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Abstract: In this paper, we propose an alternative distribution to model count data exhibiting
uni/bimodality. It arises as a weighted version of the beta-binomial distribution, which is defined by
a parametric weight function that admits up to two modes for the resulting probability mass function.
Like the baseline beta-binomial distribution, the proposed distribution performs well in modeling
overdispersed binomial data. Structural properties of the new distribution are studied. Raw moments
are derived, which are used to describe the dispersion behavior relative to the mean and the skewness
behavior. Parameter estimation is carried out using the maximum likelihood method. A simulation
study is conducted in order to illustrate the behavior of the estimators. Finally, two applications
illustrating the usefulness of the proposal are presented.

Keywords: beta-binomial distribution; bimodality; count data; maximum likelihood; moments;
overdispersion
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1. Introduction

Count data represents the number of times a particular event occurs in an interval of
time, space, or other unit of measurement. This type of data is commonly found in various
areas, such as medicine, economics, and engineering, to name a few. For example, Böhning
et al. [1] analyzed count data from a dental epidemiological study under the situation of
additional zeros. Salman et al. [2] analyzed bankruptcy count data from Swedish small
manufacturing firms with the aim of investigating the business failure risk factors of small
manufacturing firms. Calabria et al. [3] analyzed the reliability of repairable systems from
in-service failure count data.

There are many real-world scenarios where the probability of success in binomial
experiments cannot be considered constant. For example, the probability of consuming
alcohol across the 7 days of a particular week varies from one individual to another (see
Alanko and Lemmens [4]). Considering a beta distribution for the probability of success in
a binomial distribution (which gives rise to the beta-binomial distribution) is not overly
restrictive since the beta distribution is very flexible in terms of the shapes of its probability
density function.

A random variable X follows the beta-binomial distribution, denoted X ∼ BB(n, α, β),
if its probability mass function (p.m.f.) is given by

P(X = x) =
(

n
x

)
B(x + α, n − x + β)

B(α, β)
, x = 0, 1, 2, . . . , n, α, β > 0, (1)
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where B(a, b) =
∫ 1

0 ua−1(1 − u)b−1 du, a, b > 0, is the beta function.
In Bayesian inference, the beta-binomial distribution is used to make predictions about

the number of successes in future trials, taking into account the uncertainty in the estimate
of the probability of success. In classical inference, the beta-binomial distribution can be
used to model data with overdispersion in binomial experiments, i.e., when the observed
variability is greater than that expected under a standard binomial distribution.

A review of the applicability and extensions of the beta-binomial distribution can be
found in Wilcox [5]. The use of the beta-binomial distribution in the context of regression is
discussed in Crowder [6]. Details on the estimation of the parameters of the beta-binomial
distribution can be found in Tripathi et al. [7].

Regarding more recent applications of the beta-binomial distribution, several studies
can be found in the literature. To name a few, Palm et al. [8] use the beta-binomial distribu-
tion in the formulation of the BBARMA (Beta-Binomial Autoregressive Moving Average)
model, which can capture the temporal dynamics and autoregressive structure in count
data. Chen et al. [9] use the beta-binomial distribution to propose a GARCH model that
captures the variation in the number of new cases of cryptosporidiosis infection, obtaining
a useful model for time series data that present bounded counts and high volatility. Jansen
and Holling [10], under a Bayesian approach, use the beta-binomial distribution in the
meta-analysis of rare events.

Although the beta-binomial distribution is applied in various real-world settings, its
performance is not good when empirical distributions exhibit bimodality, i.e., when there
are two modes or peaks in the empirical distributions. The presence of bimodality can
be explained by the existence of two groups or subpopulations with unique characteris-
tics or by the existence of latent variables that significantly influence the distribution of
the population.

A very popular methodology in the literature to incorporate flexibility in terms of
asymmetry and multimodality is related to the definition of weighted distributions pro-
posed by Fisher [11] and Rao [12]. Suppose that X is a random variable with probability
function f (x). The weighted random variable Xw has PDF

fXw(x) =
w(x) f (x)

µw
, (2)

where w(·) is a nonnegative weight function and µw = E[W(X)] < ∞.
A particularly salient case of (2) is obtained when w(x) = x, which defines a length-

biased distribution. These distributions arise naturally in applied fields, such as reliability
and survival analysis, when individuals or mechanical units are sampled with unequal
probability due to the experimental design or the existing unequal probability of detection.

On the other hand, it is possible to find in the literature weight functions that can
lead to multimodality for the weighted distributions resulting from (2). For example, if

w(x) = 1 +
(

1 − α(x−µ)
σ

)2
,α ∈ R, and f (x) is the pdf of the normal distribution with

mean µ ∈ R and variance σ2 > 0, then (2) reduces to the family of bimodal distributions
called the alpha-skew-normal distribution, see Elal-Olivero [13]. Based on the same weight
function, Gómez-Déniz et al. [14] introduces a bimodal version of the Poisson distribution.
Cortés et al. [15] propose a parametric weight function that involves a power function of
exponent 4, which can lead to a probability function with up to three modes.

In this paper, we propose an extension of the beta-binomial distribution appropriate
to fit overdispersed binomial data that may exhibit both unimodality and bimodality. The
proposal arises from (2), using the weight function proposed by Elal-Olivero [13] under a
beta-binomial baseline distribution. In this way, the new distribution is aimed at expanding
the use of beta-binomial distributions to real-world scenarios where empirical distributions
exhibit bimodality.

The remainder of the paper is organized as follows. In Section 2, we define the bimodal
beta-binomial random variable and study some of its properties, such as the probability
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mass function, cumulative distribution function, and the raw moments. The latter are used
to describe the behavior of the relative dispersion with respect to the mean and the skewness
behavior of the distribution. In Section 3, parameter estimation for the new distribution
using the maximum likelihood method is discussed. A simulation study is carried out
to evaluate the behavior of the estimators. In Section 4, two application examples with
real data are presented to illustrate the usefulness of the proposed distribution. Finally,
concluding remarks are presented in Section 5.

2. Bimodal Beta-Binomial Distribution

In this section, we derive the new distribution and study some of its main properties.

2.1. Bimodal Beta-Binomial Random Variable

The following proposition presents the p.m.f. of the new distribution.

Proposition 1. Let X ∼ BB(n, α, β) and w(·) be a parametric function given by

w(x) = 1 +
[

1 − q(x − µ)

σ

]2

, x = 0, 1, . . . , n,

where

µ =
nα

α + β
and σ2 =

nαβ(α + β + n)
(α + β)2(α + β + 1)

,

are the mean and variance of X, respectively. Then, the p.m.f. of the weighted random variable Xw is

fXw(x; α, β, q) = P(Xw = x)

=
1

2 + q2

{
1 +

[
1 − q(x − µ)

σ

]2
}(

n
x

)
B(x + α, n − x + β)

B(α, β)
, x = 0, 1, . . . , n, (3)

such that α, β > 0, q ∈ R and B(·, ·) is the beta function.

Proof. First, we observe that fXw(x) > 0 for all x = 0, 1, 2, . . . , n when α, β > 0 and q ∈ R.
Second, it can be seen that

n

∑
x=0

fXw(x) =
1

(2 + q2)

n

∑
x=0

(
1 +

[
1 − q(x − µ)

σ

]2
)

fX(x)

=
1

2 + q2

(
2 − 2q

σ

n

∑
x=0

(x − µ) fX(x) +
q2

σ2

n

∑
x=0

(x − µ)2 fX(x)

)
= 1.

In consequence, it is concluded that (3) is a valid p.m.f.

Definition 1. Let Xw be a random variable with p.m.f. given in (3), then we say that Xw follows a
bimodal beta-binomial distribution. We denote this as Xw ∼ BBB(n, α, β, q).

The name given in Definition 1 to refer to the new distribution is based on the bimodal
behavior that the p.m.f. can present. Figure 1 shows some plots of the p.m.f. of the bimodal
beta-binomial distribution for different values of its parameters. In the figure, it can be
seen that the BBB p.m.f can present a great variety of shapes depending on its parameters:
monotonic shape, symmetric/asymmetric unimodal shape, bathtub shape, or asymmetric
bimodal shape.

A function in the R programming language [16] for computing (3) is provided
in Appendix A.
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Figure 1. Plots of the p.m.f. of the bimodal beta-binomial distribution with n = 20 and different
values of α, β and q.

2.2. Two Related Distributions

Corollary 1. Let Xw ∼ BBB(n, α, β, q). Then,

1. fXw(x; α, β, q = 0) =
(

n
x

)
B(x + α, n − x + β)

B(α, β)
, x = 0, 1, 2, . . . , n, α, β > 0, which is the

p.m.f. of the beta-binomial distribution.
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2. If n = 1, then fXw(x; α, β, q) = θx(1 − θ)1−x, x = 0, 1, such that

θ =


β

(2+q2)(α+β)

[
1 +

(
1 + q

√
α/β

)2
]
, if x = 0,

α
(2+q2)(α+β)

[
1 +

(
1 + q

√
β/α

)2
]
, if x = 1.

Corollary 1 is a direct consequence of (3) considering fixed values for q and n. Part 1
shows that the beta-binomial distribution is a special case of the bimodal beta-binomial
distribution obtained when q = 0. The second part shows that the bimodal beta-binomial
distribution reduces to the Bernoulli distribution with parameter θ, where θ is a function of
the parameters α, β, and q.

2.3. Cumulative Distribution Function

The cumulative distribution function (c.d.f.) of Xw ∼ BBB(n, α, β, q) can be obtained
straightforwardly from Proposition 1.

Corollary 2. Let Xw ∼ BBB(n, α, β, q). Then, the cumulative distribution function (c.d.f.) of Xw
is given by

FXw (x) = P(Xw ≤ x)

=


0, if ⌊x⌋ < 0,

1
2 + q2

⌊x⌋

∑
t=0

{
1 +

[
1 − q(t − µ)

σ

]2
}(

n
t

)
B(t + α, n − t + β)

B(α, β)
, if 0 ≤ ⌊x⌋ < n,

1, if ⌊x⌋ ≥ n,

(4)

where ⌊x⌋ = max{k ∈ Z | k < x}, x ∈ R.

Figure 2 shows some plots of the c.d.f. of the bimodal beta-binomial distribution
for different values of α, β, and q. As expected, the figure shows that the frequencies
are not decreasing as x increases. However, two sharp increases in frequency can be
observed in two different intervals of x, which is explained by the bimodal behavior of the
corresponding p.m.f.

A function in the R programming language for computing (4) is provided in Appendix A.

2.4. Moments

The following proposition derives the raw moments of the beta-binomial distribution.
Essentially, these moments are expressed as a function of the raw moments of the beta-
binomial distribution.

Proposition 2. Let Xw ∼ BBB(n, α, β, q). Then, the rth raw moment of Xw is given by

E(Xw
r) = aµr − bµr+1 + cµr+2, r = 1, 2, . . . , (5)

where

a =
1

2 + q2

(
2 +

2qµ

σ
+

q2µ2

σ2

)
, b =

1
2 + q2

(
2q
σ

+
2q2µ

σ2

)
, c =

q2

(2 + q2)σ2 ,

such that

µj = E
(

X j
)
=

n

∑
x=0

xj
(

n
x

)
B(x + α, n − x + β)

B(α, β)
, j = 1, 2, . . .

is the jth raw moment of the beta-binomial distribution.
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Figure 2. Plots of the c.d.f. of the bimodal beta-binomial distribution with n = 20, α = 4, β = 4 and
different values of q.

Proof. By definition of expectation, we have that

E(Xr
w) =

n

∑
x=0

xr fXw(x; α, β, q)

=
1

2 + q2

n

∑
x=0

xr

{
1 +

[
1 − q(x − µ)

σ

]2
}

fX(x; α, β), (6)
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where fX(x; α, β) is the p.m.f. of the beta-binomial distribution. Therefore, after some
algebra, we see that

E(Xr
w) =

1
2 + q2

(
2 +

2qµ

σ
+

q2µ2

σ2

) n

∑
x=0

x fX(x; α, β)− 1
2 + q2

(
2q
σ

+
2q2µ

σ2

) n

∑
x=0

xr+1 fX(x; α, β)

+
q2

(2 + q2)σ2

n

∑
x=0

xr+2 fX(x; α, β),

and the result is obtained by recognizing the raw moments of the beta-binomial distribution
in the above expression.

Alternatively, in (6) we can write
[
1 − q(x−µ)

σ

]2
= c2(1 − q

σc x
)2, where c = 1 + qµ

σ .
Then, using the binomial theorem, we have[

1 − q(x − µ)

σ

]2

= c2
2

∑
k=0

vkxk, with vk =
qk

σkck .

Thus, we can write (7) as

E(Xw
r) =

1
2 + q2

[
n

∑
x=0

xr fX(x; α, β) + c2
2

∑
k=0

vk ∑
x=0

xr+k fX(x; α, β)

]

=
1

2 + q2

(
µr + c2

2

∑
k=0

vkµr+k

)
, r = 1, 2, . . . ,

where µr is the rth raw moment of the beta-binomial distribution.

Corollary 3. Let Xw ∼ BBB(n, α, β, q). Then, the coefficient of variation (c.v.(Xw)) and the
Fisher’s skewness coefficient (

√
β) of Xw are given by

c.v.(Xw) =

√
µ2 − bµ3 + cµ4 − (aµ1 − bµ2 + cµ3)

2

aµ1 − bµ2 + cµ4
and

√
β =

aµ3 − bµ4 + cµ5 − 3(aµ1 − bµ2 + cµ3)(aµ2 − bµ3 + cµ4) + 2(aµ1 − bµ2 + cµ3)
3[

aµ2 − bµ3 + cµ4 − (aµ1 − bµ2 + cµ3)
2
]3/2 ,

where

µ1 =
Γ(α + 1)Γ(α + β)n
Γ(α + β + 1)Γ(α)

,

µ2 =
Γ(α + 1)Γ(α + β)n(nα + n + β)

(α + β + 1)Γ(α + β + 1)Γ(α)
,

µ3 =
Γ(α + 1)Γ(α + β)n

(
3αβn + β2 + 3nβ + 3n2α + n2α2 + 2n2 − αβ

)
(2 + α2 + 3α + 2αβ + β2 + 3β)Γ(α + β + 1)Γ(α)

,

µ4 =
Γ(α + 1)Γ(α + β)A n

(6 + α3 + 12αβ + 6β2 + 6α2 + 3αβ2 + 3βα2 + 11α + 11β + β3)Γ(α + β + 1)Γ(α)
,

µ5 =
Γ(α + 1)Γ(α + β)B n

(α + β + 3)(α + β + 2)(α + β + 1)(α + β + 4)Γ(α + β + 1)Γ(α)
.

such that a, b and c are as in Proposition 2 and
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A = −αβ + 6n3 − 4αβ2 + 7nβ2 + n3α3 + 12n2β + β3 + 18αn2β + 7β2nα − 4βnα2 − 5βnα + βα2

+6βn2α2 − nβ − β2 + 6n3α2 + 11αn3,

B = 15β3n + 50n2β2 + 10n4α3 + 60n3β + 50n4α − 15nβ2 + 35n4α2 + n4α4 − 30β2α2n − 35αn2β

+25β2n2α2 + 15β3nα − 10βα3n2 + 5βα3n + 10βn3α3 − 45β2nα − 11αβ3 − 5βnα + 5βα2

−35βn2α2 + 60n3α2β − α3β − 10n2β + 75n2αβ2 + 110n3αβ + β4 + 11β2α2 + 24n4 − 5β3.

Figure 3 shows some curves of the coefficient of variation and the coefficient of
skewness of the bimodal beta-binomial distribution as a function of q under fixed values for
α and β. In the figure, it can be seen that the bimodal beta-binomial distribution (depending
on q) can present a greater or lesser relative dispersion (and a greater or lesser skewness
level) than the beta-binomial distribution (special case q = 0).
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Figure 3. Plots of the coefficient of variation and the skewness coefficient (as a function of q) of the
bimodal beta-binomial distribution with n = 20 and different values of α and β.

Functions in the R programming language for computing the rth moment (7) and for
the coefficients of variation and the coefficient of skewness of Corollary 3 are provided
in Appendix A.

3. Parameter Estimation

In this section, we discuss the maximum likelihood estimator and conduct a simulation
study to evaluate the performance of the estimators.

3.1. Maximum Likelihood Estimation

Given a random sample X1, . . . , Xm of the random variable Xw ∼ BBB(n, α, β, q), the
log-likelihood function for θ = (α, β, q) can be written as
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ℓ(θ; xi) = log
m

∏
i=1

fXw(xi; α, β, q)

= c +
m

∑
i=1

log
(

n
xi

)
+

m

∑
i=1

log(x1i) +
m

∑
i=1

log Γ(xi + α) +
m

∑
i=1

log Γ(n − xi + β), (7)

where c = −m log
(
2 + q2)+m log Γ(α+ β)−m log Γ(α)−m log Γ(β)−m log Γ(α+ β+ n),

x1i = 1 + [1 − q(xi − µ)/σ ]2 and Γ(a) =
∫ ∞

0 ua−1e−u du, a > 0, is the gamma function.
Then, the score functions are given by

∂ℓ(θ; xi)

∂α
= c1 − 2q

(
1 +

qµ

σ

) m

∑
i=1

x2i
x1i

+
2q2

σ

m

∑
i=1

xix2i
x1i

+
m

∑
i=1

Ψ(xi + α), (8)

∂ℓ(θ; xi)

∂β
= c2 − 2q

(
1 +

qµ

σ

) m

∑
i=1

x3i
x1i

+
2q2

σ

m

∑
i=1

xix3i
x1i

+
m

∑
i=1

Ψ(n − xi + β), (9)

∂ℓ(θ; xi)

∂q
= c3 +

2µ

σ2

(
1 − q

σ

) m

∑
i=1

1
x1i

− 2
σ

(
1 − qµ

σ
+

q
σ

) m

∑
i=1

xi
x1i

+
2q
σ2

m

∑
i=1

x2
i

x1i
, (10)

where c1 = −mΨ(α) +mΨ(α+ β)−mΨ(α+ β+ n), c2 = −mΨ(β) +mΨ(α+ β)−mΨ(α+
β + n), c3 = −2mq/(2 + q2), Ψ(a) = ∂ log Γ(a)/∂a, with a > 0, is the digamma function,

x2i =
∂

∂α

(
xi − µ

σ

)
= − k1i

2

[
nα3β(α + β + 1)(α + β + n)3

]−1/2
and

x2i =
∂

∂β

(
xi − µ

σ

)
=

k2i
2

[
nα3β(α + β + 1)(α + β + n)3

]−1/2
,

such that k1i = −α3xi + α3n − 2xiα
2n − xiα

2β + 2n2α2 + 2nα2β + n2αβ + nαβ2 + αn2 +
nαβ − αxin − xiαnβ + xiαβ2 + αxiβ + xinβ + xiβ

2 + xiβ
3 + xiβ

2n and k2i = −α3xi + α3n +
n2α2 − xiα

2n − α2xi + nα2 + 2nα2β − xiα
2β + nαβ2 − αxiβ − αxin + 2nαβ + αn2 + xiαnβ +

xiαβ2 + xinβ + 2xiβ
2n + xiβ

3.
Maximum likelihood (ML) estimator θ̂ = (α̂, β̂, q̂) of θ = (α, β, q) can be obtained

by setting (8)–(10) equal to zero and solving the resulting system of equations. However,
due to the analytical complexity of these equations, estimates must be obtained using
numerical methods.

The standard errors of the ML estimators can be obtained as the square roots of the
elements of the diagonal of the matrix

K−1(θ̂) =

{
−∂2ℓ(θ; xi)

∂θ∂θT

∣∣∣∣
θ=θ̂

}−1

,

where ∂ℓ(θ; xi)/∂θ∂θT is the hessian matrix.
Alternatively, ML estimates can be obtained by solving the optimization problem

maxθ ℓ(θ; xi), subject to α > 0, β > 0 and q ∈ R, where ℓ(θ; xi) is as in (7). For this,
we recommend the use of the function stat:optim() of the R programming language,
which also returns the numeric Hessian function. In particular, we consider the L-BFGS-B
method [17], which allows the imposition of box constraints on the parameters. This means
that it is possible to specify lower and upper bounds for each parameter, which is very
valuable in optimization problems with high dimensions and specific constraints.

An R function for computing (7) is provided in Appendix A.
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3.2. Simulation Study

In this section, we perform the simulation study by the acceptance–rejection sampling
procedure; see Neumann [18]. We assume that Xw is a random variable that follows a bi-
modal beta-binomial distribution, i.e., Xw ∼ BBB(n, α, β, q), and we generate 1000 random
replications of samples of Xw with sample sizes m = 50, 100, 150, 200 and 300, respectively.
We fix the maximum score number n equal to 30, and we define different scenarios setting
different values for the parameters α, β, and q. For each scenario and sample size, Table 1
shows the behavior of the ML estimates, which are computed numerically using the optim
function of the R programming language. Table 1 reports the mean and the standard
deviation (sd) of the ML estimates in each scenario for each sample size. As expected, it can
be observed that the average estimates move closer to the true values of the parameters as
the sample size increases. Furthermore, it can be seen that the standard deviation decreases
towards 0 as the sample size increases.

Table 1. Simulation of 1000 replications for the BBB distribution.

m n α β q α̂ sd(α̂) β̂ sd(β̂) q̂ sd(q̂)

50 30 0.5 1 2 0.517 0.117 1.043 0.292 2.184 0.681
100 30 0.5 1 2 0.506 0.081 1.012 0.199 2.072 0.404
150 30 0.5 1 2 0.505 0.066 1.004 0.160 2.062 0.323
200 30 0.5 1 2 0.502 0.057 0.999 0.138 2.034 0.273
300 30 0.5 1 2 0.501 0.046 0.999 0.112 2.020 0.219

50 30 0.5 2 1 0.533 0.146 2.322 0.879 1.032 0.322
100 30 0.5 2 1 0.512 0.100 2.132 0.594 1.010 0.220
150 30 0.5 2 1 0.507 0.081 2.065 0.473 1.005 0.176
200 30 0.5 2 1 0.504 0.070 2.048 0.413 1.005 0.150
300 30 0.5 2 1 0.502 0.057 2.037 0.338 1.003 0.121

50 30 3.0 5 2 3.167 0.717 5.340 1.388 2.155 0.620
100 30 3.0 5 2 3.068 0.484 5.141 0.931 2.075 0.394
150 30 3.0 5 2 3.046 0.389 5.084 0.743 2.062 0.315
200 30 3.0 5 2 3.023 0.334 5.045 0.638 2.039 0.268
300 30 3.0 5 2 3.015 0.271 5.030 0.517 2.026 0.215

50 30 5.0 3 2 5.347 1.261 3.317 1.049 2.197 0.723
100 30 5.0 3 2 5.112 0.829 3.103 0.680 2.085 0.442
150 30 5.0 3 2 5.072 0.668 3.057 0.547 2.066 0.349
200 30 5.0 3 2 5.045 0.573 3.038 0.469 2.048 0.296
300 30 5.0 3 2 5.039 0.466 3.034 0.381 2.036 0.237

50 30 1.0 2 3 1.015 0.163 2.029 0.323 3.217 0.871
100 30 1.0 2 3 1.008 0.145 2.013 0.286 3.159 0.741
150 30 1.0 2 3 1.005 0.118 2.002 0.231 3.110 0.575
200 30 1.0 2 3 1.001 0.102 2.001 0.200 3.064 0.481
300 30 1.0 2 3 1.001 0.083 2.000 0.163 3.032 0.382

50 30 1.0 3 2 1.039 0.231 3.127 0.724 2.135 0.574
100 30 1.0 3 2 1.012 0.159 3.040 0.492 2.053 0.368
150 30 1.0 3 2 1.008 0.129 3.011 0.395 2.042 0.295
200 30 1.0 3 2 1.003 0.111 3.004 0.341 2.022 0.251
300 30 1.0 3 2 1.002 0.090 3.003 0.278 2.016 0.203

50 30 2.0 3 1 2.233 0.631 3.647 1.344 1.060 0.463
100 30 2.0 3 1 2.099 0.421 3.284 0.846 1.018 0.288
150 30 2.0 3 1 2.060 0.342 3.177 0.681 1.007 0.229
200 30 2.0 3 1 2.039 0.291 3.122 0.577 1.005 0.192
300 30 2.0 3 1 2.032 0.239 3.093 0.474 1.007 0.153

sd corresponds to the standard deviation for the ML estimates.
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4. Applications

In this section, two applications are presented to illustrate the utility of the bimodal
beta-binomial (BBB) distribution in modeling count data. In each application, the beta-
binomial (BB) and McDonald generalized beta-binomial (McGBB) [19] distributions are
incorporated into the analysis. The p.m.fs of the McGBB distribution is given by

P(X = x) =
(

n
x

)
1

B(α, β)

n−x

∑
j=0

(−1)j
(

n − x
j

)
B
(

x
q
+ α +

j
q

, β

)
, x = 0, 1, . . . , n, α, β, q > 0,

where B(·, ·) is the beta function.
Like the BB distribution, the McGBB distribution performs well in modeling overdis-

persed binomial data. However, due to a larger parameter dimension, the McGBB dis-
tribution may outperform the BB distribution in modeling overdispersed binomial data.
Furthermore, it is important to note that the McGBB distribution can model bimodality
when the empirical frequency distribution exhibits a bathtub shape, thus making the BBB
distribution a natural alternative to the McGBB distribution.

We assessed the quality of the fits using the chi-square goodness-of-fit test and evalu-
ated the comparative performance using the Akaike information criterion (AIC) [20] and
the Bayesian information criterion (BIC) [21]. R codes used in this section are provided
in Appendix A.

Furthermore, we use the excess mass test proposed in Ameijeiras-Alonso et al. [22] to
show the bimodality of the data considered in the first application and the unimodality of
the data considered in the second application. For this, we used the modetest function [23]
in the R programming language.

4.1. Alcohol Consumption Data

The first data set consists of observations on the number of days on the n = 7 days
of two reference weeks (week 1 and week 2), in which 399 individuals consume alcohol
(See Table 2). Although there may be an attempt to use the binomial distribution to fit
these data, it must be taken into account that the probability of consuming alcohol on a
randomly chosen day in a week is variable from one individual to another. Based on the
latter, Alanko and Lemmens [4] use the beta-binomial distribution to fit these data. On
the other hand, Manoj et al. [19] illustrate that these data present an overdispersion with
respect to the binomial distribution and that the McGBB distribution performs better than
the BB and Kumaraswamy binomial [24] distributions in fitting these data.

For these data, we test hypothesis H0: the data have exactly two modes versus the
alternative hypothesis H1: the data have more than two modes. For the data from week 1,
we obtain an observed statistic equal to 0.021 with a p-value equal to 0.644. For the data
from week 2, we obtain an observed statistic value equal to 0.023, with a p-value equal to
0.406. Therefore, with a significance level equal to 0.05, H0 is not rejected in both weeks;
that is, the frequency distributions of the data corresponding to weeks 1 and 2 exhibit
bimodal behavior.

Other previous studies with these data can be found in Rodríguez-Avi et al. [25].
Table 2 reports the results obtained when fitting the alcohol consumption data using

the BB, McGBB, and BBB distributions. The table shows that the BBB distribution presents
the highest p-values in the chi-square goodness-of-fit test and the lowest AIC and BIC val-
ues, suggesting that the BBB distribution should be selected among the fitted distributions
for modeling the alcohol consumption data.

Figure 4 shows the frequency distribution of the alcohol consumption data (Weeks 1 and 2)
and the fitted BB, McGBB, and BBB distributions. In the figure, it can be seen that the
frequency distributions of the number of drinking days present two frequency peaks and
that the mass values of the BBB distribution are the closest to the empirical frequency values.
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Figure 4. Frequency distributions of the number of drinking days in weeks 1 and 2 and p.m.f.s for
the BB, McGBB, and BBB distributions provided with the ML estimates reported in Table 2.

Table 2. ML estimates, maximum log-likelihood value, AIC and BIC values, and observed statistic
(χ2), degrees of freedom (DF), and p-value obtained in the chi-square goodness-of-fit tests for the BB,
McGBB, and BBB distributions fitted to the alcohol consumption data.
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0 47 54.60 51.29 48.39 42 47.90 45.92 41.62
1 54 42.00 45.67 41.93 47 42.90 45.13 48.86
2 43 38.90 43.17 46.28 54 41.90 44.75 49.37
3 40 38.50 41.61 42.65 40 42.50 44.50 47.03
4 40 40.10 40.52 39.26 49 44.30 44.35 43.70
5 41 44.00 40.01 37.46 40 47.80 44.51 41.14
6 39 53.10 41.83 41.11 43 54.90 46.57 43.28
7 95 87.80 94.90 94.85 84 76.70 83.26 83.96

Total 399 399 399 399 399 399 399 399

χ2 9.600 2.162 0.366 9.700 4.004 1.397
DF 5 4 4 5 4 4

p-value 0.086 0.706 0.833 0.082 0.406 0.986

ML α̂ 0.722 0.028 1.147 0.858 0.027 1.354
estimates β̂ 0.581 0.155 0.325 0.701 0.215 0.392

q̂ - 32.345 0.701 - 36.075 0.732

Log-Likelihood −813.457 −809.627 −809.329 −821.392 −818.402 −817.650
AIC 1630.9 1625.3 1624.7 1646.8 1642.8 1641.3
BIC 1638.9 1637.2 1636.6 1654.8 1654.8 1653.3

4.2. Candidate Assessment Data

In this section, we consider a dataset on candidate performance on an exam consisting
of 9 questions. Each question is scored out of a total of 20 points, and when assessing
a candidate’s final score, special attention is paid to the total number of questions on
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which he or she has an “alpha” (“alpha”—scoring at least 15 points on the question). The
number of alphas is a rough indication of the quality of the candidate’s exam performance.
Therefore, the distribution of alphas across candidates is of interest. A total of 209 candidates
attempted questions from this 9-question section, and 326 alphas were awarded in total.
Thus, we consider n = 9 (number of trials/questions), where the dichotomous variable on
each trial is whether or not the candidate scored an alpha.

For these data, we test the hypothesis H0: the data has exactly one mode versus the
alternative hypothesis H1: the data have more than one mode, obtaining an observed
statistic equal to 0.031, with a p-value equal to 0.720. Consequently, with a significance
level equal to 0.05, H0 is not rejected; that is, the frequency distribution of the data exhibits
unimodal behavior.

A previous study with these data can be found in Paul [26].
Table 3 reports the results obtained by fitting the number of alphas using the BB,

McGBB, and BBB distributions. In the table, it can be seen that the BBB distribution
presents the highest p-values in the chi-square goodness-of-fit test and the lowest AIC
and BIC values, suggesting that the BBB distribution should be selected among the fitted
distributions for modeling the number of alphas.

Table 3. ML estimates, maximum log-likelihood value, AIC and BIC values, and observed statistic
(χ2), degrees of freedom (DF), and p-value obtained in the chi-square goodness-of-fit tests for the BB,
McGBB, and BBB distributions fitted to the number of alphas.
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0 63 63.67 63.49 63.41
1 67 49.23 50.37 66.31
2 34 35.84 35.89 38.93
3 18 24.81 24.35 17.05
4 11 16.24 15.77 8.29
5 8 9.89 9.64 6.18
6 4 5.47 5.43 4.80
7 3 2.63 2.70 2.79
8 1 1.00 1.09 1.05
9 0 0.23 0.28 0.20

Total 209 209 209 209

χ2 11.121 9.669 2.457
DF 7 6 6

p-value 0.133 0.139 0.873

ML α̂ 1.057 16.543 2.465
estimates β̂ 4.300 3.702 5.921

q̂ - 0.101 0.942

Log-Likelihood −354.025 −353.414 −351.319
AIC 712.051 712.828 708.639
BIC 718.735 722.855 718.665

Figure 5 shows the frequency distribution of the number of alphas and the fitted BB,
McGBB, and BBB distributions. In the figure, it can be seen that the frequency distribution
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of the number of alphas presents a single frequency peak and that the mass values of the
BBB distribution are the closest to the empirical frequency values.
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Figure 5. Frequency distributions of the number of alphas and p.m.f.s for the BB, McGBB, and BBB
distributions provided with the ML estimates reported in Table 3.

5. Final Comments

The beta-binomial (BB) and McDonald’s generalized beta-binomial (McGBB) distribu-
tions are discrete probability distributions used for modeling overdispersed binomial data.
The McGBB distribution, presenting a larger parameter dimension than the BB distribu-
tion (three parameters), is capable of modeling even bimodality in cases where empirical
frequency distributions present a bathtub shape. In this article, we propose the bimodal
beta-binomial (BBB) distribution as an alternative for modeling overdispersed binomial
data, both unimodal and bimodal. The new distribution arises from a weighted version
of the BB distribution, where the weight function has the quadratic form proposed by
Elal-Olivero [13]. Consequently, the BBB distribution is capable of presenting a flexible
probability mass function in terms of shapes: monotonic, unimodal, and even bimodal. The
bimodal shape of the BBB distribution is not limited to the bathtub shape (like the McGBB
distribution), but the bimodality can be accompanied by various levels of skewness.

We derive the main structural functions of the BBB distribution, such as the p.m.f.,
the c.d.f., and the raw rth moment. We use the rth moment to describe the behavior of the
coefficient of variation and the coefficient of skewness. We observe that the BBB distribution
may exhibit a larger relative dispersion and a larger skewness than the BB distribution. We
discuss parameter estimation via the maximum likelihood (ML) method. The estimators
are not closed-form, so numerical methods are required to obtain the estimates. We develop
a simulation study to evaluate the behavior of the ML estimators, in which we observe
that the ML method provides acceptable estimates. Finally, we illustrate the utility of the
BBB distribution by fitting real data sets. The illustrations show that the BBB distribution
can outperform the BB and McGBB distributions in modeling count data that exhibit both
unimodality and bimodality.
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Appendix A. R Functions

The R codes used in this article are available at https://github.com/YuriIriarte/
BBBdistribution (accessed on 18 September 2024) stored in the following files:

1. BBB-distribution;
Includes R codes for computing the structural functions of the BBB distribution.

p.m.f. → dBBB(); c.d.f. → pBBB(); rth moment → momBBB()
coefficient of variation → coef.var(); skewness coefficient → skewnessBBB().

2. BB-McGBB-distribution;
Includes R codes for computing the p.m.f.s of the BB and McGBB distributions.

BB p.m.f. → dBB(); McGBB p.m.f. → dMcGBB().
3. Log-likelihood;

Includes R codes for computing the log-likelihood functions to obtain the ML estima-
tors using the optim() function.

BB log-likelihood → loglikBB()
McGBB log-likelihood → loglikMcGBB()

BBB log-likelihood → loglikBBB().
4. Application-alcohol-week1 (week2);

Includes the data and results obtained in the analysis in Section 4.1.
5. Application-candidate;

Includes the data and results obtained in the analysis in Section 4.2.
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