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Abstract

Background. Automatic extraction of morbid disease or conditions con-

tained in Death Certificates is a critical process, useful for billing, epidemio-

logical studies and comparison across countries. The fact that these clinical

documents are written in regular natural language makes the automatic cod-

ing process difficult because, often, spontaneous terms diverge strongly from

standard reference terminology such as the International Classification of

Diseases (ICD).

Objective. Our aim is to propose a general and multilingual approach to

render Diagnostic Terms into the standard framework provided by the ICD.

We have evaluated our proposal on a set of clinical texts written in French,

Hungarian and Italian.

Methods. ICD-10 encoding is a multi-class classification problem with

an extensive (thousands) number of classes. After considering several ap-

proaches, we tackle our objective as a sequence-to-sequence task. According

to current trends, we opted to use neural networks. We tested different types
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of neural architectures on three datasets in which Diagnostic Terms (DTs)

have their ICD-10 codes associated.

Results and conclusions. Our results give a new state-of-the art on

multilingual ICD-10 coding, outperforming several alternative approaches,

and showing the feasibility of automatic ICD-10 prediction obtaining an F-

measure of 0.838, 0.963 and 0.952 for French, Hungarian and Italian, respec-

tively. Additionally, the results are interpretable, providing experts with

supporting evidence when confronted with coding decisions, as the model is

able to show the alignments between the original text and each output code.

Keywords: International Classification of Diseases, Electronic Health

Records, Sequence-to-Sequence mapping, Neural Machine Translation

1. Introduction1

Death Certificates are clinical text documents written by clinicians. They2

are typically accompanied by numerical codes to describe the morbid disease3

or conditions that led to the death of an individual. These codes originate4

from the International Classification of Diseases (ICD)1. They ensure normal-5

ization upon the ways different clinicians and countries employ for writing6

Diagnostic Terms (DTs) to describe the same disease. For instance, the7

English standard description of the E141 code is Unspecified diabetes melli-8

tus: With ketoacidosis, but many clinicians use different variants. Table 19

presents several variants taken from Electronic Death Certificates in different10

languages.11

1In this paper the 10th revision of the ICD classification will be referred to as ICD-10.
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ICD10

code French Italian Hungarian

diabete acidocetosique chetoacidosi diabetic scompensat cukorbetegseg ketoacidosissal

decompensation diabeto-cetosique acidosi diabetic diab versavanyodas

E141 diabete acidosique chetoacidosi diabetic diabetes ketoacidosis

diabete cetosique insuline acetonemia diabetic diabeteses ketoacidozis

acido-cetose diabetique acidosi metabolic diabetic diabeteses acidosis

acidocetose diabetique chetonemia diabetic ketoacidotikus diab

Table 1: Example of different DTs to express the E141 code in French, Italian and Hun-

garian.

The coding is useful for billing, epidemiological studies or comparison12

across countries. The process of assigning diagnosis codes is labor intensive,13

costly and error prone due to the fact that it is carried out by human coders.14

The training of experts to encode the ICD is expensive and time-consuming.15

According to Lang [1], about $25 billion per year is spent in the USA in en-16

coding records with ICD codes. In addition, the ICD is evolving and, there-17

fore, experts have to adapt to the most recent revision available. Even if18

standard diagnostic terminology is well defined and widely internationalized19

(the ICD exists in 43 languages and is used in around 117 countries), for20

obvious reasons, physicians usually use their own non-standard expressions21

that seldom agree with the standard. Hence, automatic ICD encoding is22

a very useful clinical application based on information extracted from text.23

Natural language processing methods are specially suitable to satisfactorily24

solve this task.25

There have been many attempts to automatically extract ICD codes from26

clinical documents. This paper presents the application of different sequence-27
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to-sequence models to map DTs to ICD-10 codes [2], a large-scale multi-class28

classification task.29

Neural network models have revolutionized AI, especially in sequence-to-30

sequence mapping [3, 4]. Recently, a number of open systems have emerged31

[5, 6, 7], allowing experimentation of different approaches in a flexible way.32

Following this paradigm, the task can be viewed as a special type of machine33

translation (MT). In this work, we consider both input (plain text for DTs)34

and output texts (codes) as if they were two different languages, and we try35

to translate from one to another.36

Our approach is general and has been applied to a varied set of languages,37

namely, French, Italian and Hungarian, obtaining the best results in the38

CLEF eHealth 2018 Task 1: “Multilingual Information Extraction - ICD1039

coding”. CLEF (Conference and Labs of the Evaluation Forum) is a well-40

known international initiative that, since 2000, has run campaigns for the41

systematic evaluation of information access systems, playing a leading role42

in stimulating investigation and research in a wide range of key areas in43

the information retrieval domain. CLEF is especially interesting for the44

comparison of approaches dealing with a specific task which is considered45

of special interest for the community. Besides CLEF, there have been other46

main venues related to the automatic evaluation of tasks on medical texts47

in the last years, like the Clinical Natural Language Processing Challenges48

(i2b2, n2c2 ) [8, 9] and the BioNLP-Shared Tasks [10]. The CLEF 201749

and 2018 eHealth shared tasks [11, 12] have been the reference forum on50

multilingual ICD coding. The task consisted of mapping Death Certificate51

lines containing DTs to the relevant ICD-10 codes, with eleven and fourteen52
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teams participating in 2017 and 2018, respectively. In the 2017 edition, the53

languages under study were English and French while, in 2018, the languages54

were Hungarian, Italian and French.55

2. Related work56

/////The////////////rationale//////////behind//////this/////////review///is////to//////////////summarize//////the///////main///////////////approaches57

///to/////////////automatic///////ICD/////////coding//////and///////their///////////relation///to//////the//////////present////////work.////////////Besides,58

///we//////////present//////how/////the////////////scientific///////////////community///////deals//////with//////this///////////problem///in///////////devoted59

////////shared////////tasks./60

The first attempts to automatically extract ICD codes from clinical doc-61

uments date back to the 1990s (more precisely, ICD-9). For many years62

software for ICD-coding used Dictionary Matching and Pattern Matching63

methods to search keywords or clusters of keywords to identify ICD codes64

[13]. These methods were not powerful enough because the task presents a65

complex characterization: large-scale multi-class classification, treatment of66

non-standard language, and alignment issues between spontaneous writing67

and ICD codes. Nowadays, there are more sophisticated approaches to tackle68

this task, ranging from knowledge-based solutions to statistical [14, 15] and69

deep learning ones.70

Rule-based systems are still used with good accuracy when the terms to be71

coded follow regular patterns, the task is limited to one DT one ICD assign-72

ment, and the number of ICDs is quite small. Unfortunately, these conditions73

seldom apply. An example is described in [16] where in order to classify men-74

tal severity symptoms in psychiatric records, knowledge-based methods out-75

perform those obtained by neural networks. In the first shared task related76
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to ICD coding, the Computational Medicine Challenge (CMC) [8], Farkas77

and Szarvas [17] started to address this task by replacing some steps in the78

construction of hand-crafted-systems with machine learning (ML). They re-79

alized that manually building rules was not straightforward and it was time80

consuming. They worked with 45 classes and not with the entire scope of the81

ICD-10 catalog (thousands of classes). Pérez et al. [18] extracted the encod-82

ing rules in the form of inferred Weighted Finite-State Transducers (WFST)83

from the corpus to produce normalized alternatives to a given spontaneous84

string and applied text similarity to select the standard string in the ICD85

framework that best matched the normalized alternatives. In the current86

work, a first step of normalization is not required, as neural systems learn87

how to manage non-standard language and, in addition, instead of a one-to-88

one (1:1) alignment, a much harder N:M term-code alignment is necessary.89

When the range of classes to be tagged is high and the corpus is big90

enough, machine learning based techniques have been successful [19, 20].91

Koopman et al. [21] trained Support Vector Machine (SVM) classifiers to92

identify cancers in a cascaded architecture, first identifying the presence of93

a cancer and later classifying its type according to the ICD-10 classification.94

In another work, Koopman et al. [22] used a machine learning approach95

and keyword matching rules to identify the presence of diabetes, influenza,96

pneumonia and HIV in Death Certificates. An SVM classifier with term-97

based and concept-based features (i.e. SNOMED CT concepts) was trained98

for each of the four diseases. A single classifier model was also trained for each99

ICD-10 code representing each of these diseases. In the rule-based approach100

a set of keywords provided by experts was used to indicate whether a Death101
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Certificate was a positive or a negative match for a particular disease. These102

works approach the problem as document classification (Death Certificate103

classification), instead of term encoding. In [23], separate machine learning104

models were trained with data from unstructured text, semi-structured text105

and structured tabular data to create a multimodal machine learning model106

that predicts ICD-10 diagnostic codes. Recently, neural networks boosted107

the results in many NLP tasks [24], also in the medical domain [25] including108

ICD coding [26, 27]. Transfer learning [28] has also been used combined with109

deep learning, as in [29] where MeSH [30] domain knowledge is transferred110

to a deep learning model by pre-training it with MeSH datasets and fine-111

tuning the neural network on ICD-9 datasets. The authors state that transfer112

learning is the key element to improve ICD-9 encoding.113

In the last CLEF eHealth ICD encoding shared tasks [11, 12], dictionaries114

and corpora were the main resources and n-gram patterns, machine learning115

and neural approaches the most employed methods. In the CLEF 2017 edi-116

tion, Ebersbach et al. [31] and Zweigenbaum and Lavergne [32], along with117

many other teams, relied on lexical resources and made use of different ML118

methods, dictionary projections from medical ontologies, expansion of syn-119

onyms and edit distance calculation. In this CLEF eHealth 2017 edition, only120

Miftahutdinov and Tutubalina [33] implemented Recurrent Neural Networks121

to assign ICD-10 codes to fragments of English Death Certificates. Their122

system used a LSTM to map the input sequence into a vector representa-123

tion, and then another LSTM to decode the target sequence from the vector,124

obtaining an F-measure of 0.850.125

In the latest CLEF 2018 edition, 12 teams out of 14 used the dictionaries126
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supplied by the organization. Cossin et al. [34] applied a dictionary-based ap-127

proach, including a module for the detection of typos and another module for128

synonym expansion. Regarding machine learning approaches, Almagro et al.129

[35] implemented a supervised learning system using multilayer perceptrons130

and a One-vs-Rest (OVR) strategy, also experimenting with IR methods. In131

Gobeill and Ruch [36] a purely statistical instance-based approach was used132

by indexing all training sentences to feed a k-Nearest Neighbors algorithm.133

Neural architectures have been used to approximate the ICD encoding task.134

Jeblee et al. [37] used an ensemble model for prediction which includes n-gram135

matching followed by an ensemble of a convolutional neural network and a136

recurrent neural network (RNN) encoder-decoder. Their system employed137

embeddings learned on the data provided, as well as on language-specific138

Wikipedia corpora.139

Ševa et al. [38] focused on the setup and evaluation of a language-independent140

neural architecture using a multi-language word embedding space. The au-141

thors obtained these word representations by concatenating Italian, French142

and Hungarian Fastext2 pre-trained embeddings. Their approach builds on143

two RNNs, modelling the extraction and classification based on Long Short-144

Term Memories (LSTM) with an attention mechanism. Another idea to145

initialize the networks in a recurrent neural model, in this case the weights146

of the final network, is given in [39] where co-ocurrences between ICD classes147

in the training data and the hierarchical structure of ICD-10 are used. Note148

that in the latter work the whole Death Certificates including the events149

2https://github.com/facebookresearch/fastText/blob/master/docs/crawl-vectors.md
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leading to death (diagnoses with ICD-10 codes) and the main cause of death150

are employed. In our system co-occurrences are modeled implicitly by the151

sequence to sequence approach.152

While many CLEF systems [38] use external general domain pre-trained153

word-embeddings, we decided to initialize the embeddings randomly, after a154

previous attempt initializing the embedding layer with external pre-trained155

embeddings resulted in a performance decrease. This decay can be due to156

the fact that external embeddings (using Word2Vec, GloVe or FastText) are157

calculated as the result of a general learning task (the embeddings corre-158

spond to the hidden states of the system), that might not be the kind of159

representation needed for the task at hand. Therefore, our system obtains160

the embeddings from scratch, recalculating them during the training process161

of the ICD classification task itself.162

Some of the issues we considered when we chose the method to approach163

the ICD encoding task were: i) the large scale of the ICD classification (more164

than 5,000 codes from around 500,000 coding items in French and Hungarian165

and 2,500 codes from 75,000 coding items in Italian), ii) the lexical variability166

in the texts and, iii) the need of a multilingual approach. These requirements167

led us to approach the problem with a neural architecture, a sequence-to-168

sequence approach which, combined with an attention mechanism, tackles169

alignment problems, a special issue in the ICD encoding task.170
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3. Materials and methods171

3.1. Corpora172

We employed three datasets provided for the Multilingual Information173

Extraction CLEF-2018 Task 1 [12]. The French dataset (CépiDc3, [40]) com-174

prises 135,000 Death Certificates collected from 2006 to 2015. The Italian175

dataset (ISTAT4) stores around 18,000 synthetic Death Certificates. They176

were artificially built from original Death Certificates, generated in 2016,177

with the aim of preserving confidentiality. The lines of each synthetic Death178

Certificate were obtained from different original Certificates, always ensuring179

topical coherence and preserving the sequence of death causes (line 1 of a180

synthetic certificate was created using line 1 of a real certificate). The age181

and sex of the patient were also maintained. Hence, this synthetic corpus182

provides a realistic simulation of language and terminology found in Italian183

Death Certificates, together with the official coding. Finally, the Hungar-184

ian dataset consists of 100,000 Death Certificates randomly extracted from185

a set of non-electronic Death Certificates for the year 2016 electronically186

transcribed afterwards. This corpus was provided by the Hungarian central187

statistical office (KSH5). See Table 2 for more details.188

One of the sections in the Death Certificates [41] is a piece of text con-189

taining one or more lines that describe the morbid diseases or conditions that190

led to the death of an individual (an example is provided in the last column191

of Table 3). The job of nosologists or human mortality medical coders is to192

3http://www.cepic.inserm.fr
4http://www.istat.it
5http://www.ksh.hu
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French Italian Hungarian

Train Test Train Test Train Test

Death Certificates 125,384 11,931 14,502 3,618 84,703 21,176

Avg. DTs per ICD10 17.59 - 7.03 - 12.74 -

#ICD10 Codes 509,103 48,948 60,955 15,789 392,020 98,264

#Uniq. ICD10s 3,723 1,806 1,443 903 3,124 2,011

Table 2: Short Description of relevant aspects of the corpus.

assign an ICD code to each of these conditions. In the cases where multiple193

conditions are coded, the nosologists decide the corresponding code for each194

DT after having seen how each condition modifies or relates to one another.195

The dataset provided for the shared task only contains the set of lines that196

describe those diagnoses of medical conditions. Some lines contain a single197

diagnostic term, and its corresponding code, while others contain various198

spontaneous DTs that correspond to a set of ICD codes.199

All datasets were preprocessed to align the DTs at document line level as200

expressed in the original Death Certificate, along with their corresponding201

ICD-10 codes, as both pieces of information were contained in different files.202

Note that a 1:1 correspondence between a DT and the ICD-10 could not be203

assured because DTs were encoded by humans at document line level, not204

at diagnostic term level. Therefore, only when a document line contained a205

unique DT, then there was a 1:1 DT-ICD10 correspondence. However, when206

a line contained several DTs, 1:1 alignment was not guaranteed (see Table 3).207

This poses serious problems for text similarity or rule based strategies but208

not for sequence-to-sequence systems, especially when they use attention209

mechanisms, which allow the right alignments to be learned (see section210
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3.2.2).211

ICD-10

codes

Standard Diagnostic-Term Original Text

N179 insuffisance renale aigue insuffisance renale aigue , masse tumorale

de la tete du pancreas responsable d ’une

compression duodenale avec nausees /

vomissements - pouvant correspondre a

un 2eme primitif ou metastase

C250 tumeur maligne tete pancreas

K566 compression duodenale

R11 nausees vomissements

Table 3: Example of multiple DTs within the same document line. The Original Text

column contains several Spontaneous Diagnostic Terms. The column named Standard

Diagnostic Term shows the standard term describing each of the multiple ICD-10 codes

manually assigned to the Original Text.

3.2. Architecture212

3.2.1. Baseline: Levenshtein Edit Distance213

Edit distance is used to quantify similarity between two strings, count-214

ing the minimum number of operations required to transform one string215

into another. The most common metric is the Levenshtein Distance [42] in216

where the basic edit operations are removal, insertion and substitution of217

a single character. This metric finds the minimum distance for each spon-218

taneous diagnostic term (SpoDT) with respect to all standard Diagnostic219

Terms (DictDT), obtaining the best candidate match (see equation 1).220

minLev(SpoDT,DictDTs) (1)
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To identify each Spontaneous DT in a text containing several DTs, we221

made certain assumptions. We considered colon, comma, semicolon, coordi-222

nation (and or), and certain prepositions, such as with, as DT separators.223

Figure 1: General architecture of the system.

3.2.2. ICD-10 coding as machine translation224

In the present work we adopted a sequence-to-sequence neural machine225

translation (NMT) solution. Formally, having an input text X = x1, x2...xn,226

and an output sequence Y = y1...ym, the goal is to model P (Y |X). X227

corresponds to one document line (only those lines containing one or several228

DTs) and Y corresponds to one or more ICD-10 codes associated to the input229

DTs. Sequence-to-sequence systems calculate P (Y |X) by modeling it as a230

step sequence where P (Y |X) =
∏m

t=1 P (yt|y1..t−1, X). In a neural sequence-231

to-sequence model, the previous formula would be stated as P (Y |X; θ) =232

softmax(Wost + bo), where θ represents the neural network parameters that233

are automatically tuned to make the neural network minimize the error. Wo234
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corresponds to the output layer weight matrix, bo is the bias term of this235

layer, and st represents the hidden state of the neural network at step t.236

Figure 1 presents the main components of the system. The training set237

is composed of a set of 1:1 or N:M pairs of the form (spontaneous DT terms,238

ICD codes). Initial preprocessing tries to minimize the mismatches in align-239

ments of DTs and codes that appear in the relatively noisy input examples.240

The text containing the Diagnostic Terms of the Death Certificate and the241

corresponding codes were supplied disaggregated in different files; one file242

stored the text containing the Diagnostic Terms as appearing in the Death243

Certificate (Spontaneous DTs) and the location of the text occurrence (doc-244

ument index and line index). Another file stored the corresponding ICD-10245

codes, the standard text description of each code and the location (document246

index and line index). In order to obtain the set of examples to train the247

system, these two pieces of information had to be related through their lo-248

cation in the Death Certificate. Along the process, we fixed, when possible,249

all the location mismatches in order to improve the quality of the training250

set. For example, there were several erroneous instances where the location251

for an ICD code is the nth line and there was no DT in the nth line. In fact,252

the spontaneous DT associated to it appeared in the (n + 1)th line. The253

corrected pairs (1:1 or N:M) together with the standard ICD dictionary con-254

taining (standard term, ICD code) pairs (1:1) were then tokenized, converted255

to lower case and accents were removed.256

The use of pre-trained word embeddings is generalized for many NLP257

neural models [43, 44, 45]. Regarding NMT, when source-target data is not258

big enough, those pre-trained embeddings have proven to be useful [46, 47].259
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The task at hand shows two differences with respect to other general NMT260

systems. First, it is domain specific, in particular, medical domain and, sec-261

ond, it consists in translating from words directly to codes, that is, mapping262

between two very different spaces. We think that in this case the origin of263

the pre-trained embeddings plays an important role on how positive their im-264

pact in the task might be. As we mentioned in section 2, word embeddings265

are the vectors generated in a hidden layer as a side-effect of maximizing a266

given probability, for example the probability of predicting the center word267

given context words (CBOW) or predicting context words given a word (Skip-268

Gram) [48]. These tasks are general enough to make these embeddings useful269

in many NLP tasks, but the task at hand for CLEF, namely, translate a DT270

in an ICD, is very different in nature and too specific. The first layer of the271

neural networks (depending on the architecture, a different neuron layer is272

applied) is used to learn the word representations or word-embeddings. We273

initialized it with random values, and these values were updated during the274

training process. Therefore we can say that they were tailored for the DT-275

ICD translation. We also experimented with pre-trained embeddings but we276

did not obtain good results.277

The encoder-decoder architecture using RNNs is currently the most pop-278

ular solution for NMT, especially when combined with attention mechanisms279

to tackle alignment problems and their limitation on long sequences by con-280

centrating the attention on the relevant input parts. Recurrent Neural Net-281

works or RNNs are specially useful when working with sequential data (as282

text), thanks to its ability to maintain information about previous inputs283

using an internal memory. RNNs carry input information across neurons by284
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means of recursive looping through an internal hidden state, thus trying to285

maintain information about the whole sequence up to each input word. In286

theory, RNNs can maintain information from the beginning of the sentence287

but, in practice, this does not always happen and information from remote288

words becomes insignificant. Long distance context is what Long Short Term289

Memory (or LSTM) units are good at keeping inside the neural network. Us-290

ing a LSTM unit is like adding a memory unit that can remember context291

from the very beginning of the input.292

Encoder-decoder architectures present two distinct blocks, the encoder293

and the decoder. Generally speaking, an RNN encoder-decoder approach is294

an extension of a language model. The encoder block reads the input string295

word by word and obtains a fixed length vector representation. Then, the296

decoder learns to sequentially predict an output code (icdm) at position m297

in the input string context (DTs = w0..wj) encoded by the encoder and the298

codes predicted so far (icd0..icdm−1).299

As mentioned before, and to avoid the gradient vanishing problem, the300

RNN employed makes use of long short-term memory units (LSTM) [49].301

When training a classic RNN using back-propagation, due to the computation302

involved in the process, the gradients can tend to zero or infinity. With LSTM303

units, gradients can flow unchanged. Using a gate-based system, LSTMs are304

able to automatically regulate how much of the “previous history” context305

should persist and how much should be renewed. Equations 2 to 6 represent306

a basic LSTM cell as represented in Figure 2.a.307
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308

it = σ(Wxi
xt +Whi

ht−1 +Wcict−1 + bi) (2)

c̃t = tanh(Wxcxt +Whcht−1 +Wcict−1 + bc) (3)

ct = (1− it)� ct−1 + it � c̃t (4)

ot = σ(Wxoxt +Whoht−1 +Wcoct + bo) (5)

ht = ot � tanh(ct) (6)

309

310

• xi corresponds to the embedding representation of wi.311

• σ and tanh represent the sigmoid and hyperbolic tangent, introducing312

non-linearity in the network.313

• t and t− 1 correspond to the current and previous time steps, respec-314

tively.315

• ct defines the current state of the memory cell controlling how much of316

the previous context ((1− it)� ct−1) should be forgotten and how it is317

updated (it � c̃t.)318

• it represents which values will get updated and c̃t represents which new319

candidates could be added.320

• ot defines, through the sigmoid function (σ), which part of the infor-321

mation stored in the cell will go to the output.322

• ht corresponds to the hidden state. In Bi-LSTMs ht gets calculated as323

the concatenation of right to left
−→
ht and left to right

←−
ht hidden states.324

Besides the RNN, we also experimented with other alternatives that have325
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proven to be successful for translation, as fully Convolutional Neural Net-326

works (CNN) and self-attention (Transformer) networks.327

A CNN network intends to identify the most relevant aspects of a Spon-328

taneous DT (DT = w0..wn) and represent these aspects in a fixed length329

vector. The process consists of moving a sliding-window of k words over the330

text obtaining several overlapping subsequences (s1, s2...sn−k+1)
6. Then a331

filter is applied to each subsequence with the aim of capturing some major332

aspect of the subsequence. A filter is simply a dot-product of a given vector333

representing the subsequence7. These weight values will be updated repeat-334

edly over the training process using gradient descent. The result will be a335

scalar value (vi = si.u). Different u (u1, u2..uj) filters can be applied over336

the same subsequence si obtaining a vector li (li = vi,1, vi,2...vi,j). Ideally337

each vi,x vector will identify a different aspect of the subsequence si. Next,338

the “pooling” operation applies over the l1:n−k+1 vectors to combine them339

reducing the dimension to represent the initial Spontaneous DT. The reduc-340

tion consists in finding the maximum value across each position in the vector341

l, which indicates the most important signal in that position; this helps to342

eliminate noise and also ensures that all sequences no matter how long are343

represented as a fixed length vector. This reduction is graphically represented344

as a triangle as in Figure 2.b. The CNN decoder is similar to the encoder345

but it has an additional attention mechanism at every layer and a fully con-346

nected layer with a softmax to perform the actual ICD prediction. The fully347

6Assuming that the window slides in steps of one word.
7Note that the representation of each subsequence is usually the concatenation of all

the word vectors contained in the subsequence with a weight vector (u)
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connected layer will use information of both the input string (one or several348

DTs) encoded by the encoder and the ICD codes predicted so far. For more349

details see [50] and [51]. Equation 7 corresponds to the generalization for350

a system with multiple convolutional layers (cl) of the basic convolutional351

filter operation.352

hcli = v(W cl[hcl−1
i−[k/2]; ...;h

cl−1
i+[k/2]] + bcl) + hcl−1

i (7)

In the Transformer architecture, a small constant step number is applied.353

Each step consists of a self-attention mechanism which directly models rela-354

tionships among all words in a source text by tuning weights. For both the355

encoder and the decoder the basic operation is presented in equation 8.356

C = softmax
(QWQ(KWK)T√

d

)
VW V (8)

Q is called the Query and it is usually the last hidden state of the decoder,357

so it represents the target ICD codes. K is called the Key and represents the358

source Spontaneous DT terms (through the encoder’s last hidden state). So,359

the softmax, as stated, will assign bigger values to sources that are “closer”360

to targets, and V is referred to as the values and is equal to K, so the result of361

the softmax multiplied by V gives the most probable value from the source8.362

In general terms, in CNN and Transformer architectures, position is not363

intrinsically part of the system, as opposed to RNNs9. Therefore, words are364

augmented with positional information by adding the word embedding and365

the positional embedding.366

8see http://jalammar.github.io/illustrated-transformer/ for further reading
9Sequentiality intrinsically encodes the position of the source items.
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Figure 2 graphically shows the different algorithms. From the multiple367

toolkits available we chose Sockeye [7] because of its flexibility regarding368

the available architectures, including Deep Recurrent Neural Networks with369

Attention [52], Transformer Models with self-attention [53] and fully convo-370

lutional sequence-to-sequence models [50].371

(a) biLSTM encoder (b) CNN encoder (c) Transformer encoder

Figure 2: biLSTM, CNN and self-Transformer encoders

(a) RNN decoder (b) CNN decoder (c) Transformer decoder

Figure 3: RNN, CNN and self-Transformer decoders
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3.3. Evaluation372

For evaluation, system performance was assessed by the usual information373

extraction metrics: recall, precision and F-measure over the set of predicted374

and gold standard codes (specifically, we used β=1). Matches (true positives)375

were counted for each ICD-10 code supplied, matching the reference for the376

associated document.377

Precision =
true positives

true positives+ false positives
(9)

Recall =
true positives

true positives+ false negatives
(10)

F −measure =
(1 + β2)× precision× recall

β × precision× recall
(11)

4. Results378

Table 4 presents the results of our system on the CLEF 2018 Shared379

Task 1 data [12]. For the sake of comparison, we also show the results for the380

best systems that competed in the shared task and which were described in381

the related work section (section 2). For the French dataset, there were 18382

official runs (or systems) from 12 teams. For the Hungarian dataset, there383

were 9 runs from 5 teams and, for the Italian raw dataset, 12 runs from 7384

teams.385

In our case, we developed different models on an initial partition of the386

data into training, validation and the initially provided test (60%-20%-20%387
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split). The neural network was trained on batches of the training set and eval-388

uated repeatedly on the validation set until no improvement was reached. We389

experimented with different values for the most relevant parameters, includ-390

ing the embedding size for source and target tokens (256, 512 and 1024),391

the learning rate (from 0.0001 to 0.0005), the number of layers in encoder392

and decoder, the dropout rate for source and target embeddings, and the393

optimization algorithm. The final set of parameters uses an embedding size394

of 512 for source and target embeddings, 0.0003 learning rate, a single layer395

for encoder and decoder, no dropout and the Adam optimization algorithm.396

Regarding the transformer, it uses 8 heads (or parallel attention layers) in397

a multi-head context. We used fixed positional embeddings that are cal-398

culated deterministically using sinusoidal functions of different frequencies,399

related to each position [54], as they better generalize for sequences of lengths400

not found during training. By default, fixed positional embeddings require401

a size equal to that of the word embeddings. The best parameter setting402

was finally applied to the test set. From the built models, we selected the403

best two systems, which were evaluated on an unseen final test file by the404

shared task organizers. The final systems used the merged train+validation405

dataset in order to obtain the model parameters, leaving the initial test set406

for validation.407

Using an Intel Xeon 3.00GHz processor with an NVIDIA TITAN X Pascal408

graphical processing (GPU) unit it took less than one hour for each experi-409

ment.410
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French

System Prec Rec F1

Baseline (Levenshtein) 0.578 0.543 0.56

Ours RNN-CNN 0.841 0.835 0.838

Ours RNN-Transformer 0.846 0.822 0.834 (-0.004)

Cossin et al. [34] dictionary-based (standard text) 0.794 0.779 0.786 (-0.052)

Cossin et al. [34] dictionary-based (ICD dict.) 0.782 0.772 0.777 (-0.061)

Gobeill and Ruch [36] instance-based learning 0.763 0.764 0.764 (-0.074)

Hungarian

System Prec Rec F1

Baseline (Levenshtein) 0.935 0.935 0.935

Ours CNN-RNN 0.970 0.955 0.963

Ours RNN-Transformer 0.968 0.954 0.961 (-0.002)

Almagro et al. [35] perceptron + One-vs-Rest 0.946 0.911 0.928 (-0.035)

Almagro et al. [35] IR 0.932 0.922 0.927 (-0.036)

Jeblee et al. [37] n-gram + word embeddings 0.922 0.897 0.910 (-0.053)

Italian

System Prec Rec F1

Baseline (Levenshtein) 0.822 0.794 0.808

Ours RNN-RNN 0.960 0.945 0.952

Ours Transformer-RNN 0.945 0.922 0.934 (-0.018)

Almagro et al. [35] perceptron + One-vs-Rest 0.917 0.875 0.895 (-0.057)

Almagro et al. [35] IR 0.931 0.861 0.895 (-0.057)

Jeblee et al. [37] n-gram + word embeddings 0.908 0.824 0.864 (-0.088)

Table 4: Performance of the best 5 systems for French, Hungarian and Italian, respectively.
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5. Discussion411

Table 4 shows that the sequence-to-sequence approach considerably out-412

performs the other systems for all languages, with differences of 5.2, 3.5 and413

5.7 absolute points in F-measure with respect to the next best system for414

French, Hungarian and Italian, respectively.415

Notice that the system beats the baseline as expected. Text-similarity ap-416

proaches (Levenshtein) perform poorly on multiple DT line examples, where417

splitting each line to find the individual DTs causes alignment problems.418

5.1. Influence of the variability in the terms and lists of terms419

The use of non-standard language and the variability in the DTs is a420

source of errors (see Table 6 for the description of several error types). When421

multiple DTs appear in the same line, besides language variability, alignment422

issues arise, because identifying individual DTs becomes tricky. For exam-423

ple, two DTs separated by a comma, as in “evolution terminale , insuffisance424

cardiaque” (ICD-codes R999 I509), might not obtain the same code as when425

they appear with a preposition, “evolution terminale d’une insuffisance car-426

diaque” (ICD-code I509). However, having multiple terms can be helpful427

sometimes. Terms might be interrelated, so a term might thus help to find428

the right code for another one (see Figure 6).429

5.2. Influence of neural architecture430

Although we experimented with other combinations of encoder-decoder431

pairs, Table 4 presents the results of our best two systems for each language.432

The table shows important differences depending on the neural network ar-433

chitecture employed. There is no unique encoder-decoder combination that434
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performs best for all languages, the best systems being RNN-CNN, CNN-435

RNN and RNN-RNN for French, Hungarian and Italian, respectively. Re-436

garding the decoders, RNNs seem to work better for Italian, as the best437

combinations use an RNN decoder. In Hungarian the second best combi-438

nation uses an RNN as decoder and, finally, none of the best combinations439

for French employs an RNN. The most plausible explanation for this fact440

originates from the data itself. RNNs are intrinsically sequential and conse-441

quently the order of the ICDs might be an issue in lines with multiple ICDs.442

It turns out that in Italian only 2% of the data corresponds to multiple ICD443

lines with an average length of 2.4 ICDs, while in Hungarian it is a 3% and444

in French it is around a 5% with and average length of 2.9 both. From those445

multiple ICD lines, Italian is the language showing the lowest order variabil-446

ity, then Hungarian and, finally, French with the highest order variability.447

As for the encoder, the opposite applies, because the language showing the448

highest word order freedom is Hungarian, then Italian and finally French.449

This suggests that the optimal algorithms should be selected after a careful450

experimentation.451

Besides the general architecture, we also tested variations of the different452

hyperparameters. Our main experience is that the difference comes mostly453

from varying the architectures (CNN, RNN and transformer), rather than454

from adjusting the hyperparameters, with minor variations from the standard455

default values.456

We made preliminary experiments using subword units known as byte-pair457

encodings [6] that try to define smaller segments than the word itself. This458

is based on the intuition that various word classes are translatable via units459
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smaller than words, for instance names (via character copying or transliter-460

ation), compounds (via compositional translation), and cognates and loan-461

words (via phonological and morphological transformations). Although this462

can in principle be useful for dealing with unknown words, we did not find463

any significant improvement.464

5.3. Interpretability465

The examples in Table 3 show that the connection between the codes and466

the parts of the DTs is not annotated, obscuring the reasons behind specific467

coding decisions. As Li et al. pointed out [55]: “unlike traditional feature-468

based classifiers that assign and optimize weights to varieties of human in-469

terpretable features (parts-of-speech, named entities, word shapes, syntactic470

parse features etc) the behavior of deep learning models is much less eas-471

ily interpreted”. Recent works have made an effort towards this direction472

[56, 57].473

Figure 4 shows how the network processes the DT input, using a vi-474

sualization tool for neural sequence-to-sequence models [58]. The different475

values calculated in the process get represented graphically allowing users to476

understand the decisions at each step. The figure presents the three main477

components of the system: the encoder (in blue), the attention (linking en-478

coder and decoder) and the decoder (in yellow). For instance, in Figure 4.a,479

for the input hepatite c cardiopathie rythmique, the right codes are correctly480

predicted as B182 (hepatite C) and I499 (Cardiopathie rythmique). The481

width of the attention lines represents the weight of each encoder state (the482

input) over the decoder predictions (the output). For example, the word “c”483

plays a relevant role to decide the right code for “hepatite c” (Figure 4.a),484
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as all the codes at the top k candidates refer to hepatic diseases. The can-485

didates, ranked by their probability, are B182 (Hépatite virale chronique C ),486

K759 (Maladie inflammatoire du foie, sans précision), B189 (Hépatite virale487

chronique, sans précision) and K746 (Cirrhoses, autres et sans précision).488

The attention mechanism is one of the keys that helped to obtain accurate489

predictions, /////////////comparing compared to other participant groups that did not490

make use of attention. The lower part of Figure 4 shows the alternative491

paths that are evaluated when searching for the best code assignment, rep-492

resenting the path likelihood by the width of the connecting lines.493

Figure 5 shows the encoder contexts analogous to the word “aomi” (Fig-494

ure 4.b), presenting DTs related to the input. This way, the human coder can495

inspect similar encoding states which in this case allow to ascertain the link-496

ing between “aomi” and “arteriopathie obliterante des membres inferieurs”497

(as an acronym).498

Figure 6 presents the alignment examples of two DTs and ICD-10 codes,499

showing the result of the sequence-to-sequence alignment. In addition to500

assigning codes with good accuracy, our system provides an interpretable501

result, aligning each code with its corresponding piece of text as in [59].502

This information is not rendered by most ML approaches which, although503

accurate, do not provide any helpful information besides the result itself.504

This is relevant in medical environments where hospitals/clinicians require505

an understandable way to find the most informative evidence. We provided506

a physician with a sample of 78 ICDs appearing in 15 lines, with and with-507

out the alignment matrices. Overall, the physician found the system very508

helpful. Finding the right ICD for a given DT from scratch, that is, with-509
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(a) (b)

Figure 4: Examples of the ICD code generation process.

out having any system prediction at all, /////////implied////to///////start//////////looking required510

the human annotator to look up the DT in the ICD coding classification as511

provided by the WHO (World Health Organization). This was hard since512

DTs do not usually match the standard terms, so when there was no per-513

fect match the expert had to locate in the hierarchy the right chapter (DT514

generalization, e.g, insuffisance renale terminale corresponds to chapter XIV515

codes from N00N99, for Maladies de l’appareil génito-urinaire) and then dig516

///up for the right code. Having a prediction flips the process/,: the physician517

started by looking up ////for the predicted ICD code to obtain the standard518

term associated to it, and if the standard term was a synonym of the DT to519

be classified, the process finished successfully. But even when the prediction520

was not correct, as the ICDs follow a hierarchical structure, a partial predic-521

tion narrowed the search space reducing the coding time (e.g., insuffisance522
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Figure 5: Related encoder contexts of the word “aomi” (Figure 4.b), showing DTs related

to the input (e.g. “arteriopathie obliterante des membres inferieurs”).

renale terminale was assigned the ICD code N180 which, although incorrect,523

is close to the correct code, N185). The alignment matrices, in particular,524

were useful when errors occur, ///////////specially especially in long lines that contain525

several DTs, as the alignments showed a one-to-one correspondence between526

a term and the predicted ICD, allowing the physician to focus on that exact527

pair and, if the prediction was wrong, the physician did not need to look for528

any other DT that could match the ICD.529

In figure 6.a, we see how the DT acido-cetose diabetqiue, containing a530

spelling error, is paired with the code E141 that corresponds to the standard531

term acidocetose diabetique. Figure 6.b depicts how the system finds different532

types of evidence assigned to each DT word with respect to an ICD-10 code,533

illustrated by the DT insuffisance respiratorie restrictive, where each word534

adds value to the alignment with the term E274, and how some words are535
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more relevant than others.536

(a) (b)

Figure 6: Alignment examples.

Additionally, word embeddings calculated in the translation process cap-537

ture similarities between elements, such as semantically similar equivalents,538

variants or spelling errors. Table 5 presents the closest words in the embed-539

ding space to a set of selected words. For example, given the French word540

bronchique, the set of close word embeddings includes variants (bronchiques),541

spelling errors (brochique, bronchqiue), or semantically related terms (tra-542

cheobronchique).543

5.4. Effect of algorithms and training corpus size544

We found it interesting to explore the relation between the types of algo-545

rithms and certain characteristics of the corpora, such as size and number of546
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Term (English) French Italian

bronchique bronchit

brochique bronchite

bronchial bronchqiue broncopat

bronchiques broncopneumopat

bronchioque tracheobronchite

tracheobronchique broncopneumopatia

deshydratation disidratazione

hypovolemie ipovolemia

dehydration deshydrataion idratazione

deshydratee deidratato

dehydratation disidratativa

Table 5: Example of close embeddings for the terms “bronchial” and “dehydration” in

French and Italian.

codes. To do so, we artificially built several ////size differently-sized training cor-547

pora. Figure 7 shows how Transformer for encoding and CNN for decoding548

present the best results for small datasets, with an F-score difference of ///10549

0.10 //////////absolute/////////points//////with from other approaches. However, it also shows the550

worst performance on the full dataset. Conversely, architectures based on551

CNN and RNN do not obtain a good accuracy with small training sizes, but552

achieve the best results with bigger datasets. This could be due to the fact553

that Transformer is less constrained to positional information, generalizes554

better, and suffers less from sparsity. The attentional Transformer-RNN pair555

is the most regular architecture for both small and big datasets. These re-556

sults present interesting ideas for the implementation of neural architectures,557

depending on the language or the amount of data.558
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Figure 7: Effect of increasing the training size (Italian) for different encoder and decoders.

5.5. Error analysis559

In order to understand the results and with the aim of improving them in560

future developments, we analyzed the errors manually. Table 6 exemplifies561

several error sources. This analysis was divided into two groups: i) document562

lines with a single DT and ii) lines with multiple DTs. These are a general563

source of error in both cases:564

• Abbreviation: the standard form appears abbreviated and so the in-565

formation is misunderstood. In some cases it carries an incorrect code566

and in others the addition of a new code.567

• Spelling error: the spontaneous DT is misspelled and so the system568

obtains an incorrect code.569
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• Superclass: the system gives the spontaneous DT the code correspond-570

ing to its direct parent in the ICD-10-CM hierarchy (that means a more571

general code).572

• Information inclusion/exclusion: the system does not identify part of573

the DT, so it generates a code mismatch. The same thing happens574

whenever the system considers more tokens for the code assignment.575

However, other types of problems, like the omission of commas, or the576

variations in the use of coordination or certain prepositions only appear when577

DT lists are used, as this may cause alignment problems. In fact, the system578

performs better with the one-to-one (1:1) cases which are not prompted to579

alignment issues. This difference, as expected, was even bigger when using580

Levenshtein.581

6. Conclusion582

This work tackles medical record classification following the ICD-10 stan-583

dard in a multilingual setting. The classification problem is hard for several584

reasons: 1) the gap between spontaneous and standard language; 2) a large-585

scale classification task, with thousands of possible classes and, 3) in real586

data, in most cases, there is no 1:1 alignment between DTs and ICD-10587

codes.588

We present and evaluate different neural network architectures for multi-589

class document classification as a sequence-to-sequence problem. The system590

is also able to learn to identify highly-predictive locations for each label,591

providing satisfactory explanations for its predictions. The system is also able592
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Error analysis with examples

1:1

Abbreviation
G: oap asphyxique I501

S: oedeme aigu pulmonaire asphyxique I501 R090

Multiword
G: arret cardio-circulatoire I469

Spelling error
G: detresse respiratoire J960

S: detresse respiratoiore R092

Superclass
G: acfa I489

S: acfa I48

Info. missing
G: plaie cardiaque operatoire Y600

S: plaie cardiaque S269

Info. inserted
G: operee Z924

S: neoplasie analse operee C169 Z924

Prep. inserted
G: syndrome glissement R453

S: symdrome de glissement R54

. . .

1:N

All the cases in 1:1 and in addition the following:

Term unification G: deshydratation , demence type alzheimer , tumeur sein E86 G309 D486

by comma omission S: deshydratation demence type alzheimer tumeur du sein E86 G309 C509

Term unification G: hemorragie encephalique , hemorragie ventriculaire I619 I615

by comma substitution S: hemorragie encephalique et ventriculaire S062

. . .

Table 6: Error cases detected (French). G refers to the standard form and S to the

spontaneous form. The sequence of one or more DTs is followed by the corresponding

ICD codes, eiteher manual or automatic.
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to deal with real non-aligned data which is difficult for some other approaches,593

such as text similarity based models.594

Our best model showed high-quality results, establishing a new state-of-595

the-art, and this fact opens a promising avenue for the task of automatically596

assigning ICD-10 codes to medical documents. The method is language inde-597

pendent, allowing efficient training, given only a set of annotated documents,598

and does not require complex feature engineering.599
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[37] S. Jeblee, A. Budhkar, S. Milić, J. Pinto, C. Pou-Prom, K. Vishnubhotla,743

G. Hirst, F. Rudzicz, Toronto CL at the CLEF 2018 eHealth Challenge744

Task 1, in: CLEF 2018 Evaluation Labs and Workshop: Online Working745

Notes, CEUR-WS, September (2018).746
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7. Summary Points815

What was already known on the topic?816

• The problem presents a complex characterization due to non-standard817

language variation, spontaneous writing, large-scale multi-class classi-818

fication or DT-ICD10 alignment issues.819

• There are varied approaches, ranging from knowledge-based solutions820

to statistical and deep learning ones.821

• Most Machine Learning approaches, although accurate, do not offer822

any helpful clue about the encoding decision besides the result itself.823

What does this work add?824

• Sequence-to-sequence deep learning approaches outperform other sys-825

tems by a considerable margin for all languages.826

• We have performed an exhaustive study of different sequence-to-sequence827

architectures, showing that there is no unique encoder-decoder com-828

bination that performs best for all languages, as we show important829

differences with respect to the neural network architecture employed.830

• Apart from assigning the codes with good accuracy, the system also pro-831

vides an interpretable result, aligning each code with its corresponding832

piece of text.833
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