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Abstract

In the last decade, with the irruption of Deep Learning (DL), artificial intelligence has
risen a step concerning previous years. Although Deep Learning models have gained strength
in many fields like image classification, speech recognition, time-series anomaly detection, etc.
these models are often difficult to understand because of their lack of interpretability. In
recent years an effort has been made to understand DL models, creating a new research
area called Explainable Artificial Intelligence (XAI). Most of the research in XAI has been
done for image data, and little research has been done in the time-series data field. In this
paper, a model-agnostic method called Contrastive Explanation Method (CEM) is used for
interpreting a DL model for time-series classification. Even though CEM has been validated
in tabular data and image data, the obtained experimental results show that CEM is also
suitable for interpreting deep learning models that work with time-series data.

1 Introduction

Nowadays, many systems are monitored by multiple sensors, which provide data on how the
system is evolving, and consequently research on temporal data has increased in recent years.
DL algorithms are becoming really powerful, also for time-series data, in which the Long Short-
Term Memory (LSTM) networks [9] are a key part of many state-of-the-art architectures. LSTMs
are capable of preserving information from long term dependencies, and have proven to be very
effective in processing temporal data [12].

Even though DL has gained strength, DL models are often considered black-boxes due to
the lack of interpretability. Due to this problem, a new research area has been created, called
Explainable Artificial Intelligence (XAI), which is focused on DL model interpretation. A lot
of work has been done in recent years on interpretation issues, as many techniques have been
proposed to facilitate the understanding of DL models [1, 2], such as LRP [3], SHAP [10], LIME
[11], Integrated Gradients [14], CEM [6], etc. These methods have been applied especially to
image data [13, 15], and more research is needed for time-series data [7, 8].

CEM [6] is a perturbation-based method that provides local explanations. Although CEM
offers two ways to interpret a model, either using pertinent negatives (PN) or pertinent positives
(PP), in this paper, PNs are used. Unlike other methods, the idea behind this paper is that
applying CEM to time series data can allow us to give explanations such as “this time series
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is classified as class y because a particular point or group of points have value v (PP) when
they should have value w (PN)”. The authors apply CEM to a time series classification problem,
concluding that this kind of explanation is viable in time series data.

This article is structured as follows. Section 2 provides the theoretical background of the DL
methods used in the experiment and it briefly explains the CEM method. Section 3 describes
the methodology used in the experiments. Section 4 describes the dataset used, the experimental
framework and the hyperparameters of the models. Section 5 discusses the experimental results.
Finally, in Sect. 6 the conclusions and future works are exposed.

2 Background

2.1 Long Short-Term Memory Networks

Long Short-Term Memory (LSTM) [9] networks are a variation of the standard Recurrent Neural
Networks (RNN). Traditional RNNs have shown to be useful in many problems, but they suffer
from the vanishing gradient and exploding gradient problem, which leads to failing to detect long
term dependencies in practice. To overcome this problem, LSTMs include some cells in their
internals that control how to maintain the information in memory for long periods of time.

LSTMs, like all the RNNs, have the form of a chain of repeating modules, in which the
knowledge is transferred through time, from one module to another. Each module of an LSTM
is called “unit”, and each “unit” is composed of four neural networks, which interact with each
other to process the input data.

One of the keys of the success of the LSTMs is the cell state (Ct). The function of the cell state
is to transfer relative information throughout the entire sequence chain. As it is shown in Fig. 1,
the cell state passes from one unit to another with some minor linear interactions, facilitating
the learning of long-term dependencies. Moreover, each LSTM unit has its own hidden state (h),
that manages the internal state of the unit. The cell state information is updated by three gates:
forget gate (ft), input gate (it) and output gate (ot). The forget gate decides what information
of the cell state to keep each time, forgetting the unnecessary information. The input gate it
decides which values of the cell state have to be updated, and these values are updated by adding
the new information stored in the candidate vector C̃t and forgetting the information decided
to forget by the forget gate ft. Finally, it has to be decided what is going to be the output
of the unit, and the output gate ot and the hidden state ht are created. The whole process is
summarized in Eq. (1).

Figure 1: A visualization of an LSTM cell.
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ft = σ(Wf · [ht−1, xt] + bf )

it = σ(Wi · [ht−1, xt] + bi)

C̃t = tanh(WC · [ht−1, xt] + bC)

Ct = ft ∗ Ct−1 + it ∗ C̃t

ot = σ(Wo[ht−1, xt] + bo)

ht = ot ∗ tanh(Ct)

(1)

Wx, bx being the weights and the biases of each gate respectively, x ∈ {f, i, C, o}.

2.2 Autoencoders

Autoencoders (AE) [4] are neural networks trained unsupervisedly to reconstruct the input data.
The AEs consist of two neural networks: an encoder and a decoder. The AEs can be either
multilayer perceptrons, convolutional neural networks, recurrent neural networks, etc.

Figure 2: A general structure of an AE.

In Fig. 2 the structure of an AE is shown. The encoder can be defined as a function ϕ :
x ∈ Rn → z ∈ Rd, where d < n, that tries to compress the data of the input layer into a lower
dimensional latent vector, containing the most important features of it. On the other hand, the
decoder can be defined as a function g : z ∈ Rd → x̃ ∈ Rn that takes the compressed latent
vector of the input and it decompresses into features that closely matches the original input
data. So, summarizing, an AE can be seen as a function f that maps an input x ∈ Rn into its
reconstruction x̃ ∈ Rn, trying to find the best parameters of the network for minimizing a loss
function L(x, x̃), called reconstruction loss, that commonly is a Mean Squared Error (MSE) or
a Mean Average Error (MAE).

2.3 Contrastive Explanation Method

Contrastive Explanations Method (CEM) [6] is a perturbation-based model-agnostic method that
provide local explanations. The method consists of solving two different optimization problems,
one for finding Pertinent Negatives (PN) and the other for finding Pertinent Positives (PP).

Finding Pertinent Negatives. Let x0 be an input of a black-box model f , f(x0) the
prediction given and y0 its corresponding class. Let AE(·) be an autoencoder trained for re-
constructing an input. Denoting X/x0 to the space of missing parts with respect to x0, finding
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pertinent negatives consist of finding an interpretable minimal perturbation δ ∈ X/x0 such that
argmaxi[f(x0)]i ̸= argmaxi[f(x0 + δ)]i. For finding pertinent negatives, the authors propose
solving this optimization problem:

min
δ∈X/x0

c · fneg
κ (x0, δ) + β∥δ∥1 + ∥δ∥22 + γ∥x0 + δ −AE(x0 + δ)∥22 (2)

where c, β, γ ≥ 0 are regularization parameters. The second and the third terms, β∥δ∥1
and ∥δ∥22 respectively, are jointly called the elastic net regularizer and they are used for efficient
feature selection in high-dimensional learning spaces. The third term γ∥x0 + δ − AE(x0 + δ)∥22
ensures that the modified input x0 + δ is close to the data manifold. The first term fneg

κ (x0, δ)
is defined in this way:

fneg
κ (x0, δ) = max{[f(x0 + δ)]y0 −max

i ̸=y0
[f(x0 + δ)]i,−κ} (3)

where [f(x0 + δ)]i is the score given by the model f to the i-th class prediction. Introduc-
ing fneg

κ (x0, δ) to the Eq. 2, ensures x0 + δ to be predicted as a different class than y0. The
parameter κ ≥ 0 is a confidence parameter to control the separation between [f(x0 + δ)]y0 and
maxi ̸=y0 [f(x0 + δ)]i.

Finding Pertinent Positives. For finding pertinent positives, let X ∩ x0 be the space of
existing components of x0 and let δ ∈ X∩x0 be an interpretable perturbation such that removing
it from x0 the prediction is still the same, i.e argmaxi[f(x0)]i = argmaxi[f(δ)]i. To this end,
similar to finding pertinent negatives, the following optimization problem needs to be solved:

min
δ∈X∩x0

c · fneg
κ (x0, δ) + β∥δ∥1 + ∥δ∥22 + γ∥δ −AE(δ)∥22 (4)

where the first term fneg
κ (x0, δ) is defined in this way:

fneg
κ (x0, δ) = max{max

i ̸=y0
[f(δ)]i − [f(δ)]y0 ,−κ} (5)

To solve the optimization problems (2) and (4), a projected fast iterative shrinkage-thresholding
algorithm, called FISTA [5], is used.

3 Methodology

In this paper a model proposed for a multiclass time-series classification problem is interpreted
using CEM. As described in the previous section, the CEM method consist of solving the op-
timization problems of Eqs. (2) and (4). Thus, first of all, a classification model f has to be
proposed and an AE needs to be defined for ensuring that the changed input is close to the data
manifold. Therefore, in this section the proposed classification model and the AE are exposed
and the way that in which CEM is used is described.

3.1 Classification Model

The model proposed for the classification part is a combination of an LSTM and a Fully Con-
nected Layer (FCN). The LSTM is used for processing the data and the FCN is used for classifying
it [16]. Figure 3 shows an outline of the model architecture. Firstly, the input of the model is
processed by the LSTM layer in time-steps. In this way, in each time-step, the LSTM uses what
it has learned before in addition to the current input to update the current hidden state. The
last hidden state (hn) of the network is the input of the FCN. The activations a of the FCN are
computed as follows

a = Wfc · hTn + bfc (6)
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where Wfc and bfc are the weights and the biases learned during training process, and hTn
denotes the transpose of the last hidden state. After the activations are calculated, a softmax
function is applied, returning the target as a probability vector ŷ, in which each value ŷi ∈ ŷ is
computed as follows

ŷi =
eai∑
j e

aj
(7)

and denotes the probability that the input belongs to class i. Afterwards, the index of the
maximum probability value is taken as the class predicted by the model. In training time, the
weights of the model are adjusted by minimizing the Categorical Crossentropy Loss (CCE) in
batches.

Figure 3: Proposed classification model.

3.2 Autoencoders

As seen in Eq. (2) and (4), the optimization problems include a term regarding an AE. This term
ensures that the modified input is close to the data manifold. The architecture proposed for the
AE is based on LSTMs, since they have demonstrated to work well when processing time-series
data, and FCNs. The proposed AE can be seen in Fig. 4. First, the input data is processed
with the LSTM. Then, the last hidden state of the LSTM has the information of the whole
input and it is encoded into a lower-dimensional vector by the FCN. Then, the encoded vector is
repeated to feed the decoder, which is another LSTM. Finally, the hidden states of the decoder
are connected to an FCN layer, that converts the hidden states of the encoder into arrays with
the same dimension as the inputs, using a sigmoid activation function. In this case, the weights
of the model are adjusted for minimizing the Mean Squared Error (MSE).

3.3 Contrastive Explanations Method

As stated above, in this paper CEM PNs are studied. In this scenario, the x0 of Eq. (2) is a
multivariate time-series x, and the δ denotes the PN that makes the predicted class to change
(i.e. argmaxi[f(x)]i ̸= argmaxi[f(x+ δ)]i), being f the classification model. Moreover, the AE
of Eq. (3) denotes the AE proposed above.

Since the changed sample’s prediction has to be different to the original class, i.e argmaxi[f(x)]i ̸=
argmaxi[f(x+ δ)]i, maxi ̸=y[f(x+ δ)] > [f(x+ δ)]y. Therefore, [f(x+ δ)]y −maxi ̸=y[f(x+ δ)]i ∈

5



Figure 4: Proposed LSTM-FCN AE.

[−1, 0), and thus, κ has to be chosen in the range [0, 1]. In the experiments, a set of different γ
and κ parameters have been proved and it is concluded that the best results for this case study
are given by γ = 0.2 and κ = 0.5.

4 Experimental Framework

4.1 PenDigits Dataset Description

In this work, a public time-series dataset, named PenDigits, is used. The PenDigits dataset
D is a handwritten digit classification dataset. Each data sample Xi ∈ D is a 2-dimensional
multivariate time-series, denoted as Xi = {x(i)1 , x

(i)
2 }, where x

(i)
1 ∈ R8 denotes the trajectory of

the pen across the coordinate x of a digital screen and x
(i)
2 denotes the trajectory of the pen

across the coordinate y. Each sample is labeled with a single class label, representing the digit
drawn. In Fig. 5 a sample of the dataset is showed.

Figure 5: A sample of PenDigits dataset.

The dataset was crated by 44 writers and it is divided in two sets: training set and testing
set. The training test is composed by 7,494 different samples and the testing set is composed by
3,498 different samples.

4.2 Framework and Hyperparameters

The experiments are run on an Nvidia-Docker container that uses ubuntu 18.04. The models
were implemented using the Keras library of Tensorflow. The Tensorflow version used in this case
is TensorFlow 2.1.0. The optimization of both models was performed using Adam. The models

6



have been trained in minibatches of 32 samples. The training process has stopped at epoch 163
for the classification model and at epoch 134 for the AE, because EarlyStopping has been used.
Moreover, the learning rate at the beginning has been set to 0.1 and has been decreased every
epoch using exponential decay. For training the models an NVIDIA TITAN V GPU has been
used, with a memory of 12GB, in an Intel i7-6850K 3.6 GHz machine with 32GB of DDR4 RAM.

Each of the models used in this work has different hyperparameters. For the model used for
classification, the LSTM layer has 64 units and the FCN has 10 units and softmax activation
function. For the AE, the encoder and the decoder LSTMs have 16 units, the FCN of the
encoder encodes the last hidden state of the first LSTM into a 4-dimensional vector, therefore,
the encoder’s FCN uses 4 units. Since the AE has to reconstruct the input data, the last FCNs
have 15 units and a sigmoid activation function.

5 Experimental Results

In this work, PenDigits dataset has been used, since it is a simple time-series classification
dataset and it is easily interpretable for anyone. Although the main objective of this work is
not to propose a classification model, the model used achieves 98.11% of accuracy and a micro-
average F1 score of 0.979 in validation data. On the other hand, the proposed AEs is valid to
reconstruct the data, since the MSE for validation data is 0.0064.

Figure 6: Process used for giving explanations using CEM.

In Fig. 6 the process used for giving the explanations is illustrated. As shown in the figure,
an input x representing a one is used to obtain its pertinent negatives δ by optimizing Eq. 2.
The pertinent negatives δ represent the changes that need to be made in the input x for the
model to classify it as another class. In this example, it can be seen that changing the position
among the x axis of the third and seventh points and changing the position among the y axis of
the sixth point, x changes from a one to a two.

In this paper, CEM method has been applied to a variety of digits, for example in Fig. 7 the
explanations given to 3 samples are illustrated. In the first case, a “1” is changed to a “2” by
simply moving the third point from the center to the right, to simulate the curved shape of the
“2”. In the second case a “5” is converted to a “6” by making three small changes. In this second
case, the most significant changes are found in the last two points, and by moving them, CEM
has created the rounded shape of the bottom of a “6”. In the third case a “4” has been changed
to a “9” by changing the first four points. It can be seen that the changes have been done for
simulating the rounded shape of top of a “9”.
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Figure 7: The original samples (green), x, versus the changed ones (red), x+ δ.

We have tested the CEM method for 150 samples and in general the modifications are made
with sense, causing the label of the input to change. Moreover, the relationship between the
label of class x and the label of x + δ is similar in all the samples. In Table 1 the percentages
of the changes between the class of the original samples and the changed ones are given. It can
be seen that, for example, generally the digit “4” is related to the digit “9”, and the changes are
done for changing from one to another, and this happens also for all other classes. For example,
the digit “2” is converted into a “1” in the 80% of the cases, the changes in digit “7” make it “1”
in 54.55% of the cases, the digit “8” changes into a “5” in the 50% of the cases, etc.

Table 1: Percentage of changes from x’s class to x+ δ’s class.
x → x+ δ 0 1 2 3 4 5 6 7 8 9

0 0 0 0 0 41.67 0 0 0 50 8.33
1 0 0 25 0 0 12.5 0 25 37.5 0
2 0 80 0 0 0 0 0 0 20 0
3 0 21.43 0 0 0 28.57 0 50 0 0
4 14.29 7.14 0 7.14 0 0 0 14.29 7.14 50
5 0 15.38 15.38 7.7 7.7 0 7.7 0 15.38 30.76
6 23.1 7.7 7.7 0 0 7.7 0 0 53.8 0
7 0 54.55 18.18 0 0 0 0 0 27.27 0
8 11.1 16.67 0 0 0 50 0 0 0 22.22
9 0 16.66 0 0 16.66 16.66 0 0 50 0

6 Conclusions

In this work, CEM has been validated in a time-series classification use case. Previously, as far
as it is known, CEM has not been used in time-series data, and in this work, it is shown that
it can be effectively used in these scenarios to create meaningful explanations. The pertinent
negatives given by CEM offers a different way to understand the model’s decisions, and unlike
other XAI methods such as SHAP, LIME, LRP, etc., that their explanations are based on feature
importance, the pertinent negatives explanations provide information of what should be changed
in the input to be classified as other class. Looking at the results, it can be seen that the CEM
method is also useful to find relationships between different classes, giving an intuition of which
class is closer to another.

Although this is a work in progress, in which CEM is validated for a simple classification
problem, the idea in the future is to validate for anomaly detection in a sensorized industrial
scenario, since it can provide information about what should be changed for not occurring an
anomaly, and this can be useful for fixing it.
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