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Molecularity: a fast and efficient criterion for probing superconductivity
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We present an efficient criterion for doing fast estimations of the critical temperature of hydrogen based
superconductors. We start by expanding the applicability of 3D descriptors of electron localization to supercon-
ducting states within the framework of superconducting DFT. We first apply this descriptor to a model system,
the hydrogen chain, which allows to prove two main concepts: i) that the electron localization changes very
little when the transition from the normal to the superconducting state takes place, i.e. that it can be described
at the DFT level from the normal state; and ii) that the formation of molecules can be characterized within this
theoretical framework, enabling to quickly filter out systems with marked molecular character and hence with
low potential to be good superconductors. These two ideas, are then exploited in real binary and ternary systems,
showing i) that the bonding type can be characterized automatically; and ii) that this provides a new index which
enables to feed machine learning algorithms for a better prediction of critical temperatures. Overall, this sets
a grounded theoretical scenario for an automatic and efficient high-throughput screening of potential hydrogen
based superconductors.
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I. INTRODUCTION

Superconductivity can be considered among the most ex-
citing discoveries in material science of the XXth century
due to its implications both at the technological and scien-
tific levels. These implications have led to the discovery of a
plethora of superconducting families to which the high pres-
sure hydrides have been added in the last years.

Few hydrate examples are H3S [1], YH9 [2], YH6 [3], and
LaH10 [4]; all reaching critical temperatures (Tc) well above
200 K at megabar pressures. However, the hard conditions
for the synthesis as well as the difficult experimental char-
acterization, make the statement of new high Tc materials
difficult from the experimental viewpoint. In this panorama,
theory has become a trustworthy diagnosis of hydride super-
conductivity. For instance, this approach has been successful
in describing the important nuclear quantum effects present
in hydrogen-rich compounds, which in turn affects its su-
perconducting properties. [5] Nevertheless, this comes at a
high computational cost. As an example, the calculation of
the Tc of LaH10 within the anharmonic approximation takes
hundreds of thousands of CPU hours.

Given the high critical temperatures that hydrides have
shown to have, the search of high Tc hydride superconduc-
tors is still well alive, but it is claiming for a more efficient
theoretical approach allowing an efficient scanning of new
potential superconductors.

∗ Correspondence email address: trinidad.novoa_aguirre@sorbonne-
universite.fr
† Correspondence email address: contrera@lct.jussieu.fr

A faster alternative would be to find cheap footprints
of high-temperature superconductivity. A full list of them
should include vibrational properties as well as electronic, as
superconductivity in hydrogen-based systems has an origin
in electron-phonon coupling. Here, we focus exclusively on
the electronic properties, which have already demonstrated
pattern similarities across certain high-Tc structures [6–9].
This allows us to identify promising structures and give
first approximations of Tc, without the significant compu-
tational expense. If we collect the main characteristics that
have been put together over the years, we have some chem-
ical/structural features, e.g. hydrogen-rich systems mixed
with s and p elements and highly symmetrical structures
favour high Tc. From the electronic structure viewpoint,
materials with a high density of states (DOS) at the Fermi
level are the best candidates for high-temperature supercon-
ductivity [6]. Looking at the normal state-superconductor
transition, it has been proposed that the mechanism of super-
conductivity can be traced to the the formation of electronic
pairs be it in the shape of strongly covalent metallic bonds
(MgB2) [10] or lone pairs (Te)[11].

But, even if these features can suggest good trends, they
provide necessary but not sufficient conditions. Trying to
find a sufficient condition, some of the authors have recently
shown that a correlation exists between the critical tempera-
ture and the delocalization channels at the density functional
theory (DFT) level in binary superconducting hydrides [6].
These channels are determined thanks to the Electron Lo-
calization Function (ELF),[12] and a simple quantitative de-
scription of them can be done with the networking value, a
topological descriptor stemming from the ELF.

Nevertheless, this initial proposal was not absent of limi-
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tations. The fact that DFT calculations can be used for de-
scribing the onset of superconductivity needs to be under-
stood. The inherent nature of the networking value, although
intuitive, needs to be further explored. This is so much so, if
we take into account that for a high throughput exploitation
of this index, it is necessary to make sure that it is applica-
ble to more complex systems (ternary, quaternaries, etc) and
that no information is missing in the correlation.

These points will be addressed here. Firstly, we will dwell
on the use of DFT for describing electron localization in su-
perconductors. With this aim in mind, we will develop a
new formulation of the ELF within the superconducting DFT
framework and we will apply it to a model system. This
will allow us to prove that the normal state DFT analysis of
the ELF is sufficient to describe that of the superconducting
state. It will also allow us to identify other bonding fea-
tures, such as the formation of molecules, which quantita-
tively characterize bad superconductors. With these tools at
hand, we will prove in a set of binary and ternary compounds
that the new index allows to i) complement the networking
value in more complex systems, and ii) improve the fast pre-
diction of Tc; with an special focus in high Tc superconduc-
tors (more difficult to predict due to the lack of data).

II. THEORETICAL BACKGROUND

A. The Electron Localization Function (ELF)

The electron localization function was first introduced by
Edgecome and Becke to identify regions of localized same-
spin electron pairs, or groups of them, in atomic and molec-
ular systems.[13] It is based on the same-spin pair proba-
bility as approximated in Hartree-Fock (i.e. considering ex-
change),

Pσσ
2 (r1, r2) = ρσ(r1)ρσ(r2) −

∣∣∣ρσ1 (r1, r2)
∣∣∣2 . (1)

Here, ρσ1 (r1, r2) is the spin-resolved 1-RDM, and ρσ(r1) its
diagonal, which corresponds to the electron density for σ-
spin. If we assume that there is one σ electron at r1, we can
express the probability of finding another electron with the
same spin at r2 by

Pσσ
cond(r1, r2) =

Pσσ
2 (r1, r2)
ρσ(r1)

= ρσ(r2) −

∣∣∣ρσ1 (r1, r2)
∣∣∣2

ρσ(r1)
, (2)

which we call the conditional same-spin pair probability.
Fixing one of the electrons lets us study the behavior of this
probability when r2 → r1. Changing to the spherically aver-
aged version of Pσσ

cond, that depends on the coordinates (r, s),
where r is the reference point and s a distance from it, and
doing a Taylor expansion, we can show that

Pσσ
cond(r, s) =

1
3

 σ∑
i

|∇ϕi(r)|2 −
1
4
|∇ρσ(r)|
ρσ(r)

 s2 + . . . (3)

Here, ϕi(r) are the HF orbitals, and the sum
∑σ

i means that
we are only considering the orbitals containing electrons of
spin σ.

From (3), we recognize the term in brackets,

Dσ(r) =
σ∑
i

|∇ϕi(r)|2 −
1
4
|∇ρσ(r)|
ρσ(r)

, (4)

as a measure of localization, as it is the leading term for
small distances s between the electrons. This is, when Dσ

is small, the probability of finding a σ electron very close to
the reference one is also small. This means that the refer-
ence electron is very localized, and so is the Fermi hole that
comes with it, not allowing a same-spin electron to come
near. However, an opposite-spin electron is likely to local-
ize in the same region. For a closed-shell system, we have
ρ(r) = 2ρσ(r), and it is possible to define the spinless quan-
tity

D(r) =
1
2

∑
i

|∇ϕi(r)|2 −
1
8
|∇ρ(r)|2

ρ(r)
. (5)

The function D(r) being opposite to localization, we in-
troduce the Electron Localization Function (ELF),

η(r) =

1 + (
D(r)
D0(r)

)2−1

, (6)

where

D0(r) =
3

10
(3π2)2/3ρ(r)5/3 (7)

is the term D(r) as evaluated for a uniform electron gas in
3D. Note that in the case of a 1D system -as used in part
of this contribution- it becomes D0(x) = π2/24 ρ(x)3 [14].
The normalization allows to compare the values of the ker-
nel D(r)/D0(r) of different systems. Further, the Lorentzian
transformation applied on that kernel in the definition of η(r)
in eq. (6) allows us to have a function that ranges between 0
and 1, that is high in the regions of high localization (η→ 1),
and conserves the topology of the kernel. This, as we shall
see, will be very important in the description of electron lo-
calization.

A close inspection of eq. (5) allows to identify the first
and second terms as the kinetic energy density of the sys-
tem, τ(r), and its form in the von-Weizsacker approximation,
τvW (r) [15], leading to D(r) = τ(r) − τvW (r). This formula-
tion allows to compute the ELF beyond the HF approxima-
tion [12]. It also introduces a new interpretation: because the
von-Weizsäcker kinetic energy is exact for a bosonic system
of the same density ρ(r), the term D(r) is a local measure
of the excess kinetic energy due to the fermionic nature of
the electrons. If this quantity is high, it means that electron
pairs are delocalized in that region, and the ELF value will be
small. If the kinetic energy density is not locally increased
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as an effect of the Pauli exclusion principle, we say that elec-
trons are localized, which will be reflected on a high value
of the ELF.

Some of the authors have shown that the ELF can be used
to classify bonds in binary supercoductors in six distinct
families: molecular systems, covalent systems, systems in-
fluenced by weak covalent hydrogen-hydrogen interactions,
systems exhibiting electride behavior, ionic systems, and
isolated systems. In each instance, the bond nature is identi-
fied through analyzing ELF saddle points between different
atoms. Moreover, we also found that the value of the ELF at
the saddle point which leads to a surface revealing a 3D delo-
calization through the cell (hereafter called the "networking
value") correlates with the critical temperature of supercon-
ductors [6].

B. Superconducting Density Functional Theory

The widespread use of DFT for electronic structure calcu-
lations, due to its great compromise between accuracy and
computational time, has served as a motivation to extend it
to a wider variety of systems. The case of superconductors
is particular in the sense that it cannot be solved in a pertur-
bative fashion. In fact, this is so because in those systems
the phase symmetry is broken, which implies that the num-
ber of particles will not be conserved. Superconducting DFT
(SC-DFT) successfully treats this problem, [16–20] and ac-
curately reproduces the experimental Tc’s of conventional
superconductors without introducing any empirical parame-
ters [21].

In SC-DFT, the Hamiltonian comprises an anomalous ex-
ternal potential, ∆∗ext(r, r

′), that takes into account the sym-
metry breaking by allowing Cooper pairs to tunnel in and out
of the system

Ĥ∆ext =

∫
∆∗ext(r, r

′)ψ↑(r)ψ↓(r′) dr dr′ + h.c. (8)

where ψσ(r) are electronic field operators. If we let
∆∗ext(r, r

′) go to zero, the Hamiltonian converges to a non-
superconducting one, i.e. that of a normal state system. In
this way, SCDFT allows to turn on and off superconductiv-
ity, and to compare the system’s properties when it is in the
normal or in the superconducting state.

Another feature of SC-DFT is that it considers ionic de-
grees of freedom explicitly. Therefore, the Hohenber-Kohn
theorems in this framework establish a one-to-one mapping
between three external potentials and their corresponding
densities. Those potentials are: vext(r), that couples to elec-
trons; Wext(R), that couples to ions; and the aforementioned
anomalous potential.

The theory is formulated in the grand-canonical ensemble,
as a consequence of the non-particle conserving Hamiltonian
in (8). Thus, the variational quantity is the grand-canonical

potential, and the electron density is

ρS C(r) =
〈∑

σ

ψ†σ(r)ψσ(r)
〉
= Tr

ρ̂0

∑
σ

ψ†σ(r)ψσ(r)

 , (9)

where the SC superscript is used to differentiate it from the
normal state electron density. We have considered the grand-
canonical density matrix,

ρ̂0 =
e−β(Ĥ−µN̂)

Tr[e−β(Ĥ−µN̂)]
, (10)

with N̂ the number operator.
The other two densities are that of the ions, Γ({Ri}), and

the anomalous density, defined as

χ(r, r′) = Tr
[
ρ̂0 ψ↑(r)ψ↓(r′)

]
. (11)

This is a two-body object that is responsible of measuring
the probability of the appearance of Cooper pairs, and it is
the order parameter of the transition.

A Kohn-Sham (KS) scheme leads to electronic equations
that yield a Hamiltonian of the form

Ĥs =
∑
σ

∫
dr ψ†σ(r)

[
−
∇2

2
+ vs(r) − µ

]
ψσ(r)

+

∫
drdr′

[
∆∗s(r, r

′)ψ↑(r)ψ↓(r′) + h.c.
]
, (12)

where vs(r) is the usual electronic KS potential, and ∆∗s(r, r
′)

the mean-field version of the anomalous potential. The KS
energies in the superconducting state become

Enk =

√
ξ2

nk + ∆
2
s,nk , (13)

with ξnk the KS energies of the normal state. We hereby
refer to the anomalous potential to the superconducting gap,
based on this result.

Diagonalizing the Hamiltonian in (12), the electron den-
sity in (9) becomes

ρS C(r) =
∑
nk

[
1 −

ξnk

|Enk |
tanh

(
β|Enk |

2

)]
|φnk(r)|2 , (14)

where φnk(r) are the Kohn-Sham orbitals of the normal state.
Note that in the normal state limit, where ∆s,nk → 0, we
recover the normal state density,

ρNS(r) = 2
∑
nk

f (ξnk)|φnk(r)|2 , (15)

with f (Ei) = (1 + e βEi )−1 the Fermi-Dirac distribution. This
point is crucial for the analysis of the transition.
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III. RESULTS

A. Theoretical formulation

The SC-DFT framework allows us to define real-space de-
scriptors other than the electron density in (14). In analogy
with the derivation of that density in Ref. [19], one can ar-
rive to an expression for the superconducting one-reduced
density matrix (1-RDM):

ρSC
1 (r, r′) =

∑
nk

nS C
nk φ

∗
nk(r)φnk(r′) , (16)

which is written in terms of Kohn-Sham orbitals and SC oc-
cupations,

nS C
nk ≡ 1 −

ξnk

|Enk |
tanh

(
β|Enk |

2

)
. (17)

Notice that in the normal state limit, we recover

ρNS
1 (r, r′) = 2

∑
nk

f (ξnk)φ∗nk(r)φnk(r′) . (18)

It can be seen that within the SC-DFT framework, the dif-
ference of the 1-RDM of both states is only reflected in a
change of the occupation numbers.

With the density matrix in (16), we can compute the ki-
netic energy of the system,

T S C = −
1
2

∫
∇2

r′ρ
S C
1 (r, r′)

∣∣∣
r′=r dr , (19)

=
1
2

∑
nk

nS C
nk

∫
|∇φnk(r)|2 dr , (20)

letting us define a positive definite kinetic energy density,

τS C(r) ≡
1
2

∑
nk

nS C
nk |∇φnk(r)|2 . (21)

The von Weizsäcker and Thomas-Fermi KEDs are ob-
tained from the SC density,

τS C
vW (r) =

1
8

∣∣∣∇ρS C(r)
∣∣∣2

ρS C(r)
, (22)

τS C
T F(r) =

3
10

(3π2)2/3 ρS C(r)5/3 . (23)

Note that here τS C
T F(r) is defined in 3D. Finally, equations

(21), (22) and (23) allow us to define the ELF for the super-
conducting state as:

ηS C(r) =

1 + τS C(r) − τS C
vW (r)

τS C
T F(r)

2
−1

. (24)

As all the superconducting quantities defined in this frame-
work, the superconducting ELF (SC-ELF) converges to the

(temperature-dependent) normal state ELF when the gap
goes to zero.

In order use to the expression in eq. (24) to examine the
SC-ELF in a model or in a real system, it is necessary to have
an expression for the gap. In SC-DFT, this is done through
a connection to many-body perturbation theory, where one
can use Green’s functions to account for electron-phonon
coupling [17]. It is possible, however, to introduce an ap-
proximation and represent the dependence of the gap at
zero Kelvin with respect to the energies ξ as an isotropic
Lorentzian function [22],

∆0(ξ) =
∆0

N0π

ω/2
ξ2 + (ω/2)2 , (25)

where ω is a parameter that adjusts the width of the peak,
and N0 is a normalization such that the height of the peak
at ξ = 0 is ∆0. The latter is the constant of the gap at T =
0 K in BCS [23], that depends on the critical temperature,
∆0 = 1.76kBTc, with kB being Boltzmann’s constant. Then,
considering the dependence of the gap with respect to the
temperature [22, 24], we shall use

∆(ξ; T ) = ∆0(ξ) tanh

1.74

√
Tc − T

T

 . (26)

so that in our model, the gap can be obtained for any temper-
ature and energy, for a given Tc. The profile of the gap for
different values of those parameters are presented in Figure
S5. Note that this approach is also applicable to approximate
SC-ELF in DFT calculations of solid systems.[25]

B. One-dimensional model chain

In order to analyze the behavior of SC-ELF we will first
apply it to a simple model, the 1D hydrogen chain. This calls
for the one-dimensional definition of τT F presented above.
Note that in order to make sure that these results are repre-
sentative, a careful analysis of the parametric space has been
carried out (for a full analysis see [26]).

For a fixed critical temperature, the left panel of Fig. 1
shows how the occupancies of the normal state deviate from
the step function as the temperature increases, softening the
transition around the Fermi energy. Meanwhile, the super-
conducting occupation numbers do not suffer big alterations
with the temperature, as can be seen on the right panel of
Fig. 1. In fact, they tend to resemble the occupations at the
critical temperature (in both states, as they are the same),
showing the larger correlation of the superconducting state
in comparison with the normal state below Tc. This is re-
peated for other critical temperatures (see Fig. S7). Hence,
we will hereby take Tc=300 K for the analysis, and seize the
effect of the changes in those functions with respect to the
temperature, T .

In the following, we denote the normal and superconduct-
ing states as NS and SC, respectively. Taking the results for
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Figure 1. Occupation numbers at different energies. In all panels,
that of the normal state at T = 0 K is depicted in black. To the left,
the occupation numbers of the normal state at different tempera-
tures. To the right, the same is displayed for the superconducting
state with Tc=300 K.

Figure 2. Profile of the ELF in the hydrogen chain for Tc = 300
K. Left: metallic, right: dimerized. In both panels, the three over-
lapping lines represent the three considered models: normal state
at T = 0 K and T = 100 K, and superconducting state at T = 100
K. Atomic positions are marked by black circles, and the unit cell
is delimited by squared brackets.

the NS and SC occupation numbers into account it is not
surprising that when we analyze the SC-ELF in the homoge-
neous hydrogen chain we see that it does not differ from the
localization in the normal state (both T = 0 K and at T = 100
K are analyzed in Fig. 2, for the symmetric and dimerized
chains). This is true for the whole range of temperatures and
interatomic distances. An analysis on how the negligible dif-
ferences between the NS and SC real-space descriptors per-
sists in the limit of high-correlation, when the superconduct-
ing gap is greatly amplified, is presented in [26]. This shows
how the spatial distribution of electrons is resilient below Tc
even if the occupation numbers show more sizable changes.

This result has big implications as far as the analysis of
pairing in superconductivity is concerned: SC electron lo-
calization descriptors can be inferred from the normal state.
Hence, with SC-ELF and the hydrogen chain enable us to
rationalize the fact that the electron pairing can be obtained
for superconductors at the DFT level from the normal state.

C. Introduction of the “Molecularity” index

The 1D model also enables to understand the effect of
bonding in metallization. When the distance between the
two atoms inside a unit cell is changed, dimerization is sim-
ulated (see Fig. 3). The profile of the ELF reveals the molec-
ularization of the system as two of the hydrogens approach
each other, with the appearance of two ELF local minima, a
higher minimum between the two hydrogen forming a dimer
and a lower minimum occurring between two unit cells (at
mid-distance of two dimers). The minimum value of the
ELF, ϕ, drops to nearly zero when slightly shifting the dis-
tances. Note that this ELF value would correspond to the
networking value of the 1D-chain, as introduced by the au-
thors in Ref. [6]. Since this value was found to correlate with
Tc, this would mean that the molecularity hampers supercon-
ductivity. This result agrees with the proposal by Ackland
et al. from MD simulations [27] and the lower Tc found for
molecular systems in [6], in comparison with that of systems
presenting other types of bonding.

Simultaneously, the value of the ELF at the higher lo-
cal minima between the hydrogens in the same unit cell in-
creases with respect to the symmetric case. This is charac-
teristic of a more delocalized behavior of electrons in the
intramolecular region. We shall call the value of the ELF at
this local minima ϕ∗, or Molecularity index, as it represents
the first characterization of the molecularization effect.

Further decreasing the minimum interatomic distance,
dHH , accentuates these changes in the topology of the func-
tion. In fact, when dHH decreases sufficiently, the atoms in
the lattice form units resembling H2 molecules, character-
ized by flat ELF profiles within the molecule.

Figure 3. Normal state ELF profile for the dimerized hydrogen
chain at T = 100 K, considering different minimum interatomic
distances, dHH .

As in the Su-Schrieffer-Heeger (SSH) model, a gap opens
upon dimerization. Hence, we have also plotted the evo-
lution of the topological descriptors ϕ and ϕ∗ with respect
to the energy gap (see Fig. S12). It can be seen that a large
value for ϕ∗ is a feature of an insulating state in the hydrogen
chain, where intramolecular distances are shortened. This is
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Figure 4. Reference critical temperature Tc (K) with respect to the
molecularity index ϕ∗ for all binary and ternary data, classified by
bonding type families.

further supported by the increase of the localization in the
ELF basins with the decreasing of the intramolecular dis-
tance, as it can be seen in Figure 3.

With this quantitative characterization of molecularity in
the model, it is then possible to envisage its characterization
in real systems at the DFT level. We define the molecular-
ity index in a 3D system, ϕ∗, as the maximum value of the
ELF function for which at least two hydrogen atoms become
connected. In molecular systems, this will necessarily cor-
respond to the value of the ELF for which molecular units
appear, so that the number of atoms inside isosurfaces will
be two.

In order to test its use in complex systems, we have cal-
culated it along with the networking value for a set of 129
binary and 21 ternary compounds (see [26] for details). As
expected, ϕ∗ is high for molecular systems, ranging between
0.8 and 1.0, where no other type of bonding family is present
(Fig. 4). We notice that the two bond categories that are most
likely to have a high Tc, namely covalent and weak H-H, are
dominant in the region where ϕ∗ ∈ [0.45, 0.8], meanwhile
other types of bonding show generally low critical tempera-
tures. In other words, the molecularity index is a quantitative
tool to separate the families of interest. Thus, the molecular-
ity index allows an automated characterization of bonding
type, and hence of potential high Tc superconductors.

Moreover, a careful inspection of the new systems clearly
shows that the molecularity index is necessary as the com-
plexity of the systems increase, enabling to differentiate sys-
tems with similar networking value but very different Tc.
This is the case of Li2ScH16 at 300 GPa, with ϕ = 0.63
and Tc = 281 K, and Li2ScH17 at the same pressure, with
ϕ = 0.57 and Tc = 94 K. The severe drop of the critical tem-
perature upon inclusion of one extra hydrogen atom is under-
stood when one examines the ELF isosurfaces: the hydrogen

Figure 5. Isosurface of ELF= 0.57 for Li2ScH16 (left, ϕ = 0.63)
and Li2ScH17 (right, ϕ = 0.57) at 300 GPa. The black circle marks
the place where the extra H is added. The blue and red circles show
how the values of the ELF at the critical points change with this
addition, becoming more prone to form molecular units.

atoms rearrange to shorten the minimum distance between
them, and as a result they form molecular units (see Fig. 5).
This can be measured by an increase of the molecularity in-
dex from ϕ∗ = 0.69 in Li2ScH16 to ϕ∗ = 0.83 in Li2ScH17,
the latter being above the threshold of ϕ∗ = 0.8 for molec-
ular systems. As proved in the 1D chain, this is detrimental
for high-temperature superconductivity [6, 28]. Hence the
new index complements the networking value when going to
complex systems, enabling to characterize complex ternary
superconductors.

D. Fast estimation of critical temperatures

With the new derived index, it becomes then necessary
to propose a new expression to calculate Tc that works both
for binary and ternary compounds. To do so, we use Sym-
bolic Regression (SR), implemented in PySR [29]. It cor-
responds to an evolutionary algorithm where individuals are
mathematical expressions that are optimized to minimize the
mean squared error of the evaluated expressions with respect
to reference data. The output of our SR models are formulas
for Tc, thus providing a way to do Machine Learning while
retaining the scientific insight that a mathematical formula
bears, with new fits that lead to better accuracy and wider
applicability.

The details of the parameters used for the SR are pre-
sented in the Supplemental Material [26]. Among the several
expressions that were obtained to fit the reference Tc, those
that yield the lowest errors in the test set, that we call SR1
and SR2, are

T S R1
c = 382.5 (1 − ∆ϕ)H f HDOS , (27)

T S R2
c = 442.3 (1 − ∆ϕ)H3

f

√
HDOS , (28)
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where ∆ϕ = ϕ∗ − ϕ takes into account both the network-
ing and the molecularity indexes, HDOS is the fraction of the
density of states (DOS) at the Fermi level that correspond to
Hydrogen and H f is the fraction of atoms in the unit cell.

Indeed, this expression is able to differentiate between
ternary compounds with similar stoichiometries and differ-
ent Tc’s, leading to MAEs of 38 K and 36 K for eqs. 27
and 28, respectively, in a set of systems that was not used to
fit those expressions. Those equations should be compared
with the expression from Ref. [6]: Tc = (750ϕH f

3√HDOS −

85)K; with MAE of 55 K in the same dataset. The com-
parison between the predictions in the test set for SR2 are
displayed in Fig. 6-left. The results for the fit SR1 are dis-
played in Fig. S10. Note that further improvements from
these fits can be even achieved from the observation that the
estimates also improve in the high Tc region, where predic-
tions are harder due to the little availability of data (see Table
S1).

This new approach allows to distinguish between com-
pounds with slightly different hydrogen fractions, as shown
for compounds in Fig. 5. This improvement is due to the
fact that ϕ∗ is able to identify bonding types. Hence, we can
also use this ability to filter the data so as to keep the systems
with ϕ∗ ∈ [0.45, 0.8], which correspond to the bonding fami-
lies that interest us. Two analytical expressions are proposed
here, where the overall errors are much more consistent with
those in high-Tc regions, thus being more reliable for our
purposes:

T S R3
c = 312.0 HDOS , (29)

T S R4
c = 574.7 ϕ

√
H3

f HDOS . (30)

The results of the predicted Tc in the test set as obtained with
the fit SR4 can be visualized in Fig. 6-right. Results for SR3
are presented in Fig. S11.

For high-throughput analysis, all four models are recom-
mended in order to mutually discard outliers. We believe
these new expressions should help in a better prediction
and high-throughput analysis of potential high Tc hydrogen
based superconductors.

Label Tc Label Tc

P
re

d
ic

te
d
 T

c
S
R

4

P
re

d
ic

te
d
 T

c
S
R

2

Figure 6. Predicted values of Tc (K) with respect to the reference
(label) data, as computes using the fits SR2 (left) and SR4 (right).
For the latter, only systems where ϕ∗ ∈ [0.45, 0.8] are considered.

IV. CONCLUSIONS

All in all, we have resorted to the SC-DFT approach to de-
velop a new formulation of superconducting ELF in terms of
a reorganization of occupation numbers with respect to the
normal state. We have first applied these new developments
to a model system, leading to two main conclusions. On
the one hand, the small changes in occupation numbers lead
to small changes in localization from the normal to the su-
perconducting state. Taking into account that most calcula-
tions in solid state are carried out within the DFT framework,
where 2-body quantities are not usually accessible, having a
DFT-based index that only requires Kohn-Sham orbital in-
formation enables for a quick screening of the chemistry in
potential superconductors. On the other hand, the evolution
of ELF upon changes in dimerization prognoses a lowering
of the critical temperature upon formation of H2 molecules.
Moreover, the simple picture in the 1D-chain enables to in-
troduce a molecularity index that allows to quantify this
process. Building from these results, we have applied the
molecularity index to 3D systems and calculated it from a
set of binary and ternary systems, showing that i) it allows
for the first time to automatically classify the bonding type
of these systems and ii) it allows to differentiate tricky situ-
ations where molecules appear and previous indexes, devel-
oped for binary systems, fail. Hence, this new index goes be-
yond current proposals (which fail for ternary compounds),
allowing for the automatic characterization of complex po-
tential superconducting compounds in a fast manner, with
especial emphasis on high Tc prediction. These theoretical
advances should help pushing the inverse design of high Tc
superconductors to a reliable and cost-efficient limit.
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I. THE TIGHT-BINDING MODEL IN REAL SPACE

In order to make use of the tight-binding formalism to
evaluate the real-space properties of the hydrogen chain, we
begin by building a basis set of Gaussian atomic functions:

χlA(x) = e−α(x−la)2
, (1)

χlB(x) = e−α(x−(RAB+la))2
, (2)

that depends on the unit cell index, l. In this way, every
unit cell contains two basis functions. Fig. S1 is a spatial
representation of the two atomic orbitals in the unit cell. In
general, we consider the length of the unit cell, a, to be equal
to 1.0 u, with u some arbitrary units. In the next section, we
shall see which values of a properly represent a hydrogen
chain. The same is done for the Gaussian exponent α.

Figure S1. Atomic orbitals used in the unit cell of the hydrogen
chain tight-binding model, represented by two identical Gaussian
functions. The black spheres mark the positions of the two nuclei
inside the unit cell, delimited by squared brackets. Here, the unit
cell length is taken as 1 u, and the Gaussian exponent as α = 10 u−2

With this, the atomic orbitals fulfilling Bloch’s theorem,

∗ Correspondence email address: trinidad.novoa_aguirre@sorbonne-
universite.fr
† Correspondence email address: contrera@lct.jussieu.fr

Figure S2. Left: Real part of the Bloch sums of each band index,
i = 0 and i = 1, for k = 0.02 × 2π

a . Right: Real part of the Bloch
wavefunctions at the same k point for the symmetric chain.

or Bloch sums, are

φAk(x) =
1
√

Nl

∑
l

eiklae−α(x−la)2
, (3)

φBk(x) =
1
√

Nl

∑
l

eik(RAB+la)e−α(x−(RAB+la))2
, (4)

with Nl the number of unit cells considered in the model.
Here, k is selected to take values inside the first BZ, k ∈[
− πa ,

π
a

]
, with k = 2π

Nla
l and l taking integer values in the range[

−
Nl
2 ,

Nl
2

]
. For simplicity, we will generally refer to k in units

of 2π
a . A graphical representation of these orbitals for k =

0.02 (i.e. k = 0.02 × 2π
a ) is offered in Figure S2, for a total

number of Nl = 101.
Finally, the Bloch wavefunctions that diagonalize the

Hamiltonian of the hydrogen chain can be written as a linear
combination of the Bloch sums in (3) and (4),

ϕnk(x) =
1
√

Nl

∑
i

∑
Ri

cn
ikeikRi e−α(x−Ri)2

. (5)

In this case, the band index n can take the values 0 and 1. The
diagonalization determines the coefficients cn

ik, ant it is per-
formed using the Gaussian elimination method [1], as imple-
mented in NumPy [2]. The result of the diagonalization will
necessarily depend on the hopping parameters. Let us recall
that the hopping parameter between site A and the site B to
its right is v, whereas between the same site A and the atom

mailto:trinidad.novoa_aguirre@sorbonne-universite.fr
mailto:trinidad.novoa_aguirre@sorbonne-universite.fr
mailto:contrera@lct.jussieu.fr
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B on its left, the hopping parameter is w. In the special case
in which v = w, the resulting coefficients are c0

Ak = c0
Bk =

1
√

2
and c1

Ak = −c1
Bk =

1
√

2
, corresponding to a bonding and anti-

bonding orbitals, respectively. Figure S2 shows an example
of such a Bloch wavefunction.

Once the Bloch wavefunctions have been defined and
computed, the next step is to evaluate the real-space func-
tions of interest. In order to do so, we will generally assume
that the Bloch wavefunctions are orthonormal, which allows
expressions such as

ρ(x) =
∑
nk

nnk |ϕnk(x)|2 , (6)

for the electron density, and similar ones for the other func-
tions.

To evaluate the orthogonality, we first resort to the nearest-
neighbors approximation, in which the only non-zero over-
laps between the basis functions are∫

χ∗lA(x)χlA(x)dx =
∫
χ∗lB(x)χlB(x)dx = C , (7)

and that between two adjacent atomic sites,∫
χ∗lA(x)χlB(x) dx =

∫
χ∗l−1B(x)χlA(x) dx

=

∫
χ∗lB(x)χl+1A(x) dx = S (8)

because we consider PBC, we must also include∫
χ∗Nl B(x)χ1A(x) dx = S . (9)

Equation (7) allows to normalize the basis set. Once this is
done, the Bloch overlap will yield∫

φ∗ik(x)φ jk′ (x) dx = δk,k′c
k,k′
i, j , (10)

where it can be shown that ck,k
A,A = ck,k

B,B = 1, and ck,k
i, j for i , j

is dependent on S. In this way, equation (10) shows that the
Bloch sums are orthogonal with respect to the wave vector
index k, but not with respect to the site. This changes when
we diagonalize the Hamiltonian and find the Bloch eigen-
functions, which are orthonormal∫

ϕ∗nk(x)ϕn′k′ (x) dx = δn,n′δk,k′ . (11)

Equation (11) is true analytically, but in practice there is a
numerical error that comes from the integration of the Bloch
sums in (10): the overlap of two Bloch sums of different k
is not exactly zero. Given the importance of the orthogonal-
ity condition in the computation of the density and the other

real-space descriptors, we define the numerical error associ-
ated to those computations as

ERROR = max
k,k′

{∫
φ∗ik(x)φ jk′ (x) dx

}
. (12)

This quantity sets the precision of the results presented in
the following, and it will be of special interest to minimize
it when choosing the parameters of the model.

As a final remark concerning the computation of the real-
space quantities in this model, it is important to note that
the expression of the ELF is not valid for one-dimensional
systems, as the expression of the TF KED changes in those
cases to [3]

τT F(x) =
π2

24
ρ(x)3 . (13)

It is this one-dimensional version of the TF KED and the cor-
responding ELF, that we consider for all of the calculations
of this Section.

II. THE MODEL PARAMETERS

The construction of the hydrogen chain using the tight-
binding formalism relies on a set of parameters that need
to be chosen carefully for the model to properly represent
the physical system. Firstly, we choose the lattice parame-
ter, a, for which we hereby adopt the value of a = 2.64 Å.
This determines the value of the arbitrary units, 1 u = 2.64
Å. This value is in accordance with what has been observed
in the literature for high-temperature hydrogen-based super-
conductors of interest [4, 5]. In this way, for the symmet-
ric chain we shall set the hydrogen-hydrogen distance to
dHH = 0.5 u = 1.32 Å.

The Gaussian exponent, α, is optimized using VB theory
on a similar hydrogen chain, using a 6-31G∗ basis, and fit-
ting the proposed Gaussian orbitals to those results [6]. The
outcome of such a calculation indicates that α should live
in the range of [8, 15] u−2 or, equivalently, α ∈ [1.15, 2.15]
Å−2. In general, we will use α = 10 u−2 = 1.43 Å−2.

In theory, the hopping parameters, v and w, could be eval-
uated analytically. In practice this is not possible, as diver-
gences arise from the Coulomb potential of hydrogen in one
dimension,

V0(x) =
1

4πϵ0

1
x
, (14)

with ϵ0 the permittivity of vacuum. This issue is avoided
by using the WHA, that has been proposed for the Hückel
model, that is, in principle, physically equivalent to the tight-
binding formalism. For one-dimensional systems, the WHA
allows to establish the relationship

t = κ · ϵ · S , (15)
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for the hopping t, with respect to the onsite energy ϵ and the
overlap S of eq. 8. There, κ is a constant that is set to 0.787
1 and the onsite energy for the hydrogen’s 1s orbital is con-
sidered, ϵ = −13.6 eV. With this, the hopping parameters
are restrained to the range t ∈ [−3.0,−1.5] eV. Moreover,
equation (15) is particularly useful when atomic distances
are variable, because it allows to scale the hopping parame-
ters, simply by assessing the new overlap integrals, S.

In the case of the symmetric chain, when only one hop-
ping parameter is present, we will use the value t = v = w =
−1.5 eV. It is interesting to note that, actually, in that case
the only effect of changing t is that the energy scale varies,
resulting in flatter bands for a higher |t|, affecting the DOS at
the Fermi energy.

Another two parameters that arise from the discretization
of the problem in real and reciprocal space must be deter-
mined, namely the real-space grid step, ∆x, and the number
of k points, Nk (that is equal to the number of unit cells, Nl).
To ensure the reliability of our results, we perform a con-
vergence test on those parameters, in order to minimize the
numerical error arising from such an approximation. First,
we fix Nk = 101 and vary the grid step ∆x from 10−1 u to
10−4 u. We evaluate the error of the overlap with respect to
that distance, as defined in equation (12), as it is displayed
in Fig. S3. In order to check the convergence of the local-
ization properties, we also evaluate progress with respect to
∆x of the minimum value of the ELF, baptized here as ϕ,
for different temperatures and models (NS and SC). Because
temperature does not seem to have much effect on the con-
vergence, only the results for T = 10 K are shown in Fig S4.
Setting ∆x = 10−3 u to ensure an error below 10−5, the same
analysis is performed by varying the number of k-points.
Only odd numbers are considered to ensure a proper sam-
pling of the BZ, that incorporates the Γ-point, i.e. x = 0 u.
Considering the results obtained in this convergence test, the
value of Nk = 101 is chosen for the rest of the calculations.

Figure S3. Error in the orthogonality of the Bloch sums with re-
spect to: the grid step considered in the discretization of the spatial
functions, ∆x (u) (left); and the number of k-points considered in
the discretization of reciprocal space, Nk. The dashed vertical line
marks the chosen value of ∆x abd Nk.

1 Here, the value of κ is scaled from the typical value of κ = 1.75 for
covalent bonds, to yield the correct values for the hopping when the on
site energy is shifted from ϵ = 0 eV to ϵ = −13.6 eV.

Figure S4. Value of the minima of the ELF of the NS at zero
temperature (red), the NS at T = 10 K (green) and the SC state
at T = 10 (K) (blue), for Tc = 300 K; with respect to: the grid
step considered in the discretization of the spatial functions, ∆x (u)
(left); and the number of k-points considered in the discretization
of reciprocal space, Nk. The dashed vertical line marks the chosen
value of ∆x abd Nk.

III. APPROXIMATION OF THE SUPERCONDUCTING
GAP

Figure S5 offers the profile of the gap function for ω =
0.2 eV, considering different critical temperatures, Tc, and at
different temperatures, T . This functions represent the width
of the window around the Fermi energy where electrons will
form Cooper pairs. One can see how the gap goes to zero
everywhere when the temperature reaches T = Tc, where the
transition occurs. A similar thing occurs to the anomalous
density,

χ(ξ; T ) =
∆(ξ; T )

2
√
ξ2 + ∆(ξ; T )2

tanh

 √ξ2 + ∆(ξ; T )2

2kBT

 , (16)

as displayed in Fig. S6.
Taking this into account, one can compare the occupation

numbers for the metallic and the superconducting state, as
can be seen in Figure S7. For a fixed critical temperature, it
can be seen that the occupancies of the normal state deviate
from the step function as the temperature increases, soften-
ing the transition around the Fermi energy, as expected. On
the other hand, the superconducting occupation numbers do
not suffer great alterations with the temperature.

For the highest critical temperature, Tc = 300 K, Fig. S7
shows that a larger range of occupancies is spanned.

Figure S5. Gap function around the Fermi energy, considering dif-
ferent critical temperatures: Tc = 100 K (left), Tc = 200 K (mid-
dle), and Tc = 300 K (right). In each case, the dependence on the
temperature T is shown by different colored lines.
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Figure S6. Anomalous density as a function of the energy, for three
different critical temperatures: Tc = 100 K (left), Tc = 200 K
(middle), and Tc = 300 K (right). In each case, the dependence on
the temperature T is shown by different colored lines.

Figure S7. Occupation numbers at different energies. In all panels,
that of the normal state at T = 0 K is depicted in black. To the
left, each figure shows the occupation numbers of the normal state
at different temperatures, for a give Tc. To the right, the same is
displayed for the superconducting state.

IV. HIGH-CORRELATION LIMIT

The limit case of highest correlation in the superconduct-
ing state corresponds to when ∆ → ∞ and T → 0. The
first condition can also be reformulated as Tc → ∞. From
the occupations derived in the main text, one can already in-
fer that the occupancies will go to 1 in those places where
∆(ξ) , 0. Taking the very large value of Tc = 5000 K and
a low temperature of T = 10 K, we obtain the occupation
numbers shown in the inset of Figure S9.

Surprisingly, even at this limiting case the profile of the
real-space functions in the symmetric chain in the SC state,
namely the electron density, the KED, and the ELF; seem in-

Figure S8. Anomalous SC density, χ(x), along the hydrogen chain
for the amplified gap (Tc = 5000 K). The atomic positions are
marked by the black circles, with the squared brackets delimiting
the unit cell.

Figure S9. Delocalization indices in the NS at 0 K (black) and at 10
K (blue), and for the SC state at 10 K (red). The dashed lines shows
the best algebraic fit for each curve, and the inset the occupation
numbers of each state, in the same color coding.

distinguishable from those of the normal state. The anoma-
lous density does increase in this limiting case, but its mag-
nitude remains far below that of the electron density, see
Fig. S8.

The analysis of the localization (LI) and delocalization in-
dices (DI),[7, 8] on the other hand, shows a more clear ten-
dency. For the LI, we obtain the values of λNS (T = 0K) =
0.45654, λNS (T = 10K) = 0.45653, and λS C(T = 10K) =
0.45645. Although the differences remain very small, there
seems to be a tendency for higher localization in the super-
conducting state. This is further supported by the higher de-
cay rate of the SC DI, as it becomes clear from Figure S9.
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V. CALCULATION DETAILS

We have carried out the calculations for the ELF and DOS
of these systems using DFT within the Kohn-Sham frame-
work and the Plane-Waves Pseudo Potentials method as im-
plemented in Quantum ESPRESSO [9, 10]. We chose the
PBE scheme for the exchange-correlation functional [11],
including scalar relativistic effects. Binary compounds were
taken from our previous contribution, Ref. [4]. Ternary com-
pounds were taking from autrui (see Table I in S.I. and ref-
erences therein) and cutoffs were set to 80 Ry and 800 Ry
for the wavefunction and density energy cut-offs, respec-
tively. The Brillouin Zone was sampled with an unshifted
12x12x12 regular grid.

VI. MACHINE LEARNED MODEL

The new fits to estimate Tc have been obtained using Sym-
bolic Regression, as implemented by PySR [12]. We have
chosen four input quantities to be considered to compute Tc,
for binary and ternary systems: ϕ, H f , HDOS , and 1 − ∆ϕ,
where ∆ϕ = ϕ∗ − ϕ, as they have all shown to be high in
high-critical temperature compounds. The output expres-
sions have different accuracy and complexity, the latter be-
ing a measure of how many nested operators are present.
Eligible unary operators were x2, x3,

√
x, and 3

√
x; while

only multiplication was allowed as a binary operator. In ev-
ery case, the models were trained for 200 iterations, and the
dataset was divided training and test sets, corresponding to
2/3 and 1/3 of the systems, respectively. The results in the
test set for the best two fits, SR1 and SR2, are displayed in
Figure S10. The performance of both of them can be as-
sessed by the MAE in the test set, which is ca. 36-38K (see
Table S1). This value goes up to nearly 50K for systems
with Tc ≥ 77K, where errors are expected to raise due to the
lower amount of systems in the dataset living in that high-Tc
region.

One thing that can be done to avoid this problem, is to fil-
ter the data to include a similar amount of high and low-Tc
systems. Instead of doing it in a random way, we have cho-
sen to filter keeping only the systems with ϕ∗ ∈ [0.45, 0.8],
which correspond to the bonding families that interest us.
We thus trained a model using this data and the magnitudes
ϕ, H f , and HDOS ; and keeping the same method and param-
eters for the training. The overall errors in the two best fits,
SR3 and SR4, are of 48.0 and 35.9 K, the latter being much
suitable for the estimation of Tc. However, in both cases
the MAEs are more consistent with those in high-Tc regions,
compared to SR1 and SR2 (see Table S1).

VII. FIGURES AND TABLES

Figure S10. Reference (label) Tc (K) values with respect to its pre-
dicted values in the training (left) and test (right) sets, according
to the two fits: SR1 (top) and SR2 (bottom); as obtained with the
input quantities 1 − ∆ϕ, H f , anf HDOS .

Figure S11. Reference (label) Tc (K) values with respect to its pre-
dicted values in the training (left) and test (right) sets, according
to the two fits: SR3 (top) and SR4 (bottom); as obtained with a
smaller dataset containint only systems where ϕ∗ ∈ [0.45, 0.8], and
using the input quantities ϕ, H f , anf HDOS .
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Table S1. Mean absolute errors (MAEs) in the train and test sets using the three different approximations for the estimation of Tc presented
in this work. The errors estimating reference Tc’s above 77 K are labeled as MAE≥77K .

Tc approx. MAE train (K) MAE test (K) MAE≥77K train (K) MAE≥77K test (K)
SR1 34.7 37.7 50.3 50.9
SR2 31.9 36.4 41.9 47.7
SR3 47.1 48.0 44.1 54.2
SR4 36.7 35.9 38.9 42.5

Table S2. List of X-RE-H systems (X is s-block element, RE is rare earth) in the dataset, including their chemical formula, pressure (GPa),
space group, and superconducting critical temperature Tc(K), networking value ϕ, HDOS , bonding type, and reference from where it was
taken. The systems classified as Ionic and Molecular with an asterisk use a different definition to that of Belli et al. (2021).

Chem. formula Pressure (GPa) Space group Tc (K) ϕ HDOS Bonding type Ref.
LiScH10 300 R3̄m 52 0.30 0.28044 Molecular [13]
Li2ScH20 300 Immm 242 0.36 0.74533 Molecular [13]
Li2ScH16 300 Fd3̄m 262 0.63 0.6838 Weak H-H [13]
Li2ScH16 230 Fd3̄m 281 0.63 0.68616 Weak H-H [13]
Li2ScH17 300 Fd3̄m 94 0.57 0.59984 Molecular∗ [13]
Li2LaH17 300 Fd3̄m 118 0.50 0.67135 Weak H-H [13]
Li2YH16 300 Fd3̄m 251 0.59 0.76919 Weak H-H [13]
Li2YH17 300 Fd3̄m 64 0.55 0.79807 Molecular∗ [13]
CaYH20 600 P4/mmm 250 0.62 0.81869 Weak H-H [14]
Ca2YH18 200 P3̄m1 217 0.59 0.75185 Weak H-H [14]
Ca3YH24 200 Fm3̄m 225 0.58 0.80000 Weak H-H [14]
CaY3H24 200 Fm3̄m 252 0.55 0.55800 Weak H-H [14]
CaScH2 250 Fm3̄m 31 0.19 0.0237 Ionic [15]
CaScH4 200 P6/mmm 2 0.17 0.0978 Ionic∗ [15]
CaScH6 200 P4/mmm 57 0.36 0.60139 Ionic∗ [15]
CaScH8 200 P4/mmm 212 0.42 0.5569 Weak H-H [15]
CaScH12 160 Pm3̄m 175 0.55 0.48617 Weak H-H [15]
BeLaH8 50 Fm3̄m 191 0.29 0.66781 Weak H-H [16]
BeYH8 100 Fm3̄m 249 0.12 0.69714 Weak H-H [16]
BeCeH8 30 Fm3̄m 201 0.29 0.77857 Weak H-H [17]
BeThH7 20 P6/mmc 70 0.28 0.50172 Ionic [17]
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Figure S12. Evolution of the topological descriptors ϕ and ϕ∗

with respect to the intramolecular distance (left) and the band gap
(right).

Figure S13. Reference critical temperature Tc (K) with respect to
the molecularity index ϕ∗ (left), and to the different between that
and the networking value, ∆ϕ = ϕ∗ − ϕ (center), for all binary and
ternary data.
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