and 

let LD(λ) := λL1 + L0 as in (41) be a FP or a proper GFP or a GFPR associated to 
D(λ). Let i0(�t, t) be the number of consecutive inversions at 0 of the index tuple (�t, t)

6 The expression “identically equal” means that this happens always in the same block entry for any value 
of D0.



A. Amparan et al. / Linear Algebra and its Applications 623 (2021) 14–67 59
and c0(t, rt) be the number of consecutive consecutions at 0 of (t, rt). Then the intrinsic 
block position of D0 in L0 is (q − i0(�t, t), q − c0(t, rt)).

Proof. Once the (highly non-trivial) operation-free property is taken into account, the 
proof is a simple exercise of block matrix multiplication. For brevity, we only sketch the 
proof for GFPRs with matrix assignments X , Z, W, Y not containing −D0, since the 
proofs of the other cases are similar. Note first that the commutativity relations of the 
elementary matrices [11, Remark 4.3] imply that the elementary matrices in M�z (Z) and 
Mrz (W) commute with the other elementary matrices in L0 and, so, they do not affect 
the position of D0 (see also [11, Lemma 4.33 and p. 76]). Next, note that D0 is in the block 
position (q, q) if i0(�t, t) = c0(t, rt) = 0, as a consequence of the commutativity relations 
of the elementary matrices. Otherwise, note that each elementary matrix different from 
MD

0 corresponding to the subtuple of (�t, t) (resp. (t, rt)) containing the index 0 ∈ t and 
defining i0(�t, t) (resp. c0(t, rt)) moves D0 one position up (resp. left), while the rest of 
elementary matrices in (�t, t, rt) do not move D0. �
Remark 8.4. We emphasize that (i0(�t, t), c0(t, rt)) = (i0(t), c0(t)) for FPs and proper 
GFPs. For FPs, one of the elements in this pair is necessarily different from zero and the 
other one is necessarily zero. For proper GFPs, at most one is different from zero, but it 
may happen that both are zero.

Based on the definitions of FPs, proper GFPs, FPRs and GFPRs of polynomial matri-
ces, FPs, proper GFPs, FPRs and GFPRs of square rational matrices have been defined 
in [1, Definition 3.2], [3, Definition 2.2], [12, Definition 5.4] and [14, Definition 3.2], 
respectively. As in the case of polynomial matrices, for rational matrices GFPRs in-
clude FPRs, and GFPRs are strong linearizations if the involved matrix assignments 
are nonsingular. Essentially, the strategy in [1,3,12,14] is to consider the rational matrix 
G(λ) = D(λ) +Gsp(λ) = Dqλ

q + · · ·+D1λ +D0 +C(λE −A)−1B ∈ F(λ)p×p expressed 
in terms of the coefficients in the monomial basis of the polynomial part D(λ) of G(λ)
and of a minimal order state-space realization C(λE−A)−1B of the strictly proper part, 
with E ∈ Fn×n nonsingular. Then, the elementary matrices Mi(X) and MD

i of the poly-
nomial part D(λ) are carefully embedded into augmented elementary matrices Mi(X)
and MG

i of the rational matrix that incorporate the information of the state-space re-
alization of the strictly proper part. Finally, the corresponding families of Fiedler-like 
pencils of G(λ) are defined through products of these augmented elementary matrices 
using matrix assignments and the same index tuples as in the corresponding families of 
Fiedler-like pencils of D(λ). Theorem 8.5 is a very important result in this context that 
summarizes in a concise way [1, Theorem 3.6], [3, Theorem 2.7], [12, Theorem 5.12] and 
[14, Theorem 3.6].

Theorem 8.5. Let G(λ) = D(λ) +Gsp(λ) ∈ F(λ)p×p be the unique decomposition of G(λ)
into its polynomial part D(λ) = Dqλ

q + · · · + D0 and its strictly proper part Gsp(λ), 
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and let C(λE − A)−1B be a minimal order state-space realization of Gsp(λ) (with E ∈
Fn×n nonsingular). Let LG(λ) = M�t,�z (X , Z)(λMG

z −MG
t )Mrz,rt(W, Y) and LD(λ) =

M�t,�z (X , Z)(λMD
z −MD

t )Mrz,rt(W, Y) be FPs, or proper GFPs or GFPRs associated 
to G(λ) and to D(λ), respectively. Then

LG(λ) =
[

A− λE eTq−c0(t,rt) ⊗B

eq−i0(�t,t) ⊗ C LD(λ)

]
, (42)

where ej is the jth column of Iq.

Remark 8.6. We have followed in (42) the classical notation in [32] for polynomial system 
matrices and we have set A −λE in the upper-left corner. In contrast in [1,3,12,14], A −λE

is set in the lower-right corner and the two block rows and the two block columns in 
(42) appear interchanged. Note also that in previous sections of this paper we have 
written the strictly proper part of G(λ) as Gsp(λ) = C(λIn −A)−1B, which is the same 
as Gsp(λ) = (CS)(λTS − TAS)−1(TB) for any nonsingular T and S matrices. With 
an obvious change of notation, it can be written as Gsp(λ) = C(λE − A)−1B, with E
nonsingular. This allows to compare (42) and (40) in Subsection 8.3.

Remark 8.7. If we consider for (42) the same natural partition as in (40) and we take into 
account Lemma 8.3, then we obtain from Theorem 8.5 a simple recipe to construct the 
FPs, proper GFPs, FPRs and GFPRs of a rational matrix when the explicit expression of 
the corresponding pencil of its polynomial part is known: (1) construct any FP, proper 
GFP, FPR or GFPR of the polynomial part, LD(λ) = λL1 + L0; (2) identify in L0
the intrinsic block position of D0 (this is particularly simple in FPs, proper GFPs, and 
GFPRs with matrix assignments not containing −D0, since there is only one block entry 
identically equal to D0); (3) augment LD(λ) to a larger matrix partitioned in the natural 
way by adding one block column and one block row as follows: the (1, 1)-block is (A −λE)
and C (resp. B) is the only remaining nonzero block in the first block column (resp. row) 
and is located in the block row (resp. column) of the intrinsic block position of D0 in 
L0. This remark is related to Remark 8.2 for extended block Kronecker linearizations 
of rational matrices and stresses the importance of the intrinsic position of D0 in these 
families of linearizations.

8.3. Block permutations of Fiedler-like pencils

Given two positive integers q and p, we say that a matrix Π is a (q, p)-block permuta-
tion matrix if Π = Σ ⊗ Ip, where Σ is a q × q permutation matrix. The following result 
follows from Theorems 6.3, 7.1 and 8.1 of [11].

Theorem 8.8. Let D(λ) = Dqλ
q + · · · + D1λ + D0 ∈ F [λ]p×p be a polynomial matrix 

and LD(λ) be a FP, or a proper GFP or a GFPR with nonsingular matrix assignments 
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associated to D(λ). Then, there exist two (q, p)-block permutation matrices Π1 and Π2
such that

Π1LD(λ)Π2 =
[

M(λ) (Z(Lη(λ) ⊗ Ip))T
Y (Lε(λ) ⊗ Ip) 0

]
∈ F [λ]pq×pq (43)

is an extended (ε, p, η, p)-block Kronecker linearization satisfying the AS condition for 
D(λ). Moreover the parameters ε and η are determined uniquely from the index tuples 
defining LD(λ). If LD(λ) is a FP or a proper GFP, then Y and Z in (43) are identity 
matrices and Π1LD(λ)Π2 is a (ε, p, η, p)-block Kronecker linearization.

Next, we extend Theorem 8.8 to Fiedler-like and extended block Kronecker lineariza-
tions of rational matrices. We warn the reader that for writing (44) in a compact way, 
the vectors eε+1 and eη+1 in (44) are different from those in (40): in (44) they are the 
corresponding columns of Iq, while in (40) they are the last columns of Iε+1 and Iη+1, 
respectively.

Theorem 8.9. Let G(λ) = D(λ) +Gsp(λ) ∈ F(λ)p×p be the unique decomposition of G(λ)
into its polynomial part D(λ) = Dqλ

q + · · ·+D0 and its strictly proper part Gsp(λ), and 
let C(λE −A)−1B be a minimal order state-space realization of Gsp(λ) (with E ∈ Fn×n

nonsingular). Let LG(λ) be a FP, or a proper GFP or a GFPR with nonsingular matrix 
assignments associated to G(λ) as in (42), where LD(λ) is the corresponding FP, or 
proper GFP or GFPR associated to D(λ). Then, there exist two (q, p)-block permutation 
matrices Π1 and Π2 such that[

In
Π1

]
LG(λ)

[
In

Π2

]
=

[
A− λE eTε+1 ⊗B

eη+1 ⊗ C Π1LD(λ)Π2

]
, (44)

is an extended (ε, p, η, p)-block Kronecker linearization satisfying the AS condition for 
G(λ). Moreover the parameters ε and η are determined uniquely from the index tuples 
defining LG(λ). If LG(λ) is a FP or a proper GFP, then the pencil in the right-hand side 
of (44) is an (ε, p, η, p)-block Kronecker linearization of G(λ).

Proof. Let Π1 and Π2 be the two block permutation matrices in Theorem 8.8. Then, 
from (42), we get

[
In

Π1

]
LG(λ)

[
In

Π2

]
=

[
A− λE (eTq−c0(t,rt) ⊗B)Π2

Π1(eq−i0(�t,t) ⊗ C) Π1LD(λ)Π2

]
, (45)

where Π1LD(λ)Π2 is the extended (ε, p, η, p)-block Kronecker linearization satisfying the 
AS condition for D(λ) in Theorem 8.8. According to (40), it only remains to prove that

(eTq−c (t,r ) ⊗B)Π2 = eTε+1 ⊗B and Π1(eq−i0(�t,t) ⊗ C) = eη+1 ⊗ C. (46)

0 t
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The proof of these two equalities is simple in the case LG(λ) is a FP, a proper GFP, or 
a GFPR whose matrix assignments do not contain −D0. The key fact in these cases is 
that if LD(λ) := λL1 +L0 then there is exactly one block identically equal to D0 in the 
natural partition of L0 located in the block position (q− i0(�t, t), q−c0(t, rt)), according 
to Lemma 8.3. Therefore, Π1LD(λ)Π2 := λT1 + T0 has also exactly one block identically 
equal to D0 in the natural partition of T0, since Π1 and Π2 are (q, p)-block permutations. 
Moreover, Corollary 8.1 implies that (η+1, ε +1) is the block position of D0 in T0. This 
implies that Π1 moves the block row q − i0(�t, t) to the block row η + 1 and that Π2
moves the block column q − c0(t, rt) to the block column ε + 1, which imply (46).

In the case of GFPRs whose matrix assignments contain −D0, there are more than 
one blocks equal to D0 in L0 (and, so, in T0), and the proof of (46) requires to use the 
concept of the intrinsic block position of D0 in L0, introduced before Lemma 8.3. Note 
that Theorem 8.8 implies that the parameters ε and η are determined uniquely by the 
index tuples defining LG(λ), which are the same as those defining LD(λ), and, so, are 
the same for all the GFPRs with the same index tuples (independently of the matrix 
assignments). Thus, the intrinsic block position of D0 in L0 in (q− i0(�t, t), q− c0(t, rt))
is mapped by Π1 and Π2 to (η + 1, ε + 1) in T0, since by Corollary 8.1 is the only block 
entry of T0 that contains D0 when the matrix assignments change arbitrarily but the 
defining tuples do not change. This implies (46). �
8.4. Some consequences of Theorem 8.9: Fiedler-like pencils are strong linearizations 
and recovery of minimal bases from Fiedler-like pencils

We study three easy consequences of Theorem 8.9 and its proof. More precisely, (1) 
we provide alternative proofs to those in [1,3,12,14] for the facts that FPs, proper GFPs, 
FPRs and GFPRs (with nonsingular matrix assignments) of rational matrices are strong 
linearizations of rational matrices; (2) we provide alternative proofs to those in [12,14] for 
the recovery rules of the minimal bases of a rational matrix from those of its Fiedler-like 
pencils; (3) we discuss briefly how to recover minimal indices of a rational matrix from 
those of its Fiedler-like pencils, a problem that has been solved in [12,14].

Corollary 8.10. Let G(λ) ∈ F(λ)p×p be a rational matrix. If LG(λ) is a FP, or a proper 
GFP or a GFPR with nonsingular matrix assignments associated with G(λ), then LG(λ)
is a strong linearization of G(λ).

Proof. LG(λ) satisfies (44) and the right-hand side of (44) is a strong linearization of 
G(λ) by [6, Theorem 5.11]. Then, [19, Lemma 2.7] implies that LG(λ) is also a strong 
linearization of G(λ). �

Corollary 8.11 covers the recovery of minimal bases. In order to check that the results 
in Corollary 8.11 are the same as those in [12,14] recall that for FPs and proper GFPs 
�t, �z, rz, rt are empty tuples and also Remark 8.6.
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Corollary 8.11. Let G(λ) ∈ F(λ)p×p be as in Theorem 8.9. Let

LG(λ) = M�t,�z (X ,Z)(λMG
z −MG

t )Mrz,rt(W,Y)

be a FP, or a proper GFP or a GFPR linearization associated to G(λ), let i0(�t, t) be the 
number of consecutive inversions at 0 of the index tuple (�t, t), c0(t, rt) be the number 
of consecutive consecutions at 0 of (t, rt) and ej be the jth column of Iq.

(a) If Q(λ) ∈ F [λ](n+pq)×l is a right minimal basis of LG(λ) then[
0p×n eTq−c0(t,rt) ⊗ Ip

]
Q(λ)

is a right minimal basis of G(λ).
(b) If Q(λ) ∈ F [λ](n+pq)×l is a left minimal basis of LG(λ) then[

0p×n eTq−i0(�t,t) ⊗ Ip
]
Q(λ)

is a left minimal basis of G(λ).

Proof. We prove part (a). Let L(λ) be the extended (ε, p, η, p)-block Kronecker lin-
earization satisfying the AS condition for G(λ) in the right-hand side of (44). Note that 
Q(λ) = diag(In, Π2) Q̃(λ), where Q̃(λ) ∈ F [λ](n+pq)×l is a right minimal basis of L(λ). 
Next, we apply Theorem 6.5(a) to L(λ) and Q̃(λ), taking into account that in this case 
N1(λ)T = Λε(λ)T ⊗ Ip, with Λε(λ) as in (36). Therefore, Theorem 6.5 implies that[

0p×n eTε+1 ⊗ Ip
]
Q̃(λ) =

[
0p×n (eTε+1 ⊗ Ip)ΠT

2
]
Q(λ)

is a right minimal basis of G(λ). Finally, note that (eTε+1 ⊗ Ip)ΠT
2 = eTq−c0(t,rt) ⊗ Ip, 

since we have seen in the proof of Theorem 8.9 that the block permutation Π2 moves 
the block column q − c0(t, rt) to the block column ε + 1. Part (b) is proved analogously 
via Theorem 6.5(b) and N2(λ)T = Λη(λ)T ⊗ Ip. �
Remark 8.12. In the same spirit of Remark 8.7 on Theorem 8.5, Lemma 8.3 allows to 
express the recovery rules in Corollary 8.11 in simple words as follows: (1) identify in 
the explicit expression of LG(λ) = λL1 + L0 the intrinsic block position of D0 in the 
natural partition of L0 (which is immediate for FPs, proper GFPs and GFPRs with 
matrix assignments not containing −D0); (2) the rows of any right (resp. left) minimal 
basis of LG(λ) corresponding to the columns (resp. rows) of the intrinsic block position 
of D0 in L0 are a right (resp. left) minimal basis of G(λ).

Though Corollary 8.11 is enough for recovering the minimal bases of G(λ) from those 
of its Fiedler-like pencils in applications, we remark that it is weaker than Theorem 6.5



64 A. Amparan et al. / Linear Algebra and its Applications 623 (2021) 14–67
for the minimal bases of strong block minimal bases linearizations. In contrast to Theo-
rem 6.5, Corollary 8.11 does not allow to construct the minimal bases of LG(λ) from those 
of G(λ). In this context, note that for block Kronecker linearizations the matrices N̂1(λ)
and N̂2(λ) in Theorem 6.5 are known and have simple expressions [17, Remark 7.5]. 
In the case of extended block Kronecker linearizations, expressions of N̂1(λ) and N̂2(λ)
involving the inverses of the matrices Y and Z in (40) can also be obtained.

Finally, note that (44) implies that the minimal indices of LG(λ) are those of the 
extended (ε, p, η, p)-block Kronecker linearization of G(λ) in the right hand-side. Then, 
Theorem 6.7 with N1(λ) = Λε(λ) ⊗Ip and N2(λ) = Λη(λ) ⊗Ip imply that the right (resp. 
left) minimal indices of G(λ) are those of LG(λ) minus ε (resp. η). The parameters ε and 
η can be obtained from the index tuples defining LG(λ) as explained in Theorems 6.3, 
7.1 and 8.1 of [11], which requires to use a number of definitions related to index tuples 
that we omit for brevity.

9. Some remarks on eigenvectors

If a rational matrix G(λ) is regular, i.e., it is square and detG(λ) is not identically 
zero, then it does not have minimal bases nor minimal indices. In this case, λ0 ∈ F is 
an eigenvalue of G(λ) if λ0 is a finite zero but not a pole of G(λ). Then, there exist 
nonzero vectors x, y such that yTG(λ0) = 0 and G(λ0)x = 0. Such vectors are called, 
respectively, left and right eigenvectors of G(λ) associated to λ0 and are very interesting 
magnitudes in rational and nonlinear eigenvalue problems [24]. Equivalently, the left 
(resp. right) eigenvectors associated to λ0 are the nonzero vectors of the left (resp. right) 
null-space of the constant matrix G(λ0). We denote such null-spaces by N�(G(λ0)) and 
Nr(G(λ0)), respectively. A standard method for computing eigenvectors of G(λ), or 
more precisely bases of N�(G(λ0)) and Nr(G(λ0)), is to compute those of one of its 
linearizations and to recover from them the eigenvectors of G(λ). This has led to recovery 
procedures for eigenvectors from Fiedler-like linearizations [2,12,14], from M1 and M2-
strong linearizations [19], and from strong linearizations in the affine spaces defined in 
[13]. For completeness, we describe in this section very briefly how to recover eigenvectors 
from strong block minimal bases linearizations and how such recovery method allows to 
obtain the ones for Fiedler-like linearizations.

It can be shown that if λ0 is an eigenvalue of a regular rational matrix G(λ) and L(λ)
is a strong block minimal bases linearization of G(λ), then the bases of Nr(G(λ0)) and 
Nr(L(λ0)) are related as the right minimal bases in Theorem 6.5(a) with the only change 
of replacing λ by λ0. Similarly, the bases of N�(G(λ0)) and N�(L(λ0)) are related as the 
left minimal bases in Theorem 6.5(b) with λ replaced by λ0. The proofs of these facts 
follow a pattern similar to the proofs of Theorem 6.5 but are much simpler, since all the 
arguments concerning the degrees are not needed.

Once the relationships between the bases of Nr(G(λ0)) and N�(G(λ0)) and the bases 
of the corresponding null-spaces of the strong block minimal bases linearizations of G(λ)
are known, the same argument as in the proof of Corollary 8.11 proves that if LG(λ)
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is a FP, or a proper GFP or a GFPR linearization of G(λ), then bases of Nr(G(λ0))
and N�(G(λ0)) can be obtained from those of Nr(LG(λ0)) and N�(LG(λ0)) as in Corol-
lary 8.11 with the only change of replacing again λ by λ0. This provides alternative 
proofs to those in [2,12,14] for the recovery of eigenvectors of a regular rational matrix 
from those of its Fiedler-like linearizations.

10. Conclusions

In this paper a complete theory about the relationship between the minimal bases 
and indices of a rational matrix and those of its polynomial system matrices, as well as 
those of its strong linearizations, has been developed.

The original contributions of this paper are organized into two clearly different parts. 
On the one hand those in Sections 3, 4 and 5, which deal with general polynomial system 
matrices, general linearizations and general strong linearizations of rational matrices. On 
the other hand those in Sections 6, 7 and 8, which deal with specific (though large) fam-
ilies of strong linearizations and establish connections among them. More precisely that 
Fiedler-like linearizations are particular cases of strong block minimal bases lineariza-
tions modulo permutations. In the case of polynomial system matrices, we have shown 
that, under the standard assumption of minimality and a certain additional condition 
of properness, the minimal indices of the polynomial system matrices and their transfer 
functions are exactly the same and their minimal bases are easily related to each other. 
These results are connected to pioneer results by Verghese, Van Dooren and Kailath 
[39,38], who proved similar results under different and nonequivalent assumptions. In 
contrast, we have shown that the minimal bases and indices of a rational matrix and 
those of its linearizations and strong linearizations are not related to each other in gen-
eral, and that only the sums of the left and the right minimal indices are determined 
by each other in the case of strong linearizations. This latter result is based on the 
fundamental index sum theorem obtained by Paul Van Dooren in [39].

In the case of the families of strong block minimal bases linearizations and M1 and 
M2-strong linearizations of rational matrices, we have proved that the minimal indices 
and bases of the linearizations and the rational matrices are easily related to each other 
and that any of them can be obtained from the others and vice versa. The results for 
strong block minimal bases linearizations are obtained by using those for polynomial 
system matrices in Section 3, and they imply easily the results for M1 and M2-strong 
linearizations. In the case of Fiedler-like pencils, we have shown how they allow to recover 
the minimal indices and bases of a rational matrix as a consequence of the results for 
strong block minimal bases linearizations. This approach gives alternative proofs to the 
results in [12,14]. In this context, it is worth to emphasize the important unifying role 
played by strong block minimal bases linearizations of rational matrices. In addition, to 
compute minimal bases and indices by applying algorithms for pencils to strong block 
minimal bases linearizations allow to deal with rectangular matrices.
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