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ABSTRACT: Polymer capsules fabricated via the layer-by-layer (LbL) approach have emerged as promising biomedical systems for
the release of a wide variety of therapeutic agents, owing to their tunable and controllable structure and the possibility to include
several functionalities in the polymeric membrane during the fabrication process. However, the limitation of the capsules with a
single functionality to overcome the challenges involved in the treatment of complex pathologies denotes the need to develop
multifunctional capsules capable of targeting several mediators and/or mechanisms. Oxidative stress is caused by the accumulation of
reactive oxygen species [e.g., hydrogen peroxide (H2O2), hydroxyl radicals (

•OH), and superoxide anion radicals (•O2
−)] in the

cellular microenvironment and is a key modulator in the pathology of a broad range of inflammatory diseases. The disease
microenvironment is also characterized by the presence of proinflammatory cytokines, increased levels of matrix metalloproteinases,
and acidic pH, all of which could be exploited to trigger the release of therapeutic agents. In the present work, multifunctional
capsules were fabricated via the LbL approach. Capsules were loaded with an antioxidant enzyme (catalase) and functionalized with
a model drug (doxorubicin), which was conjugated to an amine-containing dendritic polyglycerol through a pH-responsive linker.
These capsules efficiently scavenge H2O2 from solution, protecting cells from oxidative stress, and release the model drug in acidic
microenvironments. Accordingly, in this work, a polymeric microplatform is presented as an unexplored combinatorial approach
applicable for multiple targets of inflammatory diseases, in order to perform controlled spatiotemporal enzymatic reactions and drug
release in response to biologically relevant stimuli.
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1. INTRODUCTION

The layer-by-layer (LbL) technique is a simple and versatile
method that allows the modification of a wide variety of
substrates (e.g., planar structures, fibers, and colloidal particles)
through the alternate deposition of oppositely charged
polyelectrolytes.1−4 This technique has evolved from the
application on planar substrates to colloidal micro- and
nanoparticles in the late 1990s thanks to the intensive
investigations by Möhwald and collaborators.5−8 In these
pioneering studies, highly charged polyelectrolytes were
deposited onto colloidal particles by taking advantage of
their stability, selectivity, and permeability.7,9 The colloidal

core was subsequently removed, giving rise to hollow polymer
capsules.
Recent progresses in the field of bioscience and polymer

synthesis allow the fabrication of polymer capsules using
alternative biodegradable synthetic and natural polymers,

Received: January 22, 2021
Accepted: April 2, 2021
Published: April 16, 2021

Research Articlewww.acsami.org

© 2021 American Chemical Society
18511

https://doi.org/10.1021/acsami.1c01450
ACS Appl. Mater. Interfaces 2021, 13, 18511−18524

D
ow

nl
oa

de
d 

vi
a 

JO
H

N
S 

H
O

PK
IN

S 
U

N
IV

 o
n 

M
ay

 2
8,

 2
02

4 
at

 1
9:

51
:2

3 
(U

T
C

).
Se

e 
ht

tp
s:

//p
ub

s.
ac

s.
or

g/
sh

ar
in

gg
ui

de
lin

es
 f

or
 o

pt
io

ns
 o

n 
ho

w
 to

 le
gi

tim
at

el
y 

sh
ar

e 
pu

bl
is

he
d 

ar
tic

le
s.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Edurne+Marin"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Neha+Tiwari"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Marcelo+Caldero%CC%81n"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jose-Ramon+Sarasua"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Aitor+Larran%CC%83aga"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acsami.1c01450&ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.1c01450?ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.1c01450?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.1c01450?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.1c01450?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.1c01450?fig=abs1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.1c01450?fig=abs1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.1c01450?fig=abs1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.1c01450?fig=abs1&ref=pdf
https://pubs.acs.org/toc/aamick/13/16?ref=pdf
https://pubs.acs.org/toc/aamick/13/16?ref=pdf
https://pubs.acs.org/toc/aamick/13/16?ref=pdf
https://pubs.acs.org/toc/aamick/13/16?ref=pdf
www.acsami.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acsami.1c01450?rel=cite-as&ref=PDF&jav=VoR
https://www.acsami.org?ref=pdf
https://www.acsami.org?ref=pdf
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://acsopenscience.org/open-access/licensing-options/


proteins, or inorganic nanoparticles, among others, their
properties being tunable for specific biomedical require-
ments.2,8,10−12 Thus, taking advantage of this versatility and
capability to fabricate polymer capsules with tailor-made
properties, capsules have been fabricated for a wide variety
of applications, including drug/protein/gene delivery ve-
hicles,13−16 polymer capsules for imaging applications,17−19

or micro- and nanoreactors.12,20−22 The latest contain active
entities in their core and allow the diffusion of reagents and
byproducts through the polymer shell. The active compounds
[e.g., enzymes or nanozymes23 (i.e., synthetic nanomaterials
with enzyme-like characteristics)] are protected from the outer
microenvironment and act in situ.1,20

However, in most of these applications, capsules are
endowed with a single functionality, which may limit their
potential to overcome the challenges involved in the treatment
of complex pathologies and to adapt to patient-specific
characteristics.24 This denotes the need to develop multifunc-
tional capsules, which respond to different physiological stimuli
and adjust to the individual particularities of the patient.11,24,25

Excellent examples of such multifunctional capsules are
theranostic micro- and nanocapsules, which are capable of
simultaneously diagnosing and treating the damaged site, while
acting also as imaging agents.26−30 To impart these advanced
functionalities, the polyelectrolytes employed for the fabrica-
tion of polymeric membranes can be modified, incorporating
several functionalities and (bio)molecules (e.g., drugs, anti-
bodies, or proteins) which will respond to specific external or
local stimuli.1,29

The deconstruction of the capsule is usually required for the
efficient triggered delivery of the encapsulated therapeutic
agent. Either internal (i.e., local) or external stimuli can
facilitate the disruption of the capsule by different mechanisms.
For example, a decrease in pH (e.g., mimicking endosomal pH
conditions) causes charge repulsion between the polyelec-
trolytes, leading to the rapid release of the encapsulated

cargo.31 Decorating the polymeric membrane with magnetic-
(e.g., iron oxide nanoparticles32), ultrasound- (e.g., gold
nanoparticles14), and near-infrared-responsive (e.g., graphene
oxide33) nanoparticles allows the disassembly of the polymeric
shell and the subsequent release of the encapsulated
therapeutic agent. All these strategies are clearly inappropriate
when microcapsules are intended to be used as microreactors.
Ideally, for the application we intend to pursue, the polymeric
capsule should maintain its structural integrity when the
complementary drug is released to ensure the protection of the
encapsulated enzyme.
In our approach, the use of dendritic polyglycerols (dPGs) is

envisioned as an unexplored strategy to impart additional
functionalities to the capsules while preserving their structural
integrity. Dendritic polymers present a high solubility,
biocompatibility, and a high functionality.34,35 Hence, a wide
variety of active compounds, such as bioactive molecules or
targeting moieties, can be conjugated to the dPG branches
using cleavable bonds which will respond to the stimuli and
specific conditions of the damaged area (e.g., acidic pH,
overexpressed enzymes, or reducing media).34−37

When the native cellular regulation of reactive oxygen
species (ROS) production [e.g., hydrogen peroxide (H2O2),
hydroxyl radicals (•OH), superoxide anion radicals (•O2

−)] is
overwhelmed, oxidative stress, which is implicated in
numerous pathologies such as neurodegeneration, cancer,
osteoarthritis, or cardiovascular diseases, occurs.38−40 Fur-
thermore, oxidative stress is usually accompanied by
dysregulated inflammatory responses and a reduction in the
environmental pH.40−42 Thus, to overcome the complexity of
an oxidative stress microenvironment, multifunctional bio-
medical systems mentioned above will be of great interest.
In this study, it was hypothesized that the LbL approach, in

combination with dPG−drug conjugates, could be exploited to
create multifunctional polymer capsules capable of simulta-
neously reducing the levels of ROS while releasing a model

Figure 1. Reaction pathways for the synthesis of dPG-amine and dPG−DOX conjugate. The depicted structure of dPG-amine represents only a
fraction of the total polymer.
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drug in response to a biologically relevant stimulus (i.e., pH).
We fabricated multifunctional polymer capsules by depositing
alternate layers of poly(sodium 4-styrenesulfonate) (PSS),
poly(allylamine hydrochloride) (PAH), and an amine-contain-
ing dPG conjugated to doxorubicin (dPG−DOX), which was
employed as a model drug to test the potential of the system,
on a CAT-loaded CaCO3 sacrificial template. DOX was
conjugated to dPG through a pH-responsive linker. After the
removal of the CaCO3 template, multifunctional capsules were
obtained. The physicochemical, morphological, and functional
properties of the capsules were thoroughly determined. A
preliminary in vitro model of oxidative stress with HeLa cells
was used to assess the therapeutic potential of the capsules.

2. RESULTS AND DISCUSSION

2.1. Synthesis of dPG−DOX Conjugate. Polyglycerol
amine (dPG-amine) was synthesized, following a three-step
protocol. The −OH groups of dPG were first converted to
mesyl (Ms) groups, followed by the conversion of Ms groups
to azide functionalities. The azide groups were subsequently
transformed into amine groups using triphenylphosphine as
the reducing agent. Figure 1 shows the schematics and the
reaction conditions for the synthesis of dPG-amine from dPG
as the starting material. All samples were well characterized
using nuclear magnetic resonance (NMR) spectroscopy
(Figures S1−S3, Supporting Information), and a total of 15
mol % amine grafting was obtained (i.e., 18 NH2 and 103 OH
groups, on average). The conversion of azide groups to amine

Figure 2. (a) Schematic representation of the fabrication of multifunctional polymer capsules, (b) ζ-potential of (PAH/PSS) (dPG−DOX/PSS)2
and (PAH/PSS) (dPG-amine/PSS)2 polymer capsules, (c) SEM micrographs of polymer capsules, (d) polymer capsules before (left) and after
(right) incubation with dPG−DOX, and (e) fluorescence micrographs of capsules fabricated with dPG-amine or dPG−DOX.
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moieties was further confirmed by the disappearance of the
characteristic peak of azide groups at 2100 cm−1 after
reduction reaction (Figure S4, Supporting Information). The
zeta potential of dPG-amine was 12 ± 2 mV, confirming the
presence of amine functionalities on dPG moieties. The
hydrodynamic sizes of dPG-amine were found to be around
20−25 nm with a high polydispersity index (PDI = 0.7), owing
to the aggregation of the particles in solution.
The conjugate of dPG−DOX was synthesized through a

one-pot synthesis, as stated in earlier publications.36,43 A
schematic representation of the conjugation reaction between
DOX−EMCH (i.e., DOX bearing a pH-cleavable hydrazone
bond, with a maleimide group for conjugation) and dPG-
amine containing 15 mol % amino groups is shown in Figure 1.
First, dPG-amine was thiolated to yield, on average, one thiol
per dPG molecule. After thiolation, DOX−EMCH was added
to the dPG−thiol solution to allow the reaction between the
thiols and the maleimide groups through a selective Michael-
type addition. After the reconstitution of the lyophilized
samples in PBS buffer, the concentration of DOX was
determined photometrically using the molar absorption
coefficient of DOX at 495 nm. The first assessment of the
pH-triggered cleavage and DOX release was performed by
dispersing the dPG−DOX conjugate in sodium acetate buffer
at pH 4.0 and applied on a G-25 Sephadex column. The
amount of DOX conjugated to the dPG backbone was
calculated to be ∼2 wt % or one DOX per three molecules of
dPG using UV/vis spectroscopy at 495 nm (ε 495 = 10,645
M−1 cm−1). It should be noted that such rather low drug
loading was aimed in order to enable the predominance of
−NH3

+ at the surface of the conjugates for their further
incorporation into the microcapsules during the LbL
deposition process. The hydrodynamic sizes of the conjugates
remained in the same size range as dPG-amine. The zeta
potential of dPG−DOX was 9 ± 0.5 mV, confirming the
presence of amine functionalities on dPG moieties incorporat-
ing an overall positive charge on dPG even after DOX
conjugation.
2.2. Fabrication of Polymer Capsules via the LbL

Approach. For the fabrication of polymer capsules, CaCO3
sacrificial template was first synthesized through the co-
precipitation of CAT, CaCl2, and Na2CO3 (Figure 2a) because
of the reported higher encapsulation efficiency in comparison
to alternative methods.44,45 The process resulted in CAT-
loaded CaCO3 spherical microparticles with a mean diameter
of 3.9 ± 1.6 μm, which slightly differed from the CaCO3
sacrificial template without the enzyme (3.1 ± 1.2 μm) (Figure
S5, Supporting Information). CaCO3 microparticles were
selected as the sacrificial template as they are easily dissolved
using a calcium chelating agent [i.e., ethylenediaminetetraacetic
acid disodium salt dehydrate (EDTA)] and enable to avoid
harsh conditions (i.e., organic solvents and/or extremely high/
low pH) in the subsequent template removal step, thus
protecting the integrity of polyelectrolytes, the encapsulated
enzyme, and the chemically conjugated drug.46 Contrary to
other templates such as polystyrene beads47 and melamine
formaldehyde cores,48 the protocol used herein allows the pre-
encapsulation of the enzyme. Post-encapsulation of (bio)-
macromolecules in templated LbL capsules usually relies on an
increased permeability of the polymeric membrane promoted
by a change in solvent composition,49 pH,50 or temperature.51

These conditions could have a detrimental effect on the

conformational integrity of the encapsulated enzyme, thus
jeopardizing its catalytic activity.
Capsules containing six layers were fabricated using PAH as

the first positive layer and dPG−DOX or dPG without the
conjugated drug (dPG-amine) for the subsequent positive
layers (Figure 2a), resulting in (PAH/PSS) (dPG−DOX/
PSS)2 and (PAH/PSS) (dPG-amine/PSS)2 architectures,
respectively. PAH and PSS polyelectrolytes were chosen due
to their extensive use as model polyelectrolytes in the
fabrication of LbL capsules and their robust structure enabling
the transfer of substrates across the polymeric membrane,
while protecting the active compound from the external
environment.46,52−54 Although LbL capsules based on
biodegradable polyelectrolytes are of high interest in several
biomedical applications (e.g., nanovehicles for the transfer of
genetic material55 or drugs56), biodegradability may be an
undesirable property when capsules are intended to be used as
microreactors. If the degradation process is not carefully
controlled, the encapsulated enzyme would be exposed to the
external physiological conditions and suffer protease degrada-
tion and denaturation.
The sacrificial template was initially negatively charged

(pICAT = 5.4). Therefore, CAT-loaded CaCO3 microparticles
were first incubated with PAH, resulting in a shift in their
surface charge from −9.4 ± 0.6 to −5.0 ± 0.3 mV in the case
of capsules fabricated using dPG−DOX (Figure 2b) and from
−10.5 ± 0.3 to −8.9 ± 1.2 mV in the case of capsules
fabricated using dPG-amine (Figure 2b). Afterward, poly-
electrolyte layers were assembled alternately, and a change in
the ζ-potential value was observed after each deposition step,
confirming the successful layer assembly (Figure 2b).
After the LbL process, the microparticles were immersed in

0.1 M EDTA solution to allow the removal of the CaCO3
sacrificial template (Figure 2a). As observed in scanning
electron microscopy (SEM) micrographs, the fabricated
capsules before EDTA addition had a spherical shape with a
mean diameter size ∼3−4 μm (Figure 2c). After EDTA
incubation, capsules fabricated with dPG−DOX and with
dPG-amine were hollow, as suggested by their collapsed shape
(Figure 2c). Fourier transform infrared spectra (FTIR) (Figure
S6, Supporting Information), where the two main bands
associated to CaCO3 at 1384 and 870 cm−1 disappeared after
the incubation with EDTA, confirmed the successful
elimination of the sacrificial template.
To test their stability, microcapsules were immersed in PBS

at 37 °C, and micrographs were acquired at different time
points (4, 24, and 72 h). As observed in SEM, capsules
maintained their spherical and collapsed shape at the selected
time points, confirming their stability over time (Figure S7,
Supporting Information).
The successful adsorption of DOX was quantitatively and

qualitatively assessed. After the incubation of the capsules with
dPG−DOX, a change in the color of the microcapsule pellet
was observed (Figure 2d). The successful incorporation of
dPG−DOX was quantitatively confirmed by measuring the
concentration of dPG−DOX in the supernatant before and
after each layer deposition. The obtained results showed a
decrease in the dPG−DOX concentration in the solution after
each incubation, confirming the adsorption of the drug
conjugate onto the capsules (Figure S8, Supporting Informa-
tion). The adsorbed quantity of DOX was 1.9 μg per 10 mg of
CaCO3 sacrificial template. Finally, the presence of DOX was
qualitatively confirmed by means of fluorescence microscopy
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after the template removal. Red fluorescence was observed in
the case of the capsules fabricated with dPG−DOX, whereas
capsules fabricated with dPG-amine were not visible (Figure
2e).
2.3. Antioxidant Capacity and pH-Dependent Drug

Release of the Polymer Capsules. To assess the antioxidant
capacity, two biologically relevant H2O2 concentrations (10
and 50 μM) were used. Capsules were incubated at a final
polymer capsule concentration of 1 × 104, 1 × 105, 1 × 106,
and 1 × 107 polymer capsules/mL for 30 min. The
concentration of H2O2 in the solution decreased in a polymer
capsule concentration-dependent manner (Figure 3a). At the
concentration of 10 μM H2O2, a significant decrease (p < 0.05)
in the H2O2 concentration was observed at the polymer
capsule concentrations of 1 × 105, 1 × 106, and 1 × 107

polymer capsules/mL, from the initial value of 100 ± 2.3 to
91.2 ± 3.2, 53.8 ± 2.4, and 2 ± 0.1%, respectively (Figure 3a).
In the case of 50 μM, the concentration of H2O2 decreased
significantly (p < 0.05) from an initial value of 100 ± 0.6 to
94.8 ± 1.8, 60.6 ± 2, and −12.4 ± 0.2% using the polymer
capsule concentrations of 1 × 105, 1 × 106, and 1 × 107

polymer capsules/mL, respectively (Figure 3a). Taken
together, the obtained results confirmed the H2O2 scavenging
capacity of the developed polymer capsules, indicating that the
activity of the encapsulated enzyme is preserved and the
reagents are able to diffuse through the polymeric membrane.
The use of antioxidant enzymes is gaining increasing attention
for biomedical applications over alternative nonenzymatic
antioxidants (e.g., vitamins and flavonoids) thanks to their
specificity and efficacy. Furthermore, contrary to nonenzymatic

antioxidants, they are not consumed in the reaction with
ROS.57,58 However, due to their susceptibility to undergo
protease degradation and denaturation, several encapsulation
strategies [e.g., liposomes,59 polymersomes,60 and poly(lactide-
co-glycolide) particles61] are being considered. The LbL
approach does not require complex chemistries, avoids the
use of organic/harmful solvents and conditions, and important
aspects of the resulting capsules (e.g., size, shape, and stiffness)
can be easily controlled, thus representing a robust strategy
over other alternatives.
The scavenging capacity of the encapsulated enzyme after a

sterilization process was also evaluated. After submerging the
capsules in ethanol (70%), they were incubated with 10 and 50
μM H2O2 at a final concentration of 1 × 106 and 1 × 107

polymer capsules/mL. Regardless of the H2O2 concentration, a
significant decrease (p < 0.05) in their scavenging capacity was
observed due to the sterilization with ethanol (Figure S9,
Supporting Information). In the case of 10 μM H2O2
concentration, polymer capsules reduced 94.1 ± 0.6 and 37.9
± 0.9% of the initial H2O2 from the solution, using
concentrations of 1 × 107 and 1 × 106 polymer capsules/mL
respectively, whereas the sterilized counterparts reduced 47.9
± 2.1 and 0.7 ± 1.2% of H2O2 (Figure S9, Supporting
Information). At the concentration of 50 μM H2O2, significant
differences were also observed in both polymer capsule
concentrations. Using 1 × 107 and 1 × 106 polymer
capsules/mL, H2O2 reduction values were determined to be
97.3 ± 2.8 and 35.2 ± 1.8%, respectively, whereas in the case
of sterilized capsules, the values were 40.2 ± 4.1, and 18.4 ±
2.4% (Figure S9, Supporting Information). The encapsulation

Figure 3. (a) H2O2 scavenging capacity of polymer capsules at biologically relevant H2O2 concentrations (10 and 50 μM). Asterisks (*) indicate
significant differences (p < 0.05) with respect to the control (0 capsules/mL). (b) DOX release at different pH values. (c) Fluorescence
micrographs of DOX release at different pH values (FITC-CAT: green/DOX: red). Scale bar: 50 μm.
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of enzymes into LbL capsules and alternative polymeric
systems (e.g., single-enzyme nanogels,62,63 polymersomes,64

and so on) commonly results in an improved stability of the
encapsulated enzyme toward proteolytic degradation, organic
solvents, changes in pH and temperature, and so forth.65,66

However, in the particular case of LbL capsules exposed to
water/ethanol mixtures, an increased permeability has been
reported, which is associated to the rearrangement of the
polyelectrolytes forming the shell.67 This can have a
deleterious effect on the catalytic activity of the enzyme and,
at the same time, result in its leakage from the polymeric
capsule. Therefore, sterilization with ethanol was not
considered for the subsequent in vitro studies, and alternative
approaches to prevent contamination were acquired.
To assess the capacity of the capsules to release a model

drug in response to the microenvironment pH, the fabricated
polymer capsules were incubated in four different pH buffers
(pH = 4.0, 5.0, 6.0, and 7.4). We chose to work with DOX−
EMCH as it is a well-established prodrug currently in clinical
trials that is stable at neutral pH but undergoes hydrazone
cleavage at pH values lower than 6 to release the
antiproliferative drug doxorubicin. Supernatants were collected
after 30 min, 4 h, and 24 h, and their fluorescence intensities
were measured using a microplate reader. After 30 min, the
capsules showed an initial release of the model drug of 0.3, 1.2,
2.1, and 3.5 μg at pH = 7.4, 6.0, 5.0, and 4.0, respectively
(Figure 3b). As expected, a higher initial release was observed
in the more acidic environment. After 24 h, polymer capsules
released a total DOX amount of 3.5, 5.0, 6.8, and 8.5 μg at pH
= 7.4, 6.0, 5.0, and 4.0, respectively, thus confirming the pH-
dependent release of the fabricated polymer capsules (Figure

3b). In comparison to other LbL capsules that rely on a
diffusion process to release the encapsulated cargo, our
approach allows the delivery of the model drug (i.e., DOX)
mainly in acidic conditions. This is of high relevance for the
potential translation of this system to biomedical applications,
as the off-target effects of the administered drug would be
minimized. Diffusion-mediated drug release, apart from being
nonspecific to any biologically relevant stimulus, is usually
accompanied by an initial burst release. For example, around
80% of the encapsulated DOX was released from capsules
made out of PAH/PSS multilayers in less than 300 min68 In
another example using PSS and poly(amidoamine) dendrimer
to fabricate hollow polymer capsules, capsule degradation and/
or high ionic strengths were needed to ensure the complete
release of the encapsulated DOX.69

The pH-dependent release of the fabricated polymer
capsules was further confirmed by means of fluorescence
microscopy. For this purpose, CAT was stained with FITC
(CAT-FITC) prior to the co-precipitation process. After the
LbL process and template removal, the capsules were
immersed in two of the buffers mentioned above (pH = 5.0
vs pH = 7.4), and fluorescent micrographs were acquired after
4 and 24 h. Most of the polymer capsules immersed in pH 7.4
buffer maintained their fluorescence intensity at the assessed
time points (4 and 24 h) in both channels (red and green),
compared to the capsules before their immersion (0 h) (Figure
3c). In contrast, polymer capsules immersed in the acidic pH
buffer were able to emit fluorescence signal only in the green
channel (CAT-FITC), but the fluorescence signal in the red
channel (DOX) was not visible after 24 h, suggesting a
substantial release of the drug (Figure 3c). Although the drug

Figure 4. (a) Metabolic activity of HeLa cells in the presence of polymer capsules. Asterisks (*) indicate significant differences (p < 0.05) with
respect to the control (cells in the absence of capsules), (b) cells in absence of polymer capsules (left) and in the presence of polymer capsules
(1000 polymer capsules/cell) (right), (c) fluorescence micrographs of HeLa cells in the presence of polymer capsules at different time points
(nuclei-DAPI: blue/polymer capsules functionalized with DOX: red). White arrows highlight the presence of DOX-containing polymer capsules.
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seems to be completely released, the stability of the polymer
capsules immersed in pH = 5.0 buffer was preserved, keeping
their spherical shape and integrity. Several studies have
employed LbL capsules as delivery vehicles for the release of
DOX and other therapeutic agents. Most of them rely on the
Fickian diffusion release mechanism, where the diffusion is
governed by the concentration gradient between the two sides
of the polymeric shell, which acts as a barrier. Accordingly,
tuning the thickness of the polymeric shell (e.g., by changing
the number of deposited layers68) or its density (e.g., by
promoting shrinkage of the capsules through a thermal
treatment56 or cross-linking reactions70) has been reported
as a valid strategy to control the release kinetics of the
encapsulated DOX. In this sense, the release of DOX from
polymer capsules made out of PAH and dendritic porphyrin
was delayed when the polymer layers were cross-linked via the
carbodiimide chemistry.70 To achieve a more specific release at
the site of interest, biologically relevant stimuli have been
employed as triggers for the disassembly of the capsules and
the subsequent delivery of the cargo. Yan et al.71 fabricated
LbL polymer capsules stabilized with disulfide bonds that
underwent deconstruction during intracellular trafficking due
to the reducing environment, thereby leading to DOX release.
The acidic microenvironment has been similarly employed to
promote the disassembly of hydrazone-bonded polymer
capsules, which resulted in a much faster release of the
entrapped DOX in comparison to the one observed at neutral
pH.72 Contrary to these two last examples, our approach allows
the release of DOX in response to a biologically relevant
stimulus (i.e., acidic pH) while preventing the disassembly of
the capsule, which is a must to preserve the protection of
catalase and act as a long-lasting microreactor.
Based on these results, we confirm the multifunctional

identity of the fabricated capsules, which are able to
simultaneously scavenge H2O2 from the microenvironment in
a dose-dependent manner and release DOX in acidic
microenvironments.
2.4. Metabolic Activity of HeLa Cells in the Presence

of Multifunctional Capsules and Internalization. The in
vitro cytocompatibility of polymer capsules [i.e., (PAH/PSS)
(dPG-amine/PSS)2] was tested with HeLa cells. The
metabolic activity of cells in the presence of various capsule
per cell ratios (10, 100, and 1000 capsules/cell) was measured
after 24 and 72 h by means of AlamarBlue (AB) assay. Cells
without capsules were used as a negative control. The cells
were able to maintain a normal metabolic activity above the
threshold value (i.e., 70%) in the presence of capsules. In fact,
after 72 h, no decrease in their metabolic activity (p < 0.05)
was observed with respect to the negative control (Figure 4a).
Although LbL capsules composed of polyelectrolytes are
believed to be nontoxic for cells, some studies have reported
detrimental effects on cell proliferation and viability at
concentrations above 50 capsules per cell.73 Besides, the
incorporation of inorganic nanoparticles (e.g., magnetic
nanoparticles74 and manganese dioxide nanoparticles23) to
provide advanced functionalities also resulted in an increased
cytotoxicity of the fabricated capsules in comparison to the
nonfunctionalized counterparts, thus reducing the threshold at
which these capsules can be employed in the subsequent
biological studies. The LbL approach is a highly versatile
method that allows to easily tune the surface charge of the
resulting capsules. In principle, positively charged capsules
improve cell uptake (presumably because of the electrostatic

interaction between the surface of the particle and the cell
membrane) and can be a valid strategy for some particular
applications where internalization is a must (e.g., gene
therapy75). At the same time, it is generally accepted that
positively charged micro- and nanocapsules induce a higher
cytotoxicicity.76 Based on this “rule of thumb” and on our
previous experience,23 we engineered the capsules to display an
external negative charge. To further confirm the effect of the
polymer capsules, cells were observed under an optical
microscope. Compared to the negative control (i.e., cells in
the absence of polymer capsules), no changes were observed in
the morphology of the cells and cell density in the presence of
polymer capsules (Figure 4b). Taken together, the results
indicate no cytotoxic effect of the fabricated capsules in any of
the capsule-to-cell ratios.
The internalization of polymer capsules by both innate

immune cells (e.g., macrophages, monocytes, and dendritic
cells) and potential target cells must be carefully considered.
Phagocytosis by immune cells may be desirable for specific
applications, including vaccine carriers. In many other cases
(e.g., drug delivery), polymer capsules should escape from the
uptake by immune cells to reach the target cells. In any case,
the LbL approach offers huge versatility in controlling those
key parameters that will determine cell uptake, including size,77

shape,78,79 surface charge,80 stiffness,81 and surface chem-
istry,53,82,83 among others. There is a vast literature aimed at
unraveling the interplay between these parameters and various
internalization mechanisms, sometimes drawing contradictory
conclusions. As reported by Novoselova et al.,77 increasing the
size of the LbL capsules from 500 nm to 2 μm reduced the
uptake by both macrophages and lung cancer cells from 80 to
20% (approximate values), suggesting that an increased size
could be employed as a strategy to avoid macrophage
internalization. In another example,79 bowl-like microcapsules
were preferentially internalized by both smooth muscle cells
and macrophages in comparison to spherical counterparts,
indicating that isotropic-shaped capsules (i.e., spheres) could
be used over anisotropic ones to evade macrophages. However,
Shimoni et al.78 reported that capsules with high aspect ratios
(i.e., rod-shaped capsules) were poorly internalized by HeLa
cells in comparison to spherical ones. This highlights the
complexity of endocytosis/phagocytosis processes and their
dependence on cell type. Stiffness of the capsules, which can be
modulated by the number of layers,81 cross-linking reactions,
or incorporation of nanoparticles,84 also seems to determine
the uptake efficiency, the softer capsules with lower stiffness
being preferentially internalized by cells with respect to stiffer
ones. Tuning the surface chemistry of the capsules can be used
to either facilitate or avoid cellular uptake. Engineering the
surface of the capsules by attaching bioactive molecules (e.g.,
peptides, antibodies, and so on) on the outermost layer allows
the recognition of receptors and targets the intended cells via
the antibody−antigen interaction.82 Surface PEGylation and
similar approaches, in contrast, evade immune clearance and
has also been applied to LbL capsules.83

Performing a systematic study to analyze the internalization
mechanisms of our capsules is beyond the scope of this
manuscript. Polymer capsules are transported into cells by
endocytosis, but determining the exact mechanism (e.g.,
phagocytosis, macropinocytosis, caveolae-mediated endocyto-
sis, clathrin-mediated endocytosis, and so on85) requires
deeper analyses by blocking/inhibiting various cellular
endocytic pathways.79 Herein, a preliminary study was
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designed to assess the internalization of the capsules by HeLa
cells. Polymer capsules [i.e., (PAH/PSS) (dPG−DOX/PSS)2]
were incubated at a concentration of 10 polymer capsules/cell
and fixed at different time points (2, 4, and 24 h) prior to their
observation under a fluorescence microscope. As discussed
above, at the selected time points, a negligible release of DOX
from the capsules is expected. This was further confirmed in
the image merged with the bright field, where DOX was clearly
associated to the round-shaped capsules (Figure 4c, right). As
observed in Figure 4c, polymer capsules showed a tendency to
localize near the nucleus. A progressive accumulation of
polymer capsules within the cells was observed along the
incubation time and, as a result, most of the capsules were
accumulated around the perinuclear region at 24 h. A similar
tendency was also reported in the literature, in which a
perinuclear accumulation of carriers was observed.35,36

2.5. Therapeutic Potential of the Polymer Capsules in
a H2O2-Induced Oxidative Stress In Vitro Model.
Oxidative stress leads to cellular apoptosis and senescence by
damaging important cell structures, thus aggravating numerous
disease pathologies such as cancer, neurodegeneration, or
osteoarthritis. Accordingly, a plethora of biomaterials to
control oxidative stress have been developed in the last years

including, among others, natural antioxidant-based micro- and
nanoparticles (e.g., vitamin-E,86 flavonoids,87 and so on),
synthetic polymeric nanoparticles with intrinsic antioxidant
capacity,88 and nanozymes based on cerium oxide,21

manganese dioxide,89 or carbon derivatives.90 Although
nanozymes represent a promising inorganic alternative to
natural enzymes, showing a unique multienzyme mimetic
activity, important challenges need to be addressed in terms of
long-term cytotoxicity, biodistribution, in vivo uptake, and so
forth prior to their translation into biomedical applications.91

In our present approach, inspired by the compartmentalization
strategies found at the cellular and subcellular levels, we
encapsulated an antioxidant enzyme (i.e., catalase) into
synthetic polymer capsules, resembling artificial organelles.
This strategy provides increased robustness to the system by
protecting the fragile enzymes from environmental harsh
conditions, extending accordingly the storage time and its
resistance to temperature, changes in pH, and so forth,92 while
maintaining its recycling stability (i.e., capacity to efficiently
perform successive batch reactions).66 All these benefits,
together with their cytocompatibility and the possibility to
incorporate complementary entities as described above, make

Figure 5. (a) Schematic temporal distribution of stimuli addition and metabolic activity measurements. (b) Metabolic activity of HeLa cells in the
presence of H2O2 stimuli (50 and 100 μM) and polymer capsules; “a” and “b” indicate respectively significant differences with respect to the
negative (cells without capsules and H2O2) and positive controls (cells without capsules but stimulated with 50 or 100 μM of H2O2) (n = 4); 100%
of metabolic activity was ascribed to the negative control. (c) Optical micrographs of cells without capsules and stimulated with H2O2 (positive
control) and cells with 1000 polymer capsules/cell and H2O2 stimuli. Scale bar: 200 μm.
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LbL capsules an excellent therapeutic platform to protect cells
from oxidative stress.
An in vitro model with HeLa cells was used to evaluate the

therapeutic potential of the fabricated polymer capsules. Cells
were stimulated every 24 h with two biologically relevant H2O2
concentrations (i.e., 50 and 100 μM) to induce oxidative stress
(Figure 5a). These H2O2 extracellular concentrations are
assumed to induce deleterious responses on cells, ultimately
leading to oxidative distress.93 Metabolic activity of the cells
was assessed by the AlamarBlue (AB) assay at different time
points (8, 24, 32, and 48 h after the initial stimulus) (Figure
5a). The H2O2 concentrations were chosen after a preliminary
analysis to evaluate the effect of different concentrations on
metabolic activity (data not shown). HeLa cells in the absence
of polymer capsules and H2O2 stimuli were used as negative
control. Cells in the absence of capsules but with H2O2 stimuli
were considered as positive control. The concentrations of
polymer capsules employed were 10, 100, and 1000 polymer
capsules/cell, and they were not sterilized due to the
aforementioned detrimental effect of ethanol on the CAT
scavenging capacity (Figure S9, Supporting Information).
Alternatively, capsules were fabricated in clean conditions,
and all the employed solutions were sterile-filtered. No
bacterial or other type of contamination was observed during
the course of the experiment. In this particular experiment,
capsules without DOX [i.e., (PAH/PSS) (dPG-amine/PSS)2]
were employed to avoid any possible toxic effect that could
mask the protection of capsules against H2O2-induced
oxidative stress.
At a H2O2 concentration of 50 μM, the metabolic activity of

the cells decreased significantly (p < 0.05) over time at both
the positive control and with 10 polymer capsules/cell, with no
significant differences between these two conditions (Figure
5b). This suggested no therapeutic effect of the capsules at this
concentration. However, with the addition of higher capsule-
to-cell ratios (i.e., 100 and 1000 polymer capsules/cell), a
beneficial effect was observed specially with the concentration
of 1000 polymer capsules/cell (Figure 5b). At the concen-
tration of 100 polymer capsules/cell, the mean metabolic
activity of the cells was always above the positive control,
obtaining a significant difference (p < 0.05) at 32 h (Figure
5b). At 1000 polymer capsules/cell, significant differences (p <
0.05) were observed at all the time points with respect to the
positive control, with the exception of the first time point (i.e.,
8 h).
Using 100 μMH2O2 stimuli, a similar trend was observed. In

the case of the positive control and 10 polymer capsules/cell
concentration, the metabolic activity values were respectively
17.1 ± 4.6 and 23.4 ± 0.6% after 48 h. At 100 and 1000
polymer capsules/cell, the therapeutic effect of the capsules
was again validated. With both polymer capsule-to-cell
concentrations, the metabolic activity was significantly higher
(p < 0.05) than in the positive control at all the studied time
points. Furthermore, at 1000 polymer capsules/cell, no
differences in the metabolic activity were observed in
comparison to the negative control (i.e., cells in the absence
of polymer capsules and H2O2) at the first two time points (i.e.,
8 and 24 h), and the metabolic activity value was above 80%.
These results suggest the therapeutic potential of these
capsules to scavenge H2O2. Although HeLa cells are not
representative of any particular disease associated to oxidative
stress, their response to H2O2 is similar to the one observed in
other relevant cells. To study the effect of oxidative stress in

various diseases (e.g., myocardial infarction, neurodegenerative
processes, age-related macular degeneration, and so on), a
wide variety of cells (e.g., cardiomyocytes, astrocytes, neural
stem cells, and human retinal pigment epithelial cells) have
been exposed to H2O2.

94−97 In the reported studies, a H2O2
concentration of 100 μM induced a significant decrease in cell
viability. Thus, we believe that the effect of the capsules
observed herein with a well-established cell line could be
translated to other validated disease models.
To further confirm the obtained results with the AlamarBlue

(AB) assay, cells were observed under an optical microscope.
In the case of 50 μM of H2O2, some of the cells in the positive
control were dead, whereas in the presence of capsules at a
concentration of 1000 polymer capsules/cell, the cells were
able to maintain their density with less cell death (Figure 5c),
confirming the results obtained with the AlamarBlue assay. In
the case of 100 μM of H2O2, a higher quantity of dead cells
was appreciable in the positive control (Figure 5c). Contrarily,
cells incubated in the presence of 1000 polymer capsules/cell
were alive and maintained their shape and density (Figure 5c).
Taken together, these results confirm the therapeutic effect

of the fabricated polymer capsules at the higher capsule-to-cell
ratios (i.e., 100 and 1000 polymer capsules/cell), especially
with 1000 polymer capsules/cell. At 10 polymer capsules/cell,
no therapeutic effect was appreciated, suggesting that the
concentration was not enough to protect cells from the H2O2-
induced cell death.

3. CONCLUSIONS

In this study, we fabricated polymeric capsules via the LbL
approach and exploited the versatility of this method to
incorporate several functionalities into a single polymeric
microplatform. The fabricated polymer capsules acted as
antioxidant microreactors thanks to the encapsulation of
catalase in their core and were able to release a model drug
(i.e., DOX) in response to a biologically relevant stimulus (i.e.,
acidic pH) due to the incorporation of functionalized dPGs in
their shell. Contrary to the previously reported delivery
systems, our capsules preserve their structural integrity after
the drug release process, thus avoiding the leakage of the
encapsulated entity and functioning as robust microreactors
that perform therapeutic biocatalytic reactions. The cytocom-
patibility of the developed capsules, which were internalized by
cells and preferentially accumulated in the perinuclear region,
was confirmed in vitro. In our validated oxidative stress model,
the use of the higher polymer capsule concentrations resulted
in a positive response, showing significant differences in the
metabolic activity of the cells in comparison to the positive
control (cell without capsules but stimulated with H2O2).
Accordingly, the strategy proposed herein could be used in the
development of multifunctional microreactors for the treat-
ment of complex pathologies requiring complementary
therapies.

4. MATERIALS AND METHODS
4.1. Materials. The following reagents were purchased from

Thermo Fisher Scientific: Dulbecco’s modified Eagle’s medium, fetal
bovine serum, penicillin−streptomycin, AlamarBlue cell viability
reagent, 4′,6-diamidino-2-phenylindole dihydrochloride (DAPI), and
16% formaldehyde solution (w/v). Anhydrous dimethyl formamide
(DMF) and anhydrous tetrahydrofuran (THF) were obtained from
Scharlab. dPG (MW = 9 KDa, PDI = 1.6 and approximately 121
−OH groups) was prepared according to the published procedure.98
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The hydrazone derivative of doxorubicin (DOX−EMCH, i.e., DOX
bound to 3,3′-N-[ε-maleimidocaproic acid]) was prepared as
described previously.99 The other reagents were purchased from
Sigma-Aldrich and used as received. PAH and PSS had molecular
weights of Mw = 17,500 and 70,000 g/mol, respectively.
4.2. Synthesis of dPG-Amine. The synthesis of dPG-amine was

carried out in the following steps.100

4.2.1. Mesylation of dPG. dPG mesylate was synthesized by
reacting dPG with mesyl chloride (MsCl). To a solution of dPG in
anhydrous DMF, MsCl was added dropwise in an ice bath over a
period of 30 min under stirring. The resulting mixture was stirred
overnight at room temperature. DMF was removed after 12 h, and the
product was dialyzed against the methanol/acetone (70:30) solution
for 2 days, changing the solvent twice. The final product, dPG
mesylate (dPG-Ms), was obtained as a yellowish oil after the complete
evaporation of the solvent with 18 mol % degree of functionalization
of mesyl groups.

1H NMR (300 MHz, D2O): δ 4.2−3.4 ppm (m, 5 H, dPG
backbone), δ 3.2 (s, 1 H, CH3, OMs) (Figure S1, Supporting
Information).
4.2.2. Azidation of dPG. For the synthesis of dPG azide, dPG-Ms

was dissolved in anhydrous DMF with the addition of 3 equiv of
sodium azide per mesyl group. The mixture was then stirred at 60 °C
for 72 h. The resultant solution was cooled down to room
temperature and filtered using Celite to eliminate the unreacted
sodium azide. The product was then dialyzed against the methanol/
chloroform (70:30) solution for 48 h, changing the solvent twice. The
final product was obtained with the evaporation of the solvent. The
functionalization of dPG with azide groups was confirmed with the
complete disappearance of the mesyl (CH3) peaks at 3.2 ppm,
indicating 15 mol % azide functionalization.

1H NMR (300 MHz, D2O): δ 4.2−3.5 ppm (m, 5 H, dPG
backbone) (Figure S2, Supporting Information).
4.2.3. Amination of dPG. The amination of dPG was carried out

by the reduction of azide moieties using triphenyl phosphine (PPh3)
as the reducing agent. The azide-functionalized dPG was dissolved in
water and 4 equiv of PPh3 (in THF) per azide group was added twice
in a period of 24 h, and the reaction was carried out at 40 °C for 48 h.
The resultant solution was filtered to remove PPh3 salt and dialyzed
against methanol for 48 h, changing the solvent twice. The
functionalization of dPG with 15 mol % amine groups was confirmed
with NMR.

1H NMR (300 MHz, D2O): δ 4.2−3.2 ppm (m, 5 H, dPG
backbone), δ 2.8−3.2 ppm (m, 1 H, −CH), δ 2.4−2.8 ppm (m, 2H,
−CH2) (Figure S3, Supporting Information).
4.3. Synthesis of dPG−DOX Conjugate. The conjugation of

DOX and dPG-amine takes place in two steps in one-pot synthesis.
The first step comprises the thiolation of dPG-amine, followed by the
conjugation of thiolated dPG with DOX−EMCH using hydrazone
bond formation. For the thiolation step, dPG-amine (10 mg/mL) was
dissolved in 50 mM sodium phosphate (pH 7.0) containing 5 mM
EDTA solution, followed by the addition of a solution of 2-
iminothiolane (1.5 equiv per dPG molecule). The mixture was stirred
at room temperature for 20 min. After 20 min, a solution of DOX−
EMCH (1.2 equiv per dPG molecule) in 10 mM sodium phosphate
buffer (pH 5.8) was added to the reaction mixture, and the solution
was stirred at room temperature for 2 h. The resultant reaction
mixture was concentrated using an Amicon filter (molecular weight
cutoff, 3 kDa), followed by purification using Sephadex G-25 column
chromatography using 10 mM sodium phosphate buffer (pH = 7).
The appearance of a faster band on the Sephadex G-25 superfine
column confirmed the conjugate formation. After purification, the
conjugate was lyophilized to obtain the product in a dry state.
4.4. Physicochemical Characterization of Polymer−Drug

Conjugates. NMR spectroscopy was carried out at a frequency of
300 MHz using deuterated water as the solvent for all the samples.
The ζ-potential and hydrodynamic sizes were measured on a Zetasizer
Nano ZS analyzer using Malvern Instrument. Fresh polymer solutions
were prepared at 1 mg/mL in 10 mM sodium phosphate buffer. All
measurements were done at 25 °C and pH = 7.4 using a standard

rectangular quartz cuvette and for a minimum of 10 runs. FTIR
spectroscopy was performed using a Nicolet Avatar 370 operating in
attenuated total reflectance (ATR−FTIR). The spectra of the samples
before and after the amination of dPG were taken with a resolution of
2 cm−1 and averaged over 64 scans. The amount of conjugated DOX
to the dPG backbone was determined by measuring the conjugated
drug release at pH = 4.0 using UV−vis spectroscopy. All samples were
prepared in water of Millipore quality (resistivity 18 MΩ cm−1, pH
5.6 ± 0.2).

4.5. Fabrication and Characterization of Polymer Capsules.
4.5.1. Fabrication of Polymer Capsules. Polymer capsules were
fabricated via the LbL approach, as previously described.20 Na2CO3
(1 M in distilled water) and catalase (2 mg/mL in Tris-HCl 0.05, pH
= 7.0) solutions were poured into CaCl2 (1 M in distilled water)
solution. After 30 s of stirring at 1100 rpm, the particles were allowed
to settle down for 15 min. After this, the particles were collected by
centrifugation at 2000g and washed (×3) with a 0.005 M NaCl
solution. As the CaCO3−catalase microparticles have a negative
surface charge, PAH [2 mg/mL in 0.5 M NaCl (pH = 6.5)] was used
as the first polyelectrolyte. After an incubation time of 12 min, the
particles were collected by centrifugation and washed (×3) with 0.005
M NaCl solution. Following the same procedure, the second layer
(i.e., PSS) was deposited. After the assembly of the first two
polyelectrolyte layers, dPG−DOX conjugate or dPG-amine was used
as the positive layer in the following layer depositions, following the
same procedure. The particles were resuspended in 2 mg/mL dPG−
DOX/dPG-amine solution in 0.5 M NaCl and subsequently washed
with 0.005 NaCl. Particles containing six layers were fabricated with a
final shell architecture of (PAH/PSS) (dPG−DOX/PSS)2 or (PAH/
PSS) (dPG-amine/PSS)2. To remove the template, the particles were
immersed in 0.1 M EDTA solution (three times, 5 min for each
incubation).

The successful encapsulation of the enzyme was assessed by using
FITC-labeled CAT (CAT-FITC) in the fabrication process. To do so,
CAT and FITC at a ratio of 50−100 μg of FITC per milligram of
protein were mixed, as previously described by us.20

4.5.2. PhysicoChemical and Morphological Characterization of
Microcapsules. A scanning electron microscope (Hitachi S-4800) was
used to analyze the morphological aspects of the polymer capsules.
The microscope was operated at a working voltage of 5 kV and a
working current of 10 nA. The ζ-potential was monitored after each
polyelectrolyte deposition step by means of a Malvern Instrument
Zetasizer (ZEN 3690). A laser scattering particle size distribution
analyzer (HORIBA LA-350) provided information about the size
distribution of the template. The successful template removal was
assessed via FTIR spectroscopy (Nicolet Avatar 370), operating in the
attenuated total reflectance (ATR−FTIR), as previously described.23

To confirm the DOX adsorption, polymer capsules were observed in
an inverted fluorescence microscope (Nikon Eclipse Ts2). After the
template removal, the capsules were washed thrice with distilled
water, and a drop of the solution was taken out and observed under
the fluorescence microscope. As a control, polymer capsules fabricated
with dPG without the model drug (dPG-amine) were used. The
amount of adsorbed DOX was determined by measuring the dPG−
DOX concentration in the polyelectrolyte solution before and after
each layer deposition. 100 μL samples were taken out from the initial
polyelectrolyte solution and from the supernatant of the particle
dispersion after the layer incubation. The samples were diluted to 1:5,
and the fluorescence intensity (λex = 480 nm/λem = 595 nm) was
measured on a microplate reader (BioTek Synergy H1M) to
determine the dPG−DOX concentration.

The stability of the fabricated capsules was analyzed by means of
SEM. After the template removal, capsules were incubated in PBS at
37 °C, and samples were taken out at different time points (e.g., 4, 24,
and 72 h). The images were acquired using SEM, with the same
instrument and conditions mentioned above.

The antioxidant capacity of polymer capsules was evaluated using a
fluorimetric hydrogen peroxide assay kit (Sigma-Aldrich), as
previously described.23
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The H2O2 scavenging capacity of the polymer capsules after
ethanol sterilization was also determined. Here, sterilized and
nonsterilized polymer capsules at 1 × 106 or 1 × 107 polymer
capsules/mL were incubated in 10 and 50 μM H2O2 solutions for 30
min. After the subsequent centrifugation, the H2O2 concentration in
the supernatant was determined, following the procedure described
above.
4.6. pH-Dependent Drug Release. The release of DOX was

performed in the presence of four different buffers. Phosphate buffers
(100 mM, pH 6.0 and 7.4) and sodium acetate buffers (100 mM, pH
4.0 and 5.0) were used, and the release study was performed at 37 °C.
After their fabrication, the capsules were centrifuged and the
supernatant was removed. Then, they were resuspended in 0.5 mL
of each buffer and placed in an orbital shaker at 37 °C. At specific
time points (30 min, 4 h, and 24 h), the capsule dispersion was
centrifuged and the supernatant was collected. After the supernatant
removal, the same volume of fresh buffer was added. The fluorescence
intensity (λex = 480 nm/λem = 595 nm) of the supernatant was
measured on a microplate reader (BioTek Synergy H1M) to
determine the released DOX concentration.
DOX release was also assessed qualitatively by the analysis of the

decrease of DOX fluorescence intensity. To do so, polymer capsules
were fabricated containing CAT-FITC, following the procedure
detailed above. The capsule dispersion was split and centrifuged. After
this, the two buffer solutions (pH = 5.0 and pH = 7.4) were added
and the polymer capsules were incubated at 37 °C. At specific time
points (4 and 24 h), the polymer capsules were collected and washed
with distilled water to observe them under an inverted fluorescence
microscope (Nikon Eclipse Ts2).
4.7. In Vitro Studies. 4.7.1. HeLa Cell Seeding. HeLa cells

(ATCC) were seeded, following the same protocol described in our
previous publication.23 A density of 5000 cells/well on a 96-well plate
was used for metabolic activity measurements. A density of 10,000
cells/well on a 24-well plate was used for internalization studies.
4.7.2. Preliminary Cytocompatibility Test. The cytotoxicity of the

capsules was evaluated as previously described.23 Three capsule-to-cell
ratios (10, 100, and 1000 polymer capsules/cell) and two time points
(24 and 72 h) were analyzed, and AlamarBlue was used to measure
the metabolic activity of cells.
The uptake of the capsules by HeLa cells was also analyzed.

Polymer capsules at 10 capsules/cell were incubated with cells during
2, 4, and 24 h. Afterward, the cells were fixed and stained, following
the same procedure described before.23 The cells were observed
under an inverted fluorescence microscope (Nikon Eclipse Ts2).
4.7.3. Therapeutic Potential of the Multifunctional Capsules in a

H2O2-Induced In Vitro Model. To assess the capacity of the fabricated
capsules to protect cells from a H2O2-induced oxidative stress, we
used our previously reported model.23 Three capsule-to-cell ratios
(10, 100, and 1000 polymer capsules/cell) were analyzed. Two stimuli
of 50 and 100 μMH2O2 were added at different time points (0 and 24
h). AlamarBlue assay was used to check the metabolic activity of the
cells at the selected time points (8, 24, 32, and 48 h).
4.8. Statistical Analysis. Data related to the fabrication and

characterization of polymer capsules are presented as mean ±
standard deviation (SD). In the in vitro studies, the results are
presented as mean ± SD, with n = 4. One-way analysis of variance
(ANOVA) was used to test the statistical differences between groups,
with the Bonferroni post hoc test and a confidence level of 95% (p <
0.05).
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Szczepanowicz, K.; Warszynśki, P. Polyelectrolyte Multilayer Capsules
with Quantum Dots for Biomedical Applications. Colloids Surf., B
2012, 90, 211−216.
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