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Imaging genetics of language network
functional connectivity reveals links with
language-related abilities, dyslexia and
handedness
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Amaia Carrión-Castillo 1,4,5, Sourena Soheili-Nezhad1, Zhiqiang Sha1, Barbara Molz 1, Marc Joliot 6,
Simon E. Fisher 1,7 & Clyde Francks 1,7,8

Language is supported by a distributed network of brain regionswith a particular contribution from the
left hemisphere. Amulti-level understanding of this network requires studying its genetic architecture.
We used resting-state imaging data from 29,681 participants (UK Biobank) to measure connectivity
between 18 left-hemisphere regions involved in multimodal sentence-level processing, as well as
their right-hemisphere homotopes, and interhemispheric connections. Multivariate genome-wide
association analysis of this total network, based ongenetic variantswith population frequencies >1%,
identified 14 genomic loci, of which three were also associated with asymmetry of intrahemispheric
connectivity. Polygenic dispositions to lower language-related abilities, dyslexia and left-handedness
were associated with generally reduced leftward asymmetry of functional connectivity. Exome-wide
association analysis basedon rare, protein-altering variants (frequencies <1%) suggested 7 additional
genes. These findings shed new light on genetic contributions to language network organization and
related behavioural traits.

The degree of sophistication in verbal communicative capacities is a
uniquely defining trait of human beings compared to other primates. A
distinctive feature of the neurobiology of language is hemispheric dom-
inance,which is probably rooted in structural and functional asymmetries of
the prenatal and infant brain1–7. There is some evidence for more pro-
nounced structural and functional lateralization in relation to language as
developmentprogresses8,9, although recent precision functional imaginghas
indicated adult-like lateralization of the language network already by the age
of 4 years10. In anycase, leftwardhemispheric dominance is ultimately found
in around 85 percent of adults11. Most remaining adults have no clear
dominant hemisphere for language, while roughly one percent show
rightward hemispheric language dominance11. The left-hemisphere lan-
guage network comprises various distributed regions including hubs in the
inferior frontal gyrus and superior temporal sulcus12,13. However, to a lesser

extent, the right hemisphere homotopic regions are also active during lan-
guage tasks, especially during language comprehension rather than
production13,14.

Language-related cognitive performance is highly heritable15–20, and
genetic factors also play a substantial role in susceptibility to language-
related neurodevelopmental disorders such as childhood apraxia of
speech21, developmental language disorder (previously referred to as specific
language impairment) and dyslexia22–24. In addition, hemispheric dom-
inance for languagebuilds on structural and functional asymmetries that are
already present in neonates4. This suggests an early developmental basis for
such asymmetries that is driven by a genetic developmental program25–27.

Genome-wide association studies (GWAS) in tens or hundreds of
thousands of individuals have begun to identify individual genomic loci
associated with language- and/or reading-related performance19, dyslexia24,
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brain structural asymmetry27 and/or left- or mixed-handedness28. Hand-
edness is a behavioual manifestation of brain asymmetry with subtle and
complex relations to hemispheric language dominance and language-
related cognition and disorders11,24,29. The implicated genes in these GWAS
tend to be most strongly expressed in the embryonic and fetal brain rather
than postnatally. All together, these findings suggest that genetic con-
tributions to inter-individual variation in language-related performance,
and functional and structural brain asymmetries, exert their effects mostly
early in life.

The genetic variants identified so far explain only a small proportion of
the heritable variance in language-related performance or its structural
underpinnings in the brain. A complementary approach to finding genes
involved in language is to measure functional connectivity within the net-
work of regions that support language in the brain, in many thousands of
individuals, in order to performwell-poweredGWAS. There are no existing
datasets of this size that have collected functional imaging data during
language task performance, but resting state functional connectivity is
predictive of task-related functional activation30–32 and also reveals mean-
ingful organization of the human cortex33,34. The resting state functional
connectivity approach involves identifying similarities between different
brain regions in termsof their timecourse variation in thedeoxyhemoglobin
to hemoglobin ratio during the resting state, i.e., while participants are
awake but not performing any particular task during functional magnetic
resonance imaging (fMRI). The task-free nature of resting state fMRImakes
it insensitive to choices in task design that can affect lateralization
estimates14, and is potentiallymore useful for studying the languagenetwork
as a whole rather than circuits activated by one specific task. In addition,
task-based fMRI has tended to find generally less heritable measures com-
pared to resting state fMRI35, making the latter perhaps more suitable for
genetic investigation.

Previous work by Mekki et al.36 found 20 loci in a genome-wide
association study of functional language network connectivity based on
resting state fMRI. The 25 brain regions used in their analyses to capture the
brain’s language network were defined based on a meta-analysis of
language-task activation across multiple previous task fMRI studies37. Of
these 25 brain regions, 20 are in the left hemisphere and only 5 in the right
hemisphere. The 25 regions were then analyzed jointly with no further
attention to hemispheric differences. However, given the early develop-
mental basis of functional asymmetries4, we reasoned that it may be
informative for genetic association analysis to consider connectivity and
hemispheric differences between all bilateral pairs of involved regions. For
the present study we therefore chose a functional atlas with left and right
hemisphere homotopies38, developed in the BIL&GIN cohort, which con-
sists of ~300 young adults roughly balanced for handedness. In previous
work in this cohort, a core language network was defined in right handers
(N=144) based on three language tasks (reading, listening, and language
production) and a resting state paradigm12. A consensus multimodal lan-
guage network called SENSAASwas defined, consisting of 18 regions in the
left hemisphere that were active during all three language tasks.

For the purpose of the present gene mapping study, the right hemi-
spherehomotopic regionswere also included, yielding36 regions in total (18
per hemisphere). We derived functional connectivity measures between
these 36 regions (Supplementary Fig. 1 for study design) in 29,681 partici-
pants from the UK Biobank who had genetic and brain imaging data
available, yielding 630 intra- and interhemispheric connectivity measures
and 153 hemispheric differences between left and right intrahemispheric
connectivity. We then investigated multivariate associations of these func-
tional connectivity phenotypes with common genetic variants, as well as
polygenic scores for language-related abilities19, dyslexia24 and left-
handedness28.

In addition, we hypothesized that rare, protein-altering variants could
also contribute to functional language connectivity, with relatively large
effects in the few people who carry them. Such variants could give more
direct clues to biological mechanisms underlying the formation of the
brain’s language network. Previous large-scale genetic studies of both

brain29,36 and cognitive or behavioral language-related traits19,20,24 only
analyzed commongenetic variants (allele frequency in thepopulation≥1%).
Tentative evidence for rare variant associations with right-hemisphere
language dominance, involving actin cytoskeleton genes, was found in an
exploratory study of 66 unrelated participants39. The first exome-wide
association studies of the UK Biobank40,41 included structural brain imaging
metrics, but not functional metrics. Therefore, the possible contributions of
rare protein-coding variants to functional language connectivity had yet to
be investigated in a biobank-sized data set, prior to the present study.

Results
After quality control (see Methods, section “Sample-level quality control”)
we included 29,681 participants from the UK Biobank between ages 45 and
82 years, for whom single nucleotide polymorphism (SNP) genotyping
array data, exome sequences, and resting state fMRI datawere available, and
that were in a previously defined ‘white British’ ancestry cluster42 (by far the
largest single cluster in the data set). For these participants we derived 630
Pearson correlations between the time courses of the 36 regions in the
language network (hereafter language network edges) and 153 hemispheric
differences between left and right intrahemispheric homotopies (L-R,
hereafter hemispheric differences) (Supplementary Fig. 1 and Methods,
section “Imaging data preprocessing and phenotype derivation”). Positive
hemispheric differences correspond to stronger connectivity on the left and
negative hemispheric differences correspond to stronger connectivity on the
right.We excluded language network edges or hemispheric differences with
no significant heritability (nominal p ≤ 0.05) for subsequent analyses (see
Supplementary Fig. 2 and Methods, section “Heritability analysis”), which
left 629 edges and 103 hemispheric differences (Supplementary Data 1),
among which the median SNP-based heritability was 0.070 (min: 0.018,
max: 0.165) for language network connectivity and 0.026 (min: 0, max:
0.070) for hemispheric differences.

Common genetic variant associations with language network
connectivity and asymmetry
The 629 heritable language network edges were entered into a multivariate
genome-wide association scan (mvGWAS) with 8,735,699 biallelic SNPs
(genome build hg19) that passed variant quality control (see Methods,
sections “Genetic variant-level QC” and “Common variant association
testing”), using the MOSTest software43 (see Methods, section “Common
variant association testing”), after controlling for potential confounders
including age and sex (Methods). Using the standard GWAS multiple
comparison threshold (5 × 10−8), 14 independent genomic loci showed
significant multivariate associations with language network edges (Fig. 1A,
Supplementary Data 2, Supplementary Fig. 3). Subsequent gene mapping
based on positional, eQTL and chromatin interaction information of SNPs
(using FUMA44) found 111 associated genes (of which 40 were protein-
coding, Supplementary Data 3). In addition, tissue expression analysis with
MAGMA45 showed preferential expression of language network associated
genetic effects in prenatal development in the Brainspan gene expression
data46, which was significant at 21 weeks post conception but also generally
elevated prenatally (Fig. 1C, Supplementary Data 4). Enrichment analysis
against 11,404 gene sets (gene ontology and other curated sets)47,48 found no
significant associations after correction for multiple comparisons, and
cross-tissue enrichment analysis with respect to postmortem whole-body
expression levels fromGTEx49 also found no significantly higher expression
in any particular tissue of the body (Supplementary Fig. 4 and Supple-
mentary Data 5).

To probe the genetic effects on language network connectivity of our
lead multivariate findings, we plotted the underlying univariate beta
effect estimates across connectivity measures for each of the 14 lead
SNPs, and assessed using t-tests whether the effects generally involved
increased or decreased connectivity, or differed for left versus right
intrahemispheric connections, or intra- versus interhemispheric con-
nections (see Methods, section “Descriptive analysis of overall directions
of effects”, Fig. 1E, Supplementary Fig. 8, Supplementary Data 6–8). We
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will illustrate our findings with the three most significant loci. These
showed heterogeneous effects on language network connectivity
(Fig. 1E). Lead SNP rs35124509 of the most significantly associated
genomic locus on chromosome 3 was an exonic SNP in the EPHA3 gene,
where minor allele carriers (C, minor allele frequency (MAF) = 0.39) had
on average generally reduced connectivity (t =−6.673, p = 5.52 × 10−11),
i.e., lower time series correlations between regions, compared to non-

carriers (Fig. 1E, Supplementary Fig. 5, Supplementary Fig. 8, Supple-
mentary Data 6-8). However, connectivity could also be higher on
average for a minority of network edges in these variant carriers (Fig. 1E,
Supplementary Fig. 8, Supplementary Data 6). No global differences were
observed for left versus right intrahemispheric connections, or intra-
versus interhemispheric connections for this SNP (Supplementary
Data 7). For the second most significantly associated genomic locus,
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minor allele carriers (T, MAF = 0.21) of lead SNP rs2279829 (on chro-
mosome 3) displayed increased connectivity (t = 14.606, p = 8.27 × 10−42)
on average compared to non-carriers (Fig. 1E, Supplementary Fig. 6,
Supplementary Fig. 8, Supplementary Data 6–8). This SNP was located
upstream from the ZIC4 gene (Supplementary Fig. 5). No global differ-
ences were observed for left versus right intrahemispheric connections, or
intra- versus interhemispheric connections for this SNP (Supplementary
Data 8). Lead SNP rs2274224 of the third most significantly associated
genomic locus (on chromosome 10) is an exonic SNP in PLCCE1:PLCE1-
AS1, (Supplementary Fig. 7–8). Carriers (C, MAF = 0.44) had a stronger
global increase in intrahemispheric connectivity than in interhemispheric
connectivity (t = 4.5878, p = 5.41 × 10−6) compared to non-carriers
(Fig. 1E, Supplementary Fig. 7, 8, Supplementary Data 8). Brain spatial
pattern plots for all 14 lead SNPs can be found in Supplementary Fig. 8,
and univariate betas, p-values and t-statistics in Supplementary Data 6–8.

Separately, 103heritablehemisphericdifferenceswere also entered into
a single mvGWAS, using the same procedure as for the language network
edges. Three independent genomic loci were significantly associated with
hemispheric differences (Fig. 1B, SupplementaryData 9–11, Supplementary
Fig. 11), all of which were located on chromosome 3, and had also shown
significant associations in the mvGWAS of language network edges. Lead
SNPrs7625916, a different SNP in the same broader locus that encompasses
EPHA3, showed a heterogeneous pattern in hemispheric differences for
carriers of theminor allele (A,MAF = 0.40) (1F). This SNPwas located in an
intergenic region of RP11-91A15.1 (Supplementary Fig. 12). The lead SNP
of the second locus rs2279829, located upstreamofZIC4was the same as for
the language network edge results. Carriers of minor effect allele (C,MAF =
0.39) displayed heterogeneous changes in hemispheric differences (Fig. 1F,
Supplementary Fig. 13). The lead SNP for the third locus, rs13321297,
located in an intronic region near TBC1D5, was associated with a broadly
rightward shift in hemispheric differences (t =−8.767,p = 4.314 × 10−14) for
carriers of the minor allele (A, MAF = 0.31, Supplementary Fig. 14). A full
overview can be found in Supplementary Data 9–15. Using gene-based
association mapping in FUMA we identified nine genes associated with
hemispheric differences, of which four were protein-coding, namely
EPHA3, TBC1D5, ZIC1 and ZIC4. Tissue expression of genes associated
with hemispheric differences, using MAGMA as implemented in FUMA,
was enriched prenatally in the Brainspan developmental data46, reaching
significance at post-conception week 21 (Fig. 1D, Supplementary Data 11).
Analysis of postmortem cross-tissue expression levels from GTEx49, and
gene set analysis against 11,404 ontology and other curated sets47,48, showed
no significant associations after correction for multiple comparisons
(Supplementary Fig. 15 and Supplementary Data 12).

Sensitivity analyses that additionally included covariate effects of
mean whole-brain functional connectivity (for the language network
mvGWAS) or mean whole-brain hemispheric differences (for the
hemispheric difference mvGWAS) yielded almost identical results
(Supplementary Fig. 9–10, 16, 17). In principle, treating a heritable
measure such asmeanwhole-brain functional connectivity as a covariate
can bias GWAS analysis50, when such a measure is a collider rather than
confound in genetic association testing. This is why we did not include
such covariates in our main analysis.

Polygenic scores for language-related abilities, dyslexia and
handedness
Weused PRS-CS51 to calculate genome-wide polygenic scores for language-
related abilities19, dyslexia24 and left-handedness28 for each of the 29,681UK
Biobank participants, using summary statistics from previous large-scale
GWAS of these traits in combination with UK Biobank genotype data (see
Methods, section “Associations with genetic predispositions” for details).
Note that the previous GWAS of language-related abilities19 was a multi-
variate GWAS that considered several language-related traits that had been
quantitatively assessed with different neuropsychological tests: word read-
ing, nonword reading, spelling, and phoneme awareness. After controlling
for covariates, polygenic disposition towards higher language-related abil-
ities in the UK Biobank individuals was weakly negatively correlated with
polygenic disposition towards dyslexia (r =−0.138, p = 3.504 × 10−126).
Polygenic disposition towards left-handedness was not correlated with
polygenic disposition as regards language-related abilities
(r =−0.008, p = 0.147) or dyslexia (r =−0.005, p = 0.310).

We then used canonical correlation analysis (CCA) in combination
with permutation testing to estimate overall associations of polygenic
scores with language network edges and hemispheric differences (see
Methods, section “Associations with genetic predispositions”, Supple-
mentary Fig. 18 for the null distributions, and Supplementary Data 16–19
for loadings and descriptive analysis of overall effect directions). Poly-
genic disposition to higher language-related abilities showed a significant
multivariate association with language network edges (canonical corre-
lation r = 0.160, p = 3 × 10−4) and with hemispheric differences (cano-
nical correlation r = 0.076, p = 9.9 × 10−5). The canonical correlation
loadings showed that polygenic disposition to higher language-related
abilities was most notably associated with stronger left-hemisphere
connectivity (t = 7.700, p = 1.924 × 10−13), with less impact on right-
hemisphere connectivity, which also meant a generally leftward shift in
hemispheric differences (Fig. 2A).

Polygenic disposition to dyslexia also showed significant canonical
correlations with language network edges (r = 0.177, p = 9.9 × 10−5) and
hemispheric differences (r= 0.078, p = 2 × 10−4), where especially inter-
hemispheric connectivity was higher in those with higher polygenic dis-
position for this developmental reading disorder
(t =−7.701, p= 5.278 × 10−14, Fig. 2A). In terms of hemispheric differences,
higher polygenic disposition to dyslexia was associated with a broadly
rightward shift in asymmetry of connectivity (Fig. 2B).

Polygenic disposition to left-handedness also showed significant
canonical correlations: r = 0.154 (p = 2.16 × 10−2) for language network
edges and r = 0.067 (p = 2.44 × 10−2) for hemispheric differences. Higher
polygenic disposition to left-handedness was associated most notably with
increased interhemispheric (t =−8.583, p = 7.258 × 10−17) and right intra-
hemispheric connectivity (t =−3.471, p = 5.940 × 10−4), which in terms of
hemispheric differences corresponds to a broadly rightward shift in asym-
metry of connectivity (Fig. 2B).

Rare, protein-coding variants and functional connectivity
The previous analyses were all based on genetic variants with population
frequencies > 1 percent. We next performed a gene-based, exome-wide

Fig. 1 | Common variant associations with language network connectivity and
asymmetry. Associations with language network connectivity and asymmetry, for
genetic variants with population frequencies ≥ 1 percent. Multivariate GWAS
Manhattan plots for language network edges (A) and hemispheric differences (B).
The genome is represented along the X axis of each Manhattan plot, with chro-
mosomes in ascending numerical order and their p-to-q arms arranged from left to
right. The Y axis of each Manhattan plot shows the pointwise significance of mul-
tivariate association, and each dot represents a single variant in the genome. The
horizontal dashed line represents the threshold p ≤ 5 × 10−8 for genome-wide
multiple-testing correction. Genes associated with language network edges (C) and
hemispheric differences (D) tend to be most strongly expressed in prenatal brain

tissue compared to postnatal brain tissue, according to MAGMA analysis of the
Brainspan gene expression database. PCW: post conception week. YRS: years. The
horizontal dashed line represents the threshold formultiple testing correction across
all developmental stages separately. Underlying univariate beta weights for the three
most significant lead SNPs for language network edges (E, from top to bottom:
N = 29,681; N = 29,503; and N = 29,681 respectively), and the three most significant
lead SNPs for hemispheric differences (F, from top to bottom: N = 29,444;
N = 29,503 and N = 29,505 respectively). Red indicates a positive association of a
given edge or hemispheric difference with increasing numbers of the minor allele of
the genetic variant, and blue indicates a negative association. Plots for all lead SNPs
can be found in Supplementary Fig. 8.
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association scan based on protein-coding variants with frequencies <1%,
using REGENIE52. We used the SKAT-O gene-based test53 for each of over
18,000 protein-coding genes with respect to 629 language network edges
and 103 hemispheric differences as phenotypes, and separately using either
broad (inclusive) or strict filtering for the predicted functional impacts of
exonic variants (see Methods, section “Exome-wide scan” for details). Per
genewe identified the lowest associationp value across phenotypes (Tippet’s
method), and then applied an empirical exome-wide significance threshold
of 2.5 × 10−7 to account for multiple testing across genes and phenotypes
(previously established using randomized phenotypes and exomedata from
UKBiobank, and applied in the context of thousands of phenotypes54). Five
genes,NIBAN1 (p = 2.356 × 10−7),MANEAL (p = 1.338 × 10−7), SLC25A48
(p = 4.263 × 10−8), DUSP29 (p = 2.494 × 10−7) and TRIP11
(p = 2.183 × 10−7), were associated with language network edges under a
broad filter (Fig. 3A, Supplementary Fig. 19, Supplementary Data 20-21)
and 2 genes,WDCP (p = 2.064 × 10−7) andDDX25 (p = 2.011 × 10−8), were
associated with hemispheric differences with a strict filter (Fig. 3B, Sup-
plementary Fig. 20 and Supplementary Data 22–23).

For each of these 7 genes, the associations were based on multiple rare
genetic variants present across multiple participants (Supplementary
Data 24). The gene with the most distributed association pattern across
functional connectivity measures of the language network was MANEAL,
located on chromosome 1. Rare variants in this geneweremost significantly
associated with interhemispheric functional connectivity between the left
middle temporal gyrus (G_Temporal_Mid-4-L) and the right supplemen-
tarymotor area (G_Supp_Motor_Area-3-R), with p = 1.34 × 10−7. SKAT-O
testing is flexible for testing association when individual genetic variants
might have varying directions and sizes of effects on phenotypes, but its
output doesnot providedirect insight into these directions andeffect sizes in
the aggregate. We therefore followed up with a burden analysis (see
Methods, section “Exome-wide scan”) and found that an increased number

of rare protein-coding variants in MANEAL was associated with generally
decreased language network connectivity (t =−31.542, p = 1.356 × 10−131,
Supplementary Fig. 21, Supplementary Data 25, 26).

Another genewith a distributed associationpatternwasDDX25, where
rare variants were associated with multiple hemispheric differences. The
hemispheric differencewith themost significant association to this genewas
for connectivity between the inferior frontal sulcus (S_Inf_Frontal-2) and
the supplementary motor area (G_Supp_Motor_Area-2), with
p = 2.01 × 10−8. Follow-up burden analysis showed that an increased
number of DDX25 variants that were predicted to be deleterious was
associated with a generally rightward shift in intrahemispheric connectivity
asymmetry (t = −11.809, p = 8.458 × 10−21, Supplementary Fig. 22, Sup-
plementary Data 27-28), which was most strongly for the connectivity
between between the inferior frontal sulcus (S_Inf_Frontal-2) and the
supplementary motor area (G_Supp_Motor_Area-2) (z = −4.1405).

The five remaining genes, NIBAN1, SLC25A48, DUSP29, TRIP11 and
WDCP did not display widespread associations with respect to language
network connectivity measures or hemispheric differences (Fig. 3C, D), but
rather were driven by one or a few individual edges or hemispheric
differences.

Discussion
Studying the genetics of language-related brain traits, such as language
network functional connectivity in the resting state, can yield clues to
developmental and neurobiological mechanisms that support the brain’s
functional architecture for language. In this study we report common
genetic variant, polygenic and exonic rare variant associationswith language
network functional connectivity, and/or hemispheric differences of con-
nectivity.We found14genomic loci associatedwith languagenetwork edges
and3of these lociwere also associatedwithhemispheric differences.EPHA3
was the most significantly associated gene based on common genetic

Fig. 2 | Multivariate associations of the functional brain language network with
genome-wide polygenic dispositions for language-related abilities, dyslexia and
handedness.Multivariate associations with genome-wide polygenic dispositions to
higher language-related abilities, dyslexia and left-handedness, for (A) the language

network and (B) its hemispheric differences. Shown are the loading patterns on the
first mode of six different CCA decompositions. Red indicates a positive association
between polygenic score and brain phenotype, whereas blue indicates a negative
association. N = 29,681 participants.
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Fig. 3 | Associations of rare protein-coding variants with the brain functional
language network and asymmetries. Associations of rare protein-coding variants
with language network edges or hemispheric differences. SKAT-O -LOG10 p-values
for genes significantly associated with the language network edges (A) and hemi-
spheric differences (B). C, D. Distribution of -LOG10 p-values for the significantly

associated genes across all brain phenotypes. E. RNA expression values are shown
over time for all four genes that were available from the Brainspan dataset (see
Supplementary Data 29). Each dot represents expression levels at one timepoint in
one location in the brain from one sample. Trend averages (line) and variance
(shading) are shown. N = 29,681 participants.
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variants. A polygenic disposition for higher language-related abilities was
associated with a leftward shift in functional connectivity asymmetry, while
polygenic dispositions to dyslexia and left-handedness were associated with
rightward shifts in functional connectivity asymmetry. Lastly, exome-wide
scanning suggested five genes associatedwith language network edges and 2
genes with hemispheric differences on the basis of rare, protein-coding
variants. MANEAL and DDX25 showed distributed association profiles
across multiple regional brain connectivity measures.

The most significant association we found was on the 3p11.1 locus,
near the EPHA3 gene, which codes for ephrin type-A receptor 3. EPHA3 is
involved in developmental processes such as neurogenesis, neural crest cell
migration, axon guidance and fasciculation55–57 and is preferentially
expressed 8–24 weeks post-conception. This genomic locus has previously
shown association with individual differences in both resting state func-
tional connectivity35,36,58 and white matter connectivity36,59 in the fronto-
temporal semantic network. Here we add to the literature that this locus is
also associatedwith hemispheric differences of language network functional
connectivity, although with leftward shifts for some homotopic pairs of
connections and rightward shifts for others,without anoverall average trend
towards one hemisphere. EPHA3 may therefore be involved in the devel-
opment of left-right asymmetries in the brain that support hemispheric
specialization for language.

A second locus associated with language network connectivity and
asymmetry was located in 3p24.3, near the TBC1D5 gene, which codes for
subunit TBC1 domain family member 5. This gene may act as a GTPase-
activating protein for Rab family protein(s), and is expressed in all tissues,
including the brain60. TBC1D5 is involved in cell processes related to mac-
roautophagy and receptor metabolism. Recent studies have found associa-
tions of this gene with functional language network connectivity36, white
matter61, dyslexia24, and health-related associations with Parkinson’s
Disease62 and schizophrenia63. Again, here we add an association with
hemispheric differences that implies a role in development of the left-right
axis in the brain that supports language lateralization.

In total, of the14genomic lociwe found, 12werepreviously reported in
other GWAS of brain traits35,36,58,59. Two loci that have no previous literature
associated with them in the GWAS Catalog64 were a locus on the pseudo-
autosomal part of the X and Y chromosome, with rs2360257 as lead SNP,
and a locus on 3q22.2,with rs143322006 as lead SNP.The latter is intergenic
to EPHB1, and therefore this novel finding underscores a potential role of
ephrin receptors in functional connectivity of the brain’s language network.
The well-known functions of ephrins in axon guidance for nerve fiber tract
formation are likely to be relevant in this context.

The other 12 loci were found in two prior GWAS studies of functional
connectivity36,58, both of which differed from each other and from the pre-
sent study in terms of connectomic methodologies. This suggests that
connectome methodological choices only partially influence the discovery
of genetic loci, i.e., some genetic influences on brain functional connectivity
can be relatively robustly detected across different methodological choices.
Six out of 14 loci were also found in a study of the white matter
connectome59, which confirms that functional and structural connectivity
have partially overlapping genetic architectures.

The overlap of significant loci from the present study with those found
inGWAS studies of dyslexia, language-related abilities and handedness was
more limited. The 3p24.3 locus from the present study was found in a large
GWAS for dyslexia24, and the 17q21.31 locus was also associated with left-
handedness65. This limited overlap probably relates, at least in part, to
limited statistical power in these different GWAS studies of cognitive and
behavioral traits to identify particular loci at genome-wide significant levels
(i.e., not surpassing stringent multiple testing correction for genome-wide
association testing, even if they might have shown associations to a lesser
extent). Similarly, studies have also reported a limited number of over-
lapping genome-wide significant loci between psychiatric disorders and
structural brain traits59,66,67. It is also possible that some genetic variants with
influences on functional connectivity of the brain’s language network are
not relevant to individual differences in language-related cognition or

behavior. This may reflect that there are functionally relevant aspects of
brain network architecture for language-related cognition which are not
captured by resting fMRI and/or a parcel-based approach to its analysis.
Nonetheless, our analysis of polygenic scores (discussed further in the
section below) clearly indicates that genetic influences on language-related
abilities, dyslexia and left-handedness are also associated with functional
connectivity and asymmetry within the language network.

Furthermore, the genes we identified through genetic analysis of lan-
guage network connectivity in the present study are likely to be involved in
fetal development of the brain’s language network and its lateralization, as
evidenced by our analysis of gene expression data in the brain across the
lifespan. This is consistent with reports of the prenatal appearance of
molecular and structural brain asymmetries (reviewed by ref. 5), and also
with studies that have detected leftward functional lateralization of auditory
or language networks in infants and young children (see refs. 5,6,10 and the
Introduction). It is therefore likely that much of the heritable variance in
language network functional connectivity in the adult brain is established
early in life.

Genome-wide polygenic scores for language-related abilities, dyslexia,
or left-handedness were significantly but subtly associated at the
population-level with language network functional connectivity and
asymmetry. These subject-level polygenic scores quantify the cumulative
effects of common genetic variants from across the genome on a given trait.
The leftward shift of asymmetry in people with polygenic dispositions to
higher language-related abilities is consistent with functional asymmetry
reflecting an optimal organization for language processing. Although lan-
guage performance and functional language lateralization do not seem to be
strongly correlated in healthy adults68,69, an absence of clear hemispheric
language dominance has been reported to associate with slightly reduced
cognitive functioning across multiple domains70.

The rightward shift in asymmetry of language network connectivity
with higher polygenic disposition to dyslexia is in line with some previous
studies in smaller samples that suggested decreased left hemisphere lan-
guage dominance in dyslexia, although this previous evidence was often
inconsistent and inconclusive71–74. This association also converges in its
direction with the association of TBC1D5 with hemispheric differences
described above. Our study therefore illustrates how large-scale brain
imaging genetic analysis of genetic disposition to a human cognitive dis-
order can inform on the neurobiological correlates of the disorder, even
when carried out using general population data.

The rightward shift in asymmetry of language network functional
connectivity with higher polygenic scores for left-handedness that we
observed is consistentwith increased right hemisphere language dominance
in left-handers11,29,75. Causality cannot be determined in a cross-sectional
dataset of the kind used in our study. For example, genetic disposition may
affect prenatal brain development inways that alter functional asymmetries,
and this seems likely given thatmanyof the relevant genes areupregulated in
the prenatal brain, and that functional asymmetries already exist in
neonates4. However, some functional asymmetries may also follow, or be
reinforced through, behaviors that are influenced by genetic disposition28.
Consistent with this latter possibility, a meta-analysis of neuroimaging
studies of dyslexia suggested that reduced left-hemisphere dominance is
only present in adults and not in children72. The UK Biobank consists of
middle-aged and older adults, but future studies of polygenic risk for dys-
lexia should test the association with brain connectiviy in younger samples,
to help address the developmental/aging questions.

It is important to recognize that gene-brain associations in general
population data are usually subtle28,76 and also that canonical correlations
tend to increase with the number of variables, due to higher degrees of
freedom77. However, as we only used the first canonical mode and only
tested a single polygenic score on one side of the correlation in each analysis
(versus multiple brain traits on the other side), then the freedom of the
canonical correlation was relatively restricted. The permutation test that we
used showed that all multivariate associations with polygenic scores were
greater than expected by chance. Furthermore, the first canonical mode has
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previously been shown to be the most replicable78 as it captures the most
variance. Cross-validation in canonical correlation analysis is often
employed for supervised model evaluations, but our use here was unsu-
pervised and descriptive, for which there is no clear procedure for model
evaluation77. Our interest was to describe the most accurate overall asso-
ciation between polygenic disposition to a given trait and brain functional
connectivity measures in the available sample.

We report associations of five genes, NIBAN1,MANEAL, SLC25A48,
DUSP29 and TRIP11, with language network connectivity and two genes,
WDCP and DDX25, with hemispheric differences on the basis of rare,
protein-coding variants from exome sequence data. No previous rare var-
iant associations have been reported with any of these seven genes40,41, but
MANEAL has been previously implicated in a GWAS of mathematical
ability based on common genetic variants79, which testifies broadly to its
relevance for cognitive function. The protein encoded byMANEAL is found
in the Golgi apparatus80 and may regulate alpha-mannosidase activity.
Previous work has shown relatively high expression of this gene in the brain
compared to various other tissues60.DDX25 is aDEADbox proteinwith the
Asp-Glu-Ala-Aspmotif, involved in RNAprocessing. Tissue expression for
DDX25 is also relatively high in the brain or testis compared to other
tissues60. The roles of these seven genes in brain development and function
remain to be studied, for example using model systems such as cerebral
organoids or knockout mice.

The exome-wide association analysis that we used here involved mass
univariate testing with respect to brain connectivity measures, rather than
multivariate modeling. For common genetic variants, several multivariate
association frameworks have been developed, one of whichwe used here for
our common variant GWAS (MOSTest)43. Suchmethods generally provide
increased statistical power to detect effects compared to mass univariate
testing, when genetic variants are associated with phenotypic covariance.
However, suchmultivariatemethods are currently lacking for application to
the study of rare, protein-coding variants in Biobank-scale samples, where
the effects of individual variants must be aggregated at the gene level and
computational feasibility is an important consideration. The development
of new multivariate methods for exome-wide analysis is required. As the
findings in our exome-wide association scan only surpassed the multiple
testing correction threshold by a small amount, we regard these findings as
tentative until they might be replicated in the future in other datasets.

Resting state functional connectivity does not provide a direct mea-
surement of language lateralization. In this study we quantified resting state
functional connectivity between regions that were previously found to be
involved in language on the basis of fMRI during sentence-level reading,
listening and production tasks12, and also where left-right homotopic
regions were defined for the investigation of hemispheric differences. The
use of full correlations as connectivity measures, as is common in the field,
means that an increase in connectivity between a pair of regions can also be
indirect through other regions81. Another caveat is that individual anato-
mical differences may seep into functional connectivity measures when a
hard parcellation is used81,82. However, as the literature has shown more
broadly, structural brain properties can make meaningful contributions to
functional connectivity and it might not be possible to fully disentangle the
two83–86.

Issues with respect to our chosen methods for genetic association
testing have been discussed above. A general point is that we used one large
discovery sample of 29,681 participants to maximize power in our GWAS,
polygenic association analysis, and exome-wide scan. This did not allow for
a discovery-replication design. However, using the largest available sample
leads to the most accurate estimate of any possible association, including of
its effect size. In light of this, the utility of discovery-replication designs has
declined in relevance with the rise of biobank-scale data87.

A limitation of the UK Biobank is that participation is on a voluntary
basis, which has led to an overrepresentation of healthy participants rather
than being fully representative of the general population76,88.

In conclusion, we report 14 genomic loci associated with language
network connectivity or its hemispheric differences based on common

genetic variants. Polygenic dispositions to lower language-related abilities,
dyslexia and left-handedness were associated with generally reduced left-
ward asymmetry of functional connectivity in the language network.
Exome-wide association analysis based on rare, protein-altering variants
(frequencies ≤1 %) suggested 7 additional genes. These findings shed new
light on the genetic contributions to language network connectivity and its
hemispheric differences based on both common and rare genetic variants,
and reveal genetic links to language- and reading-related abilities and
hemispheric dominance for hand preference.

Methods
Participants
Imaging and genomic data were obtained from the UK Biobank42 as part of
research application 16066 from primary applicant Clyde Francks. The UK
Biobank received ethical approval fromtheNationalResearchEthicsService
Committee NorthWest-Haydock (reference 11/NW/0382), and all of their
procedures were performed in accordance with the World Medical Asso-
ciation guidelines. Informed consent was obtained for all participants89.
Analyses were conducted on 29,681 participants that remained after quality
control of genotype, exome and imaging data (see below).

Imaging data
Brain imaging data were collected as described previously90,91. In this ana-
lysis resting state fMRI data were used (UK Biobank data-field 20227,
February 2020 release90,91). Identical scanners and software platforms were
used for data collection (Siemens 3T Skyra; software platform VD13). For
collectionof rs-fMRIdata, participantswere instructed to lie still and relaxed
with their eyesfixedona crosshair for a durationof 6min. In that timeframe
490 datapoints were collected using a multiband 8 gradient echo EPI
sequencewith aflip angle of 52°, resulting in aTRof 0.735 swith a resolution
of 2.4 × 2.4 × 2.4mm3 and field-of-view of 88 × 88 × 64 voxels. Our study
made use of pre-processed image data generated by an image-processing
pipeline developed and run on behalf of UK Biobank (see details below).

Genetic data
Genome-wide genotype data (UKBiobank data category 263) was obtained
by theUKBiobank using two different genotyping arrays (for full details see
ref. 42). Imputed array-based genotype data contained over 90million SNPs
and short insertion-deletions with their coordinates reported in human
reference genome assembly GRCh37 (hg19). In downstream analyses we
used both the unimputed and imputed array-based genotype data in dif-
ferent steps (below).

Exome sequencing data were obtained and processed as described in
more detail elsewhere40,54,92 (UK Biobank data category 170, genome build
GRCh38). Briefly, the IDT xGen Exome Research Panel v.1.0 was used to
capture exomes. Samples were sequenced using the Illumina NovaSeq 6000
platformwith S2 (first 50,000 samples) or S4 (remaining samples) flow cells
and were processed by the UK Biobank team according to the OQFE
Protocol (https://hub.docker.com/r/dnanexus/oqfe). Analyses using
individual-level exome data (UK Biobank data field 23157) were conducted
on the Research Analysis Platform (https://UKBiobankiobank.
dnanexus.com).

Sample-level quality control
Sample-level quality control at the phenotypic and genetic level was con-
ducted on 40,595 participants who had imaging, genotype and exome data
available. In phenotype sample-level quality control, participants were first
excluded with imaging data labeled as unusable by UK Biobank quality
control. Second, participants were removed based on outliers (here defined
as 6× interquartile range (IQR)) in at least one of the following metrics:
discrepancy between rs-fMRI brain image and T1 structural brain image
(UK Biobank field 25739), inverted temporal signal-to-noise ratio in pre-
processed and artifact-cleaned preprocessed rs-fMRI (data fields 25743 and
25744), scanner X, Y, and Z brain position (fields 25756, 25757 and 25758)
or in functional connectivity asymmetries (see section “Imaging data
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preprocessing and phenotype derivation”). Third, participants withmissing
data in the connectivity matrices were excluded. In total 3472 participants
were excluded in the phenotype QC.

Subsequently, in genetic sample-level quality control, only participants
in the pre-defined white British ancestry cluster were included (data-field
22006)42, as this was the largest single cluster in terms of ancestral homo-
geneity—an important consideration for some of the genetic analyses that
we carried out (below). Furthermore, participants were excluded when self-
reported sex (data-field 31) did not match genetically inferred sex based on
genotype data (data-field 22001) or exome data, when sex chromosome
aneuploidy was suspected (data-field 22019), or when exclusion thresholds
were exceeded in heterozygosity (≥0.1903) and/or genotype missingness
rate (≥0.05) (data-field 22027). Finally, one randommember of each pair of
related participants (up to third degree, kinship coefficient ≥0.0442, pre-
calculated by UK Biobank) was removed from the analysis. This led to the
further exclusion of 7442 participants. In total 29,681 participants were
included in all further analyses.

Imaging data preprocessing and phenotype derivation
Preprocessing was conducted by the UK Biobank and consisted of motion
correction using MCFlirt93, intensity normalization, high-pass filtering to
remove temporal drift (sigma = 50.0 s), unwarping using fieldmaps and
gradient distortion correction. Structured scanner and movement artifacts
were removed using ICA-FIX.94–96 Preprocessed data were registered to a
common reference template in order to make analyses comparable (the 6th
generation nonlinear MNI152 space, http://www.bic.mni.mcgill.ca/
ServicesAtlases/ICBM152NLin6).

On the local compute cluster at theMPI for Psycholinguistics, network
connectivity was derived based on the AICHA atlas38. Key properties of the
AICHA atlas are its homotopies. For each of the 192 parcels left and right
hemisphere functional homotopies were defined. Of these 192 pairs, 7
regions were previously excluded from the atlas due to poor signal on the
outside of the brain38, leaving 185 parcel pairs. Time courses were extracted
from the AICHA atlas using invwarp and applywarp from FSL (v. 5.0.1097)
and mri_segstats from Freesurfer (v.6.0.098). Correlations between time
courses were derived with numpy (v.1.13.1) using Python 2.7 and were
transformed to z-scores using a Fisher transform in order to achieve nor-
mality. In addition, only the upper diagonal values were used. These values
can be considered a measure of connection strength between two regions.
Functional hemispheric differences (L-R)were derived for each connection,
and outliers (6 × IQR)were excluded. Previouswork identified 18 regions as
part of the core language network inmultiple language processing domains
(reading, listening and speaking12). These 18 regions and their homotopies
were used in this analysis.

Two different types of imaging-derived phenotypes (IDPs) were
extracted and used in genetic analyses. First, all 630 Z-transformed corre-
lation values were included, including both intra- and interhemispheric
connectivity. Second, for all intrahemispheric connectivity edges, hemi-
spheric differences (L-R) were included, yielding 153 edge hemispheric
differences. In total this yielded 783 new IDPs for further analysis.

Genetic variant-level QC
Four different genetic datasets were prepared, as needed for four different
analysis processes:
1. Array-based genotype data were filtered, maintaining variants with

linkage disequilibrium (LD) ≤0.9, minor allele frequency (MAF)
≥ 0.01, Hardy-Weinberg Equilibrium test p-value ≥ 1 × 10−15 (see52),
and genotype missingness ≤0.01 for REGENIE step 1 (below).

2. Imputed genotype data were filtered, maintaining bi-allelic variants
with an imputation quality ≥0.7, Hardy-Weinberg Equilibrium test p-
value ≥1 × 10−7 and genotypemissingness≥0.05 for association testing
in MOSTest (below).

3. For genetic relationship matrices SNPs were only used if they were bi-
allelic, had a genotype missingness rate ≤0.02, a Hardy Weinberg
Equilibriump-value ≥1 × 10−6, an imputation INFOscore≥0.9, aMAF

≥0.01, and aMAF difference ≤0.2 between the imaging subset and the
whole UK Biobank were used.

4. For exome sequence data, only variants in the 39 Mbp exome
sequencing target regions were retained (UK Biobank resource 3803),
excluding variants in 100 bp flanking regions for which reads were not
checked for coverage and quality standards in the exome processing
pipeline. Monoallelic variants (markedwith a ‘MONOALLELIC’ filter
flag) were also removed. Then, individual-level genotypes were set to
no-call if the read depth was ≤7 (for single nucleotide variants) or ≤10
(for indel variant sites) and/or if the genotype qualitywas≤20.Variant-
level filtering comprised removal of variants sites with an average GQ
(which is the Phred-scaled probability that the call is incorrect) across
genotypes ≤35, variant missingness rate ≥0.10, minor allele count
(MAC)≤1, and/or low allele balance (only for variants with exclusively
heterozygous genotype carriers; ≤0.15 for SNV sites, ≤0.20 for INDEL
variant sites). Transition-transversion ratios were calculated prior to
and after variant-level filtering as an indicator of data quality. Filtered
pVCF files were converted to PLINK binary format, dropping multi-
allelic variants, and then merged per chromosome. For the X
chromosome, pseudo-autosomal regions (PAR1: start - base pair
2781479, PAR2: base pair 155701383 – end, genome build GRCh38)
were split off from the rest of chromosome X. Any heterozygous
haploid genotypes in the non-PAR chr X were set to missing.

Statistics and reproducibility
Heritability analysis. Genetic relationship matrices (GRMs) were
computed for the study sample usingGCTAv. 1.93.0beta99. In addition to
the previous sample-level quality control, individuals with a genotyping
rate ≤0.98 and one random individual per pair with a kinship coefficient
≥0.025 derived from the GRM were excluded from heritability analysis.
The SNP-based heritability of each of the 783 newly derived IDPs was
estimated using genome-based restrictedmaximum likelihood (GREML)
in GCTA v. 1.93.0beta99. IDPs with heritabilities that passed a nominal
significance threshold of p ≤0.05 were included in subsequent analysis,
similarly to previous studies36,59 and in line with recommendations for
mvGWAS43.

Common variant association testing. Multivariate common variant
association testing (mvGWAS) was performed using the MOSTest
toolbox43 for all heritable measures, separately for all 629 heritable lan-
guage network edges and all 103 heritable hemispheric differences.
MOSTest fully accounts for the multivariate nature by estimating the
correlation structure on permuted genotype data and then computing the
Mahalanobis norm as the sum of squared de-correlated z-values across
univariate GWAS summary statistics and then fitting a null distribution
using a gamma cumulative density function to extrapolate beyond the
permuted data to significant findings. The multivariate z-statistic from
MOSTest is always positive and does not provide information on
directionality. We used imputed genotype array data and the following
covariates: sex, age, age2, age × sex, the first 10 genetic principle com-
ponents that capture genome-wide ancestral diversity, genotype array
(binary variable) and various scanner-related quality measures (scanner
X, Y and Z-position, inverted temporal signal to noise ratio and mean
displacement as an indication of head motion) (see Supplementary
Table 1 for UK Biobank field IDs). For sensitivity analyses we also
included additional covariate effects of mean whole-brain functional
connectivity (for the language network mvGWAS) or mean whole-brain
hemispheric differences (for the hemispheric difference mvGWAS).
Genome-wide significant variants were annotated using the online
FUMAplatform (version 1.5.2)44.MAGMA(version 1.08)45 gene analysis
in FUMA was used to calculate gene-based p-values and for gene-
property analyses, to investigate potential gene sets of interest47,48 and to
map the expression of associated genes in a tissue-specific49 and time-
specific46 fashion. Gene sets smaller than 10 were excluded from the
analysis, due to risk for statistical inflation.
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Associations with genetic predispositions. In order to understand
how language network edges and hemispheric differences relate to
genetic predisposition for language-related abilities (quantitatively
assessed in up to 33,959 participants from the GenLang consortium)19,
dyslexia (51,800 cases and 1,087,070 controls) from 23andMe, Inc.24 and
left-handedness (33,704 cases and 272,673 controls) from UK Biobank
participants without imaging data28, we used polygenic scores and
canonical correlation analysis (CCA) for each polygenic score separately.
Polygenic scores were calculated with PRS-CS51, which uses a Bayesian
regression framework to infer posterior effect sizes of autosomal SNPs
based on genome-wide association summary statistics. PRS-CS was
applied using default parameters and a recommended global shrinkage
parameter phi = 0.01, combined with LD information from the 1000
Genomes Project phase 3 European-descent reference panel. PRS-CS
performed in a similar way to other polygenic scoring methods, with
noticeably better out-of-sample prediction than an clumping and
thresholding approach100,101. Before entering polygenic scores into a CCA
analysis, they were residualised for these covariates: sex, age, age2, age ×
sex, the first 10 genetic principle components that capture genome-wide
ancestral diversity, genotype array (binary variable) and various scanner-
related qualitymeasures (scanner X, Y and Z-position, inverted temporal
signal to noise ratio and mean displacement as an indication of head
motion) (see Supplementary Table 1 for UK Biobank field IDs). Poly-
genic scores were then normalized using quantile_transform from scikit-
learn v.1.0.1 and entered into a CCA analysis, also using scikit-learn. As
correlation values in CCA tend to increase with the number of variables,
we permuted the polygenic scores 10,000 times to build a null distribution
of correlation values between IDPs and permuted polygenic scores and
tested whether the correlation values of the first mode were outside the
95th percentile of the null distribution.

Exome-wide scan. For rare variant association testing REGENIE v.3.2.1
was used52. In brief, REGENIE is a two-step machine learning method that
fits a whole genome regression model and uses a block-based approach for
computational efficiency. In REGENIE step 1, array-based genotype data
were used to estimate the polygenic signal in blocks across the genome with
a two-level ridge regression cross-validation approach. The estimated
predictors were combined into a single predictor, which was then
decomposed into 23 per-chromosome predictors using a leave one chro-
mosome out (LOCO) approach, with a block size of 1000, 4 threads and
low-memory flag. Phenotypes were transformed to a normal distribution
in both REGENIE step 1 and 2. Covariates for both steps included sex, age,
age2, age × sex, the first 10 genetic principle components that capture
genome-wide ancestral diversity, genotype array (binary variable) and
various scanner-related quality measures (scanner X, Y and Z-position,
inverted temporal signal to noise ratio and mean displacement as an
indication of head motion) (see Supplementary Table 1 for UK Biobank
field IDs). Common and rare variant association tests were run conditional
upon the LOCO predictor in REGENIE step 2. Functional annotation of
variants was conducted using snpEff v5.1d (build 2022-04-19)102. Physical
position in the genome was used to assign variants to genes and were
annotated with Ensembl release 105. Combined Annotation Dependent
Depletion (CADD) Phred scores for variants were taken from the database
for nonsynonymous functional prediction (dbNSFP) (version 4.3a)103 using
snpSift 5.1d(build 2022-04-19). Variants were then classified for down-
stream analysis based on their functional annotations to either be included
in a “Strict” or “Broad” filter or be excluded from further analysis. The
“Strict”-filter only included variants that were annotated with a “High”
impact on a canonical gene transcript (variant types include highly dis-
ruptive mutations like frameshifts) outside of the 5% tail end of the cor-
responding protein (high-impact variants in the 5% tail ends usually escape
nonsense-mediated decay) or a “Moderate” effect on a canonical gene
transcript combined with CADD Phred score ≥20 (these include likely
deleterious protein-altering missense variants). The second “Broad” set of
variants also included “High” annotated variants affecting alternative gene

transcripts outside of 5% tail ends, “Moderate” annotated variants that
affected canonical or alternative gene transcripts with CADD Phred scores
of at least 1, and “Modifier” variants that affected canonical or alternative
gene transcripts with CADD Phred scores of at least 1 (see Supplementary
Table 2). A higher CADD score entails higher predicted deleteriousness of
a SNP104. In REGENIE step 2, we performed a gene-based SKAT-O test53

with strict and broad variant filters based on functional annotation with all
heritable IDPs. A SKAT-O test is most appropriate in our study design as
we had no a priori hypothesis about the direction of the genetic effect.
Multivariate exome testing was conducted separately for language network
edges and hemispheric differences by using Tippet’s method which
involves taking the lowest p-value across the phenotypes of interest. This
was previously used as validation method for development of MOSTest43

and was shown to be less sensitive than multivariate genetic association
testing in common variants. We adjusted for the exome-wide gene-based
multiple comparison burden using an empirical p-value threshold for Type
1 error control from previous work (2.5 × 10−741). This was computed as
0.05 × the average p value from 300 random phenotypes with varying
heritabilities and UK Biobank exome data and approximates 0.05 expected
false positives per phenotype. We then followed up significant results using
(i) burden testing for assessing the effect of genetic mutation burden on
brain connectivity and (ii) confirmatory variant-level association testing on
the significant genes to describe which variants drove the gene-based
associations.

Descriptive analysis of overall directions of effects. In order to test for
overall patterns in the directions of genetic effects across multiple con-
nections (for SNPs, polygenic scores, or gene-based rare variant burden
scores), we performed the following t-tests (as implemented in the
python module scipy v. 1.9.3) on the effect measures, i.e., z-scores (for
SNPs or burden scores) or mode loadings (for polygenic scores):
1. For whether effects involved a general increase or decrease across 629

network connectivity edges, we tested whether there was a significant
difference from zero using a one-sample two-tailed t-test. A positive
t-value indicates an average increase in connectivity, a negative t-value
indicates an average decrease in connectivity.

2. For whether effects differed on 153 left versus 153 right (i.e., homo-
topic) intrahemispheric edges, we used a two-sample two-tailed t-test.
A positive t-value indicates generally stronger left intrahemispheric
connectivity, a negative t-value indicates generally stronger right
intrahemispheric connectivity.

3. For whether effects differed on 306 intrahemispheric edges versus 323
interhemispheric edges, we used a two-sample two-tailed t-test. A
positive t-value indicates stronger intrahemispheric connectivity, a
negative t-value indicates stronger interhemispheric connectivity.

4. For whether effects involved general increases or decreases in 103
hemispheric differences (L-R), we tested for a significant difference
from zero using a one-sample two-tailed t test. A positive t value
indicates stronger left intrahemispheric connectivity, a negative t-value
indicates stronger right intrahemispheric connectivity.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
The primary data used in this study are from the UK Biobank. These data
can be provided by UK Biobank pending scientific review and a completed
material transfer agreement. Requests for the data should be submitted to
the UK Biobank: https://www.ukbiobank.ac.uk. Specific UK Biobank data
field codes are given in the Methods section. Other publicly available data
sources and applications are cited in the Methods section. We have made
our mvGWAS summary statistics available online within the GWAS cata-
log: https://ebi.ac.uk/gwas/. Numerical source data for figures 1A and B can
be found in the summary statistics as deposited in GWAS Catalog https://
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ebi.ac.uk/gwas/. Numerical source data for figures 1C-F can be found in
SupplementaryData 4, 6, 11 and 13. Numerical source data for Fig. 2 can be
found in Supplementary Data 16 and 18. Numerical source data for Fig. 3
can be found in Supplementary Data 21, 23 and 29.

Code availability
This study used openly available software and codes, specifically GCTA
(https://cnsgenomics.com/software/gcta/#GREML105), MOSTest (https://
github.com/precimed/mostest), FUMA, MAGMA (https://ctg.cncr.nl/
software/magma, as implemented in FUMA), PRS-CS (https://github.
com/getian107/PRScs), REGENIE (https://rgcgithub.github.io/regenie/
install/106). Custom code for this study is available from https://github.
com/jsamelink/langnet_paper107. All other data needed to evaluate the
conclusions in the paper are present in the paper and/or the Supplementary
Materials.
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