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Abstract

Ensemble representations are efficient codes that the brain generates effortlessly even

under noisy conditions. However, the role of visual awareness for computing ensemble rep-

resentations remains unclear. We present two psychophysical experiments (N=15x2) using a

bias-free paradigm to investigate the contribution of conscious and unconscious processing to

ensemble perception. Here we show that ensemble perception can unfold without awareness

of the relevant features that define the ensemble. Computational modeling of the type-1 and

type-2 drift-rates further suggest that awareness lags well behind the categorization pro-

cesses that support ensemble perception. Additional evidence indicates that the dissociation

between type-1 from type-2 sensitivity, was not driven by type-2 inefficiency or a system-

atic disadvantage in type-2 decision making. The present study demonstrates the utility of

robust measures for studying the role of visual consciousness and metacognition in stimuli

and tasks of increasing complexity, crucially, without underestimating the contribution of

unconscious processing in an otherwise visible stimulus.

Public significance statement

Psychologists have been studying the contribution of conscious and unconscious pro-

cesses in human perception, but previous research mainly looked at how we recognize simple

single objects. However, our conscious experience involves a lot of different and complex

things happening at the same time. We created a way to study how visual awareness affects

our perception of groups of things (i.e., ensembles), without underestimating the role of the

unconscious mind. We found that human observers can still understand and process the

big picture of a group, even when they are not consciously aware of the critical informa-

tion defining the ensemble. This discovery can help us better understand how we perceive

complex things and the scope of non-conscious processes in visual perception.

Keywords: awareness, ensemble perception, unconscious processing, 2IFC, task-relevant fea-

tures
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Introduction

Each second ⇠ 2 · 108 photons reach our retinae (Rodieck, 1998) posing a huge chal-

lenge for the visual system, which is further constrained by limited attentional and working

memory resources (Cohen et al., 2012; Luck and Vogel, 2013). The brain compensates for

these computational limitations by exploiting the fact that visual information is often corre-

lated and redundant (Cohen et al., 2016). For instance, when we look at the mountains, we

have effortless access to the landscape’s hue distribution, which the visual system encodes as

a summary statistic (Alvarez, 2011). Ensemble representations are efficient codes that the

brain generates by pooling together many noisy spatial or temporal measurements in the

form of a probabilistic representation (Whitney and Leib, 2018).

Four decades of psychophysical work have demonstrated that human observers can

extract the average of different kinds of low-level visual features, namely, motion direction

(Watamaniuk et al., 1989), speed (Watamaniuk and Duchon, 1992), center of mass (Alvarez

and Oliva, 2008), orientation (Dakin and Watt, 1997), colour (Webster et al., 2014) and also

size (Ariely, 2001; Chong and Treisman, 2005b). More recent work has further investigated

the scope of ensemble perception for higher-order visual features such as the average facial

identity (Bai et al., 2015), emotional expression (Haberman and Whitney, 2007), gender

(Haberman and Whitney, 2009) and animacy (Leib et al., 2016). Even though the underlying

neural mechanisms for averaging low-level and high-level visual information may be different

(Haberman and Whitney, 2012), these studies suggest that the computation of summary

statistics is a ubiquitous feature of the visual system. Such a general mechanism has been

linked to a variety of visual processing functions such as texture perception (Cavanagh,

2001), outlier detection (Alvarez, 2011) or processing the gist of a scene (Oliva and Torralba,

2006). In sum, representing multiple noisy measurements as an ensemble can enhance visual

cognition (Alvarez, 2011).

A key issue relates to the automaticity of ensemble coding and whether it can be

computed outside the focus of attention. Different studies have demonstrated that partici-

pants can indeed extract the average feature of a group of items automatically even when

they are not explicitly required to do so (see Ariely, 2001; Ji and Hayward, 2021; Neu-

mann et al., 2013). Crowding experiments also reveal that adaptation (Harp et al., 2007)

and motion perception (Allik, 1992) occur even when participants cannot individuate single

items from the group. Besides, there is evidence that attention may not be necessary for

ensemble perception (Alvarez and Oliva, 2008; Bronfman et al., 2014; Chong and Treisman,

2005a; Whitney and Leib, 2018), thereby also suggesting some sort of implicit tracking of the

stimulus summary statistics. However, it should be noted that attention can significantly in-

fluence ensemble perception (Chong and Treisman, 2005a; de Fockert and Marchant, 2008).
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For instance, Huang (2015) observed that the effect of attention, measured as the advan-

tage of pre-cueing one of two tasks, was similar across tasks involving single-object features

or ensemble statistical properties. Similarly, Jackson-Nielsen and colleagues’ (2017) showed

inattentional blindness in many observers performing a color diversity task, suggesting that

attention is crucial for a conscious perception of the ensemble. Therefore, while some level of

attention may be necessary for conscious ensemble perception, ensemble information can be

extracted and influence behavior, even when attentional resources are constrained (Corbett

et al., 2023).

The fact that ensembles seem to be processed automatically and with minimal atten-

tion brings into question the role of awareness in ensemble perception. Prior studies showed

that awareness of the individual elements within the ensemble may not be necessary for ex-

tracting the summary statistic (Bronfman et al., 2014; Haberman and Whitney, 2009; Oriet

and Corbett, 2008; Ward et al., 2016). More recently, it has been shown that masked por-

tions of the ensemble can still influence the overall averaging decision (Choo and Franconeri,

2010; Sekimoto and Motoyoshi, 2022).

However, measuring awareness is not any trivial issue. Previous studies investigating

the role of awareness in visual perception (including the ones mentioned above) have relied

mostly on subjective measures, which can be contaminated by criterion biases in reporting

the presence or absence of awareness (i.e. the subjective criterion problem, Eriksen, 1960,

Michel, 2022). The use of objective measures (i.e., null sensitivity) to determine the ab-

sence of awareness could potentially resolve this issue. However, this approach typically uses

masking techniques that severely reduce the signal to noise ratio in the stimuli and hence

limits the ability to isolate traces of unconscious perception at the behavioral level (see Soto

et al., 2019, Mei et al., 2022). We also note perceptual thresholds may vary across sessions

and hence any awareness test that uses objective signal detection measures to establish the

presence or absence of awareness must be conducted within the same experimental session

as the one aiming to show the effects of unconscious items on behavior or the brain. This

approach diverges from the conventional methodology employed in subliminal priming stud-

ies. Typically, the awareness of the priming stimulus is evaluated ’offline’ either prior to or

following the primary experiment, rather than being assessed on a trial-by-trial basis dur-

ing the main experiment. Because of this, subliminal priming studies have been subjected

to criticism (Newell and Shanks, 2014) including failures to replicate (Stein et al., 2020),

thereby leading to the view that unconscious information processing is, if anything, limited

in scope.

Recent developments in two-interval-forced-choice tasks (2-IFC) (Barthelmé and Ma-

massian, 2010) provide a potential solution to the criterion problem. Peters and Lau (2015)
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adapted a 2-IFC to test unconscious perception. The key manipulation of this study was

that unbeknownst to the participants only one of the intervals contained a (masked) stimu-

lus (i.e., an oriented grating presented at different levels of signal strength) while the other

interval contained no target stimulus. Despite that, the task required to make a type-1

orientation discrimination judgment for each interval, followed by a type-2 forced-choice de-

cision regarding which of the two intervals they felt more confident in. Importantly, since

this paradigm does not require participants to map their states of visibility or perceptual

confidence into a continuous rating scale, minimises the effect of criterion bias on measured

variables (Mamassian, 2020). As such, above-chance orientation discrimination performance

accompanied by chance-level metacognitive detection of the stimulus-present interval would

suggest unconscious perception.

In psychophysics, there is a long tradition of using confidence ratings as a measure of

stimulus awareness (Kolb and Braun, 1995; Peirce and Jastrow, 1884). However, this practice

is not free of criticism (Michel, 2023; Rosenthal, 2019). For instance, some studies have

shown above chance metacognitive sensitivity in conditions of null visual awareness (Evans

and Azzopardi, 2007; Jachs et al., 2015; Persaud et al., 2007; Reder and Schunn, 2014),

indicating that the relationship between consciousness and metacognition is complex and

both constructs might be dissociated. Nevertheless, confidence ratings have proven valuable

in assessing consciousness, sometimes better than subjective visibility ratings (Morales and

Lau, 2021).

Using the 2-IFC task Peters and Lau (2015) did not observe any gradient of above

chance discrimination performance when the type-2 decisions failed to discriminate the infor-

mative interval. In fact, they observed that as soon as participants were able to discriminate

the grating’s orientation, they were also able to detect the informative interval, thereby

showing no evidence of unconscious perception. Interestingly, the same pattern of results

was observed in subsequent experiments using different masking techniques (see Peters et

al., 2017; Knotts et al., 2018). These results indicate that under the strong assumptions of

the 2-IFC task participants do not display a behavioral pattern consistent with unconscious

perception.

However, a stimulus like a grating is a multidimensional percept composed of multiple

features like luminance, color, orientation, etc. It is therefore important to note that the

ability to detect the presence of a stimulus in one of the intervals of the 2-IFC does not

necessarily indicate that observers were aware of the orientation information guiding their

type-1 discrimination responses. Indeed, equating awareness of the task-relevant features to

the awareness of something at all can result in the underestimation of unconscious perception

(i.e. the criterion content fallacy, Kahneman and Miller, 1986; Michel, 2022). Hence, for
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type-2 responses to be informative, they should reflect the level of awareness of the task-

relevant features, that is, of the very same features underlying type-1 performance (Michel,

2022). To avoid underestimating unconscious perception using the 2-IFC, visual ensembles

rather than single stimulus can be used. This approach involves assessing the presence versus

absence of task-relevant features of stimuli across two intervals, as opposed to requiring

observers to detect the presence or absence of a stimulus as in previous studies (Peters and

Lau, 2015; Peters et al., 2017; Knotts et al., 2018.

The study by Peters and Lau (2015) and also Knotts et al. (2018) did not consider

the criterion content fallacy. This factor can explain the failure to dissociate type-1 from

type-2 performance in their studies. We propose that by using a non-informative stimulus

instead of an absent stimulus in the non-informative interval type-1 and type-2 tasks may

be better matched in terms of the task-relevant features, hence addressing the criterion

content fallacy (Kahneman and Miller, 1986; Michel, 2022). This is critical for setting

the experimental conditions to dissociate type-1 and type-2 performance (i.e. here ensemble

perception and visual awareness). However, it is important to note that even after accounting

for the criterion content fallacy in studies of single object perception, additional challenges

remain, in particular, the use of strong image degradation techniques (e.g., masking, low

luminance, brief presentation times). If the stimulus strength is very small, it may be

extremely difficult to observe above chance discrimination performance when the stimulus

can not even be detected (Lau, 2022). Using visual ensembles in this context does not impose

severe constraints in visibility. By simply manipulating the ratio of the two classes of objects

within the ensemble, high levels of visual uncertainty can be generated, without the need

for degradation of the physical properties of the stimulus. In other words, unmasked visual

ensembles may allow for a higher signal to noise ratio in the informative interval compared

to what would be achieved by visual masking.

Accordingly, the present study aimed to characterize the role of awareness in ensem-

ble perception in an unbiased way and without underestimating unconscious perception. By

doing so, we also wanted to address the long-standing, theoretical question of whether it is

possible to isolate traces of unconscious perception while simultaneously controlling for the

subjective criterion problem and the criterion content fallacy. To achieve this, we adapted

the Peters and Lau (2015) approach by presenting two intervals of temporal ensembles, with

only one interval containing an informative sequence of objects (i.e. a sequence with a pre-

dominant animacy class), while the other interval presented the same number of living and

non-living objects (an information-absent interval). We hypothesized that if ensemble per-

ception can unfold without awareness of the task relevant features, then participants would

perform above chance discriminating the predominant animacy class for the informative
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interval, while their type-2 discrimination performance will be no different from chance .

Experiment 1: Awareness in ensemble perception

Methods

Transparency and openness

The experimental data and scripts are available at OSF in the following link https://osf.io/whr2n/?viewonly =

eb32844bc86a42b2b7e41ee1e48bacc6 (Elosegi and Soto, 2023). The experiments were not pre-

registered.

Participants

Fifteen right-handed healthy subjects (12 women, XAge = 25 years, SDAge = 4.44

years) were recruited. We conducted a power analysis using G*power (Faul et al., 2009) to

determine the minimum sample size required to achieve above-chance type-1 discrimination

performance across experimental conditions with ↵ = .001 and an expected power (1 - �) =

.99. This analysis was based on a prior study investigating ensemble discrimination which

demonstrated significant predominant animacy discrimination performance, with a Cohen’s d

effect size of 2.35 and a sample size of 10 participants (Tiurina and Markov, 2022). The power

analysis results showed that 11 participants would be needed in this case. However, given

that our aim was also to provide evidence of chance-level type-2 discrimination performance,

we elected to fix the sample size to 15 and use Bayesian statistics to estimate the evidence in

favour of the null finding (i.e. chance-level discrimination). We also conducted a sensitivity

analysis which confirmed that a sample size of 15 participants is sufficient to detect an effect

size of 1.70 with ↵ = .001 and power (1 - �) = .99 in terms of type-1 performance. All of

them had normal or corrected to normal vision, gave informed consent before the experiment

and were reimbursed with 8 euros per hour of experiment. The protocol was approved by the

BCBL’s Ethics Review Board and complied with the guidelines of the Helsinki Declaration

(2008). Data were acquired during the spring of 2022.

Apparatus and stimuli

The experiment was programmed in Python using OpenSesame (Mathôt et al., 2012)

and it was displayed on a Viewsonic G90fB computer monitor with a resolution of 1024×768

and a refresh rate of 60Hz. To ensure that participants maintained a viewing distance of

70cm, they were instructed to use a chin-rest. The stimuli set was composed of 96 images

selected from an original set of 360 high-quality ecological color images (Moreno-Martínez and
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Montoro, 2012). Half of the images contained living objects and the other half contained non-

living objects. The living category could be further divided into mammals, insects, birds and

marine creatures. The non-living category could be further divided into furniture, kitchen

items, musical instruments, tools and vehicles. Stimuli from both classes were balanced in

terms of different visual and linguistic variables (See supplementary table 1).

Procedure

On each trial of the 2IFC experiment, participants observed two consecutive sequences

of forty items containing varying proportions of living and nonliving objects presented in a

rapid serial visual presentation fashion (RSVP) (Figure 1A). More specifically, each item

was presented for 3 frames (⇠ 50ms) which prior research has shown to be within the range

of the temporal integration limits of ensemble perception (Leib et al., 2016; Whitney and

Leib, 2018). After watching each interval, participants were asked to complete the type-1

task which required them to estimate the more frequent object category (either living or

nonliving) in the string. At the end of the trial, participants had to complete the type-2

task which was a confidence forced choice between the first and second intervals. To do so,

participants were instructed to introspect on their internal confidence states and discriminate

the interval they felt more confident in. Critically, unbeknownst to the participants, only one

of the intervals displayed an informative ratio of living and nonliving objects (the informative

interval) while the other interval showed the same proportion of items from each category

(non-informative interval) (Figure 1B). Thus, only one of the sequences, the informative

sequence, actually contained information to complete the type-1 task.

Under these conditions, the type-2 response was based on the comparison between the

confidence signal generated by an ensemble without a predominant class from an ensemble

with a predominant class. In other words, it involved distinguishing the absence from the

presence of an objective signal that could be further associated with a correct response.

Hence, we anchored the confidence state regarding the stimulus present interval to that

generated by the non-informative interval, thereby mitigating confounds from the placement

of subjective criteria (see Peters and Lau, 2015). It’s worth noting however that the 2IFC

task is not entirely free of subjective biases (Yeshurun et al., 2008), albeit of a different

nature. For instance, participants might have preferences for selecting either the first or the

second interval, but this is unrelated to biases in confidence criteria, which can occur in tasks

involving the detection or discrimination of single stimuli.

In order to characterize the role of awareness of task relevant features in ensemble

perception, we systematically manipulated the ensemble ratio of the majority class in the

informative interval across eleven possible ratios of living and nonliving objects. These con-
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Figure 1: The 2IFC design used in Experiments 1 and 2. A) Trial protocol. Each trial
involved the RSVP of two sequences composed of forty images of living and nonliving objects. De-
spite that only one of the sequences had an informative ratio of items, the type-1 task required to
estimate the most frequent object category for both intervals. At the end of the trial, participants
had to report on which of the two intervals they felt more confident. The presentation order of the
informative sequence was pseudo-randomized across trials. Only Experiment 2 provided feedback
conditional upon type-2 responses on the informative interval. B) Example of the object sequences
in the informative and non-informative intervals. The non-informative sequence presented the same
number of fully-colored living and nonliving items. While in the informative sequence one category
always predominated over the other. C) Visual depiction of all possible conditions of ensemble ratio
in the temporal ensembles. The x axis represents the 40 items in the list. The y axis represents all
the ensemble ratios for each category (blue and red). The first row depicts the 20:20 ratio always
presented in the non-informative interval, while the rest of the 11 conditions (21:19-36:04) were
presented in the informative sequence. For explanatory purposes all the images from each category
are represented together, however in the experiment the order of presentation of the items from each
category was interleaved.

ditions ranged from the minimum possible difference between categories represented by the

21:19 ratio to the highest ratio of 36:4 (Figure 1C).The inclusion of the latter "easy condi-

tion" served a dual purpose. Firstly, it allowed us to evaluate participants’ engagement in

the experiment, as they were expected to perform at a near-ceiling level in the 36:4 ratio.

Secondly, we expected that the introduction of such an easy condition could mitigate poten-

tial frustration or uncertainty experienced by participants in near-threshold trials, thereby

enhancing overall motivation throughout the experiment. We note that the 36:4 ratio was

only included after the first five participants, which were initially recruited as pilots. Con-

sequently, the analyses for the 36:4 condition were conducted with a sample size of ten

participants, instead of the fifteen participants involved in the analysis of the other ratios.

Besides, to prevent any processing facilitation due to repetition, each item could only appear

once on each interval of a given trial.
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Every participant completed a total of 1000 trials in two separate 60-minute ses-

sions. On each trial, the informative ratio conditions were randomly selected, leading to a

slightly varied total number of trials for each condition among participants. However, this

variance posed no significant issue, as our analyses were conducted at the group level, and

the variability in the number of trials among participants was minimal, as demonstrated in

Supplementary Table 2. Additionally, on average all participants completed at least 96 trials

of each condition.

Analysis

For each participant and ensemble ratio we calculated: (i) The probability of being

correct in the type-1 and type-2 tasks, (ii) The probability of being correct in the type-

1 task conditional on type-2 accuracy (i.e., when participants made a correct vs incorrect

type-2 response), (iii) Signal detection theory (SDT) measures including type-1 sensitivity

regarding ensemble discrimination sensitivity) and the type-2 sensitivity regarding how well

the confidence forced choice discriminates the task relevant information.

Signal detection theory measures (SDT). In assessing perceptual sensitivity,

namely type-1 ensemble discrimination sensitivity, we calculated all SDT trial types based

on the informative interval. In this context, a ’hit’ referred to trials where participants

correctly responded living when a predominantly living ensemble stimulus was presented.

Conversely, instances where participants provided nonliving responses after the presenta-

tion of a predominantly living ensemble were categorized as ’misses.’ ’False alarms’ (FA)

were registered when participants gave living responses when the predominant target class

was nonliving. ’Correct rejections’ (CR) were noted when participants correctly identified

nonliving responses in predominantly nonliving ensembles. We adopted Hautus’ log-linear

correction method 1995 to calculate the hit rate (HR) and false alarm rate (FAR), considering

extreme proportion values:

In assessing ensemble discrimination sensitivity, namely type-1 sensitivity, we calcu-

lated all SDT trial types based on the informative interval. In this context, a ’hit’ referred

to trials where participants correctly responded ‘living ’when a predominantly living ensem-

ble stimulus was presented. Conversely, instances where participants provided ‘nonliving’

responses after the presentation of a predominantly living ensemble were categorised as

’misses.’ ’False alarms’ (FA) were registered when participants gave living responses when

the predominant target class was nonliving. ’Correct rejections’ (CR) were noted when par-

ticipants correctly identified nonliving responses in predominantly nonliving ensembles. We

adopted Hautus’ log-linear correction method 1995 to calculate the hit rate (HR) and false

alarm rate (FAR), considering extreme proportion values:
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HR =
X + Hits

2X + Hits + Misses
(1)

FAR =
Y + FAs

2Y + FAs + CRs
(2)

Where X is the proportion of signal trials (Hits + Misses /All trials) and Y is the pro-

portion of noise trials (FAs + CRs /All trials). Monte Carlo simulations demonstrated that

the log-linear correction yields less biased estimates of sensitivity than the most-commonly

used 1/(2N) rule (Hautus, 1995). Then we calculated the non-parametric sensitivity index

A ’ (Macmillan and Creelman, 2004).

A’ = 0.5 + 0.25⇥ (HR � FAR)⇥ (1 + HR � FAR)

HR ⇥ (1� FAR)
(3)

For each participant we also computed the type-2 HR and FAR. According to SDT,

type-2 hits refer to trials where participants correctly identified the informative interval

following a correct type-1 response. In other words, they were accurate in discerning the

majority class within the ensemble in the informative interval. Conversely, type-2 FA were

recorded when participants correctly identified the informative interval but provided an

incorrect type-1 response.

Further, we calculated the extent to which the type-2 responses discriminated the

position of the informative from the non-informative interval using the non-parametric sen-

sitivity index A’. Accordingly, hits were defined as type-2 responses associated with the first

interval when the target also appeared in the first interval (here type-2 responses associated

with the second interval were defined as misses). FAs were trials in which type-2 responses

were associated with the first interval but the target appeared in the second interval. Finally,

CRs occurred when participants type-2 responses and the target belonged to the second in-

terval.

Group-level statistical analyses. First, we assessed whether type-1 and type-2

processes responded differently to ensemble ratio by running a repeated measures ANOVA

with task type and ensemble ratio as within subjects factors. Then, we repeated the same

analyses separately for conditions with a high ratio of the predominant class (26:14 - 30:10),

a low ratio of the predominant class (21:19 - 25:15) and all ratios (21:19 - 30:10). In all

ANOVAs, sphericity criterion violations were corrected by means of the Greenhouse-Geisser

correction. Additionally, we asked whether participants could successfully extract the most

prominent animacy category in the ensemble while lacking awareness of the task relevant

features, particularly when the relevant stimuli ratio was low but about 0.5. To study this, we

run one-sample non-parametric bootstrapping t-tests to calculate the p-value of the difference
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between participants’ performance and an empirically estimated chance-level performance.

The bootstrapping t-test involved different steps; first of all, participants’ mean performance

distribution was centered to chance-level (0.5). Then, we sampled 100% of the chance-

centered-data with replacement and estimated the distance of the sampled data from chance.

We repeated the same process 10,000 times to simulate an empirical null distribution of the

difference. Finally, we calculated the p-value as the probability of encountering a value from

the null distribution greater or equal to the distance of participants’ actual performance from

chance. In addition to the p-value, in order to have a better understanding of the evidence

in favor of the null hypothesis, we also calculated the Bayes Factor (BF) of the difference

of participants’ performance from chance. We used the default Cauchy distribution prior

(0.707) for the BF analysis, and robustness checks (Lee and James Press, 1998) confirmed

that our results were not influenced by the choice of prior. All bootstrapping t-tests and

BF analyses were run independently for every task and ensemble ratio combinations, always

excluding the control condition 36:04 from the analysis. We used JASP (Goss-Sampson,

2019) for ANOVA and BF analyses.

Data availability

All code and data are openly available at the following link https://osf.io/whr2n/?viewonly =

eb32844bc86a42b2b7e41ee1e48bacc6 (Elosegi and Soto, 2023).

Results

First, as expected, we found that ensemble ratio had a significant impact on both

type-1 (F(10,139)=12.842, p < .001, ⌘2=.463) and type-2 discrimination performances (F(10,

139)=14.023, p < .001, ⌘2=.485) (see Figure 2A), showing that both increase as the target

ensemble ratio increases. Additionally, Figure 2D shows that while HR significantly increased

with ensemble ratio (F(1, 12.54) = 45.172, p < .001) the FAR tended to reduce although

this was not significant (F(1, 10.36) = 1.165, p = .305). In line with this observation,

we found that participants were more likely to discriminate the predominant category in

trials in which the type-2 response was associated with the informative interval compared

to the non-informative interval (F(1, 14) = 42.24 , p < .001, ⌘2=.149). This indicates that

awareness of the informative interval was associated with better discrimination performance

of the ensemble (see Figure 2G). Taken together, these results suggest that observers were

correctly following task instructions.

The most relevant question of Experiment 1 was whether ensemble perception can

be dissociated from awareness of the task relevant features. To study this question we used

a combination of non-parametric bootstrapping t-test and Bayes Factor (BF) analysis to
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assess for each level of ensemble ratio whether participants’ type-1 accuracy and type-2

performance were better than chance. Specifically, if ensemble perception and awareness of

the task relevant features are dissociable we should expect above-chance type-1 performance

with chance-level type-2 performance. We found exactly this pattern of results for conditions

21:19 and 22:18, in which type-1 accuracy was significantly above chance (type-121:19: XAcc

= .55, p < .001, BF10 = 30.27; type-122:18: XAcc = .59, p < .001, BF10 > 100) while

type-2 was at chance (type-221:19: XAcc = .49, p = .821, BF10 = .15; type-222:18:XAcc

= .51, p = .250; BF10 = .469). Importantly, these observations were not due to a biased

response criterion since A’ analyses, yielded exactly the same results for the same ensemble

ratio conditions (type-121:19: XA’ = 0.59, p < .001, BF10 > 30; type-122:18: XA’ = 0.66, p

< .001; BF10 > 100; type-221:19: XA’ = 0.47, p = .933, BF10 = 0.12; type-222:18: XA’ =

0.50, p = .451, BF10 = 0.30) (see Figure 3A). Despite the observation that type-1 and type-2

performance responses were sensitive to the ensemble ratio, we still wanted to know whether

both measures responded to this ratio in a similar way. Repeated measures ANOVA run for

all levels of ensemble ratio revealed a task x ratio interaction (F(9, 261) = 11.77, p < .001,

⌘2=.024). Further analyses splitting by the ratio (low vs high), showed that this effect was

observed exclusively in conditions with a low ratio of the predominant class (F(3.05, 88.69)

= 12.928, p < .001, ⌘2=.046). In contrast, conditions characterized by a high ratio of the

predominant class did not exhibit this effect (F(4, 116) = 0.254, p = .9, ⌘2=5.415e-4). This

difference is represented in Figure 3A by a linear increase in type-1 performance accompanied

by a type-2 performance plateau between conditions 22:18 to 25:15.

Discussion

In Experiment 1 we characterized the role of awareness of the task relevant features

in ensemble perception. Even when participants’ type-2 responses discriminated the infor-

mative interval at chance levels, the identification of the predominant semantic category of

the ensemble was significantly above chance (i.e. with a 59% of accuracy). These results

confirm our hypothesis that ensemble perception can occur without awareness of the task-

relevant features (i.e. the ensemble ratio that defines the ensemble). Interestingly, there was

an interaction between task type and ensemble ratio for the lower ratios. This observation

suggests that, at least when the task relevant signal is small, the function linking type-1

accuracy to type-2 discrimination of the informative interval is clearly nonlinear. As an

example of this, figure 3A reveals that across conditions 23:17, 24:16 and 25:15, awareness

of the informative interval remained stationary while type-1 accuracy continued increasing

linearly. This indicates that here participants were introspectively blind to changes in type-1

accuracy when the level of performance was lower. Thus, it could be argued that perceptual
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awareness of the ensemble for conditions 23:17, 24:16 and 25:15 was indistinguishable.

Here, ensemble perception was assessed using a two-alternative forced-choice task

(2AFC) involving the discrimination of the predominant class in a temporal sequence of

living and non-living items. Despite deviating from the traditional averaging tasks, this

approach aligns with the operational definition of ensemble perception provided by Whitney

and Leib (2018). It was impossible to use an averaging task in the context of the two-interval

confidence forced-choice task used here (see also Peters and Lau, 2015), because it requires

a target absent interval and in averaging tasks a signal is continuously present as long as an

image is displayed. However, our two-interval paradigm required a signal-absent interval to

assess detection performance. Consequently, we decided to focus on the predominant class

discrimination which allows to effectively generate a signal-absent interval by equating the

number of items from both classes in a 1:1 ratio.

Experiment 2: Assessing the role of feedback

In Experiment 1 we find a dissociation between ensemble perception and awareness

(i.e. of the task relevant features). One possible limitation of the Experiment 1 is that

participants were not explicitly informed about the presence of both an informative and

a non-informative interval that contained no task relevant signals (Peters and Lau, 2015).

Experiment 2 used the same 2IFC paradigm as in Experiment 1 but this time participants

were given feedback on whether the type-2 response was associated with the informative

interval with the aim of directing their attention to the relevant information. Hence, the

aim of Experiment 2 was twofold: (i) assess the replicability of the results from Experiment

1 and (ii) test if the observed dissociation between awareness and ensemble perception can

be modulated by directing participants’ attention to the task relevant information.

Methods

Transparency and openness

The experimental data and scripts are available at OSF in the following link https://osf.io/whr2n/?viewonly =

eb32844bc86a42b2b7e41ee1e48bacc6 (Elosegi and Soto, 2023). The experiments were not pre-

registered.

Participants

For the Experiment 2, an independent sample of fifteen participants (12 women,

XAge = 23, SDAge = 5.3 years) was recruited from the BCBL�s online platform in return of

monetary reward (8 €/hr). Considering that the same statistical power considerations apply
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Figure 2: Results from Experiment 1 and Experiment 2. Columns one and two present the
results from experiments 1 and 2 respectively and the third represents results after pooling the data
from both experiments together. The first row (panels A, B, C) shows type-1 and type-2 accuracy
for all ensemble ratios. In both experiments type-2 performance was at chance for the levels of
minimal evidence. Note that type-2 performance here represents participants’ accuracy detecting
the informative interval. The second row (panels D, E, F) depicts the type-2 hit and false alarm
rates (i.e., HR and FAR) for all ensemble ratios. The third row (panels G, H, I) shows participants
type-1 accuracy conditional upon type-2 responses regarding the informative interval. The separation
between both curves can be taken as a proxy of participants’ metacognitive performance (the ability to
discriminate correct from incorrect responses) which clearly improved as the ensemble ratio increased.
The ensemble ratio is represented by the antecedent term of the ratios (e.g., A in A:B) which are the
number of items in favor of the predominant category within the 40 item sequence. The consequent
term of the ratio can be easily calculated subtracting the antecedent term to 40 (e.g, the consequent
term of 23 is 17, 23:17). Error shades are the 95% CIs.

to Experiment 1 and 2 and given the minimal difference in the experimental procedure, we

kept the sample size identical to Experiment 1. All of them were right-handed, had normal

or corrected to normal vision and gave informed consent to take part in the experiment. The

protocol was approved by the BCBL Ethics Review Board and complied with the guidelines
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of the Helsinki Declaration (2008). Data were acquired during the spring of 2022.

Apparatus and stimuli

All materials and apparatus were the same as in Experiment 1.

Procedure

For Experiment 2 everything was maintained the same as in Experiment 1 except

that participants received feedback conditional upon type-2 responses on the informative

interval (Figure 1A). Specifically, positive feedback was given when participants were more

confident on the informative interval whereas negative feedback was given when they were

more confident in the information absent interval. In order to be able to complete the task,

participants were explained that only one of the intervals contained information for making

the task. Also as before, participants completed 1000 trials in two separate sessions.

Analysis

To assess the replicability of the results from Experiment 1, we repeated the same

analyses described above with the data from Experiment 2. Additionally, to study the effect

of feedback, we run repeated measures ANOVA taking feedback presence as between-subjects

factor and the ensemble ratio as within-subjects factor to compare participants’ type-1 and

type-2 accuracy and sensibility between both experiments. We run these analyses separately

for conditions with a low ratio of the predominant class (21:19 – 25:15), a high ratio of the

predominant class (26:14 – 30:10) and all ratios (21:19 – 30:10).

Data availability

All code and data are openly available at the following link https://osf.io/whr2n/?viewonly =

eb32844bc86a42b2b7e41ee1e48bacc6 (Elosegi and Soto, 2023).

Results

Participants correctly followed task instructions. Both HR and FAR significantly cor-

related with ensemble ratio but in opposite directions (HR: F(1, 27.28) = 248.692, p < .001;

FAR: F(1, 12.28) = 10.469, p = .007) and type-1 accuracy was higher when participants

type-2 responses belonged to the informative interval compared to the non-informative in-

terval (F(1, 14) = 137.88, p < .001, ⌘2=.260) (see Figure 2E). Interestingly, we found that

feedback administration maximized the difference in type-1 performance between correct

and incorrect type-2 responses (F(1, 28) = 5.62, p = .025, ⌘2=.005) (i.e., trials in which

the type-2 response was placed on the informative vs non-informative interval) which can
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be appreciated in the bottom row of Figure 2G-I as a smaller overlap between lines in the

Experiment 2 plot compared to Experiment 1. This feedback effect also manifested as an

interaction between the ensemble ratio and type-2 correctness on participants’ type-1 per-

formance (F(5.83, 81.72) = 9.025, p < .001, ⌘2 = .063).

In Experiment 2 we replicated the dissociation between ensemble perception and

awareness observed in the first experiment for condition 21:19 (type-121:19: XAcc= .56, p

< .001, BF10 > 100; type-221:19: XAcc= .48, p = .930, BF10 = .12) but not for condition

22:18 or others (type-122:18: XAcc = .59, p < .001; BF10 > 100; type-222:18: XAcc= .52,

p = .03; BF10 = 1.610). Sensitivity analyses nonetheless, showed this dissociation for both

conditions (type-121:19: XA’ = 0.61, p < .001, BF10 > 100; type-221:19: XA’ = 0.43, p =

.980, BF10 = .103; type-122:18: XA’ = 0.64, p < .001; BF10 > 100; type-222:18: XA’ =

0.54, p = .06; BF10 = 1.181) (see Figure 3B). Similarly, we also found the same interaction

between task type (ie, type-1 vs type-2) and ensemble ratio (ie, 21:18-30:10) (F(9, 261) =

11.77, p < .001, ⌘2=.024). As in Experiment 1 this effect occurred when conditions with

a low ratio of the predominant class were considered (F(3.05, 88.69) = 12.92, p < .001,

⌘2=.046) but not for conditions with a high predominant class ratio (F(4,116) = 0.254, p

= .907, ⌘2=5.415e-4). There were no significant differences in type-1 or type-2 accuracy or

sensitivity between Experiments 1 and 2 (type-1Acc: F(3.21, 89.88) = 0.69, p = .56, ⌘2 =

.003; type-2Acc: F(5.12, 143.75) = 0.83, p = .53, ⌘2 = .009; type-1A’: F(3.46, 97.10) =

0.52, p = .691, ⌘2 = .003; type-2A’: F(5.39, 151.08) = 1.22, p = .3, ⌘2 = .015).

Discussion

In Experiment 2 we found that the dissociation between ensemble perception and

conscious awareness (i.e. of the task relevant features of the stimulus sequence) found in

Experiment 1 can be replicated even when participants are explicitly oriented towards the

informative interval and they are given feedback on their type-2 performance. Additionally,

we also replicated the same interaction between task type (type 1 vs type 2) and ensemble

ratio from Experiment 1, occurring for low- but not for high predominant class ratios, thereby

reinforcing the observation of a non-linear relationship between ensemble perception and

awareness of the informative interval. We found that feedback administration affected the

adequacy of participant’s type-2 discrimination responses. When participants selected the

informative interval, type-1 accuracy was better than when they selected the non-informative

interval, and this effect was enhanced by feedback. However, feedback did not modulate

type-2 performance (i.e. whether participants’ type-2 responses discriminated between the

informative interval vs the non-informative interval) (Haddara and Rahnev, 2022; Peters

and Lau, 2015). It could be that feedback amplified the task relevant information contained
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in the informative interval, rather than merely facilitating the detection of the informative

interval.

Figure 3: Type-1 sensitivity at discriminating the predominant category of the en-

semble across ensemble ratios vs. discrimination of the informative interval based on

type-2 responses (i.e. type-2 A’). Each dot represents a participant’s sensitivity discriminating
the predominant object category in the ensemble (i.e., type-1 task) vs discriminating the informative
interval (i.e., type-2 task). The red line represents the group-mean for each ensemble ratio. Ensem-
ble ratios are represented by the antecedent term of the ratios (e.g., x in x:y). Panel A, B and C
depict the results from experiments 1, 2 and the pooled data respectively. In all cases, participants
sensitivity discriminating the informative interval was at chance for the minimal ensemble ratio
conditions indicating that introspectively for participants both the informative and non-informative
intervals conveyed the same amount of information and thus they were not aware of the task relevant
information.

Experiments 1 and 2: Joint drift-diffusion and type-1 re-

sponse classification analyses

Given that the results from Experiment 1 and Experiment 2 were virtually the same,

we decided to pool together the data from both experiments, to better understand the

dissociation between type-1 and type-2 performance. More specifically, we were interested

in three questions.

It remains unclear how many items can be efficiently integrated during ensemble per-

ception (Whitney and Leib, 2018), with studies suggesting two items (Allik et al., 2014;

Maule and Franklin, 2016) and 4-8 items (Haberman and Whitney, 2009; Leib et al., 2016;

Sweeny et al., 2015). Studies of temporal ensemble perception reported the temporal weight-

ing of stimulus sequences in the form of primacy and recency effects, such that the first- or

last-seen objects biased the estimated ensemble property (Hubert-Wallander and Boynton,

2015). Here we assessed sampling strategies across participants, by using multivariate pat-

tern analysis (MVPA) models to find which items in the sequence contributed more to

participant’s perceptual decisions.

Second, considering that our type-1 perceptual task deviates somewhat from tradi-

tional ensemble perception tasks (See Experiment 1 - Discussion), we also used multivariate

pattern analysis to assess the degree to which participants’ responses were affected by the
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lifelikeness of the items within the ensemble, and thereby, validate our task as an ensemble

perception task.

Third, we employed drift diffusion models (DDM) (Ratcliff and McKoon, 2008) to

complement the SDT analysis by assessing the efficiency of type-1 and type-2 processes

and how they relate. DDMs characterize decision-making as a two-choice task where each

choice is represented by an upper- or lower-threshold. A drift process accumulates evidence

over time until it crosses one of the two thresholds and commits to a response. For this

study, we used a Pythonic implementation of the Hierarchical Drift Diffusion Model (HDDM)

which uses Bayesian parameter estimation methods for enhancing the statistical power of the

model (Wiecki et al., 2013). Compared to non-hierarchical methods, the HDDM requires

fewer data per subject/condition, allows for the simultaneous individual and group-level

parameter estimation, and provides a measure of uncertainty through parameters’ posterior

distributions (Wiecki et al., 2013). We used this information to characterize the type-1 and

type-2 evidence accumulation process for each ensemble ratio.

Methods

Classification analysis 1. Previous research has shown limited consensus on the

efficiency and temporal weighing of information integration in ensemble perception (Whitney

and Leib, 2018). To assess participants’ sampling in our experiments, we trained L2 penalty

logistic regression classifiers (LRC) to predict type-1 responses (i.e., living or nonliving)

based on the animacy of the items in the informative interval. Stimulus sequences were

binarised according to the objects’ animacy class (i.e., living = 1, non-living = 0). Classifiers

were trained using 100-fold Stratified-Shuffle-Split cross-validation, preserving the original

dataset’s class distribution. In each iteration, they learned from 80% of the data and tested

on the remaining 20%, yielding one classification ROC-AUC score per iteration.

Considering the possibility of idiosyncratic response strategies across participants and

ratios, the classification analyses were conducted within-subjects and within each ensemble

ratio conditions. To assess the statistical significance of the classification scores, for each

participants we averaged the classifiers’ performance to obtain a group-level classification

distribution that was compared to an empirically derived chance-level distribution. This

distribution was estimated by randomly shuffling the target vector of the training set during

each cross-validation iteration.

Since logistic regression was employed, we extracted odds ratios as a measure of

each predictors’ importance on each iteration. Odds ratios offer direct interpretability by

quantifying the change in odds of an event occurring for a one-unit change in the predictor

variable and thus, can be used to reveal the position of the most relevant items in the
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sequence regarding participants’ responses. Consequently, if participants responded based

on a primacy/recency effect, we should find higher odds ratios for the first/last items of the

sequence. Alternatively, if participants were sampling items rhythmically, we should find a

subset of distributed peaks of odds ratios along the sequence (see Figure 4A).

Classification analysis 2. In the present study ensemble performance was assessed

using a two-alternative-forced-choice task 2AFC involving the discrimination of the most

frequent predominant class in the sequence. While this approach differs from conventional

ensemble perception tasks (see Experiment 1 - Discussion), we contend that it relies on the

same averaging mechanism characteristic of ensemble perception.

To investigate this hypothesis, we gathered subjective lifelikeness ratings for all 96

single-object stimuli used in Experiments 1 and 2 following a similar procedure as Leib et al.

(2016). Twenty independent volunteers participated in this rating process (see Supplemen-

tary materials - Classification analysis 2), where each object was displayed for one second,

and participants rated its lifelikeness on a scale from one to ten. We calculated the lifelikeness

score for each item as the average rating across all twenty participants (see Supplementary

Figure 5). Subsequently, we trained logistic regression classifiers (LRC) using the lifelikeness

ratings of the forty items within each sequence to predict participants’ type-1 responses.

Notably, this analysis was conducted across ten different conditions based on the

number of living items (ranging from 15 to 25 living items), as opposed to the ratio conditions

in Classification Analysis 1. This was done because at the ratio level, half of the trials would

have a predominance of living things and the other half a predominance of non-living things,

and thus, would not allow to disentangle the effect of the number of living items from the

pure lifelikeness of the sequence.

Given that the primary aim of this analysis was not to uncover individual partici-

pant strategies, classifiers were trained for each condition including all participants’ data in

a leave-one-participant-out cross-validation protocol, whereby on each iteration one partici-

pant is excluded from the training set and the classifier is tested on the data of the unseen

participant. We also note that we had an average of 50 trials on each number of living condi-

tions participant which is not sufficient for within-participant within-condition classification

analysis due to the small number of observations relative to the number of features - an issue

commonly referred as the curse of dimensionality (Tibshirani et al., 2017).

Classification analyses 1 and 2 were implemented in Python using the Scikit-Learn

package (Pedregosa et al., 2012).

HDDM analysis. We fitted two separate HDDM models with trial-by-trial type-1

and type-2 accuracy vectors and response times (See Supplementary Table 3 for a complete
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description of RTs). The HDDM uses Markov Chain Monte Carlo (MCMC) as an infer-

ence algorithm to estimate the posterior distributions of the model’s parameters, which is

a computationally costly process. So, to speed up Markov chain convergence we set up

the starting point of the MCMC to the maximum a-posterior value, which was estimated

through gradient ascent optimization. Then, we drew 2000 samples to estimate the posterior

distributions of the parameters and we discarded the first 500 instances as burn-in samples.

These initial samples represent the ’heat-up steps’ that the MCMC algorithm requires to

reach a stationary sampled distribution within an acceptable error, which is known as con-

vergence. Prior research has shown that, when estimating HDDM parameters, getting rid of

the initial 20-1000 samples is usually enough for the Markov chains to converge (Wiecki et al.,

2013). Nonetheless, we statistically tested for convergence running 6 independent Markov

chain simulations and calculating the Gelman-Rubin R̂ statistic for all sampled parameters

(Gelman and Rubin, 1992).

The drift-rate is the main parameter of interest extracted from a DDM model and

represents the rate of evidence accumulation which is determined by the quality of the

information extracted from the stimulus (Ratcliff and McKoon, 2008). Consequently, we used

the trained HDDM to extract the posterior distribution of the drift-rate for each participant

and ensemble ratio. For statistical analysis however, we only took the mean of the posterior of

each participant to generate a group-level distribution of drift-rates for each ensemble ratio.

In the context of the present study, we expected that the ensemble ratio would positively

correlate with drift-rate values (ie, the greater the ratio for a given stimulus class, the greater

the drift-rate). Additionally, we also expected that on average drift-rates would be greater for

the type-1 task than for type-2 task. To assess these predictions, we run repeated measures

ANOVA with task type and ensemble ratio as within subject factors.

Results and discussion

Pooling data from Experiments 1 and 2 enabled us to assess with greater statistical

power the two main behavioural effects from these experiments, namely, the isolation of

ensemble perception from awareness of task relevant features and the interaction between

type-1 and type-2 tasks and ensemble ratio. Regarding the former, we only found the

dissociation for condition 21:19 (type-121:19: XAcc = .56, p < .001, BF10 > 100; type-

221:19: XAcc= .48, p = .965, BF10 = .07) because for condition 22:18 type-2 accuracy was

already slightly above chance but with only anecdotal evidence in favour of the alternative

hypothesis (type-122:18: XAcc = .59, p < .001, BF10 > 100; type-222:18: XAcc = .51, p =

.037, BF10 = 1.321). Running the same analyses based on A’ which is a non-biased sensitivity

measure, revealed that the dissociation was present for both ensemble ratios (type-121:19:
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XA’ = 0.60, p < .001, BF10 > 100; type-221:19: XA’ = 0.45, p = .992, BF10 = .063; type-

122:18: XA’ = 0.65, p < .001; BF10 > 100; type-222:18: XA’ = 0.52, p = .125; BF10 = .567).

Considering all data together, we observed that the interaction between task and ensemble

ratios only emerged for conditions with a low ratio of the predominant class (F(3.59, 88.69)

= 12.92, p < .001, ⌘2=.046) but not for high predominant class ratios (F(4, 116) = 0.254,

p < .907, ⌘2=5.415e-4). Apart from the main results, we found that FA and HIT rate

significantly correlated with ensemble ratio (HR: F(1, 28.53) = 170.191, p < .001; FAR: F(1,

28.75) = 10.682, p = .003) demonstrating that in general participants correctly followed task

instructions by shifting the response criterion according to the signal intensity defined by

the ensemble ratio.

These results suggest that ensemble perception can unfold without awareness of the

task-relevant features. However, as shown in Figure 3C we also observe that type-2 perfor-

mance was systematically lower than type-1 performance across all the ratios. This brings

into question whether the observed dissociation is actually reflecting unconscious perception

or if alternatively, it is produced by an inherent inefficiency of type-2 compared to type-1

performance (see Michel, 2022 for a contextualization of the problem). To address this issue,

we fitted a Gaussian Process regression model (GPR) on the pooled data to predict partici-

pants’ type-2 sensitivity based on type-1 sensitivity (see Supplementary materials - Gaussian

process regression analysis 1)). This model was exclusively trained on the ratios in which

type-1 performance exceeded 0.70 (see Figure 3C), allowing to learn the relationship between

type-1 and type-2 performance when participants were consciously aware of the ensembles

(Michel, 2022). Then, we use this model to predict the level of type-2 sensitivity in ratios

21:19 and 22:18. Importantly, these predictions reflected the expected type-2 sensitivity if

observers were conscious of all the sensory information used to perform the type-1 task. If

participants’ type-2 sensitivity was lower than predicted by the model, then it would suggest

that the dissociation between type-1 and type-2 sensitivity is not explicable by decision-

making or type-2 inefficiencies alone, and thereby, it would argue in favour of unconscious

perception.

One sample t-tests revealed that in condition 21:19 participants sensitivity was sig-

nificantly lower than predicted by the model (t(29) = -3.42, p <.01, d = -0.62) while for

condition 22:18 this difference did not reach significance (t(29) = -0.97, p = .34, d = -0.18)

(Supplementary Figure 1). Taking the mean and standard deviation of the posterior dis-

tributions provided by the GPR model we simulated 1000 data points assuming a normal

distribution for each ratio to assess if the models’ predictions were significantly above chance.

The model predicted that type-2 sensitivity would be above chance in both ratios (predicted

type-221:19: XA’ = 0.52, t = 11.05, p < .001, BF > 100; predicted type-222:18: XA’ =
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0.55, t = 38.5, p < .001, BF > 100), while the real data showed that on both cases the type-2

sensitivity was at chance level. Taken together, these results indicate that the dissociation

between type-1 and type-2 cannot be explained in terms of type-2 inefficiency in decision

making (Michel, 2022). Instead, these results support the view that performance in the

critical 21:19 ratio was driven by unconscious perception.

We also note here that in the 21:19 condition, the type-1 task may have relied on

a difference of two items between the predominant and non-predominant classes, while the

type-2 task may involve the comparison between two sequences that only differed in one item

regarding the predominant class (i.e., 21 vs 20) (see Allik et al., 2014 for a formalisation of

this issue). Accordingly, the type-1 task would rely on a ratio of 0.526 while the type-2 task

would rely on a ratio of 0.512. This would also apply to other ratios. For instance, in the

22:18 condition, the type-1 task would have four items of difference (0.55) while the type-2

would only have two (0.523). The above reasoning, however, does not take into account that

participants do not know in advance which class is likely to be predominant and whether

it appears on the first or second intervals. Hence, participants are likely to monitor both

classes (not just one) across the two different intervals in order to gain information relevant

for the type-2 judgments. This would equalize type-1 and type-2 judgments in terms of the

amount of information available for decision-making.

In any case, to rule out the possibility that the dissociation between type-1 and type-

2 performance could be driven by a systematic disadvantage of the type-2 relative to the

type-1 task, we ran another GPR analysis to interpolate the expected A’ values for both

type-1 and type-2 tasks across the ratio conditions (see Supplementary materials - Gaussian

process regression analysis 2)). Importantly, we found that all interpolated points for type-1

performance were significantly above chance, thereby providing confirmatory evidence to our

initial observations. However, as revealed by one sample t-tests, in the crucial ratios 0.51

and 0.52, type-2 task performance was not significantly different from chance (interpolated

type-20.51: XA’ = 0.46, t = -35.3, p = .99, BF < .001; interpolated type-20.52: XA’

= 0.49, t = -10.9, p = .99, BF < .001, further supporting our conclusions (Supplementary

Figure 2).

Classification analysis 1. The objective of this analysis was to estimate the number

and location of items that were primarily contributing to participants’ type-1 responses.

Figure 4B shows that we could classify better than chance type-1 responses in all conditions,

even in the 21:19 condition (XROC-AUC = .53, t(58) = -2.18, p = .02, d = -0.56), although

the ROC-AUC was barely above chance. Panels C-D from Figure 4 illustrate the odds ratios

associated with each of the 40 items in the sequence for conditions 21:19 and 22:18 (see

Supplementary Figure 3 and 4 for the rest of the ratios). The results indicate that the last
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Figure 4: Type-1 response classification performance across ratios based on the bina-

rised sequences. A) Theoretical examples of how recency/primacy or interleaved sampling would
be reflected in the odds ratio patterns. B) Classification performance of participants’ responses (i.e.,
living, nonliving), type-1 accuracy (i.e., correct, incorrect) and trial ground truth (i.e., living, non-
living) based on the binarised sequences of living and non-living items. C) Odds ratio results for
condition 21:19. The heat-map matrix shows the odds ratio of the 40 items for each participant.
Specifically, the x axes represent the position of the items in the sequence and the y axes represent
the feature importance for each of the 30 participants. The barplot on the top represents the odds
ratio results averaged across participants. D) Odds ratio results for condition 22:18. The odds ratios
for the rest of the conditions can be found on Supplementary Figure 3 and 4. Error bars are the
95% CIs. ⇤ : p < .05, ⇤⇤ : p < .01, ⇤ ⇤ ⇤ : p < .001.

.

item of the sequence was the most relevant feature predicting type-1 responses for most

participants across all ratios.

We conducted a post-hoc analysis to investigate whether the level of type-1 perfor-

mance across different ratios could be attributed solely to a recency effect, where participants’

decisions were influenced primarily by the animacy class of the last item in the sequence. To

assess this, we computed the probability that the last item’s class matched the trial ground

truth for each participant and condition (see Figure 5). Crucially, our findings reveal that,

across all ratios, and notably in the critical 21:19 ratio condition (t(58) = -1.73, p = 0.03,

d = -0.448), type-1 accuracy significantly exceeded the probability that the last item’s ani-

macy corresponded to the trial ground truth. This suggests that while a recency effect may

explain participants perceptual choices to some extent, additional information from earlier

sections of the sequence also influenced their decisions. Notably, the recency effect that we

observed is likely driven by the nature of our temporal ensemble task, in which late-stage
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information is more important to determine the ground truth for a given trial, thus inflating

the importance of the last item in the logistic regression analysis.

Figure 5: Probability of correct type-1 response compared to the probability that the

sequences’ last item matched the trial ground truth.For each ratio, we calculated the proba-
bility that the last item presented was equal to the predominant class in the sequence and compared
it against participant’s performance. Error bars are the 95% CIs. ⇤ : p < .05, ⇤⇤ : p < .01, ⇤ ⇤ ⇤ :
p < .001.

.

Our results are consistent with previous findings of recency effects in ensemble tasks

related to average size, motion, and face perception (Gorea et al., 2014; Hubert-Wallander

and Boynton, 2015). However, the study by Leib et al. (2016), using a comparable display,

did not observe subsampling effects in an animacy average estimation task. Several factors

may explain this discrepancy. First, Leib et al. (2016) used sequences with 12 items, while

our sequences had 40 items. Ensemble perception, despite its efficiency, has capacity limi-

tations (Attarha and Moore, 2015; Florey et al., 2017; Luo and Zhao, 2018). Thus, dealing

with a larger amount of information can provoke memory leaks leading to recency biases

(Gorea et al., 2014). Also, it is reasonable to presume that when continuously averaging

information, the most recent items have a more prominent role in predicting and perceiving

incoming information (Cheadle et al., 2014). Second, our study employed a two-alternative

forced-choice task based on the discrimination of the predominant class, whereas Leib et al.

(2016) used a continuous averaging task. Task differences may affect participants’ response

strategies and information integration. Third, variations in the analysis methods used to

estimate sampling strategies could also contribute to differing results.

Classification analysis 2. The aim of the second classification analysis was to in-

vestigate whether the two-alternative-forced-choice task used in Experiments 1 and 2 (i.e.,

discriminating the most frequent predominant class within a sequence), relies on a similar

averaging mechanism that is characteristic of ensemble perception. We trained logistic re-

gression classifiers for ten different number of living conditions to predict participants type-1
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responses based on the lifelikeness of the items in the sequence. Importantly, the examples

were matched regarding the number of living items but could still differ in terms of the life-

likeness of the individual objects. We observed that participants responses were predicted

significantly better than chance across all conditions (see Supplementary Figure 6). This pat-

tern of results indicates that participant responses were indeed influenced by the lifelikeness

of the items in the sequence, hence suggesting that participants integrated the lifelikeness

information throughout the sequence to guide their choices. However, we acknowledge that

our task could also rely to some extent on other processes such as subitizing (Wender and

Rothkegel, 2000).

Figure 6: Type-1 vs Type-2 drift-rates across ensemble ratios. A) Each dot represents
a participant’s evidence accumulation rate for type-1 (i.e., discriminating the predominant object
category in the ensemble) vs type-2 task (i.e., discriminating the informative interval). The red
line represents the group-level mean drift-rate for each ensemble ratio. B) type-1 and type-2 drift-
rate posterior distributions for each ensemble ratio (group-level). Type-2 evidence accumulation rate
for condition 21:19 was negative which means that participants were more likely to give an incorrect
type-2 discrimination response. Ensemble ratios are represented by the antecedent term of the ratios
(eg, x in x:y).

HDDM analysis. For both type-1 and type-2 HDDM models, the Gelman-Rubin

convergence test showed that the ratio of inter-chain to intra-chain variances for all the

sampled parameters was close to 1 and never greater than 1.02, thus, verifying that the

MCMC did find a stable posterior distribution. Regarding the drift-rate, we found that as

expected, ensemble ratio had a significant effect on drift-rates (F(2.99, 86.97) = 56.53, p <

.001, ⌘2 = .253) and that this effect on drift rate was significantly greater for type-1 than

for type-2 accuracies (F(1, 29) = 187.17, p <0.001, ⌘2=.288). In line with prior results, we

found a significant task x ensemble ratio interaction for drift-rates (F(5.11, 148.39) = 26.98,

p < .001, ⌘2=.041), that was present for both high (F(4,116) = 2.52, p < .05, ⌘2=.004) and

for low predominant class ratio conditions (F(4, 116) = 25.83, p < .001, ⌘2=.071). This

interaction is illustrated in Figure 6, showing that in conditions 22:18 – 24:16, there was a

sharp type-1 drift-rate increase while the type-2 drift rate barely improved. Finally, Figure 6
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also reveals that on average type-2 drift-rates in condition 21:19 were negative, which could

suggest that participants were more likely to give incorrect than correct responses. However,

these values did not reach statistical significance when compared to zero (t(29) = -1.39, p =

.087, d = -0.27).

The HDDM results suggest that the type-1 and type-2 dissociation found in both

experiments, alongside the interaction between task and ensemble ratio, was driven by dif-

ferences in the evidence accumulation rate. More specifically, we found that type-1 infor-

mation was accumulated faster and more accurately compared to the type-2 discrimination

process. This is congruent with previous studies indicating that second-order processes (i.e.

awareness and confidence) are less efficient compared to type-1 decisions (Pouget et al., 2016;

Sanders et al., 2016).

General Discussion

In the present study we find that conscious awareness of the task relevant features

is not a necessary prerequisite for ensemble perception. In a series of two psychophysical

experiments using a criterion bias-free paradigm (Peters and Lau, 2015) we find that par-

ticipants could discriminate the predominant semantic category better than chance without

awareness of the informative interval: participants’ ability to discriminate the informative

from the non-informative interval was at chance level at lower ensemble ratios, yet perceptual

identification of the more frequent class in the sequence was above chance level. Importantly,

we provide compelling evidence that this dissociation was not driven by type-2 inefficiencies

(Shekhar and Rahnev, 2021) or a systematic disadvantage in type-2 decision making (Allik

et al., 2014). Instead, the observed dissociation between type-1 and type-2 performance at

the lowest ratios is best explained in terms of unconscious ensemble perception.

We also observed that type-1 ensemble discrimination and type-2 performance were

differently modulated by the ensemble ratio. Although both functions exhibited a monotonic

pattern, type-1 performance displayed a linear trend characterised by a constant rate of

change. In contrast, type-2 performance demonstrated a non-constant rate of change. The

type-2 performance plateaus indicates that participants were introspectively blind to type-1

performance improvements associated with increasing ensemble ratios.

These results have important implications for understanding the mechanisms of en-

semble perception (Whitney and Leib, 2018). Prior studies found that ensembles can be

processed with minimal attention (Alvarez and Oliva, 2008; Bronfman et al., 2014; Chong

and Treisman, 2005a), suggesting that ensembles are encoded pre-attentively Pascucci et al.,

2021 and likely automatically (Alvarez, 2011).
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However, whether visual awareness is necessary for ensemble perception has remained

unclear because prior studies addressing this issue (Choo and Franconeri, 2010; Sekimoto and

Motoyoshi, 2022) have predominantly relied on subjective measures of awareness (Eriksen,

1960; Lloyd et al., 2013), which are susceptible to criterion biases. Notably, some studies

have shown that observers can accurately extract ensemble information even they are unable

to report the identity of individual items within the ensemble (Haberman and Whitney, 2011;

Leib et al., 2016; Parkes et al., 2001).

Our study goes beyond these findings by demonstrating that participants can utilize

ensemble information even when they are unaware of the task-relevant features defining the

ensemble. Crucially, in our investigation, the lack of awareness was established by chance

level type-2 performance in a 2IFC paradigm that is known to mitigate confounding effects

from criterion biases (Knotts et al., 2018; Mamassian, 2020; Peters and Lau, 2015). This

results provide evidence that even higher-order ensembles can be encoded without awareness.

This observation lends support to the hypothesis that dedicated mechanisms are involved in

computing summary statistics (Alvarez, 2011).

More generally, the present study demonstrates the utility of robust measures for

studying visual consciousness without underestimating the contribution of unconscious pro-

cessing mechanisms. This is achieved by assessing awareness of the task relevant features

as opposed to the mere detection of a strongly masked stimuli (Michel, 2022; Newell and

Shanks, 2014). The latter can severely constraint the possibility of isolating behavioural

markers of unconscious perception (Lau, 2022). This may be one of the reasons why prior

studies using the 2IFC paradigm did not observe evidence of unconscious processing (Knotts

et al., 2018; Peters and Lau, 2015; Peters et al., 2017).

In these studies, as soon as observers could discriminate better than chance the task

relevant feature (i.e., a grating orientation) they could also detect the informative interval.

However, awareness of something (i.e. detection) does not entail awareness of the task rele-

vant feature and crucially, equating awareness to the mere detection of stimulus presence can

lead to the underestimation of unconscious perception (for discussion on the criterion content

fallacy see (Michel, 2022). To avoid this, the type-2 judgements should indicate whether ob-

servers were conscious of the task-relevant features. Accordingly, in the present study using

visible sequences we showed that participants could discriminate the semantic category of

the temporal ensemble, while being unaware of the ensemble ratio that determined which

interval contained the perceptual ensemble. This is akin to a bias-free ‘blindsight’ effect

(Weiskrantz, 1986), in which the absence of awareness of the task-relevant feature is accom-

panied by above-chance discrimination of the category of the ensemble. Importantly, this

observation was replicated in two independent experiments.
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However, we note that the dissociation between the efficiency of type-1 and type-2

performance across the different ratios could also reflect differences at the decisional level

rather than at the visual awareness level. The signal, in this case, the ensemble ratio, might

exert a greater impact on type-1 compared to type-2 decisions (Michel, 2022). For instance,

Vlassova et al. (2014) reported that unconsciously processed information can modulate

perceptual performance without altering metacognitive sensitivity. We propose that a similar

phenomenon may have occurred in our experiments, whereby the unconscious integration of

the sequence items guides type-1 perceptual decisions in the absence of awareness.

Furthermore, it is noteworthy that while 2IFC tasks efficiently address criterion-

related concerns, they can impose a greater processing load on type-2 compared to type-1

processing (Peters and Lau, 2015). This is due to the necessity of monitoring two intervals

of stimulation in order to perform the type-2 task. However, our Gaussian process regression

analyses effectively ruled out the possibility that the observed dissociation between ensemble

perception and awareness of the task-relevant features was solely driven by systematic type-2

disadvantages. Future studies employing the 2IFC paradigm should keep in mind this limita-

tion (Michel, 2022) and should incorporate additional measures to ensure that any potential

unconscious effects cannot be explained by systematic disadvantages, as demonstrated in the

present study.

Finally, since visual perception goes beyond single-object recognition, we would like

to emphasize the potential of ensemble perception paradigms to study visual awareness

and metacognition in more ecological settings. For instance, characterizing type-2 processes

associated with confidence computations in ensemble perception aligns with the need of

studying metacognition in more complex tasks beyond the presentation of simple, isolated

stimuli (Rahnev et al., 2022). Besides, ensemble perception provides a way of manipulat-

ing the stimulus uncertainty without degrading the low-level visual features. This may well

provide a solution to tackle the distinction between non-conscious and conscious process-

ing mechanisms without underestimating unconscious processing (Michel, 2022), which can

have further ramifications in addressing unresolved theoretical issues concerning the opera-

tion of working memory on non-conscious input (Soto and Silvanto, 2016; Soto et al., 2011;

Stein et al., 2016). Ensemble stimuli avoids the need of using masking or any other uncon-

scious rendering technique to prevent awareness of the task-relevant features. Consequently,

stimulus ensembles can provide a stronger internal signal for unconscious perception studies

(Lau, 2022). Further, stimulus summary statistical representations are more robust to noise

(Alvarez, 2011) than single-object representations thus they may be more suitable to study

visual consciousness for unattended or peripheral presentations.

In summary, here we showed the contributions of unconscious and conscious pro-
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cessing mechanisms to ensemble perception. Categorical ensemble perception can unfold

unconsciously without awareness of the task relevant features (i.e. the ensemble ratio that

defines the ensemble). Further, the results suggest that awareness lags well behind the cate-

gorization processes that support ensemble perception. We also note that these results have

been observed in healthy young adults and it would be relevant for future work to address

the role of awareness in ensemble perception across different neurodevelopmental trajectories,

from childhood (Sweeny et al., 2015)into adulthood and later in aging.

The present work represents an attempt of studying consciousness and metacognition

in more complex contexts without underestimating the contribution of unconscious process-

ing in an otherwise conscious stimulus.
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