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Abstract
Objective. Serving as a channel for communication with locked-in patients or control of prostheses,
sensorimotor brain–computer interfaces (BCIs) decode imaginary movements from the recorded
activity of the user’s brain. However, many individuals remain unable to control the BCI, and the
underlying mechanisms are unclear. The user’s BCI performance was previously shown to correlate
with the resting-state signal-to-noise ratio (SNR) of the mu rhythm and the phase synchronization
(PS) of the mu rhythm between sensorimotor areas. Yet, these predictors of performance were
primarily evaluated in a single BCI session, while the longitudinal aspect remains rather
uninvestigated. In addition, different analysis pipelines were used to estimate PS in source space,
potentially hindering the reproducibility of the results. Approach. To systematically address these
issues, we performed an extensive validation of the relationship between pre-stimulus SNR, PS,
and session-wise BCI performance using a publicly available dataset of 62 human participants
performing up to 11 sessions of BCI training. We performed the analysis in sensor space using the
surface Laplacian and in source space by combining 24 processing pipelines in a multiverse
analysis. This way, we could investigate how robust the observed effects were to the selection of the
pipeline.Main results. Our results show that SNR had both between- and within-subject effects on
BCI performance for the majority of the pipelines. In contrast, the effect of PS on BCI performance
was less robust to the selection of the pipeline and became non-significant after controlling for
SNR. Significance. Taken together, our results demonstrate that changes in neuronal connectivity
within the sensorimotor system are not critical for learning to control a BCI, and interventions that
increase the SNR of the mu rhythm might lead to improvements in the user’s BCI performance.
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1. Introduction

A brain–computer interface (BCI) is a system that
decodes the intentions of the user based on the
recorded activity of their brain and provides com-
mands to external devices (e.g. prostheses; Wolpaw
et al 2002). These systems have many potential
applications ranging from the clinical ones, such
as providing a communication pathway for locked-
in patients (Chaudhary et al 2016) or ameliorating
symptoms in patients with stroke and Parkinson’s dis-
ease (McFarland et al 2017), to the research ones, such
as the detection of mental states and the facilitation
of actions in healthy humans (Blankertz et al 2010b,
2016). Often, BCIs are based on magnetoencephal-
ographic (MEG) or electroencephalographic (EEG)
recordings of brain activity. MEG and EEG (M/EEG)
have high temporal resolution and provide multiple
features of the ongoing or evoked brain activity that
can be used as a control signal (Abiri et al 2019).
For example, BCI paradigms based on the P300 com-
ponent of the evoked response or steady-state visual
evoked responses provide high information transfer
rates for efficient communication (Abiri et al 2019).
However, these paradigms always require external
stimuli to be presented, which makes the approach
less flexible. In contrast, sensorimotor BCIs decode
the imaginary movements of limbs or tongue that
can be self-initiated and thus provide more flexibil-
ity (Leeb et al 2007, Yuan and He 2014, Scherer and
Vidaurre 2018). Decoding of the imaginary move-
ments is often based on the modulation of power in
the alpha (8–13 Hz) and beta (13–30 Hz) frequency
ranges in sensorimotor brain areas, also referred to as
event-related desynchronization or synchronization
(ERD/ERS; Pfurtscheller et al 1996, Pfurtscheller and
Lopes da Silva 1999). Sensorimotor BCIs are also used
to facilitate the recovery of motor functions during
rehabilitation after a stroke (Cervera et al 2018, Kruse
et al 2020, Peng et al 2022).

While BCI seems to be a promising approach
with multiple clinical applications, some participants
remain unable to control it (Allison and Neuper
2010). Typically, participants complete several train-
ing sessions to learn to control a BCI. However,
their performance in the task varies considerably, and
on average around 20% of the participants fail to
learn the task (Sannelli et al 2019). The mechan-
isms underlying successful modulation of brain activ-
ity for controlling a BCI are not clear yet. However,
previous studies have identified several psychological
(Hammer et al 2012, Jeunet et al 2015) and neuro-
physiological (Blankertz et al 2010a, Sugata et al 2014,
Samek et al 2016, Vidaurre et al 2020, Jorajuría et al
2023) predictors of successful control of a sensorimo-
tor BCI. These predictors allow pre-screening the par-
ticipants to provide the whole training only if the
participant is likely to control the BCI successfully
(Sannelli et al 2019).

Neurophysiological predictors of successful BCI
control also provide information about the features
of brain activity (e.g. neuronal networks) that play
a role in the success of BCI training. For example,
the signal-to-noise ratio (SNR) of the sensorimotor
mu rhythm during resting state was positively cor-
related (r= 0.53) with the online accuracy of sensor-
imotor BCI control (Blankertz et al 2010a). The SNR
was defined as the maximal ratio of the periodic and
aperiodic (1/f) components of the power spectrum
in the 2–35 Hz frequency range. This predictor was
later validated in an independent dataset with a sim-
ilar experimental paradigm (Acqualagna et al 2016).
Moreover, several other neural correlates of perform-
ance in a sensorimotor BCI task are related to the
SNR of the mu rhythm, for example, the perform-
ance potential factor (Ahn et al 2013) or the spectral
entropy at C3 electrode during resting-state (Zhang
et al 2015).

Although SNR seems to be a well-established pre-
dictor of BCI performance, it is often investigated in
the context of a single BCI session. However, the rela-
tionship between SNRandperformance could change
if participants with low SNR eventually learned the
task or if the SNR changed throughout a multi-
sessionBCI training. Therefore, it is crucial to validate
this predictor in a longitudinal analysis, which is one
of the aims of the current study.

Other predictors of sensorimotor BCI per-
formance include long-range temporal correla-
tions (Samek et al 2016), functional connectivity
between sensorimotor brain regions (Sugata et al
2014, Vidaurre et al 2020), and the strength of mu
vs. beta phase–phase coupling (Jorajuría et al 2023).
Connectivity-based predictors might be especially
relevant since motor imagery involves activation of
multiple interacting brain areas (Solodkin et al 2004,
Halder et al 2011, Hardwick et al 2018). The strength
and the phase lag of these interactions can be quan-
tified using various connectivity measures and then
related to the performance in the sensorimotor BCI
task. Thereby, connectivity could provide additional
information about the underlying neuronal networks
that is not reflected in the SNR.

When considering M/EEG-based functional con-
nectivity within the same (e.g. alpha/mu) frequency
band, phase synchronization (PS) and amplitude
envelope correlation (AEC) can reflect different prop-
erties of the underlying neuronal networks. Studies
combining EEG and functional magnetic resonance
imaging (fMRI) have previously shown that the
power of alpha and beta oscillations at C3 and
C4 is negatively correlated with the blood-oxygen-
level-dependent (BOLD) fMRI signal in sensorimo-
tor areas during the execution of real and imagin-
ary hand movements (Ritter et al 2009, Yuan et al
2010). Therefore, AEC primarily captures the low-
frequency (below 0.1 Hz) dynamics of brain activity
similar to the fMRI connectivity based on the BOLD
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signal (Engel et al 2013). In contrast, PS between
high-frequency (above 5Hz) oscillationsmight reveal
additional information that is only accessible with
the high temporal resolution of M/EEG (Engel et al
2013). In particular, PS was proposed to be a mech-
anism of efficient communication between neuronal
populations (Engel et al 2001, Fries 2005, Palva and
Palva 2007) and can reflect short-term changes in the
functional organization of neuronal networks due to
plasticity (Engel et al 2013). Therefore, in the current
study, we also investigated the role of PS of the sen-
sorimotor mu (9–15 Hz) oscillations in the successful
control of a sensorimotor BCI.

Several studies have already applied various
M/EEG-based PS measures in the context of sen-
sorimotor BCI training. First, BCI performance was
positively correlatedwith the imaginary part of coher-
ency (ImCoh; Nolte et al 2004) of the mu rhythm
between sensorimotor areas both before and during
the trial (Sugata et al 2014, Vidaurre et al 2020). In
addition, the phase locking value (Lachaux et al 1999)
of alpha-band oscillations within the motor areas of
the right hemisphere was higher for the successful
participants in comparison to the unsuccessful ones
(Leeuwis et al 2021). Finally, in a whole-head ana-
lysis, Corsi et al (2020) observed a global decrease
in ImCoh during motor imagery compared to rest-
ing state. While PS seems to play a role in sensor-
imotor BCI training, the results were obtained using
various PS measures and partially in the context of
single-session experiments. To address these issues,
we examined several PS measures and ran a longit-
udinal analysis of changes in PS and its relationship
with the BCI performance.

Studies investigating longitudinal changes in PS
are scarce in the sensorimotor BCI literature. On the
one hand, Corsi et al (2020) observed a progressive
decrease of ImCoh during motor imagery in alpha
and beta bands along sessions. On the other hand,
the positive correlation between ImCoh and BCI per-
formance in one session (Sugata et al 2014, Vidaurre
et al 2020) may suggest the entrainment of task-
relevant networks throughout the training. However,
in both cases, ImCoh reflects amixture of the strength
and the phase lag of the interaction between brain
areas, which can only be disentangled with other PS
measures, such as coherence. Therefore, further valid-
ation of these results in the longitudinal setting with
multiple PS measures is necessary.

In practice, the estimation of PS in M/EEG crit-
ically depends on the proper control for confounding
factors (Bastos and Schoffelen 2015). In the current
study, we focused on the effects of volume conduc-
tion and SNR. To overcome these challenges, we used
PSmeasures, which are insensitive to zero-lag interac-
tions (e.g. ImCoh), and applied a correction for SNR
in the statistical analysis.

Furthermore, to obtain a higher spatial specificity
of the estimated PS values, we performed the source

space analysis using time courses of brain activity in
particular regions of interest (ROIs). For this pur-
pose, two-step processing pipelines are typically used
(Schoffelen and Gross 2009). First, inverse model-
ing is applied to reconstruct time courses of activ-
ity for individual sources within the cortex. Second,
time courses of activity for all sources within the ROI
are aggregated to extract one or several time courses
of activity in the ROI. While multiple approaches
exist for inverse modeling and extraction of ROI time
series, there is no consensus on the most appropri-
ate pipeline in the community. Previous studies have
shown that the choice of methods for inverse model-
ing and extraction of ROI time series affects the estim-
ated PS values in real and simulated data (Mahjoory
et al 2017, Pellegrini et al 2023). Therefore, mul-
tiple pipelines should be considered simultaneously
to arrive at a valid conclusion about genuine neuronal
connectivity based on M/EEG data.

To address the multitude of possible pipelines
while analyzing SNR and PS as predictors of BCI per-
formance, we ran a multiverse analysis (Steegen et al
2016) using several pipelines for extraction of ROI
time series. While results are typically reported only
for one or a few of many possible pipelines, the idea
of the multiverse analysis is to consider a set of reas-
onable pipelines and report the results for all of the
considered options. This way, one can not only ana-
lyze the variability of the estimated PS values similar
to Mahjoory et al (2017) but also assess the robust-
ness of the observed effects (e.g. on BCI performance)
to the selection of the pipeline. More pronounced
effects should be more robust to changes in the pro-
cessing pipeline, and including several pipelines in the
analysis may reveal important information about the
influence of different processing steps on the observed
results.

Overall, in the current study, we aimed to valid-
ate and extend the findings about the effects of SNR
and PS of the mu rhythm on BCI performance in a
publicly available longitudinal dataset (Stieger et al
2021a). We focused on four sensorimotor ROIs cor-
responding to the primary motor and somatosensory
cortices. These ROIs were previously shown to be the
most involved in the BCI training based on imagin-
arymovements (Samek et al 2016, Vidaurre et al 2020,
Nierhaus et al 2021). In the current analysis, we aimed
to address the following research questions:

1. Do SNR and PS predict performance not just in
one but also in multiple training sessions?

2. Do SNR and PS change over time due to BCI
training?

3. Are SNR, PS, and the observed effects for ques-
tions 1 and 2 robust to the selection of processing
steps in the source space analysis?

To touch upon the open questions regarding the
multitude of existing approaches for source space
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analysis and estimation of PS, we considered a set of
existing methods and performed a multiverse ana-
lysis to capture the between-pipeline variability in
estimated values of SNR and PS, their effects on BCI
performance, and longitudinal changes over time. In
addition, to ensure the end-to-end repeatability of
the results, we designed the analysis pipeline to auto-
matically include the results in a publishable report,
which, as we hope, will be useful as a template for
future studies involving a multitude of different ana-
lysis pipelines.

2. Materials andmethods

2.1. Description of the dataset
We used publicly available EEG recordings of 62 par-
ticipants (50 female; 55 right-handed; mean age =
39.2 years, SD= 14.1 years) from a study that invest-
igated the effects of mindfulness-based training on
performance in a motor imagery BCI task (Stieger
et al 2021a, Stieger 2021b). Participants first com-
pleted a baseline BCI training session and then were
randomly assigned to an 8-week mindfulness inter-
vention (n = 33; 26 female; 28 right-handed; mean
age= 42.2, SD = 14.7) and a wait-list control condi-
tion of the same length (n = 29; 24 female; 27 right-
handed; mean age = 35.8, SD = 12.9). After eight
weeks, participants returned to the lab for 6–10 more
sessions of BCI training (figure 1(A)). All experiments
were approved by the institutional review boards of
the University of Minnesota and Carnegie Mellon
University. Informed consent was obtained from all
participants.

2.2. Experimental procedure
During each BCI session, participants performed
imaginary movements (opening and closing) of their
hands to control a cursor, which was displayed on the
screen in front of them in the BCI2000 system (Schalk
et al 2004). Each session included three tasks: (1)
horizontal cursor control task (via imaginary move-
ments of the left or right hand), (2) vertical cursor
control task (down: voluntary rest, up: imaginary
movement of both hands), (3) 2D control task (the
targets were reachable through one of the previous
strategies, but the cursor moved in both directions).
Each task included 150 trials, and the number of trials
was balanced across classes for both 1D and 2D con-
trol tasks. In the current study, we only analyzed the
EEG data from the first (horizontal cursor control)
task since it was shown to be more tightly related to
sensorimotor areas than the second task (Stieger et al
2020). At the same time, the participants’ perform-
ance was similar across all three tasks (supplementary
material, section A), so the main qualitative findings
of the analyses should also apply to other tasks.

The structure of all trials is shown in figure 1(B).
First, participants saw a blank screen during the inter-
trial interval of 2 s. Then, a bar appeared on one of

the sides of the screen, indicating the target action
to execute. After 2 s of target presentation, a cursor
(circle) appeared in the middle of the screen, and
its position was calculated based on the EEG data
acquired in real time. Trials ended either when the
cursor reached any side of the screen (not necessarily
the target one) or after the timeout when 6 s passed
without any target being reached.

Feedback was presented with a cursor, whose pos-
ition was updated in real time based on the EEG
power in the mu (9–15 Hz) frequency range. Power
was calculated based on an autoregressive model of
order 16 fitted to the most recent 160 ms of the EEG
data after applying the surface Laplacian to channels
C3 and C4 (using the closest neighboring channels
FC3,CP3,C1, C5 and FC4,CP4,C2, C6, respectively).
The horizontal position of the cursor was determined
by the lateralization ofmu power (C4 – C3), while the
vertical position reflected the total mu power (C4 +
C3). Feedback values were re-calculated every 40 ms
and normalized by subtracting themean and dividing
over the standard deviation. Themean and the stand-
ard deviation were constantly updated based on the
last 30 s of data. More details about the experimental
procedure can be found in Stieger et al (2020, 2021a).

2.3. EEG acquisition
EEG was acquired using SynAmps RT amplifiers
and Neuroscan acquisition software (Compumedics
Neuroscan, VA). Data were recorded with a sampling
frequency of 1 kHz and band-pass filtered between 0.1
and 200 Hz with an additional notch filter at 60 Hz.
EEG data were acquired from 62 channels with the
following locations according to the 10–5 system: Fp1,
Fpz, Fp2, AF3, AF4, F7, F5, F3, F1, Fz, F2, F4, F6,
F8, FT7, FC5, FC3, FC1, FCz, FC2, FC4, FC6, FT8,
T7, C5, C3, C1, Cz, C2, C4, C6, T8, TP7, CP5, CP3,
CP1, CPz, CP2, CP4, CP6, TP8, P7, P5, P3, P1, Pz,
P2, P4, P6, P8, PO7, PO5, PO3, POz, PO4, PO6, PO8,
CB1, O1, Oz, O2, CB2. AFz was used as the ground
electrode, while the reference electrode was between
Cz and CPz.

2.4. Preprocessing
EEG preprocessing and analyses were performed
in MATLAB R2022b (The MathWorks; RRID:
SCR_00 1622) using custom scripts employing func-
tions from EEGLAB 2021.0 (Delorme and Makeig
(2004); RRID: SCR_00 7292), BBCI (Blankertz
et al 2016), Brainstorm (Tadel et al (2011); RRID:
SCR_00 1761), MVGC (Barnett and Seth (2014);
RRID: SCR_01 5755) and METH (Guido Nolte;
RRID: SCR_01 6104) toolboxes. For source space
visualizations, we utilized functions from Haufe and
Ewald (2019).

First, trials were concatenated to restore continu-
ous segments of data accounting for breaks during
the recording. Then, EEG time series were down-
sampled to 250 Hz, and channels CB1 and CB2 were
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Figure 1. A publicly available dataset (Stieger et al 2021a, Stieger 2021b) was used to test two previously described predictors of
successful BCI performance (Blankertz et al 2010a, Vidaurre et al 2020) in the longitudinal setting with multiple pipelines for
source space analysis. (A) Participants were assigned to MBSR (mindfulness-based stress reduction) and control groups and
completed up to 11 sessions of cursor control training. (B) Trial structure of the horizontal cursor control task with time windows
of interest highlighted (rest: [0.49, 1.99] s of the inter-trial interval, target: [0.49, 1.99] s of the target presentation interval,
feedback: [−1.51,−0.01] s relative to the end of the feedback interval). Participants performed imaginary movements of their left
and right hands to control a cursor, whose position was calculated based on the values of mu power at Laplace-filtered channels
C3 and C4 in real time. Note that the illustrations of the provided feedback in Panels (A) and (B) are schematic and might not
exactly reflect what participants saw on the screen. (C) Sensor space channel-wise t-statistic of difference in mu power between
trials that involved imaginary movements of the right and left hand. While no difference in mu power was observed during the
resting-state period, effects emerged over sensorimotor areas during target presentation, accompanied by effects over visual areas
due to the movement of the cursor during the feedback period. (D) Surface Laplacian was applied in the offline analysis to
channels C3 and C4 (red) using the neighboring channels (blue) before estimating SNR. (E) SNR was estimated as the ratio of the
total (periodic+ aperiodic) power and the power of the aperiodic component in the 9–15 Hz frequency range. The gray line
depicts the 1/f fit obtained with FOOOF. (F) Phase synchronization (PS) between sensorimotor ROIs was estimated in source
space, and PS values were averaged over the highlighted within-hemisphere and across-hemisphere connections.

removed as they are not part of the 10–10 system.
A semi-automatic identification of bad trials, chan-
nels, and components was applied as follows. Trials
and channels were rejected if the z-score of power
within 1–45 Hz was higher than three in at least
5% of trials for a certain channel or in at least 5%
of channels for a certain trial. This procedure was
performed recursively until nothing could be rejec-
ted. Additionally, we used the clean_rawdata EEGLAB
plugin to reject channels if one of the following con-
ditions was met: (1) the variance of the channel data
was near zero for at least five seconds, (2) the ratio
of the power of the line noise and power of the signal
below 50 Hz exceeded 4, or (3) the correlation of the
channel data with an interpolated estimate based on
the data from neighboring channels was less than 0.8.
After the removal of bad trials and channels, EEGdata
were re-referenced to the common average reference
and filtered with a forward-backward second-order

high-pass Butterworth filter with a cutoff frequency
of 1 Hz. Then, we applied independent compon-
ent analysis (ICA) based on the FastICA approach
(Hyvärinen 1999) and used ICLabel (Pion-Tonachini
et al 2019) for distinguishing ICA components of dif-
ferent types: brain, muscle, eye, heart, line noise, and
channel noise. Based on the output of ICLabel, com-
ponents that explained 95%of the variance in the data
were rejected if their probability of originating from
the brain was less than 20%, and other components
were rejected only if their probability of belonging to
one of the non-brain classes was at least 80%.

Results of the automatic preprocessing were veri-
fied through visual inspection of power spectra
in sensor space as well as topographic maps and
power spectra of kept and rejected ICA compon-
ents. Overall, 3 sessions were excluded from the ana-
lysis due to poor data quality. Then, we removed
previously identified bad trials, channels, and ICA
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components from the raw EEG data that were not
high-pass filtered. The removed channels were inter-
polated, and EEG time series were downsampled
to 250 Hz. DC offset was removed by subtracting
the mean of the signal within continuous data seg-
ments. The resulting data were used for the analyses
described below.

2.5. Overview of the analyses
In this subsection, we provide a brief overview of
the performed analyses. A detailed description of
the processing steps is presented in the subsequent
subsections.

In the current study, we only analyzed the data
from the first (horizontal cursor control) task, which
was based on the imaginary movements of the left
or right hand. Additionally, we combined the data
from both participant groups since a previous ana-
lysis of the same dataset has shown that the mindful-
ness intervention did not affect the performance in
the horizontal cursor control task (Stieger et al 2020).

We estimated the values of SNR of themu rhythm
and PS between sensorimotor areas to investigate
their relationship with BCI performance and changes
over time. For both analyses, we focused on the oscil-
lations in the 9–15 Hz frequency range and the [0.49,
1.99] s window of the inter-trial interval (labeled
as rest in figure 1(B)). During this interval, parti-
cipants did not perform any task similar to a typ-
ical resting-state recording, andprevious studies often
used resting-state data to predict BCI performance in
subsequent training sessions. Additionally, we con-
sidered the [0.49, 1.99] swindowof the target present-
ation interval (target, figure 1(B)) as well as the
[−1.51, −0.01] s window relative to the end of the
feedback interval (feedback, figure 1(B)) for the ana-
lysis of task-related changes in mu power.

The performance in the BCI task (online accur-
acy) was assessed with the percentage of correct tri-
als among those that did not end due to timeout.
Trials were considered correct if the cursor reached
the target side of the screen. Tomake the results of the
study applicable to commonly used decoding-based
BCI paradigms, we also considered offline accuracy
and area under the receiver operating characteristic
curve (AUC) as alternative metrics for the evaluation
of performance (supplementary material, section B).
Since the values of online accuracy and offline per-
formance metrics showed high between- and within-
subject correlations (figure S2, table S2), we per-
formed themain analysis only for the online accuracy
(later referred to as accuracy).

2.5.1. Sensor space analysis
As a sanity check and a replication of results by Stieger
et al (2020), we first computed the difference in mu
(9–15 Hz) power in the aforementioned time win-
dows of interest to ensure that task-related contrasts

can be observed during target presentation and feed-
back but not the inter-trial interval (figure 1(C)).

2.5.2. Laplacian-based analysis
Before estimating the SNR of the mu rhythm, we
applied the surface Laplacian by subtracting themean
of the neighboring channels (FC3, C5, C1, CP3 or
FC4, C6, C2, CP4) from the data at channels C3
and C4 (figure 1(D)). The same transformation was
used during the experiment for calculating the feed-
back values in real time. We estimated the SNR of the
mu rhythm (figure 1(E)) and correlated it with the
BCI performance similar to Blankertz et al (2010a).
Additionally, we examined longitudinal changes in
SNR across sessions to find outwhether the BCI train-
ing affected the SNR of the mu rhythm. Finally, we
also estimated values of PS between Laplace-filtered
channels C3, C4, CP3, andCP4, which are located dir-
ectly over the sensorimotor areas. The results of the
Laplacian-based analysis of PS are described in the
section C of the supplementary material as the con-
clusions were very similar to the source space analysis
described below.

2.5.3. Source space analysis
To extend the results of Vidaurre et al (2020) to
the longitudinal setting, we estimated the SNR of
the mu rhythm and PS between the sensorimotor
ROIs in source space. The time courses of activ-
ity in each ROI were computed through inverse
modeling and subsequent aggregation of reconstruc-
ted time series of source dipoles within the ROI.
Various methods for inverse modeling and extrac-
tion of ROI time series are used in the literature
with few guidelines for preferring one over the other.
Therefore, we combined several widely used data-
driven and data-independent approaches in a multi-
verse analysis (Steegen et al 2016) to investigate the
robustness of SNR and PS values as well as related
statistical effects (e.g. on BCI performance) to the
selection of the pipeline (figure 2(A)).

2.6. Forwardmodel
We used the ‘New York Head’ forward model (Huang
et al 2016), which was derived using the finite element
method based on the ICBM152 anatomical template
(Fonov et al 2009, 2011). The model contains several
lead field matrices calculated for different numbers
and orientations of the source dipoles (later referred
to as sources). We used the lead field matrix for
4502 sources with fixed orientations perpendicular
to the cortical surface. Since channels PO5 and PO6
were not included in the precomputed lead field, we
excluded them before source space analysis. The com-
mon average reference transform was applied to the
lead field matrix to match the preprocessing of the
EEG data.
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Figure 2. Overview of the multiverse analysis of SNR and phase synchronization in the source space. (A) 24 combinations of the
data-independent and task- or subject-specific methods were used in the current analysis. (B) Anatomical and task-based
(derived using CSP) definitions of sensorimotor ROIs. (C) AVG-F and 1SVD weights for all sources within sensorimotor ROIs for
an exemplary subject. (D) In the split multiverse analysis, statistical results were aggregated in a table to assess the robustness of
effects to the selection of the pipeline. Estimated correlations (ρ, between-subject effect) or regression coefficients (β,
within-subject effect) were coded with color, and the significance of the effects was indicated by filled black dots. (E) In the joint
multiverse analysis, data from all pipelines were pooled to obtain one result for each performance predictor and research
question. Color codes consistency—the number of individual pipelines that led to the same result in terms of significance and, if
significant, direction of the effect as the joint analysis.

2.7. Inverse modeling
We used two inverse solutions with different under-
lying assumptions: eLORETA (Pascual-Marqui
2007) and linearly constrained minimal variance
(LCMV) beamformer (Van Veen et al 1997). For both
approaches, we used the implementation from the
METH toolbox (Guido Nolte; RRID: SCR_01 6104)
with minor modifications from Haufe and Ewald
(2019). The regularization parameter was set to

0.05 and the identity matrix was used as the noise
covariance matrix.

eLORETA is a data-independent approach that
belongs to the family of weighted minimum norm
inverse solutions and provides zero source localiza-
tion error (Pascual-Marqui et al 2011). In contrast,
LCMV is a data-driven method and is fit to the
covariance matrix of the data. We averaged covari-
ance matrices for both imaginary movements and
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calculated a separate LCMV beamformer for each
subject and session.

2.8. Extraction of ROI time series
After the inverse modeling, one obtains a reconstruc-
ted time series of activity for each source. Considering
the spatial resolution of EEG, it is reasonable to
reduce the dimensionality of the source space. The
common approach is to aggregate time courses of
activity of sources within each ROI into a single or
several time series. Yet, multiple aggregation meth-
ods exist in the literature, and there is no consensus
in the community on the most appropriate method.
In particular, previous studies have used averaging
(Babiloni et al 2005), averaging with sign flip (AVG-F;
Lai et al 2018), singular value decomposition (SVD;
Rubega et al 2019), etc. In the current analysis, we
considered AVG-F and SVD to compare commonly
used data-independent and data-driven approaches.

For both approaches, the time series of activity
for all sources within the ROI are concatenated to
form a matrix. By fitting SVD, one decomposes the
multivariate time series of activity into components
sorted by the explained variance of the reconstructed
source data. Then, a few first components are selected
to represent the activity of the whole ROI. We con-
sidered either only the first (1SVD) or the first three
components (3SVD) as performed in, e.g. Rubega
et al (2019), Pellegrini et al (2023) or Vidaurre et al
(2020), Pellegrini et al (2023), respectively.

Alternatively, AVG-F assigns equal weights to all
sources within the ROI, and a sign flip is applied to
some sources to prevent the cancellation of the activ-
ity of dipoles with opposite orientations. The sign
flip is especially important for the current study since
a forward model with fixed dipole orientations was
used. To determine the sources that should be flipped,
SVD is applied to the lead field of sources within
the ROI to find the dominant orientation of source
dipoles. If the angle between the orientation of the
dipole and the dominant orientation is larger than 90
degrees, the time series corresponding to this dipole
is flipped (that is, multiplied by a negative one). We
used the implementation of sign flip fromBrainstorm
(Tadel et al 2011). Figure 2(C) shows 1SVD and AVG-
Fweights for all sourceswithin the sensorimotorROIs
based on the data of an exemplary subject.

2.9. Anatomical and task-based definitions of ROIs
All the analyses in the source space were performed
for four sensorimotor ROIs—pre- and postcentral
gyri of both hemispheres—either according to their
definitions in the Harvard-Oxford atlas (Frazier et al
2005, Desikan et al 2006, Makris et al 2006, Goldstein
et al 2007, Jenkinson et al 2012) or reduced to a group
of task-relevant sources (figure 2(B)). To select a sub-
set of sources that contribute themost to the observed
task-related changes in brain activity, we applied a

mask in source space derived from the common spa-
tial pattern (CSP) transformation (Koles et al 1990,
Ramoser et al 2000). CSP was applied to the sensor
space data filtered in the 9–15 Hz range for extracting
spatial filters that explain the most difference in EEG
power between the two imaginary movements. For
this purpose, we used the EEG data during the [0.49,
1.99] s window of the target presentation interval.
Covariance matrices of the signal were calculated for
each subject, session, and imaginary movement sep-
arately. Then, for each subject and session, covariance
matrices corresponding to different imaginary move-
ments were normalized to make the trace of their
average equal to one. The normalization allowed us
to exclude the difference in signal power between sub-
jects and sessions while preserving the within-session
difference in power between channels and imaginary
movements. Normalized covariance matrices were
averaged over all subjects and sessions and then used
to obtain one set of CSP filters and patterns for all par-
ticipants. CSP patterns were then source reconstruc-
ted with eLORETA. A threshold based on the 97.5th
percentile of activity strength was applied to select the
most responsive sources, which formed the resulting
source mask. The mask was applied to the anatom-
ical definitions of sensorimotor ROIs to obtain a task-
based reduced representation.

2.10. Filtering
Due to the 1/f shape of the M/EEG power spectra,
lower frequencies (<7 Hz) might have higher power
and overshadow mu oscillations in covariance calcu-
lations (Chalas et al 2022). By filtering the data in a
narrow frequency band, one makes sure that data-
dependent methods (LCMV, SVD) are not affected
by frequencies outside of the target band. At the same
time, data-independentmethods (eLORETA, AVG-F)
are not affected by filtering.

To investigate how filtering in a narrow frequency
band affects data-dependent methods for inverse
modeling and extraction of ROI time series, we con-
sidered two cases: broadband with no filtering (BB)
or band-pass filtering in the 9–15 Hz band (NB).
A forward-backward fourth-order Butterworth filter
was applied before restricting the data to the time
windows of interest and applying the inverse mod-
eling. Since the recording contained breaks, 8 s of
data at the beginning and the end of continuous data
segments were mirrored to minimize filtering-related
edge effects. Separate LCMV beamformers and sets of
SVD weights were calculated for broadband and nar-
rowband data. The computed weights were applied to
the broadband data before estimating SNR and PS.

2.11. SNR
SNR was estimated as the ratio of the total power and
the power of the aperiodic component of the signal in
the 9–15 Hz frequency range:
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SNR [dB]= 10 · log10
Ptotal

Paperiodic
(1)

The aperiodic component of the signal was estim-
ated using FOOOF (figure 1(E); Donoghue et al
(2020)) with the following set of parameters: 1–45 Hz
fit range, 2–12 Hz as limits of peak width, and 3 as the
maximal number of peaks. In the case of very lowmu
power, negative values may be obtained for the power
of the periodic component, and total power was used
in the definition of the SNR to prevent computational
errors when taking the logarithm of the power ratio.
Values of SNR were estimated in the same manner
for the Laplace-filtered sensor space data and in the
source space, later referred to as Laplace SNR andROI
SNR, respectively.

2.12. PS
To estimate PS between time series of activity in
ROIs, we employed three measures: imaginary part
of coherency (ImCoh; Nolte et al 2004), lagged coher-
ence (LagCoh; Pascual-Marqui et al 2011), and coher-
ence (Coh; the absolute value of coherency). All these
measures are derived from the complex coherency
c(f ), which can be estimated using the Fourier trans-
form x(f ) and y(f ) of the time series of interest at fre-
quency bin f :

c( f) =
⟨x( f)y∗ ( f)⟩√

⟨x( f)x∗ ( f)⟩ · ⟨y( f)y∗ ( f)⟩
= cRe ( f)+ j · cIm ( f) (2)

ImCoh( f) = cIm ( f) (3)

LagCoh( f) =
cIm ( f)√
1− c2Re ( f)

(4)

Coh( f) = |c( f) |=
√

c2Re ( f)+ c2Im ( f) (5)

In the equations above, j denotes the imaginary
unit, while z∗ is a complex conjugate of z. Averaging
over trials is denoted by angle brackets.

We considered multiple PS measures due to their
complementary properties. ImCoh and LagCoh are
insensitive to all zero-lag interactions, including the
spurious ones caused by the volume conduction.
However, it may be hard to interpret correlations
between performance and PS as measured by ImCoh
and LagCoh. Both measures depend on the strength
and the phase lag of the interaction between neur-
onal populations. If ImCoh or LagCoh is correlated
with performance, it is not entirely clear whether the
strength or the phase lag of the interaction drives the
correlation. At the same time, coherence is supposed
to solely reflect the strength of an interaction, but is
prone to the effects of volume conduction and might

be spurious. To combine interpretability and robust-
ness to spurious zero-lag interactions, we considered
all of these PS measures and looked at whether the
observed effects are consistent between them.

We computed the PS via the Fourier transform
for broadband data using the Hamming window and
1.5 s segments from different trials (frequency resol-
ution = 0.67 Hz). First, we inspected the PS spectra
in the 3–40 Hz range to confirm the presence of the
peak in the frequency range of interest (9–15 Hz). For
the subsequent analyses of the relationship between
PS and BCI performance and changes in PS over time,
we averaged the absolute values of PSmeasures across
all frequencies in the 9–15 Hz range.

In the case of several SVD components per ROI,
PS values were first computed for each pair of the
SVD components, then the absolute values of PS were
averaged. Furthermore, absolute PS values were aver-
aged over within-hemisphere and across-hemisphere
edges as shown in figure 1(F), which resulted in two
values (i.e. within and across-hemisphere PS) per ses-
sion for each subject similar to Vidaurre et al (2020).

Since changes in the SNR of oscillations in the fre-
quency band of interest lead to spurious changes in PS
due to either more or less accurate phase estimation
(Muthukumaraswamy and Singh 2011), we applied a
correction for SNR in the statistical analyses.

2.13. Multiverse analysis
Overall, in the current multiverse analysis, we con-
sidered 24 pipelines based on all possible combina-
tions of methods for the aforementioned processing
steps (figure 2(A)). By selecting these pipelines,
we aimed to assess the effects of data-independent
(eLORETA, AVG-F, BB, anatomical ROIs) and task-
or subject-dependent (LCMV, SVD, NB, task-based
ROIs) methods on the estimated values of SNR and
PS, their relationship with BCI performance, and
changes over time. For each pipeline, we estimated
the values of SNR as well as within- and across-
hemisphere PS. Then, we tested their relationship
with performance and changes over time, as described
below.

2.14. Statistical analysis
Statistical analysis was performed in R 4.2.2 (R Core
Team 2022). We used one-sample t-tests to analyze
differences in mu power between trials correspond-
ing to the left- and right-hand imaginarymovements.
Also, we used Welch’s two-sample t-test to check
for group differences in performance and SNR. To
assess the between-subject effects of SNR or PS on
BCI performance, we correlated accuracy and a pre-
dictor variable (SNR or PS) after averaging them
over all sessions for each subject. Within-subject
effects of SNR and PS on accuracy as well as changes
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Table 1. Linear mixed-effects models that were used for the assessment of the effects of interest. Notation X→ Y | Z corresponds to the
effects of X on Y, controlled for Z. Acc., Filt., Inv., ROI, and Extr. stand for Accuracy, Filtering, Inverse Modeling, ROI Definition, and
Extraction of ROI Time Series, respectively. Random slopes were added to the models as long as they converged for all of the considered
pipelines. Notation (·)2 is used to show that all two-way interactions between predictors in brackets were included in the model.

Effect Model

Relationship between SNR and Phase Synchronization (PS) Values
SNR→ PS PS ~ 1+ SNR+ (1 | Subject) (∗)

Relationship between SNR or PS and BCI Performance (Accuracy)
SNR→ Acc. Accuracy ~ 1+ SNR+ (SNR | Subject) (∗)
PS→ Acc. Accuracy ~ 1+ PS+ (1 | Subject) (∗)
PS→ Acc. | SNR Accuracy ~ 1+ SNR+ PS+ (1 | Subject) (∗)

Longitudinal Changes in Accuracy, SNR, and PS
Session→ Acc. Accuracy ~ 1+ Session+ (Session | Subject)
Session→ SNR SNR ~ 1+ Session+ (Session | Subject) (∗)
Session→ PS PS ~ 1+ Session+ (1 | Subject) (∗)
Session→ PS | SNR PS ~ 1+ SNR+ Session+ (1 | Subject) (∗)

Effects of the Processing Methods on the Estimated SNR and PS
Methods→ SNR SNR ~ (Filt.+ Inv.+ ROI+ Extr.)2 + (1 | Subject)+ (1 | Pipeline)
Methods→ PS PS ~ (Filt.+ Inv.+ ROI+ Extr.)2 + (1 | Subject)+ (1 | Pipeline)
Methods→ PS | SNR PS ~ SNR+ (Filt.+ Inv.+ ROI+ Extr.)2 + (1 | Subject)+ (1 | Pipeline)
(∗) random effect of the processing pipeline (1 | Pipeline) was added in the joint multiverse analysis.

in SNR and PS over time were assessed with lin-
ear mixed-effect (LME) models using lme4 (Bates
et al 2015) and lmerTest (Kuznetsova et al 2017)
packages. The values of continuous variables were
normalized before fitting the LMEs by subtracting
the mean and dividing over the standard deviation.
The denominator degrees of freedom in the LMEs
were adjusted according to Satterthwaite’s method
(Satterthwaite 1946). P-values less than 0.05 were
considered significant. The LME models that corres-
pond to the research questions (relationship between
SNR or PS and BCI performance, changes in SNR
and PS over time, and effects of different pro-
cessing methods on SNR and PS) are presented in
table 1. Additionally, we used linear mixed models
to investigate the relationship between SNR and PS
values.

For the multiverse analysis, we have considered
two approaches: split and joint analysis. In the split
analysis, we fitted a separate mixed model for each
of the pipelines and then aggregated the results
in the form of a table as shown in figure 2(D).
For each pipeline, estimated correlations (between-
subject effect) or regression coefficients (within-
subject effect) were coded with color, and the signific-
ance of the effects was indicated by filled black dots.
With this representation, one can visually inspect
whether the effect is robust or specific to one of the
processing methods.

In the joint analysis, we first combined the data
from all pipelines and then ran the statistical ana-
lysis while including the pipeline as a random factor
in the linear mixed model (see the asterisks in the

rows of table 1). This way, we obtained one result for
each research question based on the combined evid-
ence from all considered pipelines. Additionally, we
calculated the consistency between pipelines as the
number of pipelines that led to the same result (in
terms of significance and, if significant, direction of
the effect) as the joint analysis. Effects for all perform-
ance predictors and research questions were aggreg-
ated in a table as shown in figure 2(E), where consist-
ency is coded with color and significance is indicated
by filled black dots.

Finally, we analyzed the effects of different pro-
cessing methods on the estimated values of SNR and
PS. Processing steps weremodeled as categorical vari-
ables with Broadband, eLORETA, Anatomical ROI
definitions, and 1SVD as reference levels for Filtering,
Inverse Modeling, ROI definitions, and Extraction of
ROI time series, respectively. To assess the impact
of the combination of methods on the estimated
effects of SNR and PS, we included fixed effects of all
processing steps and all two-way interactions in the
model.

For all research questions, we applied the
Bonferroni correction for multiple comparisons
(m= 6) since we considered two options (within- and
across-hemisphere) for three PS measures (ImCoh,
LagCoh, and coherence). We did not apply cor-
rection for multiple comparisons due to having
24 pipelines, since we assumed that each pipeline is
equally likely to be selected for the estimation of PS.
Instead, the split analysis was performed to investigate
which of the individual pipelines led to a significant
result.
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Figure 3. Performance of the participants improved throughout the BCI training and showed high between- and within-subject
variability. (A) Dynamics of group-average performance reflect improvement over the course of the training. Error bars reflect the
standard error of the mean. (B) No difference in average performance in the horizontal cursor control task was observed between
the MBSR (mindfulness-based stress reduction) and control groups. (C) High variability of performance in the individual
sessions was observed and accounted for in the analyses. Subjects are ordered according to their average accuracy. Vertical bars
depict subject-specific ranges of accuracy.

3. Results

3.1. Performance improved over time and did not
differ between groups
The average accuracy of BCI control increased from
64.3% in the baseline session to 76.5% in the last
session (figure 3(A)). Longitudinal changes were
assessed with a linear mixed model, and the effect
of session was statistically significant (β= 0.12,
t(57.9) = 2.8,p= 0.006,95% CI: [0.03, 0.20]).
As shown in the previous analyses of the same
dataset (Stieger et al 2020), there were no
significant differences in the mean accuracy
between MBSR (70.99%) and control (71.08%)
groups: t(57.5) =−0.02,p= 0.98,Cohen’s d=
−0.006,95% CI of the difference [−0.07,0.07]
(figure 3(B)). The mean accuracy of all participants
was 71.03%. At the same time, the intra-individual
variability of performance was quite considerable
(figure 3(C)). We used linear mixed models to
account for this variability in the current analysis.

3.2. Sensorimotor ROIs contained the majority of
task-relevant sources
For some of the source space analysis pipelines, we
identified the task-relevant sources by fitting CSP
to distinguish between imaginary movements of two
hands. For this purpose, we used EEG during the
target presentation interval as it showed a differ-
ence in mu power between the imaginary movements
primarily over the sensorimotor areas (figure 1(C)).
The resulting CSP patterns and the corresponding

power spectra for left- and right-handmovements are
shown in figures 4(A) and (B), respectively. These
patterns were source reconstructed with eLORETA
to assess the contribution of individual sources to
CSP components (figure 4(C)). Sources that exceeded
the 97.5th percentile of activity strength were con-
sidered task-relevant, and table S4 shows that the
sensorimotor ROIs contained the highest number
of selected sources. Task-relevant sources formed
the resulting source mask (figure 4(D)), which was
applied to the anatomical definitions of sensorimotor
ROIs to obtain a task-based reduced representation
(figure 2(B)).

3.3. Laplace SNR was correlated with BCI
performance but did not change across
experimental sessions
In the Laplacian-based analysis, we estimated the
effects of SNR (described below) and PS (see sup-
plementary material, section C) on BCI performance
and their longitudinal changes. We used FOOOF to
estimate average values of SNR at the Laplace-filtered
channels C3 and C4. Examples of average power
spectra for three representative subjects with differ-
ent levels of Laplace SNR are shown in figure 5(A).
Similar to performance, Laplace SNR did not differ
significantly between the participant groups as shown
in figure 5(B) (t(59.7) = 1.09,p= 0.28,Cohen’s d=
0.28,95% CI of the difference: [−0.63,2.1]).
Dynamics of the group-average Laplace SNR across
experimental sessions are shown in figure 5(C).
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Figure 4. The task-relevant sources were identified through applying CSP to the EEG data during the target presentation interval
after filtering in the 9–15 Hz frequency band. (A) Spatial patterns corresponding to the CSP filters that best discriminate
imaginary movements of the right (upper row) and left (lower row) hands. Values were scaled to the [−1, 1] range. (B) Grand
average power spectra of the CSP components corresponding to the spatial patterns from (A). The shaded area depicts the
9–15 Hz frequency band that was used to fit CSP. (C) Source reconstruction (absolute values, scaled to [−1, 1] range) of the
spatial patterns from (A) with eLORETA. (D) Sources that exceeded the 97.5th percentile of activity strength were considered the
most relevant for the execution of the motor imagery task.

Similar to Blankertz et al (2010a), we checked
whether Laplace SNR was related to success-
ful performance in the BCI training. Subject-
average values of Laplace SNR were positively cor-
related with accuracy (r= 0.35, t(60) = 2.9,p=
0.005,95% CI: [0.11,0.55]), showing a between-
subject effect of Laplace SNR on performance
(figure 5(D)). Additionally, the within-subject
effect of Laplace SNR on accuracy was signific-
ant, as assessed with a linear mixed model (β =
0.29, t(57.2) = 5.22,p< 0.001,95% CI: [0.18,0.40]).
Figure 5(E) illustrates the observed within-subject
effect.

Then, we investigated whether Laplace
SNR changed over time due to the train-
ing, but longitudinal changes were not
significant (β =−0.03, t(51.2) =−1.11,p=
0.27,95% CI:[−0.07,0.02]). Individual and group-
level trends are shown in figure 5(F).

3.4. Effects of source space SNR, but not PS, were
stable in the multiverse analysis
In the source space analysis, we estimated values of
ROI SNR and PS in sensorimotor brain areas and
investigated their relationship to the BCI perform-
ance as well as changes throughout the training. We
performed a multiverse analysis to investigate the
robustness of the observed effects to the selection
of the pipeline. Figures 5(G) and (H) show that the
estimated effects of ROI SNR on accuracy were pos-
itive for all 24 pipelines both on the between- and

within-subject levels, respectively. Additionally, on
the within-subject level, all effects were significant.
Figure 5(I) shows that no significant longitudinal
changes in ROI SNR were observed for all considered
pipelines. Overall, the results of the multiverse ana-
lysis for ROI SNR corresponded to the results for
Laplace SNR and showed that the selection of the
pipelines did not affect the observed effect of ROI
SNR on performance and changes in ROI SNR.

For the PS, we first checked whether the grand-
average spectra of within- and across-hemisphere val-
ues of PS measures show a pronounced peak in the
mu frequency range. Such a peak indicates that the
interaction is specific to the ongoing mu oscillations.
As shown in figure 6(A) for anatomical and figure S6
for task-based definitions of ROIs, the peak was pro-
nounced in most cases. However, within-hemisphere
coherence estimated using the first SVD compon-
ent showed almost identical values in the whole fre-
quency range. In this case, it might occur due to
the volume conduction, which equally affects all the
frequencies.

In line with the previous studies (Bayraktaroglu
et al 2013, Vidaurre et al 2020), we observed a robust
positive effect of ROI SNR on ImCoh and LagCoh,
which are not sensitive to both spurious (caused
by volume conduction) as well as genuine zero-lag
interactions (figure 6(B)). In contrast, the effects of
ROI SNR on coherence were less consistent between
pipelines and differed in sign depending on the selec-
tion of the processing methods. Overall, these results

12



J. Neural Eng. 21 (2024) 056027 N Kapralov et al

Figure 5. Laplace and ROI SNR showed both between- and within-subject effects on BCI performance and did not change
systematically throughout the training. (A) Examples of resting-state power spectra (average of C3- and C4-Laplace over all
sessions) for representative subjects with different levels of Laplace SNR. (B) The difference in SNR between groups was not
significant. (C) Dynamics of group-average SNR across sessions. (D) Accuracy positively correlated with SNR after averaging over
all sessions. Each point corresponds to a single participant. (E) Within-subject variability of BCI performance was related to
session-to-session changes in SNR. Each point corresponds to a single session. Within-subject (gray) and group-level (blue) linear
trends are shown. (F) No longitudinal changes were observed for SNR. Within-subject (gray) and group-level (blue) linear trends
are shown. Note the difference in y-axis scale compared to panel (C). (G) Multiverse analysis of between-subject correlation (ρ,
coded with color) between ROI SNR and BCI performance. (H) Within-subject effect (β, coded with color) of ROI SNR on BCI
performance in a multiverse analysis. (I) No evidence for longitudinal changes in ROI SNR was observed for all pipelines in the
multiverse analysis. Fixed effect of session on ROI SNR (β) is coded with color.

confirm that it is necessary to account for SNR in the
analyses of effects related to PS.

Then, we investigated the relationship between PS
and accuracy as well as changes in PS over time. For
both research questions, effects were not significant
for the majority of the pipelines and PS measures
(figure 7). Nevertheless, the pipelines that led to sig-
nificant results often corresponded to a choice of a
particular method at different processing steps. For
example, the effects ofwithin-hemisphere ImCoh and
LagCoh on accuracy were more likely to be signific-
ant when inverse modeling was performed with an

LCMV beamformer (figure 7(A), rows 2 and 4 from
the top). In this case, pipeline-specific results showed
up as stripes in the visualization. A different tendency
was observed for the between-subject effect of PS on
accuracy (figure S7) as well as longitudinal changes
in PS (figure S8): When assessing PS using coherence,
significant effects were more likely to emerge than for
other PSmeasures. Overall, the effects of connectivity
on performance were not significant for the major-
ity of the pipelines, and the direction of the effects
was not consistent between different pipelines and PS
measures.
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Figure 6.Multiverse analysis of the relationship between SNR and phase synchronization (PS) measures. (A) Grand average
spectra of within- (top row) and across-hemisphere (bottom row) values of ImCoh, LagCoh, and coherence (columns: left to
right) for the broadband pipelines with anatomical definitions of ROIs and different ROI aggregation methods. (B) ROI SNR
showed consistent positive effects on ImCoh and LagCoh but not on coherence, both for within- and across-hemisphere PS. Fixed
effect of ROI SNR on PS (β) is coded with color.

Finally, we ran a joint analysis for all research
questions by pooling together the data from all of
the pipelines and fitting one linear mixed model
per question (figure 8). Once again, the aforemen-
tioned effects of ROI SNR on accuracy and PS
were significant and robust to the selection of the
pipeline. Effects of ImCoh and LagCoh on accur-
acy were significant before correction for ROI SNR
but less consistent between considered pipelines. For
ImCoh, the effect on accuracy remained significant

in the joint analysis after correction for ROI
SNR, but none of the pipelines showed the same
effect in the split analysis (when a separate mixed
model is fitted for each of the pipelines). Based
on the evidence from all of the pipelines, across-
hemisphere LagCoh and coherence significantly
increased over the course of the training.However, for
LagCoh longitudinal changes were significant only
in two pipelines. Statistical results are presented in
table S5.
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Figure 7.Within-subject effects of PS on BCI performance (β, coded with color) in the split multiverse analysis. Bonferroni
correction for multiple (m= 6) comparisons was applied. Panels (A) and (B) correspond to within- and across-hemisphere PS,
respectively.

3.5. The selection of processing methods for the
source space analysis affected the estimated values
of SNR and PS
Effects of different methods on the estimated values
of ROI SNR and PS were assessed with a linear mixed

model. We included fixed effects of all processing
steps and all two-way interactions in the model to
investigate whether the selection of the pipeline sys-
tematically affected the estimated values of SNR and
PS. Table 2 contains the estimated t-values for fixed
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Figure 8. Overview of the observed within-subject effects in the joint multiverse analysis. Bonferroni correction for multiple
(m= 6) comparisons was applied to account for several PS measures. Color codes the number of pipelines that led to the same
statistical result (and, if significant, the same direction of the effect) as the joint analysis.

Table 2. Summary of the observed fixed effects (t-values) of different processing methods on the estimated values of SNR and phase
synchronization (PS). Significant effects are highlighted in bold, and stars indicate that the effects remained significant after Bonferroni
correction for multiple (m= 6) comparisons. Columns correspond to different processing steps, and a positive t-value for Y|X denotes
that SNR or PS was higher when Y was used compared to X. X | SNR denotes that a correction for SNR was applied. WH and AH stand
for within- and across-hemisphere, respectively.

Band Inverse method ROI def. ROI method ROI method
Value NB | BB LCMV | eLORETA Task | Anat. 3SVD | 1SVD AVG-F | 1SVD

SNR 3.38∗ 6∗ 1.22 −0.24 1.29
WH ImCoh 0.01 −1.29 −3.31 2.79 5.05∗

WH LagCoh 1.14 0.87 −2.18 −1.58 2.21
WH Coherence 0.03 1.53 2.15 −3.63∗ −4.2∗
AH ImCoh −0.13 −0.78 0.41 3.3 0.86
AH LagCoh 2.03 −0.23 −2.79 3.19 −1.62
AH Coherence 1.57 2.87 −2.72 −2.21 −2.51
WH ImCoh | SNR −0.38 −1.93 −3.31 2.69 4.69∗

WH LagCoh | SNR −1.1 −3.52∗ −3.96∗ −1.98 2.02
WH Coherence | SNR −0.18 1.2 2.14 −3.73∗ −4.41∗
AH ImCoh | SNR −0.74 −1.82 0.14 3.02 0.54
AH LagCoh | SNR 0.27 −3.1 −3.22 3.12 −2.15
AH Coherence | SNR 1.35 2.49 −2.91 −2.26 −2.69

effects of all predictors, while table S6 lists all two-
way interactions that were significant. In both tables,
significant effects are highlighted in bold, and stars
indicate that the effects remained significant after the
correction for multiple comparisons.

First, we observed that the values of SNR were
affected by filtering and the choice of the method for
inverse modeling, with the interaction of these pro-
cessing steps also being significant (figure 9(A)). We

investigated this result in more detail since the qual-
ity of the source reconstruction with LCMV depends
on the SNR (Van Veen et al 1997), and SNR played
an important role in the previous analyses. For this
purpose, we compared values of SNR within pairs
of pipelines, which differed only in the method for
inversemodeling. As shown in figure S9, LCMV led to
higher SNR than eLORETA for broadband pipelines,
and the difference was especially pronounced for low
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Figure 9. Selection of the processing methods affected estimated values of ROI SNR and PS as indicated by shifts in the empirical
probability density functions. Only pipelines with anatomical definitions of ROIs are displayed. (A) SNR was affected by filtering
and the choice of method for inverse modeling. (B) Within-hemisphere ImCoh was higher for 3SVD and AVG-F compared to
1SVD. (C) Method for extraction of ROI time series affected values of within-hemisphere coherence. (D) LCMV led to higher
values of across-hemisphere coherence compared to eLORETA. (E) Same as (B), but for across-hemisphere ImCoh. (F) Same as
(C), but for across-hemisphere coherence.

values of SNR. For narrowband pipelines, SNR was
on average higher when eLORETA was used.

PS measures were affected by the selection of
methods for all processing steps except filtering.
When 3SVD or AVG-F were used for the extraction
of ROI time series as compared to 1SVD, coherence
decreased (figure 9, panels (C) and (F)), while ImCoh
increased compared to 1SVD (figure 9, panels (B)
and (E)). Task-based definitions of ROIs led to a
decrease in within-hemisphere ImCoh and LagCoh
as well as across-hemisphere LagCoh and coherence.
Additionally, for within-hemisphere PS, there was a
significant interaction between the ROI definition
and the method for extraction of ROI time series. In
particular, pipelines with 3SVD were less affected by
the definition of the ROI (figure S10). Finally, LCMV
led to smaller values of LagCoh and higher across-
hemisphere coherence than eLORETA (figure 9(D)).

4. Discussion

In the current study, we investigated the role of
SNR and PS of the mu rhythm in sensorimotor
brain areas as predictors of BCI performance in

a multi-session training using a publicly available
dataset (Stieger et al 2021a). The dataset contained
EEG recordings from a multi-session BCI training
based on a cursor control paradigm. The perform-
ance of the participants was assessed with the accur-
acy of completed trials and improved significantly
for some but not all participants throughout the
training. Overall, the mean accuracy was compar-
able to other BCI studies and similar to the 70%
threshold, which is commonly used to identify good
performers (e.g. in Sannelli et al 2019 and Leeuwis
et al 2021). While the increase in group-average per-
formance was not prominent between sessions 2 and
10, a considerable level of intra-individual variab-
ility of performance was observed. We used linear
mixed models to account for this variability and
investigate the relationship between SNR, PS, and
BCI performance, as well as longitudinal changes
in SNR and PS due to training. We performed the
analysis in sensor space using the surface Laplacian
and in source space by combining several processing
pipelines in amultiverse analysis. In the following, we
discuss the results of the study and their prospective
applications.
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4.1. SNR in the context of sensorimotor BCI
training
Previous studies have shown that the signal-to-noise
ratio of the mu rhythm estimated at the Laplace-
filtered channels C3 andC4 correlated with the accur-
acy of BCI control (Blankertz et al 2010a, Acqualagna
et al 2016, Sannelli et al 2019). We also observed a
positive correlation between Laplace SNR and accur-
acy after averaging over all sessions, which reflects
a between-subject effect of SNR on performance.
Additionally, we observed a within-subject effect of
Laplace SNR on accuracy. That is, not only do parti-
cipants with a higher SNR of the mu rhythm tend to
perform better, but the same participant tends to per-
form better on the days when SNR is higher as well.

In general, larger SNR is associated with stronger
lateralization of the mu rhythm during imaginary
movements, leading to a higher classification or
control accuracy (Maeder et al 2012). Our results
show that this finding, previously observed primar-
ily for the single experimental sessions, general-
izes to longitudinal settings and has two important
consequences. First, changes in overall performance
should be controlled for the changes in SNR to make
conclusions about other possible neurophysiological
factors. Second, experimental adjustments leading to
an increase in SNRmight also translate to a perform-
ance improvement.

It is important to note that SNR might affect
BCI performance at least in two different ways. On
the one hand, participants with low SNR of the mu
rhythm might not be able to perform vivid ima-
ginary movements and modulate their brain activ-
ity strongly enough. In this case, ‘quasi-movements’
(i.e. real movementsminimized to such an extent that
they cannot be detected by objective measures) could
be used to train participants to perform the motor
imagery better (Nikulin et al 2008). On the other
hand, high SNR of the mu rhythm might translate
into a more reliable feedback signal, which would in
turn allow participants to train the imaginary move-
ments more efficiently. If this is the case, training for
participants with low SNR of the mu rhythm could
be based on other features of brain activity that might
provide a higher SNR. For example, Tao et al (2021)
have shown that motor imagery led to a decrease in
inter-trial phase coherence during steady-state elec-
trical stimulation of the median nerve.

Moreover, there is still a considerable amount
of unexplained variance in BCI performance, which
could be attributed to other psychological (such as
motivation or concentration) and lifestyle (sports or
musical instrument training) factors. These factors
remain a subject of extensive research in the BCI
community (Hammer et al 2012, Jeunet et al 2015)
and could also be manipulated to improve BCI
performance.

Furthermore, we investigated whether Laplace
SNR itself could change throughout sensorimotor

BCI training but observed no evidence of longitudinal
changes. This result could be related to the structure
of the cursor control tasks. Typically, post-effects of
BCI or neurofeedback are observed when the whole
training is based on a fixed direction of modulation
of brain activity, for example, up-regulation of alpha
power (Zoefel et al 2011). In contrast, cursor con-
trol tasks in the analyzed dataset always contained tri-
als with opposite directions of modulation of the mu
rhythm (left- vs. right-hand imaginarymovements or
motor imagery vs. relaxation). Therefore, on average,
task-related modulation of the mu rhythm may not
have a cumulative effect across many sessions.

In addition, Popov et al (2023) have also repor-
ted an excellent (ICC = 0.83) test-retest reliability of
the periodic component of the alpha power in the
sensorimotor regions. While this finding goes in line
with the absence of longitudinal changes in SNR in
the analyzed dataset, there still was a within-subject
effect of SNR on BCI performance. This result could
be explained if SNR is a trait feature that is affected
by measurement-related effects (e.g. different place-
ment of the electrodes) on different training days.
Nevertheless, measurement-related effects could, in
turn, make the detection of longitudinal changes in
SNR harder.

The absence of longitudinal changes in SNR is
critical for discussing changes in other measures that
were shown to be correlated with SNR such as PS or
long-range temporal correlations (Samek et al 2016,
Vidaurre et al 2020). Since a decrease in SNR typic-
ally leads to the attenuation of the aforementioned
measures, their changes (e.g. due to learning, arousal,
etc) should be controlled for the concurrent changes
in SNR.

In our study, both the positive effect of SNR on
accuracy and the absence of longitudinal changes in
SNR were robust to the selection of the processing
steps in the multiverse analysis, as the results were
the same for all of the considered pipelines. Taken
together with all the existing evidence for the role of
SNR in BCI training, this result might suggest that the
effect of SNR on accuracy is strong enough to over-
come the variability in the estimation of SNR across
different pipelines.

4.2. PS in the context of sensorimotor BCI training
In the current study, we analyzed three linear PS
measures to combine the interpretability of coher-
ence (as it reflects the strength of interaction)
and robustness to zero-lag interactions provided
by ImCoh and LagCoh. The estimation of PS was
performed in the source space, and several pro-
cessing pipelines were combined in a multiverse ana-
lysis to assess the variability of the PS values and
associated statistical effects. For most pipelines, we
observed a peak in the mu range of the PS spectra,
which reflects an interaction that is specific to mu
oscillations.
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In line with several previous studies
(Bayraktaroglu et al 2013, Vidaurre et al 2020), we
observed a positive correlation between the values of
SNR and PS. On the one hand, higher SNR improves
phase estimation and may spuriously lead to higher
values of PS (Muthukumaraswamy and Singh 2011).
On the other hand, a higher PS between two neuronal
populations is likely to co-occur with a higher level of
synchronizationwithin the populations, whichwould
be manifested in higher SNR values (Schneider et al
2021). Most likely, both factors contribute to a pos-
itive correlation between SNR and PS values. This
correlation was very robust to the selection of the
pipeline for ImCoh and LagCoh, which are not sens-
itive to zero-lag spurious interactions due to volume
conduction. Effects of SNR on coherence were less
consistent, possibly due to the remaining spatial leak-
age (i.e. signalmixing), especially in the case of nearby
regions within the same hemisphere. Overall, our
findings confirm that it is necessary to account for
changes in SNR when analyzing PS.

We observed a significant positive within-subject
effect of within- and across-hemisphere ImCoh and
LagCoh on BCI performance. It was significant in the
joint analysis and for a few separate pipelines in the
split analysis. While this finding goes in line with the
results of Vidaurre et al (2020), we observed no evid-
ence for a between-subject effect (figure S7), which
could serve as a direct replication. After correction for
SNR, the effect of ImCoh but not LagCoh on BCI per-
formance remained significant in the joint multiverse
analysis. At the same time, the same effect could not
be detected by any of the considered pipelines in the
split analysis. Therefore, our results suggest that PS
was not related to BCI performance in the analyzed
dataset. While motor imagery leads to a modulation
of amplitude (ERD/ERS), it might not necessarily
require PS as strongly as other tasks involving precise
bilateral coordination (Shih et al 2021). However, this
resultmay also be caused by differences in the calcula-
tion of real-time feedback. In the dataset analyzed by
Vidaurre et al (2020), feedback is calculated using a
CSP-based spatial filter, which is optimal for extract-
ing task-related differences in power. In the analyzed
dataset, surface Laplacian is applied to channels C3
and C4 for spatial filtering, and the resulting signal
may still contain contributions from other sources,
e.g. occipital alpha rhythm (Blankertz et al 2010a).

Despite not showing high consistency between
pipelines (figure S8), an increase in across-
hemisphere coherence throughout the training was
significant in the joint multiverse analysis. This res-
ult could speak in favor of the optimization of the
interaction between motor areas due to the training.
However, since the same effect was only observed in
two pipelines for LagCoh and not at all for ImCoh,
there is not enough evidence or statistical power to
conclude that this increase is driven by a genuine
neural interaction.

Overall, the findings related to PS were not as
robust to the selection of the pipeline as they were
for SNR. Hence, along with the recommendation
fromMahjoory et al (2017), it is necessary to include
at least several analysis pipelines to account for the
between-pipeline variability of PS values.

4.3. Effects of the processing methods on the
estimated values of SNR and PS
The multiverse analysis also allowed us to compare
SNRandPS values thatwere obtained by applying dif-
ferent combinations ofmethods for source space ana-
lysis to the same data. Since there is no ground truth
available for real data, this comparison does not allow
us to determine which methods work better or worse
(Feuerriegel and Bode 2022). Nevertheless, below we
describe several observations that could be validated
in simulations and used in future studies.

4.3.1. Inverse modeling
As shown in figure S9, for broadband pipelines,
SNR was higher on average when LCMV was used
for inverse modeling compared to eLORETA. Since
LCMV is a data-driven approach, it might bet-
ter adapt to different subjects and sessions and
thereby extract oscillatory activity with higher SNR
than eLORETA. Surprisingly, the difference in SNR
between pipelines with LCMV and eLORETA was
especially prominent for low values of SNR. However,
it is not clear whether the improvement in the SNR
of the extracted signal is due to better extraction of
activity from the investigated ROIs or the remain-
ing spatial leakage from other ROIs. After correc-
tion for SNR, LCMV led to a decrease in LagCoh
and an increase in across-hemisphere coherence com-
pared to eLORETA (figure 6(A)). Previous studies
(Mahjoory et al 2017, Pellegrini et al 2023) also
observed the impact of the inverse method on the
estimated PS values. While the reasons behind this
effect are not clear, it is important to note that the
selection of the inverse method also played a role in
the split multiverse analysis. In particular, the effects
of within-hemisphere ImCoh and LagCoh on BCI
performance were significant only for pipelines that
included LCMV (figure 7(A)).

4.3.2. Extraction of ROI time series
ROI time series were obtained by aggregation of time
series of individual sources within the ROI, and the
selection of the aggregation method affected most PS
measures. In particular, for the within-hemisphere
case, the first SVD component seemed to capture the
remaining effects of volume conduction to a great
extent, as indicated by the lack of a peak in the spectra
of coherence (figure 6(A)) and the values of coherence
that are very close to 1 (figure 9(C)). In contrast, when
three SVD components were used for the calculation
of the PS, a peak in the spectrawas present, and coher-
ence was generally lower, while ImCoh had higher

19



J. Neural Eng. 21 (2024) 056027 N Kapralov et al

values. This result might be caused by the averaging
of pairwise connectivity values between different SVD
components, which is more likely to result in a non-
zero phase lag. Still, by includingmore than one com-
ponent per ROI in the analysis, one might ensure
that a genuine interaction between ROIs is captured.
This observation goes in line with the recommenda-
tion to consider 3–4 SVD components per ROI from
Pellegrini et al (2023). Averaging with sign flip also
seemed to capture the remaining effects of volume
conduction less, as reflected by lower coherence and
higher ImCoh.

4.3.3. Filtering
Figure S11 shows that for pipelines that included
eLORETA as the method for inverse modeling, SNR
was higher when the data were filtered in a narrow
band. Since eLORETA is a data-independent method,
it is not affected by the frequency range of the data.
Instead, filteringmatters for SVD being the only data-
dependent method in the subsequent steps of the
pipelines. This result goes in line with the observa-
tion by Chalas et al (2022) that SVD prioritizes low
frequencies that explain more variance in the M/EEG
signals. At the same time, the effects of filtering on
all PS measures were not significant before and after
controlling for SNR.

4.3.4. ROI definition
We investigated whether reducing anatomical defin-
itions of ROIs to a subset of task-relevant sources
could make the estimated SNR and PS values even
more task-specific. The definition of the ROI played a
different role in the estimation of within-hemisphere
and across-hemisphere PS. In the within-hemisphere
case, the task-based definition reduced the size of
the ROIs and variability in the reconstructed time
series of individual sources. Thereby, the effects
of volume conduction became pronounced even
stronger (higher coherence and lower ImCoh). In the
across-hemisphere case, the distance between task-
based ROIs was higher than between the anatomical
ones, and the observed decrease in coherence could
reflect less pronounced volume conduction.

4.3.5. Interactions
Although we included all possible two-way interac-
tions between processing steps in the model, only two
of them were significant after correction for multiple
comparisons (table S6). First, there was a signific-
ant interaction between filtering and inverse model-
ing steps, which implies that there was a difference
between PS and SNR values depending on whether
eLORETA and LCMV were fit to broadband or nar-
rowband data. In the analyzed dataset, narrowband
LCMV led to lower SNR for all combinations of sub-
sequent processing steps (figure S11). Second, for
within-hemisphere PS values, there was a significant
interaction between ROI definition and method for

extraction of ROI time series. When three SVD com-
ponents are used to describe activity in each ROI,
the definition of the ROI (anatomical or task-based)
seems to play a smaller role than for averaging with
sign flip or a single SVD component (figure S10).

Overall, all processing steps affected SNR or some
of the PS measures, highlighting the importance of
considering several pipelines for source space ana-
lysis. Both data-dependent methods (LCMV and
SVD) led to different results when fit to broadband
and narrowband data. The definition of the ROI and
the method for extraction of ROI time series seemed
to make the biggest difference in terms of remaining
volume conduction but also affected PSmeasures that
are insensitive to zero-lag interactions.

4.4. Limitations
The current analysis was limited to four sensorimotor
ROIs and did not include the whole-brain connectiv-
ity patterns, for example, as performed in Corsi et al
(2020). This selection was based on previous stud-
ies showing that motor imagery BCI primarily leads
to activation of the sensorimotor areas that we ana-
lyzed (Nierhaus et al 2021). These ROIs contained the
highest amount of task-relevant sources in the ana-
lyzed dataset as well (table S4), thereby additionally
validating the selection. As described before, there are
several open questions regarding the estimation of PS,
correlation between PS and behavior, correction for
the effect of SNR and PS, and interpretation of the
results. Analyzing only selected ROIs made it feas-
ible to address these challenges by considering several
options for each question.

There also exist other methods that were not
included in the multiverse analysis to ensure compu-
tational feasibility, e.g. dynamic imaging of coherent
sources (DICS; Gross et al 2001) for inverse model-
ing or fidelity weighting (Korhonen et al 2014) for
aggregation of ROI time series. However, the amount
of pipelines considered in the current analysis already
provides additional insights compared to a single
pipeline. Still, it is important to keep in mind that
even if similar results are obtained with multiple
pipelines, it does not directly imply the genuineness
of these results.

The final limitation is related to the longitud-
inal analysis. While the group-level improvement in
performance was significant, group-average accuracy
was similar across most sessions, which might reflect
little evidence of training effects. Nevertheless, we
utilized the observed within-subject variability and
employed linear mixed models to estimate the effects
of interest.

4.5. Future directions
In the current study, we focused on predicting the
BCI performance from the dynamics of mu rhythm
in sensorimotor areas during the inter-trial inter-
val, thereby testing the existing resting-state findings
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(Blankertz et al 2010a, Vidaurre et al 2020) in a lon-
gitudinal setting. Future studies could consider using
task data and investigating other brain regions—for
example, connectivity between visual and sensorimo-
tor brain areas could reflect the processing of the
visual feedback during motor imagery. Moreover,
combining datasets with several BCI paradigms
(Chevallier et al 2024) could provide additional
insights into feedback processing that generalize bey-
ond a single paradigm (in this case, motor imagery).

Multiverse analysis seems to be a promising
approach for incorporating the variability between
different processing pipelines into the analysis. In the
context of M/EEG connectivity, it could be interest-
ing to evaluate the robustness of amplitude coupling
measures (Brookes et al 2012, Hipp et al 2012) and
network measures of brain connectivity (Rubinov
and Sporns 2010) to the selection of the pipeline for
source space analysis.

5. Conclusion

Overall, we observed that SNR affected BCI per-
formance both on the between- and within-subject
levels: Participants with higher SNR tended to per-
form better, and the same participant also tended to
perform better on the days when SNR was higher.
Therefore, interventions that are suitable for increas-
ing SNR might lead to an improvement in perform-
ance. Additionally, multiverse analyses allowed us to
analyze the robustness of the investigated effects to the
selection of the pipeline for source space analysis. The
results suggest that SNR was a primary factor of the
observed performance variability as it robustly pre-
dicted accuracy and covaried with PS. On the con-
trary, the effects of PS became non-significant after
controlling for SNR and were less consistent across
different pipelines. We observed no evidence of lon-
gitudinal changes in SNR and only weak evidence
of an increase in the across-hemisphere coherence
during the training. At the same time, SNR and PS
values were significantly affected by the selection of
the pipeline for source space analysis. Therefore, it
is necessary to include several pipelines in the ana-
lysis to assess how robust the observed effects are
and how high the between-pipeline variability is. This
paper can serve as a template for future multiverse
analyses as it represents an end-to-end fully repeat-
able pipeline from raw data to the publishable report,
and all the underlying data and scripts are publicly
available.
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