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Abstract

The boundary of the ordinary ε-pseudospectrum of a square matrix is contained in the
boundary of the strict ε-pseudospectrum. This content relation may be strict in some cases.
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1 Introduction

The boundary of the ordinary pseudospectrum of a square matrix A of level ε, denoted by
∂Λε(A), is contained in the boundary of the strict pseudospectrum of the same level ∂Λ′ε(A)
(see Remark 3.2, p. 280 in [1]). In this paper we will prove that in general these boundaries are
not equal.

An equivalent problem is to determine whether the function of z 7→ σn(zIn − A) can have
local maxima. Thus, we will show that a complex number z0 ∈ ∂Λ′ε(A) \ ∂Λε(A) if and only if
the function z 7→ σn(zIn − A) reaches a local maximum at z0. As a result, we will prove that
the function z 7→ σn(zIn −A) can have local maxima.

On the other hand, both the ordinary pseudospectrum of a matrix A of level ε and its
boundary are semialgebraic sets [6]. We will prove that this property is also true for the strict
pseudospectrum. This fact will allow us to prove that the set ∂Λ′ε(A) \ ∂Λε(A) can be: empty,
finite, or formed by the union of a finite set and a real analytic submanifold of dimension 1 with
a finite number of connected components.

2 Previous notation and main results

For the inclusion relation between two sets X and Y we will use the notations X ⊂ Y and X  Y
to mean “X is contained in or equal to Y ” and “X is strictly contained in Y ”, respectively. Let
Cn×n denote the space of n× n complex matrices. For any matrix M ∈ Cn×n let

σ1(M) ≥ σ2(M) ≥ · · · ≥ σn(M)

denote its singular values in decreasing order. Let Λ(A) denote the spectrum of the matrix
A ∈ Cn×n. Given A ∈ Cn×n and ε > 0 the ordinary pseudospectrum of level ε is the set

Λε(A) :=
⋃
‖∆‖≤ε

Λ(A+ ∆),
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where ‖ · ‖ denotes the spectral norm. Analogously, the strict pseudospectrum of level ε is the
set

Λ′ε(A) :=
⋃
‖∆‖<ε

Λ(A+ ∆).

Let g denote the function

g(z) := σn(zIn −A), z ∈ C; (1)

using this function a characterization of the pseudospectra is given by

Λε(A) = {z ∈ C : g(z) ≤ ε}, (2)

and
Λ′ε(A) = {z ∈ C : g(z) < ε}. (3)

(See page 82 in [3]). For a subset S of C we will denote the boundary of S by ∂S and let Sc

denote the complementary set of S with respect to C. Moreover, S and S̊ will denote the closure
and the interior of S, respectively.

Identifying z = x + yi ∈ C with (x, y) ∈ R2, notation (1) can be translated as follows. We
define the function

(x, y) 7→ σn((x+ yi)In −A), (4)

from R2 to R, which we also denote by g.
It is known that a set S ⊂ Rn is semialgebraic ([2],[6]) if there exist polynomials

pj , q
j
l ∈ R[W1,W2, . . . ,Wn], l = 1, 2, . . . , rj , j = 1, 2, . . . , k,

such that

S =
k⋃
j=1

{w ∈ Rn : pj(w) = 0, qjl (w) > 0, l = 1, 2, . . . , rj}. (5)

Remark 1. This notion can be extended to subsets of Cn, identifying Cn with R2n. Thus,
given a set S ⊂ Cn, we identify each element of s ∈ S with the pair (w, l) where w, l ∈ Rn and
s = w+ li.Therefore, we can suppose that S is a subset of R2n. So, we conclude that the subset
S of Cn (or R2n) is semialgebraic if there exist polynomials of R[W1,W2, . . . ,Wn, L1, L2, . . . , Ln]
such that

S =
k⋃
j=1

{(w, l) ∈ Rn+n : pj(w, l) = 0, qjl (w, l) > 0, l = 1, 2, . . . , rj}.

With this notation, the main results of this paper are the following ones.

Theorem 2. For each ε > 0, the sets Λ′ε(A) and ∂Λ′ε(A) are semialgebraic.

Theorem 3. Given a finite set of points P of C, there exist a matrix A0 ∈ Cn×n and an ε0 > 0
such that:

(1)
P ∩ ∂Λε0(A0) = ∅, P ⊂ ∂Λ′ε0(A0)

and each z0 ∈ P is an isolated point of the set ∂Λ′ε0(A0).

(2) For each z0 ∈ P, the function z 7→ σn(zIn −A0) has a strict local maximum at z0.

Remark 4. Given that Λ′ε(A) = Λε(A) (Corollary 4.3 of [3]), then ∂Λε(A)  ∂Λ′ε(A) if and

only if Λ′ε(A)  
˚̇

Λε(A). As a consequence, by Theorem 3, for a finite set of points P of C, there

exist an ε0 > 0 and a square matrix A0 such that P ⊂
˚̧ �Λε0(A0) \ Λ′ε0(A0).
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3 Auxiliary results

We begin this section by introducing the notion of semialgebraic function ([2],[6]). Given two
nonempty semialgebraic sets Si ⊂ Rni , i = 1, 2, a function f : S1 → S2 is said to be semialgebraic
if its graph is a semialgebraic subset of Rn1+n2 . Let R := R∪{−∞,∞}. Let S be a semialgebraic
subset of Rn. It is said that a function f : S → R is semialgebraic if the sets f−1(−∞) and

f−1(∞) are semialgebraic and the restriction f
∣∣∣
S\f−1({−∞,∞})

is a semialgebraic function.

Lemma 5. With the above notation, we have:

(a) The composition of semialgebraic functions is a semialgebraic function.

(b) Let f : S1 → S2 be a semialgebraic function. Suppose that B ⊂ S2 is a semialgebraic set.
Then f−1(B) is a semialgebraic set.

(c) The function σn : Cn×n → [0,∞) is semialgebraic, and for each ε ≥ 0 the set Λε(A) is
semialgebraic.

(d) The boundary of a semialgebraic set is semialgebraic.

(e) If S ⊂ R2 is a nonempty semialgebraic set, then its boundary ∂S can be written as the
disjoint union

∂S =M∪̇Q

where M is the empty set or a real analytic submanifold of R2 of dimension 1 formed by a
finite number of connected components and Q is a finite set or the empty set.

(f) Let S1,S2 be semialgebraic sets. If f : S1 × S2 → R is a semialgebraic function, then the
functions

f1, f2 : S1 → R, f1(x) := inf
y∈S2

f(x, y) and f2(x) := sup
y∈S2

f(x, y)

are semialgebraic.

The statements in (a) and (b) can be found in Propositions 2.2.6 and 2.2.7 of [2]. The properties
in (c), (d), (e) and (f) are in Corollary 3.1.22, Proposition 3.1.8, Proposition 3.1.9, Corollary
3.1.10 and Corollary 3.1.15 of [6].

Let us denote by D(z0, ρ) the closed disk of C centered at z0 ∈ C with radius ρ > 0. Some
properties of the pseudospectra and the function g : C→ R, defined in (1), are as follows.

Proposition 6. Let A ∈ Cn×n and ε > 0. We have:

(a) The only local minima of g are the eigenvalues of the matrix A.

(b) ∂Λε(A) ⊂ ∂Λ′ε(A) = {z ∈ C : g(z) = ε}.

(c) For α, γ ∈ C, with |γ| > 0, we have

Λε(γA+ αIn) = α+ γΛε/|γ|(A).

The same property holds if we replace Λ with Λ′, ∂Λ or ∂Λ′.

(d) If A = diag(A1, A2), with A1, A2 square matrices, then Λε(A) = Λε(A1) ∪ Λε(A2). The
same property holds for the strict pseudospectrum.

(e) Suppose that A is nilpotent. Then

Λε(A) ⊂ D(0, ε+ ‖A‖).
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The statement in (a) is Theorem 4.2 of [3]. The assertion in (b) can be seen in Remark 3.2
of [1] and it is proved in Proposition 5.2.19 of [4]. Let us introduce another proof of (b), which
is based on elementary properties of pseudospectra.

Let z0 ∈ ∂Λ′ε(A). If we use (2) and (3) and the fact that Λ′ε(A) = Λε(A), we have

z0 ∈ Λ′ε(A) ⊂ Λε(A)⇒ g(z0) ≤ ε,
z0 ∈ (Λ′ε(A))c ⇒ g(z0) ≥ ε

´
⇒ g(z0) = ε.

Conversely, let z0 be such that g(z0) = ε. If z0 6∈ ∂Λ′ε(A), then z0 ∈ (Λ′ε(A))c. So, there
exists a δ > 0 such that D(z0, δ) ∩ Λ′ε(A) = ∅ and, therefore, D(z0, δ) ⊂ (Λ′ε(A))c. Under these
conditions, g(z) ≥ ε holds for every z ∈ D(z0, δ). Hence z0 is a local minimum of g and by (a)
z0 is an eigenvalue of A, which is impossible.

The properties in (c) and (d) are in [5], 23-2(3-a), and [1], Proposition 2.3, respectively.
Finally, (e) is deduced from [6] Corollary 5.3.5 and Proposition 5.3.7, page 73.

The next result is the key to prove Theorem 3.

Theorem 7. Given ε0 > 0, let z0 ∈ ∂Λ′ε0(A). Then:

(a) z0 is an isolated point of ∂Λ′ε0(A) if and only if g attains a strict local maximum at z0.

(b) If z0 is an isolated point of ∂Λ′ε0(A), then z0 6∈ ∂Λε0(A).

(c) z0 ∈ ∂Λ′ε0(A) \ ∂Λε0(A) if and only if g attains a local maximum at z0.

(d) z0 ∈ ∂Λ′ε0(A) \ ∂Λε0(A) if and only if z0 is an interior point of Λε0(A) and g(z0) = ε0.

Proof.
First, we are going to prove (a). Let us suppose that z0 were an isolated point of ∂Λ′ε0(A).

Then there would exist an open ball B centered at z0 with radius δ > 0, such that ∀z ∈ B′ =
B − {z0}, g(z) 6= ε0 would be fulfilled.

Let us see that either g(z) > ε0, ∀z ∈ B′; or g(z) < ε0, ∀z ∈ B′. Let us suppose the contrary.
Let z1, z2 ∈ B′ be such that g(z1) < ε0 < g(z2). Let t 7→ γ(t) be a continuous curve on [0, 1],
with γ(0) = z1, γ(1) = z2, such that γ(t) ∈ B′, ∀t ∈ [0, 1]. Then, as t 7→ g(γ(t)) would be
continuous on [0, 1], by the Bolzano’s Theorem there would exist a z3 ∈ B′ such that g(z3) = ε0.
This is a contradiction.

Now, let us see that g(z) < ε0 for each z ∈ B′. Otherwise, z0 would be a local minimum of g.
Therefore by virtue of Proposition 6 (a) z0 would be an eigenvalue of A, i.e. ε0 = 0, which is a
contradiction. This proves that g has a strict local maximum at z0. The converse is immediate,
so that (a) is proved.

To prove (b) we see that z0 being an isolated point of ∂Λ′ε0(A), by (a) it follows that ∀z ∈ B,
g(z) ≤ ε0 . Then B ∩ Λε0(A)c = ∅. Therefore z0 /∈ ∂Λε0(A).

To prove (c) let us note that

z0 ∈ ∂Λ′ε0(A) \ ∂Λε0(A) if and only if

ß
g(z0) = ε0,
∀z ∈ B, g(z) ≤ ε0.

Finally, to prove (d) let us observe that for any subset S of C the equality S = S̊ ∪̇ ∂S holds,
where ∪̇ means disjoint union. As Λε0(A) is a closed set, we have

Λε0(A) =
˚̊ �Λε0(A) ∪̇ ∂Λε0(A). (6)

If z0 ∈ ∂Λ′ε0(A)\∂Λε0(A), then by Proposition 6(b) g(z0) = ε0; so, z0 ∈ Λε0(A). Thus, by (6),

z0 ∈
˚̊ �Λε0(A).

Conversely, if z0 is an interior point of Λε0(A) and g(z0) = ε0, by Proposition 6(b) we deduce
that z0 ∈ ∂Λ′ε0(A). Since

˚̊ �Λε0(A) and ∂Λε0(A)
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are disjoint sets, then z0 /∈ ∂Λε0(A). So,

z0 ∈ ∂Λ′ε0(A) \ ∂Λε0(A).

2

Remark 8. As a consequence of Theorem 7(b), if ∂Λ′ε0(A) has isolated points, then ∂Λε0(A)  
∂Λ′ε0(A).

Before we state another result that we will use, let us recall the following standard notation.
If R is a commutative ring, R[x, y] denotes the set of polynomials in the variables x, y with
coefficients in R, and R[ε] stands for the set of polynomials in the variable ε with coefficients in
R.

Lemma 9. Given A ∈ Cn×n, for (x, y, ε) ∈ R3 consider

q(x, y, ε) := det

Å
εIn (x+ yi)In −A

(x− yi)In −A∗ εIn

ã
∈ R[ε][x, y].

Let (x0, y0) ∈ R2 be such that g(x0, y0) > 0. Suppose that (x0, y0) is an isolated point of the
curve

q(x, y, g(x0, y0)) = 0.

Then (x0, y0) is an isolated point of
∂Λ′g(x0,y0)(A).

Proof. First, by the Wielandt’s lemma, ε is a singular value of (x + yi)In − A if and only if
q(x, y, ε) = 0. Set ε0 := g(x0, y0). Then, by Proposition 6(b), we have

(x0, y0) ∈ ∂Λ′ε0(A) ⊂ {(x, y) ∈ R2 : q(x, y, ε0) = 0}.

Thus, if (x0, y0) is an isolated point of the curve q(x, y, ε0) = 0, so is it of ∂Λ′ε0(A). 2

To conclude this section, we present a characterization of the isolated points of a curve
f(x, y) = 0 in R2 defined by a real function f of class C2. Its proof can be seen in [9], pages
254–255.

Theorem 10. Let us consider a curve in R2 defined by f(x, y) = 0, with f being a real function
of class C2 in a neighborhood of the point (x0, y0) ∈ R2. If (x0, y0) satisfy the conditions

f(x0, y0) = 0,
f ′x(x0, y0) = 0,
f ′y(x0, y0) = 0,
f ′′xy(x0, y0)2 − f ′′xx(x0, y0)f ′′yy(x0, y0) < 0,

then (x0, y0) is an isolated point of the curve.

4 Proof of Theorem 2.

The main objective of this section is the proof of Theorem 2.

Proof of Theorem 2.
Let us consider the following diagram

R2 h−→ Cn×n σn−→ [0,∞)
(x, y) 7→ (x+ iy)In −A 7→ σn((x+ iy)In −A) = g(x, y).

Identifying Cn×n with Rn×n × Rn×n and A ∈ Cn×n with (re(A), im(A)) ∈ Rn×n × Rn×n, we
have

graph(h) = {(x, y, xI − re(A), yI − im(A)) : (x, y) ∈ R2},
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where re(A) and im(A) denote the real and imaginary part of A, respectively. Hence using the
polynomial

P (x, y,X, Y ) := ‖X − xI + re(A)‖2F + ‖Y − yI + im(A)‖2F
it follows that graph(h) = {(x, y,X, Y ) : P (x, y,X, Y ) = 0}, where x, y ∈ R and X,Y ∈ Rn×n.
Here ‖ · ‖F denotes the Frobenius norm. Therefore, the set graph(h) is semialgebraic. As a
consequence, the function h is semialgebraic. Now, by (a) and (c) in Lemma 5, we conclude
that the function

g : R2 −→ [0,∞)
(x, y) 7→ g(x, y) = σn((x+ iy)In −A)

is semialgebraic. As the set [0, ε) is semialgebraic, by Lemma 5(b) we deduce that g−1[0, ε) is
semialgebraic. But

g−1[0, ε) = {(x, y) : σn((x+ yi)In −A) < ε} = {(x, y) : g(x, y) < ε} = Λ′ε(A).

For this reason, Λ′ε(A) is a semialgebraic set. Finally, from Lemma 5(d), we infer that the set
∂Λ′ε(A) is semialgebraic. 2

5 Proof of Theorem 3.

Before proving Theorem 3 we will demonstrate a previous proposition.

Proposition 11. For the matrix

B :=

Ñ
0 1 4
0 0 1
0 0 0

é
∈ C3×3, (7)

it is true that −4/15 + 0i is an isolated point of ∂Λ′1/15(B).

Proof. First, considering (x, y) ∈ R2 and using the notation of Lemma 9 where A is replaced
by the matrix B given in (7), we obtain a family of real algebraic curves q(x, y, ε) = 0, indexed
by ε. Next, we try to find a value ε0 > 0 of ε such that the curve q(x, y, ε0) = 0 has isolated
points. A little calculation shows that

q(x, y, ε) = ε6 − 3(x2 + y2 + 6)ε4 + (3(x2 + y2)2 + 18(x2 + y2) + 8x+ 1)ε2 − (x2 + y2)3.

Using Theorem 10, we seek (x, y, ε) ∈ R3 satisfying

q(x, y, ε) = q′x(x, y, ε) = q′y(x, y, ε) = 0
q′′xy(x, y, ε)2 − q′′xx(x, y, ε)q′′yy(x, y, ε) < 0.

One can verify that
(x, y, ε) = (−4/15, 0, 1/15)

satisfies
q(−4/15, 0, 1/15) = q′x(−4/15, 0, 1/15) = q′y(−4/15, 0, 1/15) = 0

and

q′′xy(−4/15, 0, 1/15)2 − q′′xx(−4/15, 0, 1/15)q′′yy(−4/15, 0, 1/15) = −44/16875 < 0.

As a consequence, by Theorem 10, the point (−4/15, 0) is isolated for the curve q(x, y, 1/15) = 0.
Thus, by Lemma 9, to demonstrate the proposition it suffices to prove that 1/15 is the smallest
singular value of the matrix (−4/15)I3−B. But its singular values are the positive square roots
of the roots of the polynomial

p(λ) = det[λI3 − ((−4/15)I3 −B)∗((−4/15)I3 −B)] = λ3 − 1366

75
λ2 +

2731

16875
λ− 4096

11390625
,

which are
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Å
64

15

ã2

,

Å
1

15

ã2

,

Å
1

15

ã2

.

Hence g(−4/15, 0) = σ3((−4/15)I3−B) = 1/15. Thus, by Lemma 9, we deduce that −4/15+0i
is an isolated point of ∂Λ′1/15(B). According to Theorem 7(a) the function g attains a strict
local maximum at this point. See Figure 1. 2

Figure 1: Strict local maximum of g(x, y) = σ3

(
(x+ yi)I3 −B

)
at the point (−4/15, 0).

Remark 12. There are some examples of matrices whose boundaries of the strict ε-pseudo-
spectrum have an isolated point for a given ε.

Let Bn := diag(z1, z2, . . . , zn), where zk = exp (2πik/n), k = 1, . . . , n. Then (0, 0) is an
isolated point of ∂Λ′1(Bn). In fact, for each z ∈ C let

d(z,Λ(Bn)) := min
k=1,...,n

|z − zk|

be the distance from z to Λ(Bn); then σn(zIn − Bn) = d(z,Λ(Bn)). So, for each (x, y) in the
deleted open ball centered at (0, 0) and radius 1/2, we have d

(
x + yi,Λ(Bn)

)
< 1; therefore,

the function (x, y) 7→ σn
(
(x + yi)In − Bn

)
has a strict local maximum at (0, 0). This is a

generalization of B4 := diag(i,−1,−i, 1) (Example 2.6 of [8]). See Figure 2.

We are now ready to prove Theorem 3.

Proof of Theorem 3 To simplify the exposition, we will denote by

w0 :=
−4

15
, ε1 :=

1

15
. (8)

Let P := {z1, z2, . . . , zk} ⊂ C and

δ :=
1

4
min

1≤p<q≤k
|zp − zq|, γ :=

δ

ε1 + ‖B‖
, ε0 = γε1 = γ/15, (9)

where B is the matrix in (7).
For p = 1, 2, . . . , k, Proposition 6(c) implies

Λ′ε0(γB + (zp − γw0)I3) = zp − γw0 + γΛ′ε0/|γ|(B) = zp − γw0 + γΛ′ε1(B). (10)

Hence, from Proposition 11, we conclude that zp is an isolated point of ∂Λ′ε0(γB+(zp−γw0)I3).

7



Figure 2: The function (x, y) 7→ σ4

(
(x+ yi)I4 −B4

)
attains a strict local maximum at (0,0).

On the other hand, as the matrix B is nilpotent, from (10), Proposition 6(e) and using the
notation introduced in (9), we obtain

Λ′ε0(γB+(zp−γw0)I3) = zp−γw0+γΛ′ε1(B) ⊂ zp−γw0+γD(0, ε1+‖B‖) = D(zp−γw0, δ). (11)

Finally, taking

A0 := diag(γB + (zp − γw0)I3)kp=1,

by Proposition 6(d) and (11), we get

Λ′ε0(A0) =
k⋃
p=1

Λ′ε0(γB + (zp − γw0)I3) ⊂
k⋃
p=1

D(zp − γw0, δ).

Note that zp ∈ D(zp − γw0, δ). Besides, these disks are pairwise disjoint. As a consequence zp
is isolated for ∂Λ′ε0(A0). This proves the statements in (1) of the theorem. The assertion in (2)
is deduced immediately from Theorem 7(a). 2

Remark 13. A question arises: Fix a connected component of the strict ε-pseudospectrum that
contains only one eigenvalue of a matrix A. Can it have two isolated points on its boundary?
Michael Karow asked us this question in Barcelona in July of 2014 [7]. The answer is affirmative.
It suffices to choose the matrix Ü

0 1 4 20
0 0 1 4
0 0 0 1
0 0 0 0

ê
.

In the same way as in the proof of Proposition 11 it is found that the points −4/19± i4
√

5/95
are isolated for the boundary of the strict pseudospectrum of level ε =

√
5/95. Hence, by

Theorem 7(a), the function g attains two strict local maxima at these points. See Figure 3.

Remark 14. By Proposition 6(c) we have ∂Λε(A) ⊂ ∂Λ′ε(A). Moreover, according to Theo-
rem 3, the sets ∂Λ′ε(A) and ∂Λε(A) can differ in a finite set of points. Hence, the question arises:
Can both sets differ in an infinite number of points?

8



Figure 3: Strict local maxima of g at the points (− 4
19 ,±

4
√

5
95 ).

Let us suppose that the set ∂Λ′ε(A)\∂Λε(A) had infinite points. Then a connected component
of ∂Λ′ε(A), which we denote by C, would contain a set of infinitely many points which would not
be in ∂Λε(A). Let X := C ∩ (∂Λε(A))c denote this set. If X had infinite isolated points (with
respect to X ), then C ∩ ∂Λε(A) would have infinitely many connected components; therefore,
∂Λε(A) would have infinitely many connected components, which is impossible by Lemma 5
(e). Hence, X can not have infinite isolated points; that is, X is a real analytic submanifold of
dimension 1 of R2 with a finite number of connected components. Therefore, the sets ∂Λ′ε(A)
and ∂Λε(A) differ at most in a finite set and in a real analytic submanifold of dimension 1 of
R2 with a finite number of connected components.

An equivalent problem which arises from Theorem 7(c) is the following: Can the function
g have local maxima that are not strict? If this were possible, then the function g would take
the constant value ε on a real analytic submanifold M of dimension 1 of R2 and would attain
a nonstrict local maximum at each point of M. We think that this case can not occur.
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