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Abstract: Background/Objectives: Understanding and predicting human pigmentation traits is
crucial for individual identification. Genome-wide association studies have revealed numerous
pigmentation-associated SNPs, indicating genetic overlap among pigmentation traits and offering
the potential to develop predictive models without the need for analyzing large numbers of SNPs.
Methods: In this study, we assessed the performance of the HIrisPlex-S system, which predicts
eye, hair, and skin color, on 412 individuals from the Spanish population. Model performance was
calculated using metrics including accuracy, area under the curve, sensitivity, specificity, and positive
and negative predictive value. Results: Our results showed high prediction accuracies (70% to 97%)
for blue and brown eyes, brown hair, and intermediate skin. However, challenges arose with the
remaining categories. The model had difficulty distinguishing between intermediate eye colors and
similar shades of hair and exhibited a significant percentage of individuals with incorrectly predicted
dark and pale skin, emphasizing the importance of careful interpretation of final predictions. Future
studies considering quantitative pigmentation may achieve more accurate predictions by not relying
on categories. Furthermore, our findings suggested that not all previously established SNPs showed
a significant association with pigmentation in our population. For instance, the number of markers
used for eye color prediction could be reduced to four while still maintaining reasonable predictive
accuracy within our population. Conclusions: Overall, our results suggest that it may be possible to
reduce the number of SNPs used in some cases without compromising accuracy. However, further
validation in larger and more diverse populations is essential to draw firm conclusions and make
broader generalizations.

Keywords: FDP; eyes, hair, and skin pigmentation; prediction model; Spanish population

1. Introduction

The recovery of genetic profiles based on short tandem repeat markers (STRs) and
single nucleotide polymorphisms (SNPs) is crucial in Forensic Sciences for individual
identification. By comparing the genetic profiles of known suspects with evidence, cases
can be solved. However, cold cases occur when no match is found. Recent advances have
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led to Forensic DNA Phenotyping (FDP), which predicts Externally Visible Characteristics
(EVCs) from the DNA of an unknown individual. This aids identification investigations
by narrowing down not only suspects but also missing persons and disaster victims. To
date, human pigmentation, especially iris, hair, and skin pigmentation, is one of the most
studied EVCs [1–3].

Genome-wide association studies (GWAS) have uncovered numerous pigmentation-
associated SNPs, showing significant genetic overlap among pigmentation traits. This has
sparked interest in developing predictive models without the need to study large numbers
of SNPs. Different SNP panels for predicting pigmentation phenotype have been developed.
However, HIrisPlex-S remains the most widely used FDP tool so far [4–10].

Since 2007, when the first two DNA-based eye color prediction studies were
conducted [3,11], numerous investigations have been carried out in this area. SNPs
within various genes, including ASIP, DSCR9, HERC2, IRF4, KITLG, LYST, MC1R, MYO5A,
NPLOC4, OCA2, SLC24A4, SLC24A5, TYR, and TYRP1, have been used for DNA prediction
of iris pigmentation [3,4,6,7,10–21]. However, the first comprehensive DNA prediction
study on eye color established a minimal set of six SNPs from six genes for iris pigmen-
tation prediction (HERC2 rs12913832, OCA2 rs1800407, SLC24A4 rs12896399, SLC45A2
rs16891982, TYR rs1393350, and IRF4 rs12203592) [13]. This set forms the basis for the
IrisPlex system, the first DNA-based eye color prediction system for forensic purposes,
providing probabilities for blue, brown, and intermediate eyes [10,22]. Subsequent studies
have identified additional SNPs, some overlapping and some in linkage disequilibrium,
with SNPs present in IrisPlex. This has led to increased accuracy, although it depends on
the population examined [4,6,15–17,19,23,24].

In 2013, the IrisPlex system expanded its scope beyond eye color to include hair
color prediction, leading to the creation of the HIrisPlex system. This model comprises
a total of 24 SNPs, including the original six from IrisPlex and 18 additional SNPs as-
sociated with hair pigmentation (MC1R Y152OCH, MC1R N29insA, MC1R rs1805006,
MC1R rs11547464, MC1R rs1805007, MC1R rs1805008, MC1R rs1805009, MC1R rs1805005,
MC1R rs2228479, MC1R rs1110400, MC1R rs885479, SLC45A2 rs28777, SLC45A2 rs16891982,
KITLG rs12821256, EXOC2 rs4959270, IRF4 rs12203592, TYR rs1042602, TYR rs1393350,
OCA2 rs1800407, SLC24A4 rs2402130, SLC24A4 rs12896399, HERC2 rs12913832, ASIP/PIGU
rs2378249, and TYRP1 rs683) [8]. It is noteworthy that the initial DNA-based hair prediction
efforts were limited to red hair [25]. Although an attempt was made in 2007 to predict all
hair pigmentation categories from DNA, the accuracy for non-red hair colors was notably
low [11]. It was not until the development of HIrisPlex that, thanks to the subsequent
discoveries, the first DNA system capable of accurately predicting four different hair color
categories (blond, red, brown, and black) was established.

Genetic knowledge about skin pigmentation is currently much less available because
of the requirement of a more diverse global population for analyses [1]. Unlike iris or hair
color prediction, the initial system for predicting DNA skin color took longer to develop.
Maroñas et al. first developed the system in 2014, and Chaitanya et al. used it to expand
the HIrisPlex system to the HIrisPlex-S, consisting of 41 SNPs, 36 of which are predictive
of skin color [5,9]. Another distinction between eye and hair prediction models is that,
although research continues in these areas, advancements do not seem to offer significant
advantages, with the HIrisPlex a quite comprehensive predictive system. However, the
genetic understanding of skin pigmentation is still evolving [1,26]. Research into genetic
loci associated with sun sensitivity as an indirect measure of skin color, as well as markers
related to skin color in non-European populations, has led to the discovery of new SNPs
that could greatly improve prediction accuracies with current systems [27–29].

While the high accuracy rates of the HIrisPlex-S are quite encouraging, there are
several areas of concern regarding the use of categories to classify individuals, especially
within the intermediate spectrum between categories [1,26]. Although this predictive model
was developed and validated using various European populations, the main objective of
this study was to estimate its accuracy when applied exclusively to a specific population,
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in this case, the Spanish population, in order to evaluate its ability to predict all categories.
In addition, the specific SNP set for this population has been refined with the purpose of
obtaining more accurate values in its individuals’ pigmentation prediction.

2. Materials and Methods
2.1. Sample Collection

This research involved 412 individuals from the Spanish population. Ethical approval
(M10_2021_143) was provided by the Ethics Committee for Research on Human Subjects of
the University of the Basque Country, CEISH-UPV/EHU, BOPV 32, 17/2/2014. The study
included individuals of diverse sexes and legal ages, of European ancestry, and belonging
to the Spanish population. Recruitment was conducted across a range of academic centers,
including universities, vocational training centers, and secondary schools, located in differ-
ent regions of Spain, specifically, the Basque Country, Zaragoza, Alicante, and Granada.
Additionally, the inherent mobility among students means that our sample also includes
individuals from other regions of Spain, encompassing the north, south, east, west, and
central areas. Students from regions outside the sampling locations represented a minority,
which may explain the underrepresentation of certain categories in the study.

All participants gave written informed consent prior to participation. Each volunteer
provided saliva samples by sterile swabs in triplicate, and a facial 3D scan was performed
using a portable white light-led 3D scanner Academia 3D/20 (Creaform, Levis, QC, Canada)
following the protocols published by the 3D Facial Norms (3DFN) Project [30,31] and
Heike et al. [32].

Additionally, participants completed a questionnaire that included basic data such as
sex, age, and information on eye and hair pigmentation phenotypes. Eye and hair color data
were classified using the categories of the HIrisPlex-S system: blue, intermediate (specifying
color), and brown for eye color, and blond, red, brown, and black for hair color [9]. In 40
of the participants, a validation of the provided data was conducted by a researcher who
also assigned the eye and hair color. In all cases, there was agreement, suggesting that
the self-reported information was sufficiently accurate. Three independent researchers
assigned each volunteer’s skin color into the five categories proposed by the HIrisPlex-S
system: very pale, pale, intermediate, dark, and dark black [9]. When unanimity was not
achieved, an additional researcher was involved. If a 3-to-1 consensus still could not be
reached, skin pigmentation was not assigned for that individual.

2.2. DNA Extraction and Genotyping

DNA from saliva swabs was isolated by the salting out method [33] using the DNA
Purification System PuregenTM (Gentra System, Inc., Minneapolis, MN, USA). Quantity as
well as the quality of the DNA obtained after extraction was evaluated by spectrophotome-
try with a NanoDrop™ One (Thermofisher Scientific, Waltham, MA, USA) and fluorimetry
with a Qubit® 2.0 Fluorometer and the Qubit® dsDNA HS Assay Kit, 0.1–120 ng (Ther-
mofisher Scientific). Once quantified, DNAs were diluted in Milli-Q water to 10–60 ng/µL
for Fluidigm analysis (Fluidigm Corp., South San Francisco, CA, USA), as well as to 1 ng/uL
for SNaPshot minisequencing analysis (Applied Biosystems, Foster City, CA, USA) and
stored at −20 ◦C.

Genotyping analysis was conducted for the 41 SNPs of the HIrisPlex-S system, which
includes 17 predictive SNPs for skin color and 24 predictive SNPs for eye and hair color,
with 19 SNPs contributing to both skin and eye/hair color prediction [9]. These 41 SNPs
were analyzed in a larger panel of 157 markers related to various EVCs, including pig-
mentation traits. The additional SNPs in this panel were examined for purposes outside
of the scope of this study, which focuses solely on the 41 pigmentation-related SNPs.
Therefore, pre-existent panels specifically developed for the HIrisPlex-S system were not
employed in this analysis. Due to the need for simultaneous analysis of a large number of
SNPs, Fluidigm technology was selected as the primary genotyping method. Although
all 41 pigmentation SNPs underwent evaluation for Fluidigm technology analysis, only 31
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were suitable for this methodology. Thus, these 31 SNPs (Supplementary Table S1) were
genotyped employing one Juno 96 × 96 and two 48.48 Fluidigm SNPtypes genotyping
systems (Fluidigm Corp.). For the remaining 10 SNPs (Supplementary Table S1), there were
observed incompatibilities with this technique. Therefore, these 10 SNPs, along with other
EVC genetic markers that exhibited similar difficulties, were analyzed using SNaPshot
minisequencing technology.

SNaPshot analysis-Primer design. Primer design, as well as melting temperature,
GC% content, and the possible formation of hairpin and dimers on each pair of primers
checking was carried out using PerlPrimer v1.1.21 software [34]. Web-based AutoDimer
software v1.0 [35] was used to study the compatibility of primers in multiplex reactions.
Finally, specificity was evaluated with primer-BLAST [36]. Primers used in amplification
range in size from 114 to 241 bp. Attempts were made in all cases to select primers
that produced the shortest possible amplicons so that they could be used in samples
with high limitations in their DNA content and/or moderate DNA degradation levels
(Supplementary Table S2).

Minisequencing primers were designed manually to hybridize the adjacent region of
the SNP. Nevertheless, melting temperatures, as well as potential unfavorable reactions
between them, were also studied with the web-based AutoDimer software [35]. These
primers were augmented with a 10- to 65-bp non-binding tail at the 5′ end in order to
ensure various sizes of the minisequencing products, with a minimum difference of 5 bp
(Supplementary Table S2).

SNaPshot analysis-Multiplex PCR amplification. PCR multiplex amplification was
carried out as follows: 5 µL of Multiplex PCR Master Mix (QIAGEN, Hilden, Germany),
1 µL of primermix (final concentration of each primer shown in Supplementary Table S2),
2 ng of genomic DNA and Milli-Q water in order to reach a final reaction volume of 10 µL.
The amplification was performed in a C1000TM Thermal Cycler (BioRad, Hercules, CA,
USA) under the following conditions: initial denaturalization at 95 ◦C for 15 min; 35 cycles
at 95 ◦C for 30 s, 60 ◦C for 50 s, and 65 ◦C for 40 s; and a final extension of 6 min at 65 ◦C.

Amplified DNA was treated with ExoSAP (Takara Bio Inc., Shiga, Japan) to eliminate
the remaining primers and nucleotides: 1 µL of ExoSAP per 2.5 µL of PCR product,
incubated at 37 ◦C for 5 min followed by enzymatic inactivation at 80 ◦C for 1 min.

SNaPshot analysis-Minisequencing and capillary electrophoresis. Minisequencing was
carried out in a final volume of 7 µL containing 2 µL of SNaPshot™ Multiplex Kit reaction
mix (Applied Biosystems, Foster City, CA, USA), 1 µL of primermix (final concentration of
each primer shown in Supplementary Table S2), 3 µL of Milli-Q water and 1 µL of purified
multiplex PCR product. Thermocycling conditions in a C1000™ Thermal Cycler (BioRad)
were 25 cycles at 96 ◦C for 10 s, 55 ◦C for 5 s, and 60 ◦C for 30 s.

Minisequencing products were further purified by enzymatic digestion adding 1 µL
of SAP (Takara Bio Inc.) to 2 µL of product and incubated at 37 ◦C for 60 min to remove
any remaining nucleotides, followed by enzyme denaturation at 80 ◦C for 15 min.

Finally, minisequencing products were analyzed by mixing 1 µL of purified product,
12 µL of Hi-DI formamide (Applied Biosystems), and 0.38 µL of Gene-Scan 120LIZ (Applied
Biosystems). After denaturation, capillary electrophoresis was conducted in an ABI PRISM®

3130 Genetic Analyzer (Applied Biosystems). Data were analyzed using GeneMapper®

Software v4.0 (Applied Biosystems).

2.3. Statistical Analysis

Population genetic parameters. Allele and genotype frequencies were calculated
using Arlequin v3.5.2.2 [37]. Differences in population parameters were assessed using
a Chi-square test (χ2) conducted with IBM SPSS Statistics v28 software [38] and taking
as reference previously published data from European and Iberian populations [39], as
these are the most closely related to the Spanish population under study. Hardy-Weinberg
Equilibrium (HWE) was also analyzed using Arlequin v3.5.2.2 software. p-value threshold
was set after Bonferroni correction (α = 0.05/37 = 1.314 × 10−3).
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Pigmentation prediction. Eye, hair, and skin pigmentation were predicted from
DNA using the online HIrisPlex-S tool, available via the Erasmus MC Hirisplex website
(https://hirisplex.erasmusmc.nl/, accessed on 24 July 2024). This tool calculates prediction
probabilities for iris (blue, intermediate, and brown), hair (blond, red, brown, and black),
and skin color (very pale, pale, intermediate, dark, and dark-to-black) using the multinomial
logistic regression (MLR) model. Predicted phenotypes were compared with the actual
data to assess precision. The overall prediction performance of each model was evaluated
by calculating the accuracy, the area under the curve (AUC), the sensitivity, the specificity,
and the positive and negative predictive value (PPV and NPV) using an R script. These
metrics were calculated according to Liu et al. [13], utilizing two-by-two contingency tables
of predicted and observed color types.

Furthermore, a model for each phenotypic character was calculated based on the
genotypic and phenotypic data from our collection using MLR analysis. The DNA-based
prediction models were developed through the forward selection of genetic variants based
on the Akaike information criterion (AIC), with the optimal model being the one with
the smallest AIC value, balancing goodness-of-fit and parsimony. The forward selection
process begins with an empty model and gradually adds predictor variables. At each
iteration, the variable that provides the greatest improvement to the model is included.
This model-building process continues until no further improvement is observed by adding
additional variables, ensuring that all included SNPs contribute significantly and minimiz-
ing estimated information loss. This methodology allowed us to evaluate the significance
level of the present SNPs in the HIrisPlex-S system in our Spanish population and identify
the most relevant ones for our specific population. To evaluate the predictive ability of the
models, a repeated 10-fold cross-validation approach was applied. These analyses were
conducted using custom programs written in R and utilizing the ‘caret’ package.

3. Results and Discussion

Genotypic results were obtained for all SNPs except for rs1800414, rs2228479,
rs312262906, and rs6497292. None of these four markers were essential for pigmenta-
tion prediction [9], and, in addition, they exhibited limited variability within populations.
Specifically, in the European population, rs312262906 and rs1800414 demonstrated a mi-
nor allele frequency (MAF) < 0.01, whereas rs2228479 and rs6497292 had an MAF < 0.09
(Supplementary Table S1). Consequently, it was decided to proceed with the remaining
37 markers for population genetic parameters and pigmentation prediction analysis.

3.1. Population Genetic Parameters

Allele and genotype frequencies are presented in Supplementary Table S3. Allele
frequencies in our population sample were compared to those previously published for
the Iberian population [39] to assess representativeness. No statistically significant dif-
ferences were found. Furthermore, no departure from HWE was observed, except for
rs1667394, rs2238289, and rs4959270, showing a slight excess of heterozygotes
(Supplementary Table S3).

3.2. Pigmentation Prediction

Out of the initial sample set comprising 412 individuals, there was a final count of 378
for eye pigmentation, 380 individuals for hair pigmentation, and 408 for skin pigmentation
due to incomplete data (Figures 1 and 2).

https://hirisplex.erasmusmc.nl/
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Figure 1. Distribution of eye, hair, and skin pigmentation categories in our sample collection.
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3.2.1. Eye Pigmentation

As previously mentioned, iris pigmentation data were gathered using the three cat-
egories proposed by the HIrisPlex-S system (blue, intermediate, and brown) [9]. Blue-
green, blue-brown, brown-green, brown-blue-green, green, grey, hazel, and light eyes were
grouped into the intermediate category. Analysis of the distribution of eye pigmentation
(Figures 1 and 2) showed a majority of individuals with brown eyes (68.78%), followed by
intermediate (22.75%) and blue eyes (8.47%).

For iris pigmentation prediction, the six SNPs specifically established by the HIrisPlex-S
for eye color (HERC2 rs12913832, OCA2 rs1800407, SLC24A4 rs12896399, SLC45A2
rs16891982, TYR rs1393350, and IRF4 rs12203592) were used. Two individuals could
not be assigned because of incomplete genetic profiles and a lack of data for rs12913832.

To determine the final phenotype prediction from DNA using probabilities derived
from the HIrisPlex-S tool, an initial threshold of 0.7 was set, as proposed by Liu et al. [13].
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While a probability value > 0.7 indicated a positive prediction, values ranging between
0.5 and 0.7 were categorized as undefined, potentially representing a combination of
the blue or brown category (depending on which had the highest probability) and an
intermediate phenotype, as described in Walsh et al. [40]. Under the initial conditions, no
individuals were classified as having an intermediate eye color. Therefore, to allow for
greater flexibility within this category, cases where the probability values for both blue and
brown eye predictions were close and neither exceeded the 0.5 thresholds were classified as
intermediate. These predictions were compared to the actual data to assess model accuracy,
considering correct, incorrect, or uncertain matches (Supplementary Table S4). A correct
match was defined when both the predicted and actual data were the same; an incorrect
match was assigned when the predictive color was definitive and differed from the actual
data; and an uncertain match was considered when the predicted color was undefined, as
it remained unclear whether the match was accurate (Table 1). This method will hereafter
be referred to as the strict approach.

Table 1. Prediction success percentage for each eye color category after using the HIrisPlex-S
model and comparing the results with the actual data following the strict approach. NA stands for
Not Assigned.

Eye Pigmentation
Predicted by HIrisPlex-S Correct Incorrect Uncertain NA N

Blue 93.75%
3.13%

3.33% 1 - 32Intermediate Brown
3.13% 0%

Intermediate 10.47%
66.28%

23.26% 2 - 86Blue Brown
15.12% 51.16%

Brown 88.08%
1.92%

9.23% 3 0.77% 260Blue Intermediate
0.38% 1.54%

Total 378
1 All 3.33% represent possible intermediate-brown eyes. 2 Secondly, 23.26% is divided into 20.93%, which
represents possible intermediate-brown eyes, and 2.33%, which represents possible intermediate-blue eyes.
3 Finally, 9.23% is divided into 8.85%, which represents possible intermediate-brown eyes, and 0.38%, which
represents possible intermediate-blue eyes.

Given the high percentage of uncertain matches observed in certain categories and
to simplify the outcomes into correct or incorrect matches, a more flexible approach was
followed. Similar to the strict method, a probability value exceeding 0.7 was considered
a positive prediction for the blue and brown categories, and cases where the probability
values for both blue and brown eye predictions were close, with neither exceeding the
0.5 threshold, were classified as intermediate. However, in this flexible approach, values
ranging between 0.5 and 0.7, previously categorized as undefined, were now classified
as intermediate-blue or intermediate-brown, depending on whether the blue or brown
category had a higher probability (Supplementary Table S4). Consequently, all undefined
predictions were reclassified as either intermediate-blue or intermediate-brown. Uncertain
matches were then reassigned as correct if one of the two predicted colors (intermediate
and blue or brown) matched the actual color and as incorrect if neither of the two predicted
colors corresponded with the actual color (Table 2).



Genes 2024, 15, 1330 8 of 19

Table 2. Prediction success percentage for each eye color category after using the HIrisPlex-S
model and compare the results with the actual data following the flexible approach. NA stands for
Not Assigned.

Eye Pigmentation Predicted
by HIrisPlex-S Correct Incorrect NA N

Blue 93.75% 6.25% - 32
Intermediate 33.72% 66.28% - 86

Brown 96.92% 2.31% 0.77% 260
Total 378

The HIrisPlex-S system has demonstrated accurate prediction of blue and brown
eye color, while its predictive capacity for intermediate eye colors has been pointed out
as a big limitation [1,10]. This is clearly reflected in our results, where we observed a
prediction accuracy of 93.75% for blue eyes and a range between 88.08 to 96.92%, depending
on the applied approach, for brown eyes (Tables 1 and 2). However, there was a high
rate of incorrect assignment for intermediate eyes predictions (66.28%) regardless of the
method used. Interestingly, the majority of intermediate eyes (51.16%) were misclassified
as brown by the HIrisPlex-S tool. Although the total number of incorrect cases remained
unchanged, the flexible approach led to an increase in correct predictions. Specifically,
23.26% of cases that were strictly unclassified were reassigned as correct under the second
approach, thereby raising the percentage of correct matches from 10.47% (Table 1) to 33.72%
(Table 2). Nevertheless, even with the application of more flexible criteria, the majority of
intermediate eye colors continued to be inaccurately classified.

Given the improved outcomes with the flexible approach, the overall prediction
performance metrics of the model were calculated based on this method. While high
sensitivity values were observed for both blue (93.75%) and brown (97.67%) eyes, specificity
was notably high for blue pigmentation (95.93%) but lower for brown eyes (62.71%) (Table 3).
This discrepancy can be attributed to the large number of individuals with intermediate
eyes who were predominantly misclassified as brown. For the intermediate pigmentation
prediction, sensitivity was low (33.72%), while specificity remained high (97.59%). This
indicates that although intermediate cases are frequently misclassified when the model
does predict intermediate pigmentation, it is highly likely to be accurate. The AUC values
obtained were 0.948 for blue, 0.802 for brown, and 0.344 for intermediate, lower compared to
those of the IrisPlex model, which are 0.94, 0.95, and 0.74 for blue, brown, and intermediate
eyes, respectively [10,13]. Overall, the results obtained align with those observed in other
populations [41,42].

Table 3. Summary statistics (accuracy, AUC, sensitivity, specificity, PPV, and NPV) for eye pigmen-
tation prediction in our population under study. AUC stands for Area Under the Curve, PPV for
Positive Predictive Value, and NPV for Negative Predictive Value.

Eye Pigmentation
Predicted by HirisPlex-S Accuracy AUC Sensitivity Specificity PPV NPV

Blue 93.75% 0.948 93.75% 95.93% 68.18% 99.40%
Intermediate 33.72% 0.344 33.72% 97.59% 80.56% 83.24%

Brown 96.92% 0.802 97.67% 62.71% 85.14% 92.50%

Our low performance for the intermediate category is consistent with previous studies,
which have also reported a high percentage of false predictions for intermediate eye
colors [24,41–43]. Moreover, they also align with what Kayser stated [1], that since blue
and brown eyes are the two extreme categories, and the intermediate ones represent the
continuum between them, predicting the intermediate category of iris pigmentation is more
challenging than for blue and brown. As previously mentioned, although the application
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of more flexible criteria did improve the rate of correct matches in our study, the majority
of intermediate eyes were still inaccurately classified. It is also important to note that the
intermediate category showed a diverse range of subcategories from blue-green to grey
to hazel. While the distinctions between brown and blue eyes are clear, the complexity
within the intermediate spectrum introduces a level of subjectivity that may contribute
to inaccuracies when distinguishing between intermediate and blue, as well as between
intermediate and brown in certain cases. Therefore, future approaches should consider
extending DNA prediction of eye pigmentation from categorical to continuous to minimize
the interpretative challenges associated with current categorical results [1,26].

The first DNA-based iris pigmentation prediction system for forensic purposes, the
IrisPlex system, was based on a minimal set of six SNPs (HERC2 rs12913832, OCA2
rs1800407, SLC24A4 rs12896399, SLC45A2 rs16891982, TYR rs1393350, and IRF4
rs12203592) [10,13]. Subsequent studies have identified additional SNPs, some overlapping
with or in linkage disequilibrium with SNPs present in IrisPlex. This has led to increased
performance, although it varies depending on the population examined [4,6,15–17,19,23,24].
Studies differ on which SNPs are truly essential for accurate eye pigmentation prediction;
some argue for increasing the number of markers analyzed [6], others find the original six
from IrisPlex adequate [44], and yet others propose reducing the number of markers [45].
With these perspectives in mind and given that the intermediate category remained largely
misclassified despite the adoption of a more flexible approach, we recalculated the IrisPlex
model using the same SNPs as input predictor variables but tailoring them specifically to
our population.

The forward stepwise MLR produced a model based on four of the six SNPs (rs12913832,
rs16891982, rs1800407, and rs12203592), suggesting that these genetic markers are the most
informative for predicting iris pigmentation within our population. For our sample group,
these SNPs showed a reasonable capacity to predict eye color. It is noteworthy that the
marker HERC2 rs12913832 showed the highest association, consistent with previous studies
highlighting this marker as the most associated with eye color [16,24,45–47]. After cross-
validation, the AUC values for predicting each eye pigmentation were 0.993 for blue, 0.732 for
brown, and 0.621 for intermediate (Figure 3). Overall, our findings remain slightly below those
reported by the IrisPlex model (AUC = 0.94 for blue, AUC = 0.95 for brown, and AUC = 0.74
for intermediate eyes) [10,13], and they are relatively consistent with the results obtained
using the IrisPlex model on the same population (Table 3). Differences could arise from
differences in sample sizes, as IrisPlex is now based on close to 9500 samples [26], as well
as the uneven distribution of categories in our dataset. However, these outcomes show a
considerable improvement in the prediction performance for intermediate eyes compared to
previous results from our population using the IrisPlex model (Table 3).
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In summary, SNPs HERC2 rs12913832, SLC45A2 rs16891982, OCA2 rs1800407, and
IRF4 rs12203592 were the most informative for estimating iris color in our population.
When predictions were repeated using the online HIrisPlex-S tool with only the data from
these four markers, the results remained largely unchanged. The accuracy for blue and
intermediate eye color categories stayed consistent at 93.75% and 33.72% correct matches,
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respectively, while a slight decrease was observed for brown eyes, from 96.92% to 94.23%.
However, these findings suggest that reducing the number of markers can still yield
adequate prediction performance, which could be particularly useful for cases of highly
degraded DNA. Nevertheless, these results were observed in a relatively small population,
and further validation in larger and more diverse populations is needed before drawing
definitive conclusions.

3.2.2. Hair Pigmentation

Hair pigmentation data were collected using the four categories proposed by the
HIrisPlex-S system (blond, red, brown, and black) [9]. Upon observing the distribution of
hair color (Figures 1 and 2), a predominance of individuals fell into the brown hair category
(64.47%), followed by black (25.53%), blond (9.74%), and red hair (0.26%).

For hair pigmentation prediction, 20 out of the 22 SNPs specifically established by the
HIrisPlex-S for hair color (MC1R rs201326893, MC1R rs1805006, MC1R rs11547464, MC1R
rs1805007, MC1R rs1805008, MC1R rs1805009, MC1R rs1805005, MC1R rs1110400, MC1R
rs885479, SLC45A2 rs28777, SLC45A2 rs16891982, KITLG rs12821256, EXOC2 rs4959270,
IRF4 rs12203592, TYR rs1042602, OCA2 rs1800407, SLC24A4 rs2402130, HERC2 rs12913832,
ASIP/PIGU rs2378249, and TYRP1 rs683) were used. The HIrisPlex prediction guide for
interpreting individual hair color probabilities was followed to determine the final phe-
notype prediction from DNA [8]. These predictions were compared with actual data to
assess model accuracy, categorizing matches as either correct or incorrect (Supplemen-
tary Table S4). Since the final prediction could involve more than one pigmentation
(e.g., black/dark brown), a correct match was defined when at least one of the predicted
colors was included in the actual color. An incorrect match was assigned when none of
the predictive colors were found in the actual pigmentation. Due to incomplete genetic
profiles (using 20 out of 22 of the established SNPs), our results here show an AUC of 0.813
for blond hair with an AUC loss of 0.003. For brown hair, the AUC is 0.741, with an AUC
loss of 0.002. The AUC for red hair is 0.929 with an AUC loss of 0.013, and for black hair,
the AUC is 0.859 with an AUC loss of 0.001.

Success of predicting hair pigmentation is detailed in Table 4, showing 43.24% ac-
curacy for blond, 0% for red, 84.90% for brown, and 44.33% for black hair. The negative
prediction results for red hair should not be considered, as it is based on data from only one
participant and, thus, is not representative. Notably, a great percentage of individuals with
blond (54.05%) and black hair (51.55%) were incorrectly assigned to brown/dark-brown
hair (Table 4).

Table 4. Prediction success percentage for each hair color category after using the HIrisPlex-S model
and compare the results with the actual data.

Hair Pigmentation
Predicted by HIrisPlex-S Correct Incorrect N

Blond 43.24%
56.76%

37Red D/L-Brown
2.70% 54.05%

Red 0%
100%

1D/L-Brown
100%

Brown 96.33%
3.67%

245Blond Red
2.45% 1.22%

Black 44.33%
55.67%

97Blond/D-Blond/L-Brown Red D/L-Brown
2.06% 2.06% 51.55%

Total 380
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In the case of the blond category, our results align with conclusions drawn by other
studies that attribute the lack of precision in predicting light hair colors to age-dependent
hair darkening [1,8,41]. It is frequent for individuals to transition from blond hair in
childhood to progressively darker hair in adulthood. Furthermore, subjective perceptions
of hair pigmentation also play a role, making it difficult to differentiate between dark blond
and light brown hair. Consequently, a considerable number of individuals misclassified
as having brown hair might have been accurately categorized as blond with a different
approach. To address these issues, one potential solution could be to include questions
about age-related hair color changes during data collection [1]. However, this would not
resolve the subjectivity involved in distinguishing between dark blond and light brown
in certain cases. This same issue likely impacts the brown hair category, with most of
the incorrect matches (11.43%) attributed to blond/dark-blond misclassifications. Future
DNA-based prediction efforts should consider quantitative measures of hair color, which
might improve performance and reduce interpretation challenges [1,26]. Meanwhile, when
interpreting predictions for blond and brown hair within our population, it would be
advisable to also consider the possibility of light brown and dark blond hair, respectively.

On the other hand, a considerable proportion of black-hair individuals (51.55%) pre-
dicted that they have brown/dark-brown hair, which may be attributed to the actual data
since distinguishing between dark brown and black hair can be complicated in some cases.
Subjectivity may also be an influencing factor in this context. To mitigate this challenge,
and while future DNA-based prediction methods incorporating quantitative hair color are
still under development, we propose a revised classification system for populations with
predominantly dark hair, such as our Spanish population. The suggested categories would
be blond, red, light brown, and a combined category of dark brown/black. Based on our
population under study, merging dark brown and black categories may enhance prediction
performance without significantly compromising individual descriptions. However, this
approach may not be applicable to all populations, and further investigation is needed
before making broader generalizations.

Consequently, the overall prediction performance metrics of the model were subopti-
mal, with AUC values of 0.336 for blond, 0.508 for red, 0.339 for brown, and 0.278 for black
(Table 5), which markedly deviate from those reported by the HIrisPlex model: 0.80, 0.92,
0.72, and 0.83 for blond, red, brown and black hair, respectively [48]. Our low AUC values
are the consequence of the model performance, which, despite having strong specificity for
blond (89.50%) and black hair (100%), showed weak sensitivity for these categories (43.24%
and 44.33%, respectively). Conversely, brown hair exhibited low specificity (47.41%) but
high sensitivity (84.90%). These metrics reflect the high proportion of blond- and black-
haired individuals being misclassified as brown-haired. These results suggest that, in our
population, when the model predicts blond or black hair, it is highly likely to be accurate.
Nevertheless, when predicting brown hair, although it is likely to be correct, a potential
range of hair pigmentation from blond to black must be considered. Additionally, the small
sample size for blond, red, and black hair may have contributed to these results.

Table 5. Summary statistics (accuracy, AUC, sensitivity, specificity, PPV, and NPV) for hair pigmen-
tation prediction in our population under study. AUC stands for Area Under the Curve, PPV for
Positive Predictive Value, and NPV for Negative Predictive Value.

Hair Pigmentation
Predicted by HirisPlex-S Accuracy AUC Sensitivity Specificity PPV NPV

Blond 43.24% 0.336 43.24% 89.50% 30.77% 93.60%
Red 0% 0.508 0% 98.42% 0% 99.73%

Brown 96.33% 0.339 84.90% 47.41% 74.55% 63.37%
Black 44.33% 0.278 44.33% 100% 100% 83.98%
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Following the suboptimal performance observed in our dataset, particularly concern-
ing blond and black hair pigmentation, we attempted to recalibrate the HIrisPlex model.
Utilizing 20 of its 22 established markers for hair pigmentation prediction (MC1R N29insA
and MC1R rs2228479 were excluded because of missing results) as input, we customized
the model to our study population to assess potential enhancements.

In the MLR model, red hair was not considered because of its minimum representation
(0.26%). The model obtained after the forward stepwise regression was based on 10 of the
20 initial SNPs (rs12913832, rs12203592, rs16891982, rs683, rs4959270, rs1805008, rs1805005,
rs2378249, rs1805006, and rs28777), indicating that these genetic markers are the most
informative for hair pigmentation in our population. Notably, like the iris color model, the
marker HERC2 rs12913832 demonstrated the strongest association. The AUC values for
predicting the hair pigmentation categories after cross-validation were 0.663 for blond, 0.707
for brown, and 0.697 for black (Figure 3). These results indicate a considerable improvement
in the prediction performance for all three categories compared to our previous outcomes
for the same population using the HIrisPlex model (Table 5). This improvement may arise
from the simplified nature of our model, which categorizes hair color into three broad
groups, as opposed to the HIrisPlex model’s four categories, which include additional
nuances such as dark blond and dark brown.

These findings, together with the results obtained using the original HIrisPlex model
for hair pigmentation, suggest that although some less informative SNPs in the HIrisPlex
model may introduce some noise into the predictions for our population, there remains
a notable difficulty in distinguishing between certain shades of dark or light hair. This
observation supports the necessity for future DNA-based prediction studies to move from
qualitative to quantitative assessments of hair color. Such a shift could enhance performance
and help mitigate interpretation challenges currently faced.

Similar to our approach with iris pigmentation, we tried to replicate hair color predic-
tion using the online HIrisPlex-S tool, utilizing data solely from the ten significant SNPs
(HERC2 rs12913832, IRF4 rs12203592, SLC45A2 rs16891982, TYRP1 rs683, EXOC2 rs4959270,
MC1R rs1805008, MC1R rs1805005, ASIP/PIGU rs2378249, MC1R rs1805006, and SLC45A2
rs28777). However, this attempt was unsuccessful because the prediction model required
data from three additional MC1R markers (MC1R rs11547464, MC1R rs1805007, and MC1R
rs1805009) to function effectively, as specified by the guidelines of the HIrisPlex-S tool.

3.2.3. Skin Pigmentation

The HIrisPlex-S system, which includes five categories (dark-black, dark, intermediate,
pale, and very pale), was used to classify our skin pigmentation data [9]. When examining
the distribution of skin color in our population (Figures 1 and 2), we observed that the
majority of individuals were classified as having pale (53.43%) and intermediate (39.71%)
skin tones, while dark skin exhibited very low representation (6.86%). No representation
was observed for the very pale and dark-black skin categories.

For skin pigmentation prediction, 33 out of the 36 SNPs specifically established by the
HIrisPlex-S for skin color (MC1R rs1805007, MC1R rs1805008, MC1R rs11547464, MC1R
rs885479, MC1R rs1805006, MC1R rs1110400, IRF4 rs12203592, OCA2 rs1800407, SLC45A2
rs16891982, SLC45A2 rs28777, HERC2 rs12913832, TYR rs1042602, TYR rs1393350, PIGU
rs2378249, LOC105370627 rs12896399, SLC24A4 rs2402130, TYRP1 rs683, KITLG rs12821256,
ANKRD11 rs3114908, BNC2 rs10756819, SLC24A4 rs17128291, HERC2 rs2238289, HERC2
rs1129038, HERC2 rs1667394, TYR rs1126809, OCA2 rs1470608, OCA2 rs12441727, OCA2
rs1545397, SLC24A5 rs1426654, ASIP rs6119471, RALY rs6059655, MC1R rs3212355, and
DEF8 rs8051733) were used. Due to incomplete genetic profiles (33 out of 36 of the estab-
lished SNPs were used), our results here presented show an AUC of 0.830 for very pale
skin with an AUC loss of 0.007 and an AUC of 0.763 with an AUC loss of −3.982 × 10−4

for pale skin. For intermediate skin, the AUC is 0.783, with an AUC loss of 0.010. The AUC
for dark skin is 0.981 with an AUC loss of −4.604 × 10−4, and for dark-black skin, the AUC
is 0.993 with an AUC loss of −2.417 × 10−4.
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To determine the most likely skin pigmentation using the HIrisPlex-S model, the
predicted skin color category with the highest probability value was selected. However,
the influence of the second highest probability value was also considered if it was deemed
significant, as previously described [9]. Moreover, predictions were classified as unde-
fined when there was any clear dominant category, meaning all probability values were
below the 0.5 threshold. In our strict approach, final phenotype predictions were gen-
erated by selecting the predicted category that exceeded the 0.5 threshold and had the
highest probability. These predictions were then compared with the actual data to assess
performance, considering a correct match when both the predicted and actual data were
the same or an incorrect match when the predictive color differed from the actual data.
Cases where the predictions were undefined were also considered undefined matches
(Supplementary Table S4).

Nevertheless, in accordance with the HIrisPlex-S guidelines, which recommend con-
sidering the influence of the second-highest probability category, a more flexible approach
was adopted. In this approach, final phenotype predictions were generated considering
not only the highest probability category but also other tones that might be contributing.
Since the final prediction can involve more than one pigmentation (e.g., intermediate
to pale), a correct match was defined as any case where at least one of the predicted
colors matched the actual one. An incorrect match was assigned when none of the pre-
dictive colors corresponded to the actual pigmentation. Similar to the initial approach,
cases where the predictions were undefined were also categorized as undefined matches
(Supplementary Table S4).

The accuracy of predicting skin pigmentation was considerably low across both meth-
ods, with rates of 39.29% and 53.57% for dark, 67.90% and 70.37% for intermediate, and
0% and 0.92% for pale skin, according to the strict and flexible approach, respectively
(Tables 6 and 7). Undefined cases were more common in intermediate (14.20%) and
pale skin (14.68%) compared to dark skin (3.57%). Notably, a significant percentage of
individuals with dark (39.29%) and pale skin (75.23%) were incorrectly assigned to the inter-
mediate pigmentation category. Our high percentage of incorrect predictions for pale skin
is consistent with the lower accuracy of the HIrisPlex-S system for light skin categories com-
pared to dark skin categories [9], supporting the need to find more predictive markers for
light skin [26].

Table 6. Prediction success percentage for each skin color category after using the HIrisPlex-S model
and compare the results with the actual data following the strict approach.

Skin Pigmentation
Predicted by
HIrisPlex-S

Correct Incorrect Undefined N

Dark 39.29%
57.14%

3.57% 28Intermediate Dark-black
50% 7.14%

Intermediate 67.90%
17.90%

14.20% 162Pale Dark Dark-black
1.23% 12.96% 3.70%

Pale 0%
85.32%

14.68% 218Very pale Intermediate Dark Dark-black
0.92% 75.23% 5.50% 3.67%

Total 408
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Table 7. Prediction success percentage for each skin color category after using the HIrisPlex-S model
and compare the results with the actual data following the flexible approach.

Skin Pigmentation
Predicted by
HIrisPlex-S

Correct Incorrect Undefined N

Dark 53.57%
42.86% 3.57% 28

Intermediate Dark-black
39.29% 3.57%

Intermediate 70.37%
15.43% 14.20% 162

Dark Dark-black
12.96% 2.47%

Pale 0.92%
85.32% 14.68% 218

Intermediate Dark Dark-black
75.23% 5.50% 3.67%

Total 408

Inaccuracies in color skin prediction could also result from a combination of external
factors, such as room lighting or the time of year when the information was collected,
which can affect the selected category for each individual. The intermediate skin color
often appears different in winter compared to summer. Additionally, similar to iris and
hair, subjective perception of skin pigmentation can complicate the differentiation between
categories, although we attempted to mitigate this by using the evaluations of three in-
dependent individuals. One possible strategy to reduce these limitations could involve
employing spectrophotometry techniques to objectively measure skin color, preferably in
areas not directly exposed to sunlight. Nevertheless, the considerable diversity in skin
tones adds complexity to interpreting prediction results. Since predictions often involve a
mix of different categories, cases may arise where the final prediction is a lighter or darker
intermediate. It can be challenging to clearly distinguish between lighter intermediate
and pale or darker intermediate and dark. Given the need for categorization, certain cases
deemed incorrect may actually align with the scenarios described earlier and could be re-
classified as correct under a different approach. As discussed with eye and hair predictions,
future DNA-based prediction efforts should move to quantitative measures of skin color,
which might enhance accuracy and help overcome interpretative challenges [1,26].

Despite the modest improvement with the flexible approach, the overall prediction
performance metrics of the model were calculated based on this method as it yielded slightly
better results. AUC values for predicting different pigmentation categories are presented
in Table 8 (0.722 for dark, 0.501 for intermediate, and 0.495 for pale skin). In comparison
to the values reported in the HIrisPlex-S [9], our results are considerably lower across all
categories (0.88 for dark, 0.73 for intermediate, and 0.72 for light skin). These differences
can be attributed to the sample size in both studies, which is considerably smaller in our
case, especially in the dark and pale categories, as well as the lack of complete genetic
profiles, which can reduce model performance. Additionally, external factors previously
discussed may also contribute to the disparity in results. The large number of individuals
incorrectly predicted as having intermediate skin is reflected in the low specificity obtained
for this category (17.84%) despite its strong sensitivity (82.01%). On the contrary, specificity
values were particularly high for dark (88.92%) and pale skin (100%), while sensitivity
was lower (55.56% for dark and 1.08% for pale skin). These results suggest that, in our
population, when the model predicts dark or pale skin, it is highly likely to be accurate.
Nevertheless, when predicting intermediate skin, a potential range from pale to dark must
be considered.
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Table 8. Summary statistics (accuracy, AUC, sensitivity, specificity, PPV, and NPV) for skin pigmenta-
tion prediction in our population under study. AUC stands for Area Under the Curve, PPV stands
for Positive Predictive Value, and NPV stands for Negative Predictive Value.

Skin Pigmentation
Predicted by HirisPlex-S Accuracy AUC Sensitivity Specificity PPV NPV

Dark 53.57% 0.722 55.56% 88.92% 29.41% 96.01%
Intermediate 70.37% 0.501 82.01% 17.84% 39.45% 60.32%

Pale 0.92% 0.495 1.08% 100% 100% 47.43%

In response to the less-than-ideal performance observed in our dataset, especially
concerning dark and pale skin tones, we sought to refine the HIrisPlex-S model in our
population. We utilized 33 out of the 36 established markers in the HIrisPlex-S assay as
input for predicting skin pigmentation (excluding MC1R rs2228479, HERC2 rs6497292,
and OCA2 rs1800414 because of missing results). With this customization, we attempted
to optimize the model for our specific study population and potentially enhance its
predictive performance.

The forward stepwise MLR model obtained was based on 11 of the 33 initial SNPs
(rs16891982, rs12913832, rs6119471, rs4959270, rs1805008, rs683, rs10756819, rs1545397,
rs1110400, rs12896399, and rs885479), indicating that these genetic markers are the most
informative for skin pigmentation in our population. The AUC values achieved for skin
pigmentation prediction after cross-validation were 0.621 for dark, 0.593 for pale, and
0.556 for intermediate skin (Figure 3). These results only show a slight enhancement
in predicting intermediate and pale skin tones, decreasing the performance for the dark
category compared to previous results obtained from the same population using the
HIrisPlex-S system (Table 8). Considering all the results, we suggest that the need for
additional predictive SNPs for light skin might not be the only issue; external factors
affecting data collection also play a significant role and should be taken into account.

In eye, hair, and skin color prediction, a recurring challenge lies in determining the
accuracy of predictions for complex phenotypes. This difficulty is particularly evident
in the intermediate category for eye pigmentation, where, despite applying more flexible
criteria, there are still cases where the probability values obtained may indicate ambiguous
categories that are difficult to interpret (e.g., intermediate-blue or intermediate-brown
phenotypes). The complexity further increases in hair color prediction, not only because
of the four established categories but also because of the inclusion of two additional
categories that refine pigmentation shades. Categories like dark blond and light brown
can overlap, making it difficult to definitively classify a prediction as correct or incorrect,
often leaving interpretation up to the discretion of the individual analyzing the results.
Skin color prediction presents the greatest challenge because of the broad diversity of skin
tones. Predictions frequently span multiple categories, leading to ambiguous outcomes (e.g.,
lighter intermediate or dark-to-intermediate) and complicating the assessment of prediction
accuracy. Although categorical classifications are valuable for describing an individual’s
appearance and aiding in identification, they also introduce a degree of subjectivity. This
subjectivity can influence not only individuals’ perception of their own pigmentation,
which can impact data collection and subsequent comparison with predictions but also
the interpretation of results. In ambiguous cases, one person might consider a match
incorrect, and another might deem it correct. This challenge arose during our sample
collection, despite our efforts to minimize subjectivity by requiring agreement among
multiple researchers. While we aimed for objectivity, a certain degree of subjectivity was
inevitable. As noted earlier, future studies would benefit from incorporating more objective
methods, such as spectrophotometry.

These observations underscore the ongoing challenges in making definitive predic-
tions, particularly in cases where, despite following guidelines meticulously, ambiguous
outcomes or undefined predictions persist. In light of these issues, many researchers



Genes 2024, 15, 1330 16 of 19

suggest transitioning from categorical systems to quantitative measures of color [1,26].
Such a shift could simplify the interpretation of predictions and enhance the accuracy of
comparisons with actual phenotypes.

4. Conclusions

Our study aimed to evaluate the performance of the HIrisPlex-S system in a Spanish
population. We calculated various metrics, including accuracy, AUC, sensitivity, specificity,
PPV, and NPV, observing favorable outcomes for blue and brown eyes, brown hair, and
intermediate skin, with accuracy rates ranging from 70% to 97%. However, we encoun-
tered issues with the remaining categories, which involved more complex phenotypes.
Particularly in eye color prediction, despite applying more flexible criteria, most cases of
intermediate eye pigmentation were still predicted inaccurately. Similarly, inaccuracies
were observed in hair pigmentation, where distinguishing between dark brown and black
hair, as well as dark blond and light brown, posed challenges. These difficulties were
even more pronounced in skin pigmentation prediction, with significant misclassification
observed, particularly among individuals with dark and pale skin.

One limitation of our study is the limited sample size, which also results in some
pigmentation categories being underrepresented. Additionally, as previously mentioned,
certain genetic markers reported missing results, leading to predictions based on fewer
markers than those included in the HIrisPlex-S models, specifically 20 out of the established
22 SNPs for hair color prediction and 30 out of the 36 markers used for skin color prediction.
While complete genetic profiles are not mandatory for obtaining predictions, their absence
might reduce prediction accuracy. Although the AUC loss values observed in our case
were minimal, this factor should still be considered potentially influential. Nonetheless, we
encountered significant challenges in interpreting the final predictions within this popula-
tion, which may not be entirely attributable to our limitations. We have proposed some
potential solutions which may offer valuable insights for similar populations. However, to
draw solid conclusions and make broader generalizations, further validation in larger and
more diverse populations is needed.
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associated data.
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