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A B S T R A C T   

In comparison to wind farms, the relative scarcity of actual operational data from wave power plants has 
contributed to a significant research gap in the areas of wave farm forecasting and cost reduction. In this context, 
this manuscript presents a new Machine Learning-based Power Take-Off (PTO) diagnosis for wave energy 
generation farms which has the potential to serve as an extensive reference for other wave energy farms and offer 
substantial benefits to both investors and policymakers involved in the advancement of the emerging wave 
technologies. The suggested method has been employed at the Mutriku Wave Power Plant (WWP) to facilitate the 
implementation of predictive maintenance strategies and reduce the Levelized Cost of Energy (LCoE). Hence, the 
research study considers two main extraction methods, namely, Principal Component Analysis (PCA) and Linear 
Discriminant Analysis (LDA), used to select the most relevant features for OWC diagnosis. In addition, two 
classification methods have been considered: Support Vector Machine (SVM) and Multi-Layer Perceptron (MLP) 
Artificial Neural Network (ANN). The obtained data show that, although both methods allow to achieve an 
effective performance with an excellent degree of accuracy, the ANN-based method presents better results with 
98% accuracy against 81% for the SVM when using PCA extraction method. Then, the developed classification- 
based OWC diagnosis has been used for the development of a predictive maintenance strategy at the Mutriku 
WPP, analyzing its impact on the economic indicators. The results indicate that, using the proposed predictive 
maintenance strategy, the OpEx may be decreased down to 17%, downtime may be decreased down to 55% and 
plant availability may be better up to 95%, leading to a 5% LCoE reduction.   

1. Introduction 

In pursuit of achieving climate neutrality by 2050, the European 
Union (EU) has heightened its climate objectives for the year 2030. To 
fulfill this commitment, the EU is placing a strong emphasis on 
expanding energy generation both at ocean and from the ocean. In the 
context of marine energy, the EU has outlined ambitious economic ob-
jectives for marine energy technologies in the European Strategic Energy 
Technology Plan (SET-Plan) in both wave and tidal energies (European 
Commission-SET Plan Secretariat, 2016). These objectives aim to 
decrease the LCoE in tidal stream generators to a minimum of 150 
€/MWh by 2025 and 100 €/MWh by 2030, whereas in wave energy to a 
minimum of 200 €/MWh by 2025 and 150 €/MWh by 2030. 

Furthermore, additional climate goals have been established in the 
Offshore Renewable Energy Strategy, unveiled by the European Com-
mission (EC) in November 2020 (European Commission, 2020a). The 
EU’s goals for 2030 include the installation of 60 GW of offshore wind 
energy capacity and 1 GW of marine energy capacity encompassing 
wave and tidal energy. Looking ahead to 2050, the objectives become 
even more ambitious, with plans to install 300 GW of offshore wind 
energy and 40 GW of wave and tidal energies. 

The EU’s commitment to its goals has significantly propelled the 
advancement of tidal and wave technologies. Notably, the LCoE for tidal 
stream energy has been reduced by over 40% in the past three years 
alone, according to the EC’s Joint Research Centre (Magagna and Tac-
coni, 2019). Tidal stream energy is currently approaching the threshold 
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of industrial deployment, exemplified by the EnFAIT project managed 
by Nova Innovation, which has deployed an array of three turbines. The 
array’s capacity is set to be doubled, increasing from 300 kW to 600 kW, 
and it has already supplied power to the grid for over 24,000 h (ETIP 
Ocean, 2019; Nova). France achieved a significant milestone by con-
necting Sabella’s D10 turbine, marking its first tidal turbine to be inte-
grated into the national electricity network (Sabella). Orbital Marine 
Power’s floating 2 MW turbine successfully accomplished one year of 
continuous operation within the FloTEC project, generating over 3.3 
GW h of electric energy. This real-world conditions test validated the 
technology, the investigated Operational and Maintenance (O&M) costs, 
and the demonstrated value to the potential market (IEA-OES, 2018). 
Improvement of blade survivability and performance tests are being 
carried out using Magallanes Renovables’ tidal turbine in emulated 
harsh conditions within the NEMMO project, which aims to improve 
performance and reliability (European Commission, 2019a). In addition, 
revolutionary PTO designs are being tested at sea on a full-scale and 
small-scale basis as part of the TiPA project (European Commission, 
2017) and PowerKite project (European Commission, 2019b). The TiPA 
project is testing a direct drive turbine that does not require a gearbox 
(TiPA). While a 500 kW device was deployed off the coast of North 
Wales as part of the PowerKite project. On the other side, Wave Energy 
Converter (WEC) designers are presently focusing on enhancing the 
performance of their systems via design changes. Consequently, it will 
permit the technique to be demonstrated at a higher Technology 
Readiness Level (TRL) and then commercialized (Magagna, 2020). The 
WaveBoost project created and tested a novel Power Take-Off technol-
ogy that increased the reliability and performance of CorPower Ocean’s 
point-absorber buoy (European Commission, 2020b). Further Power 
Take-Off design innovations maybe seen in the EMERGE project and 
IMAGINE project (Wave Energy Scotland) (European Commission, 
2018) with the re-adaptation of aerospace technology for new PTOs. The 
EMERGE project has created an original ballscrew-based PTO which 
reached TRL7. The Electromechanical Generator PTO of Umbra has 
been integrated in a real-sea scale testing of the EEL Energy tidal device 
(Umbra Cuscinette, 2017). The wave power plant of Mutriku has vali-
dated and de-risked innovative wave energy developments and 
improved TRL. First, OceanTEC tested its Wells turbine, as part of the 
pre-commercial public procurement launched by EVE that enabled the 
installation of Marmok-A-5 in open-sea operating conditions at BiMEP 
since December 2016 and sharing the resulting data (European Com-
mission, 2019c). And in 2017 the OPERA project tested the biradial 
impulse turbine of Kymaner in one of the chambers (Magagna, 2019). 
Later in 2018, the Wells turbine in Marmok-A-5 has been replaced by the 
tested biradial turbine. Wedge Global is coordinating the SEA-TITAN 
project, which has been engaged in the design, construction, experi-
mentation, and validation of an innovative second-generation Direct 
Drive PTO. This advanced system aims to optimize energy production 
while safeguarding equipment in challenging environmental circum-
stances. (European Commission SEA-TITAN, 2019). The TRL of Wave 
technology is currently considered at 7. Only onshore devices, such as 
the multiple OWC Mutriku WPP in the Basque Country, have shown 
consistent power generation and can be classified as TRL 8 (Magagna, 
2019). 

Enhancing availability, capacity factor, and Annual Energy Produc-
tion (AEP) is another way for reducing LCoE. This can be accomplished 
by implementing effective monitoring and maintenance strategies to 
ensure optimal system performance. Maintenance plays a critical role in 
minimizing downtime throughout the plant’s lifespan, ultimately 
resulting in improved availability, power production, capacity factor, 
and AEP. Therefore, decreasing O&M expenses is an efficient way for 
decreasing the Levelized Cost of Energy (Ren et al., 2021). 

A power plant’s daily operations require an effective and reliable 
maintenance strategy. The maintenance staff should visit the plant 
regularly to help avoid failures. Needless regular maintenance visits, on 
the one hand, are sometimes unproductive and expensive due to the 

considerable need for maintenance technician and equipment. A 
reduced maintenance visit frequency, on the other hand, may cause 
higher failure rate and, as a consequence, longer downtime. Therefore, 
scheduling the adequate maintenance frequency and implementing the 
best maintenance strategy have a significant impact on the plant’s 
productivity. The implementation of an optimal maintenance system 
can lead to 11%–18% reduction in O&M costs (Zhu et al., 2019). 

Maintenance approaches are typically classified into reactive, pro-
active, and opportunistic categories, depending on when maintenance 
activities are conducted. The reactive maintenance, also known as 
corrective maintenance, involves performing maintenance only after a 
failure has occurred. This approach is suitable for situations where 
downtime-related maintenances are minimal, enabling high availabil-
ity. Thus, the reactive strategy is effective when used in relatively little 
farms with high reliability (Karyotakis and Bucknall, 2010). Conversely, 
the proactive maintenance focuses on scheduled inspections and re-
placements before failures happen. By addressing small faults before 
they escalate into major failures, this approach aims to prevent disrup-
tions. Various maintenance methods maybe classified as proactive 
strategy, including preventive, condition-based, and predictive mainte-
nance (Jiang, 2011). The opportunistic approach involves the integra-
tion of planned preventive and corrective actions with unplanned 
preventive tasks aimed at addressing potential issues with deteriorating 
components in the future. This strategy encompasses a mix of planned 
and unplanned actions to optimize maintenance operations (Thomas 
et al., 2008). 

In both onshore and offshore power plants, a proactive maintenance 
strategy is highly recommended, which involves gathering time-based 
and sensor-based data to design and employ an appropriate mainte-
nance plan (Yeter et al., 2020; Tomás-Rodríguez and Santos, 2019). 
However, dealing with the vast quantity of information collected and 
the multitude of variables measured can pose challenges in data pro-
cessing. To address this, feature extraction techniques are employed to 
reduce redundant information and the dimensionality of the data across 
various fields (Sklansky, 1978; Boonyakitanont et al., 2020; Peng et al., 
2002). One commonly used feature extraction algorithm is Principal 
Component Analysis (PCA), a multivariate statistical method designed 
to reduce the dimensionality of a problem for effective data analysis 
(Abdi and Williams, 2010). PCA examines data from multiple observa-
tions described by dependent and inter-correlated variables. The goal is 
to extract vital information from the data and transform it into a 
collection of distinct orthogonal variables referred to as principal com-
ponents (Hasan and Abdulazeez, 2021). Other renowned feature 
extraction technique is the Linear Discriminant Analysis (LDA) (Izen-
man, 2013). LDA aims to find a projection hyperplane that minimizes 
the variance between different classes and maximizes the distance be-
tween the projected means of the classes. The objectives of both methods 
can be achieved by solving the eigenvalue problem, where the corre-
sponding eigenvectors define the relevant hyperplane (Wen et al., 
2018). 

In order to use the extracted data to monitor the health of the plant 
and identify possible failures, recognizing failure patterns in the data is 
sought. Therefore, many works studied the development of classification 
models (Kiang, 2003; Liu et al., 2006; Verma and Tiwary, 2014). These 
would include the nonparametric kth-Nearest Neighbor method which 
employs “feature similarity” to estimate the values of new data points 
that will be assigned a value based on how close it matches the points in 
the training set (Wong and Lane, 1983). The logistic models, which 
describe data and explain the correlation between one dependent binary 
variable and nominal independent variables (Cox, 2018). The decision 
tree (C4.5) that makes use of a splitting technique that recursively di-
vides a set of instances into scattered subsets (Quinlan, 2014). Also, the 
Multivariate Discriminant Analysis which creates a discriminant func-
tion by maximizing the ratio of “between groups” variance and “within 
groups” variance (Fisher, 1936). 

Support Vector Machine (SVM) is a well-established machine 
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learning technique specifically designed to addressing classification 
problems with large datasets (Suthaharan and Suthaharan, 2016). Its 
applicability is particularly prominent in multi-domain scenarios within 
a big data environment. However, it’s important to note that SVM in-
volves complex mathematical computations and can be computationally 
demanding (Pisner and Schnyer, 2020). Nonetheless, SVM demonstrates 
strong generalization capability, allowing it to achieve high accuracy in 
classifying machine conditions and diagnosing faults (Widodo and Yang, 
2007; Lee, 2021). However, Artificial Neural Networks (ANN) proved to 
be a potential classification method when it comes to big data classifi-
cation and pattern recognition problems (Holyoak, 1987; Sierra-García 
and Santos, 2021). It has the ability of performing non-linear analysis in 
complex forecasting applications (Kumar et al., 2011; Yang et al., 2022). 
A comparative study between SVM and ANN has been performed in 
(Ahmad et al., 2014) and results showed that both classification 
methods are competitive in terms of performance and accuracy. 
Therefore, the choice is made based on the nature of application, type of 
data and desired objectives. 

In this work, a classification-based diagnosis method for cost 
reduction in wave power plant farms using experimental data has been 
proposed to deal with maintenance problems in a in order to reduce the 
economic costs of energy production. The suggested approach is tested 
on the case of Mutriku WPP where the Oscillating Water Columns of the 
plant suffer from unwanted vibrations. These vibrations if left untreated 
will lead to undesired failures and breakages. The research work first 
employs two feature extraction techniques, namely PCA and LDA to 
select the relevant data to be used for the classifiers. Then two classifi-
cation methods are studied namely the SVM and ANN classification 
techniques to compare their accuracy. Based on the proposed diagnosis 
strategy, the economic costs of the energy production are computed to 
study the impact of the strategy in costs reduction in wave energy power 
plants. It is important to note that, as of July 2023, there has been a 
notable lack of research dedicated to wave power plant prognosis and 
cost reduction. Consequently, this real-world case study has the poten-
tial to serve as an extensive reference for other wave energy farms, of-
fering substantial benefits to both investors and policymakers involved 
in the advancement of these emerging renewable technologies. 

The rest of the paper has been organized as follows: Section 2 pre-
sents the problem of the selected study case as the PTO vibration in 
OWCs in the WPP of Mutriku, Spain. Section 3 presents the methods 
used for data processing and feature extraction using PCA and LDA. 
Section 4 presents the Machine Learning-based oscillating water column 
diagnosis developed to predict the health status of the OWC units based 
on two classification methods SVM and ANN. Section 5 explains the 
economic assumptions and indicators used to evaluate the operation of 
the considered plant. Section 6 introduces the obtained results of the 
trained classification models performance and accuracy and the eco-
nomic improvement of AEP, OpEx and LCoE reduction. Finally, Section 
7 finishes the article with some concluding remarks. 

2. Problem statement 

In July 2011, the Mutriku wave power plant, located in the Bizkaia, 
Spain, was officially commissioned by the Basque Energy Agency (Ente 
Vasco de la Energía - EVE). The establishment of this facility was made 
possible through the support of the 6th Framework Program of the EC 
(specifically, the Nereida MOWC project) and the Basque Government 
(Torre-Enciso et al., 2009). The plant itself is situated onshore and is 
integrated into the harbor’s breakwater, as depicted in Fig. 1. As of 
2019, the Mutriku WPP became part of the Basque marine energy test 
center BiMEP (Biscay Marine Energy Platform). By July 2022, the WPP 
completed 11 years of operation during which it supplied over 2.7 GW h 
of energy to the grid. 

The plant consists of 16 OWC to generate electricity from wave en-
ergy. All 16 OWC units are equipped with a Wells turbine coupled to an 
electric generator of 18.5 kW rated power bring up the total installed 
capacity to 296 kW. All capture chambers are identical in shape and size 
with 4.5m in length, 3.1m width and 9.7m height above MLWS (Mean 
Low Water Springs) level as shown in Fig. 2. The PTO system consists of 
two co-rotating monoplane Wells turbines coupled to induction gener-
ator with squirrel-cage rotor of 18.5 kW. The generator uses a voltage of 
460V and has a rated speed of 3000 rpm. 

Over the past decade of its operation, the Mutriku WPP has 
encountered various instances of degradation and component failures. 
The details of these events are provided in the subsequent subsection. 

2.1. Operating in harsh environment 

The harsh conditions at the coast of Mutriku, due to the exposure to a 
saline environment and elevated levels of humidity, contribute to the 
fatigue of several components, which affects the performance of the 
OWC and leads to failure of the power system. In fact, the continuous 
contact with saline corrodes many parts along with strong oscillatory 
forces that OWCs are exposed to will subsequently lead to deterioration 
or breakage (Lekube et al., 2018a). Moreover, the air turbine used in the 
PTOs is of the Wells turbine type. This type of turbine is known to exhibit 
a stalling behavior once a strong wave enters the capture chamber 
producing a high airflow speed but the generator cannot increase its 
speed swiftly hence slowing the turbine (Fs et al., 2017; M’zoughi et al., 
2020a). Hence, during the stalling phenomenon, the blades are subject 
to high airflow speed, which increases the vibration. 

Table 1 illustrates some examples of failures and breakage in OWC 
system (Lekube et al., 2018a). 

2.2. OWC vibration issues 

All the aforementioned damages, which might arise in any OWC 
system they consequently, lead to increase in the vibration. 

The turbine T03 was reported to suffer from bearing problem. The 
bearing problem is related to lack of lubrication, which lead to friction- 
induced overheat that causes expansion of the bearing ring. Also, 
exposure to the low and high temperature during winter and summer 

Fig. 1. The breakwater and the Mutriku wave power plant from above.  
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Fig. 2. The Multiple Oscillating Water Columns of Mutriku Wave Power Plant. (a) Front view of the Capture chambers. (b) Power Take- Off room above the 
capture chambers. 

Table 1 
Types of failure and problems occurred on OWCs in Mutriku WPP. 
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changes the lubricant viscosity leading to extra strain on the bearing 
balls when the lubricant is cold and thick or leading to friction when the 
lubricant leaks out because it is hot and thin. Another recurrent cause of 
bearing problems is contamination, which occurs after particles enter 
the bearing raceway and get pressed between it and the balls. As they 
keep rolling over the particles, craters are created leading to excessive 
heat generation and vibration. 

The turbine T06 was reported to suffer from resonance problem. The 
resonance issue occurs when the oscillating force imposed on the PTO 
system reaches one of its natural frequencies causing an excess in vi-
bration. An example of this behavior can be seen in the PTO’s vibration 
velocity versus the rotational speed illustrated in Fig. 3. 

The turbine T07 was reported to suffer from unbalance problem. 
Unbalance issue is related to loss of symmetry due to unequal distribu-
tion of mass caused by salt accumulation on some blades of the Wells 
turbine or corrosion. This unbalance lead the mass axis to differ from the 
bearing axis. The uneven mass, combined with the radial acceleration 
produced by rotation, produces a centrifugal force during rotation. This 
imposes force on the bearings and/or bearing vibration. 

Figs. 4–6 show the collected data of vibration in turbines T03, T06 
and T07 recorded for 24 h on 15/09/2021 in Mutriku WPP. 

As depicted in the preceding figures, the vibrations observed can 
surpass 20 mm/s. If these unwanted vibrations are not addressed, they 
have the potential to adversely impact the performance of the OWC 
system and potentially contribute to degradation and component 
breakage. In Figs. 5 and 6, there is a noticeable abrupt cessation of vi-
brations between the 2.5 and 3.3 time intervals. This cessation is a result 
of a system shutdown, initiated to prevent further vibrations and po-
tential damage. These planned shutdowns of the system can sometimes 
extend for several hours, resulting in production losses. 

2.3. OWC maintenance 

Preventive maintenance is performed on a regular basis at Mutriku 
WPP to prevent failures or breakages. Regular maintenance is carried 
out on a monthly or annual basis, based on the amount of wear on each 
part, including mechanical, electrical and control equipment, and server 
checking. A visual inspection of the plant is done during scheduled 
monthly maintenance. Several components are subject to revision, 
including sensors, emergency stop switches, fasteners, the generator 
terminal box, cables and its trays, fresh water piping, sprinklers, and 
damper actuators. Furthermore, a comprehensive inspection is con-
ducted to detect any indications of corrosion. Additionally, the cooling 
fan in the power converter room undergoes thorough examination. 
(Lekube et al., 2018a). 

At present, the operation and maintenance responsibilities for the 
plant lie with BiMEP. Fortunately, accessibility is not a concern for the 
Mutriku WPP. However, for remote or offshore installations, mainte-
nance operations become crucial. The occurrence of frequent unpre-
dictable failures can lead to production losses resulting from 
unavailability. As a result, strategically planned predictive and pre-
ventive maintenance measures are highly valued in such cases. 

3. Methodology 

In order to investigate and propose an efficient approach for the 
preventive maintenance of OWCs, it is crucial to analyze the data 
gathered from Mutriku, as illustrated in Fig. 7. 

Examining and analyzing the recorded vibration velocity across 
various months and weather conditions can aid in the identification and 
diagnosis of potential problems and faults within the OWC system. Fig. 7 
illustrates the block diagram representing the adopted methodology for 
diagnosing the specific type of failure in the OWC unit. This diagnostic 
process facilitates the scheduling of future maintenance activities, 
thereby minimizing operational expenses. 

3.1. Data collection 

As a research facility of BiMEP, the Mutriku WPP has implemented a 
range of sensors to enable the gathering of crucial data. These sensors 
capture various parameters, including pressure in the capture chamber, 
pressure drop, generated power, voltage, current, and more (refer to 
Fig. 8). 

Data acquisition from the sensors and conversion of analog and 
fieldbus signals are facilitated by the Beckhoff system. To connect the 
Beckhoff system with the Programmable Logic Controller (PLC), the 
Control Techniques’ CTNet network is utilized. This CTNet fieldbus 
operates as a Token Ring network with a capacity of 5 Mbit, enabling 
peer-to-peer communication. Communication between the SCADA sys-
tem and the PLC system occurs through an Object Linking and Embed-
ding (OLE) for Process Control (OPC) server/client configuration 
(Lekube et al., 2018b). 

3.2. Data pre-processing 

The collected data include information about the time and date of 
operation, operation mode, damper position which, in the case of the 
Mutriku OWC, is the valve plate angular position (in degrees), the 
generator rotational speed (in rpm), the pressure (in Pa), the PTO vi-
bration (in mm/s), the generated power (in kW), the voltage (in V) and 
current (in A) as shown in Fig. 9. It’s to be noted that collected data vary 
from one wave farm to another depending on the type of WEC and its 
location. This may include external environmental measurements 
related to wind and waves which may be very helpful to implement 
prognosis and diagnosis strategies for cost reduction. However, in the 
study case of Mutriku WPP, the WEC are fixed OWCs hence the wind 
conditions would have no effects on the structure’s stability. As for the 
wave conditions, the wave elevation within the fixed capture chamber is 
transformed to oscillating airflow and pressure hence the pressure data 
is sufficient to establish the relationship. 

To prevent biases in the data, such as missing or out-of-range values, 
inaccurate data readings with aberrant values are first deleted. In 
addition, Inter-Quartile Range (IQR) is used to remove data outliers 
(Vinutha et al., 2018). In order to prevent false positives caused by 
particular wave circumstances and to guarantee the persistence of 

Fig. 3. A 24 h measured vibration velocity vs. rotational speed of turbine T06 in Mutriku WPP on 15/09/2021 with resonance problem.  
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anomalous occurrences throughout the course of 5-min intervals, the 
original 10 Hz sampled signals are then down sampled into 5-min av-
erages. Lastly, data binning is used to minimize the effects of small 
observation errors (Davis et al., 2007). 

3.3. Feature extraction 

Feature extraction is a pre-processing technique that helps simplify 
the computation process and reduce the complexity of a dataset. Dealing 
with a large number of features can lead to substantial computational 
and memory burdens during classifier training and classification. In 
high-dimensional data, identifying patterns can be challenging. Hence, 
Principal Components Analysis (PCA) and Linear Discriminant Analysis 
(LDA) are widely employed methods for data analysis, as they aid in 
uncovering meaningful patterns and reducing the dimensionality. 

3.3.1. Principal Components Analysis 
PCA is a technique used to detect patterns within a dataset and 

represent the data in a way that emphasizes their similarities and differ-
ences. It is a mathematical method known as an orthogonal linear trans-
formation, where the data is transformed to a new coordinate system. In 
this new coordinate system, the first coordinate captures the maximum 
variance among all possible projections of the data (Vidal et al., 2016). 

To ensure that the mean of the data is zero, the matrix of data X with 
dimensions (n x m) consisting of no observations of nv variables needs to 
be centered. This involves calculating the mean vector, which is defined 
as: 

μi =
1
no

∑nv

i=1
Xi (1)  

here the Xi are column vectors of the matrix of data X. 
To center the data matrix, the mean vectors are subtracted from all 

column vectors, resulting in: 

Х=
[
(X1 − μ1),⋯(Xi − μi),⋯

(
Xnv − μnv

)]
(2) 

The correlation between features is determined by the covariance of 
data matrix X as: 

Σ=
1
nv

∑nv

i=1
(Xi − μi)(Xi − μi)

T
=

1
nv
ХХT (3) 

The eigenvalues and eigenvectors are computed by solving the 
equation X XT as (Izenman, 2013; Vinutha et al., 2018): 

Σ=VΛV − 1 = VΛVT (4)  

in this equation, V represents a unitary matrix consisting of the 

Fig. 4. A 24 h measured vibration velocity of turbine T03 with bearing problem in Mutriku WPP on 15/09/2021.  

Fig. 5. A 24 h measured vibration velocity of turbine T06 with resonance problem in Mutriku WPP on 15/09/2021.  

Fig. 6. A 24 h measured vibration velocity of turbine T07 with unbalance problem in Mutriku WPP on 15/09/2021.  
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eigenvectors vi, while Λ represents a diagonal matrix that contains the 
corresponding eigenvalues λi. 

To organize the principal components (PCs) in a meaningful way, the 
eigenvalues λi are used to sort them in descending order, resulting in the 

rearranged matrix Λa. Simultaneously, the eigenvectors are reordered 
accordingly, leading to the matrix Va (Vidal et al., 2016). The cumula-
tive energy content for each eigenvector can then be computed from Λa 
using the following expression: 

gi =
∑i

k=1
Λakk (i= 1, ..., nv) (5) 

To determine the number of PCs to be selected, a threshold value θ is 
defined. The selected number of principal components, denoted as S, is 
determined by ensuring that the cumulative energy content of these 
components satisfies the following condition (Abdi and Williams, 2010; 
Izenman, 2013): 

gS
/

gnv
≥ θ (6) 

A feature vector U is constructed by selecting the S eigenvectors from 
the matrix Va that correspond to the highest eigenvalues λi. 

Finally, the original data set X is transformed from its original axes to 
the axes represented by the PCs by means of the feature vector U. This 
transformation is accomplished by multiplying the transpose of the 
vector U by the original data set X, resulting in: 

P=UTХ (7) 

The PCA algorithm is summarized and explained by the pseudo-code 
of Algorithm 1. 

Algorithm 1. PCA  

3.3.2. Linear Discriminant Analysis 
The most often used classical linear technique to reduce 

Fig. 7. Block diagram of the data-based OWC diagnosis for Mutriku wave power plant.  

Fig. 8. Mutriku’s OWC sensors. (a) Chamber pressure sensor. (b) PTO vibra-
tion sensor. 
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dimensionality is LDA. Within the feature-based projection space, LDA 
looks for a transformation matrix W that will optimally increase the ratio 
of the between-class disperse and decrease the within-class disperse 
matrix. 

LDA search for a transformation matrix W, which will maximize the 
ratio of the between-class disperse and will minimize the within-class 
disperse matrix within the feature-based projection space (Yu and 
Yang, 2001). LDA is an approach to obtain the linear sets of character-
istics that best distinguishes between multiple classes of events or 
objects. 

The matrix of within-class distribution SW may be described by (Yu 
and Yang, 2001; Ghassabeh et al., 2015): 

Sw =
∑c

i=1

∑

x∈Ci
(x − mi)(x − mi)

t (8) 

where c represents the number of classes while Ci represents the set 
of data in the ith class, and mi represents the mean of the ith class. It’s to 
be noted that the matrix of within-class distribution is a representation 
of the level of scattering inside classes as the sum of the covariance 
matrices of every class. 

Another relevant parameter is the between-class scatter matrix, 
which maybe defined as (Yu and Yang, 2001; Ghassabeh et al., 2015): 

SB =
∑c

i=1
ni(mi − m)(mi − m)

t (9) 

A criterion function is then defined using SW matrix of the within- 
class scatter and SB matrix of the between-class scatter to obtain the 
transformation matrix W described by (Yu and Yang, 2001; Ghassabeh 
et al., 2015): 

J(W)=
|S̃B|

|S̃W |
=

|WtSBW|

|WtSW W|
(10) 

The transformation matrix W is the one will maximize the criterion 
function J(W). The generalized eigenvectors wi in the columns of the 
optimum transformation matrix W correspond to the biggest eigen-
values in: 

SBWi = λiSW Wi (11) 

LDA seeks to identify a combination of features by effectively 
differentiating between various object classes. If SW is full-rank, W may 
be calculated via the eigenvectors of SW

− 1 SB. 
Both LDA and PCA utilize linear transformations to enhance the 

variance in a reduced dimension. Nonetheless, unlike PCA, LDA focuses 
on identifying linear discriminants that optimize the variance among 
different categories while minimizing the variance within each class. 

The LDA algorithm is summarized and explained by the pseudo-code 
of Algorithm 2. 

Algorithm 2. LDA  

3.3.3. OWC feature extraction for the vibration problem 
The pre-processed datasets are employed to extract features that 

depict the health status of the plants. Conducting a PCA on the OWC data 
from the Mutriku WPP allows us to identify the most significant features 
for our study. The scree plot presented in Fig. 10 illustrates the cumu-
lative variance explained by each additional principal component 
derived from PCA or each discriminant component obtained from LDA. 
Additionally, the blue bars indicate the variance explained by every 
component in percent. 

According to the scree plot depicted in Fig. 10(a), the first principal 

Fig. 9. Collected data of an OWC for turbine T03 on 15/07/2021.  
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component accounts for 39.53% of the variance, whereas the second, 
third, and fourth components explain 23.64%, 22.48%, and 11.09%, 
respectively. Therefore, a total of 4 components is needed to achieve a 
cumulative explained variance of 96.74%. Conversely, based on the 
scree plot in Fig. 10(b), the first discriminant component explains 
40.88% of the variance, whereas the second and third components 
explain 26.43% and 24.78%. In this case, 3 components are required to 
reach a cumulative explained variance of 92.09%. 

According to the LDA the focus should be around the first three 
components, namely the vibration velocity, the rotational speed and the 
pressure features, whereas according to the PCA the focus should be 
around the first four components which correspond to the vibration 
velocity, rotational speed, pressure and generated power features. Since 
the generated power is and output variable of the OWC and doesn’t 
contribute to the variation, only the vibration velocity, the rotational 
speed and the pressure features will be used to design the classifier. 

Fig. 11 displays scatter plots of the first two features obtained from 
data collected at the Mutriku wave power plant on 15/09/2021. The 
scatter plots include measurements from a healthy Wells turbine, as well 
as three turbines exhibiting various defects, namely unbalanced, 
bearing, and resonance problems. 

The relationship between the average vibration and the rotational 
speed of the rotor can be observed from the data shown in Fig. 11. It is 
evident that for each turbine, there are two distinct peaks recorded 
around 1900 rpm and 2900 rpm. In the case of a healthy turbine, the 

vibration typically reaches a maximum of 3 mm/s. However, in the case 
of unhealthy turbines, the vibration levels can exceed 6 mm/s around 
2800 rpm for unbalance problems, 8 mm/s around 2838 rpm for bearing 
problems, and 11 mm/s around 2940 rpm for resonance problems. 

Figs. 12–14 present a scatter plot of the first three features based on 
data collected from the Wells turbine T03 with bearing problem, turbine 
T06 with resonance problem and turbine T07 with unbalance problem at 
the Mutriku WPP on 15/09/2021. The 3D scatter plot clearly demon-
strates that the variation in vibration is influenced not only by the 
rotational speed but also by the pressure. 

From the 3D plots of Figs. 12–14 it is clear that the three turbine 
issues (i.e. bearing, resonance and unbalance) have a distinct pattern. In 
fact, in the case of bearing problem two predominant peaks a small one 
around 1940 and a bigger around 2850. Whereas in the case of bearing 
problem two predominant peaks a small one around 2060 and a bigger 
around 2940. Finally, in the case of unbalance problem two predomi-
nant peaks a small one around 1925 and a bigger around 2815. 

Based on the above results, it has been decided to use the first three 
components contributing to the vibration of the OWC system to design 
the classifier. 

4. Classification-based OWC diagnosis 

A classifier will be developed and trained using the processed data to 
classify the various health statuses of the OWC based on the input 

Fig. 10. Scree plot of cumulative explained variance versus the components. (a) Explained variance obtained from PCA. (b) Explained variance obtained from LDA.  

Fig. 11. 2 features scatter plot of the mean vibration vs. the angular velocity in four turbines in OWCs on 15/09/2021 at Mutriku WPP.  
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features. In this work, two classification methods have been considered 
the SVM and ANN. 

The objective of the suggested Machine Learning-based PTO diag-
nosis is to enhance the efficiency of the maintenance scheduling by using 
predictive maintenance strategy instead of preventive maintenance 
strategy. 

4.1. Multi-Layer Perceptron 

Multi-layer Perceptron (MLP) feedforward networks, which are often 
employed in pattern recognition and classification tasks, are the ANN 
structure selected for this problem (Zhang et al., 1998). The developed 
MLP consists of multiple neurons in the input layer representing the 
features of the plant data such as vibration velocity, rotational speed, 
pressure, etc. and a single neuron in the output layer for the stat of the 
monitored OWC and multiple hidden layer as shown in Fig. 15. While 

Fig. 12. Scatter plot of the relationship between vibration, angular velocity, and pressure in turbine T03 with bearing issues on 15/09/2021 at the Mutriku WPP.  

Fig. 13. Scatter plot of the relationship between vibration, angular velocity, and pressure in turbine T06 with resonance problem on 15/09/2021 at the 
Mutriku WPP. 
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the neurons utilized in the output layer have linear activation function, 
those employed in the hidden layers have hyperbolic tangent activation 
functions. 

The Levenberg-Marquardt Algorithm (LMA), which features both the 
gradient descent and Gauss-Newton approaches, was used to train the 
designed ANN (Hagan and Menhaj, 1994). 

The weights linking the neurons can be updated by the LMA to 
enhance the result. The following update expression may be used to 
accomplish this: 

wji(p+ 1)=wji(p) + Δwji(p) (12)  

Where wji(p+1) represents the updated weight, wji(p) represents the 
present weight and Δwji(p) represents the weight’s correction attained 
by the selected training algorithm. 

LMA has been employed as the learning approach for the network’s 
training (Hagan and Menhaj, 1994; M’zoughi et al., 2020b). LMA was 

created to minimize functions that are summation of squares of 
nonlinear functions and uses Newton’s approach (Wilamowski and Yu, 
2010). The algorithm’s goal is to reduce the performance index by 
updating the ANN weights by (Suratgar et al., 2005): 

ΔW =
[
∇2F(W) + μI

]− 1
∇F(W) (13)  

here W represents the weights vector. F(.), ∇F(.), ∇2F(.) represent 
performance index, gradient and Hessian matrix, respectively, while μ 
and I represent the learning rate and identity matrix. 

The performance index can be explained as follows: 

F(W)=
∑N

j=1
E2

j (W) = ET(W) E(W) (14)  

where E(.) represents the error between the network’s and the desired 
outputs. 

Fig. 14. Scatter plot of the relationship between vibration, angular velocity, and pressure in turbine T07 with unbalance problem on 15/09/2021 at the 
Mutriku WPP. 

Fig. 15. Proposed MLP structure for the PTO fault recognition.  
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The gradient of the performance index may be determined by: 

∇F(W)= 2JT(W) E(W) (15)  

where J(W) represents the Jacobian matrix defined as (Ampazis and 
Perantonis, 2000): 

J(W)=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∂E1(W)

∂W1

∂E1(W)

∂W2
⋯

∂E1(W)

∂Wn

∂E2(W)

∂W1

∂E2(W)

∂W2
⋯

∂E2(W)

∂Wn

⋮ ⋮ ⋱ ⋮
∂EN(W)

∂W1

∂EN(W)

∂W2
⋯

∂EN(W)

∂Wn

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(16)  

where n represents the total of training patterns. 
The Hessian matrix may therefore be explained as: 

∇2F(W)= 2JT(W).J(W) + 2
∑N

j=1
Ej(W).∇2Ej(W) (17)  

In this work, the Mean Squared Error (MSE) has been used as perfor-
mance indicator of the trained network. MSE is one of the metrics 
frequently utilized in prediction applications (M’zoughi et al., 2020b; 
M’zoughi et al., 2020c) and is defined as: 

MSE =
1
n
∑n

i=1
(Yi − Ŷ i)

2 (18)  

here Yi is the target output being the class and Ŷ i is the ANN-predicted 
output by the. 

The Levenberg-Marquardt Algorithm is summarized by the pseudo- 
code of Algorithm 3. 

Algorithm 3. LMA  

Obtained results of training the MLP model are illustrated in Fig. 16. 
The performance is high with the best validation performance at a low 
MSE of 3.16 10-8 obtained at 34 epochs. 

4.2. Support Vector Machine 

A SVM is a discriminative classifier described by a separating hy-
perplane. SVM has been extensively developed and used in pattern 
recognition and classification problems (Suthaharan and Suthaharan, 
2016; Pisner and Schnyer, 2020). SVM is a collection of associated su-
pervised learning techniques. In essence, SVM is a hyperplane classifier. 

SVM is a collection of associated supervised learning techniques. In 
essence, it is a hyperplane classifier. Finding a hyperplane that has the 
biggest margin of separation between the positive training instances and 
the negative training instances is required for training an SVM classifier 
(Awad et al., 2015). SVM’s ability to deal with nonlinearly separable 
data is one of the primary causes for its widespread use. Given training 
samples are shown as pairs (xi, yi), here xi represents the vector of 
weighted features of the training sample and yi ϵ{1, − 1} represents the 
label of the sample. For data that can be separated linearly, we may 
identify a hyperplane f(x) = 0, which splits them as: 

f (x)=
∑n

i=1
wixi + b = 0 (19)  

here w represents a n-dimensional vector and b represents a scalar. Both 
w and b define the location of the separating hyperplane. 

For each i either: 
{

w.xi − b > 1 for xi of the first class.
w.xi − b ≤ 1 for xi of the second class. (20) 

The hyperplane that offers the largest margin is called the separating 
hyperplane. The ideal hyperplane may be achieved by solving problem 
(21), taking into account the noise with slack variables ξi and error 
penalty Ep: 

min
w,b,ξ

P(w, b, ξ)=
1
2

〈w.w〉 +
Ep

2
∑n

i=1
ξ2

i (21)  

here ξi is the distance between the margin and example xi lying on the 
wrong side of the margin. 

The complexity of the computations can be reduced by transforming 
the problem involving Kuhn-Tucker conditions into an equivalent 
Lagrange dual problem. 

V(α)=
∑l

i=1
αi −

1
2
∑l

i.j=1
αiαjyiyjK

(
xi.xj

)
(22)  

subject to 

∑l

i=1
yiαi = 0,C ≥ α ≥ 0, i = 1, 2, ..., l (23) 

The function K(xi.xj) is known as the kernel function, which returns a 
dot product of the original data points’ feature space mappings. The dual 
problem consists of the same number of variables as the training data. 
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The Karush-Kuhn-Tucker theorem states that the associated should not 
be 0, in order for the training input-output pair (xi. yi), to satisfy the 
equality criterion (Ghosh et al., 2019). In this case, the training instance 
xi is a Support Vector (SV). The number of SVs is considerably lower than 
the number of training samples making SVM computationally very 
efficient. SVM is extremely computationally effective since the number 
of SVs is much smaller than the number of training instances. For the 
classification problem, SVM is an efficient classifier. 

The SVM algorithm is summarized by the pseudo-code of Algorithm 
4. 

Algorithm 4. SVM  

Obtained results of training the SVM model are illustrated in Fig. 17. 
The performance is high with the best validation performance at a MSE 
of 3.9757 10-6 obtained at 56 epochs. 

4.3. Classification-based OWC health diagnosis 

The developed MLP consists of three neurons in the input layer 
representing the vibration speed, the rotational speed and the pressure 
and a single neuron in the output layer for the state of the monitored 
OWC and multiple hidden layer as shown in Fig. 15. 

The accuracy of the predicted output is proven by the perfect 
regression curves (R = 1) shown in Fig. 18(a) and very low errors from 
the Error Histogram of Fig. 18(b). 

Fig. 19(a) demonstrates a minimal level of confusion between clas-
ses, as the accuracy of correct predictions is 98% and the rate of incor-
rect predictions is only 2%. The Receiver Operating Characteristic 
(ROC) in Fig. 19(b) illustrates the outstanding performance of the ANN 

classifier, with an Area Under Curve (AUC) of 0.98. 
Same as the ANN classifier model, the SVM model has been trained 

with the 3 main features extracted and with 4 classes. The training of the 
SVM using the OWC processed data has provided the results of Fig. 20. 

In Fig. 20(a), it can be observed that the level of confusion between 
classes is low. The accuracy of correct predictions between classes is 
89%, while the rate of incorrect predictions is 11%. The ROC plot 
depicted in Fig. 20(b) demonstrates that the SVM classifier exhibits a 
commendable performance, with an AUC of 0.98. 

5. Techno-economic assessment 

The techno-economic assessment of a wave energy plant may be 
achieved by calculating the economic indicators. This may be achieved 
by using two computational models namely the Operational and Main-
tenance (O&M) model and the Cost model as shown in Fig. 21. Both 
models use Input data from the wave energy conversion plant. 

The O&M model outputs are utilized to minimize the reliance on 
assumptions regarding the inputs for the Cost model. The Annual Energy 
Production (AEP) and OpEx values, computed using the O&M model, are 
incorporated into the cost model to calculate metrics such as LCoE and 
other economic indicators. 

5.1. Economic assumptions 

Some presumptions are established in the early phases of the concept 
creation in order to do an economic assessment. The project’s pre-
liminary CAPEX and OPEX figures can be obtained by reverse calcula-
tions. The following parameters require specific values to be assumed in 
order to complete the reverse computation: 

Fig. 16. Training performance of the ANN Model.  

F. M’zoughi et al.                                                                                                                                                                                                                               



Ocean Engineering 293 (2024) 116619

14

Discount rate, or r, is often considered to remain constant during 
the course of the project. The discounted cash flow analysis uses the 
discount rate to determine the present value of future cash flows. It is the 
rate of return that investors could expect from an investment of 

equivalent risk. Hence, it depends on the investor’s risk perception and 
willingness to invest. While the discount rate r for mature technologies 
(e.g. carbon, wind …) is about 5–10%, for new technologies (e.g. wave, 
tidal …) it is approximately 12–18% (Pecher and Kofoed, 2017). 

Fig. 17. Training performance of the SVM Model.  

Fig. 18. Accuracy of the ANN classifier. (a) Regression curves plot. (b) Error Histogram plot.  

Fig. 19. Classification performance of the ANN classifier. (a) Confusion plot. (b) ROC plot.  
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Therefore, a 15% discount rate is assumed appropriate for the multiple 
oscillating water column plant of Mutriku since tidal technologies are 
more mature. 

Project lifetime, or n, is the estimated life span of an established 
project. 20–25 years are typical lifespans associated to maritime 
renewable energy projects (Paredes et al., 2019; Têtu and Fernandez 
Chozas, 2021). A lifetime of the wave power plant project in Mutriku has 
been set to n = 20. 

Availability factor, or a%, represents the total time of a producing 
power plant (uptime) by the total time of a producing plant and total 
time of non-producing plant (downtime) as: 

a%=
uptime

uptime + downtime
× 100 (24)  

5.2. Economic indicators 

The capacity factor (Cf) is a key metric for describing the mean load 
of any power facility (Izquierdo et al., 2010; Ibarra-Berastegi et al., 
2018). Cf may be described as the output energy of the plant over the 
maximum energy capacity. Hence, the annual Cf may be calculated as 
the power output during a year over the maximum power capacity by a 
year as: 

Cf =
Annual Average Power
Rated Power Capacity

=
Annual Energy Production (AEP)

24 × 365 × TOWC × PRated
(25)  

where PRated is the rated power of one OWC unit (in kW) and TOWC is 
the total number of operating OWC in the farm. 

Cf can be calculated on a monthly or seasonal basis but since it is low 
during the summer and high during the winter, an annual value would 
be more appropriate. 

The present value (PV) is the value of an expected income stream 
determined over the lifetime of the project. The present value of a future 
cash flow X can be calculated as: 

PV(X)=
∑n

t=0

Xt

(1 + r)n (26) 

The Levelized Cost of Energy (LCoE) is an economic indicator of the 
total cost of constructing and operating a power plant over its lifetime 
divided by the total power produced during that lifetime (Bruck et al., 
2018). LCoE is a useful metric that allows the comparison of the 
competitiveness between different projects, energy sources and different 
technologies: 

LCoE =
PV(CapEx + OpEx)

PV(AEP)
=

∑n

t=0

(CapExt+OpExt)
(1+r)n

∑n

t=0

AEPt
(1+r)n

(27)  

5.2.1. CapEx breakdown 
For a wave energy project, all of the expenses connected with project 

development, deployment, and commissioning up to the start of the 

Fig. 20. Classification performance of the SVM classifier. (a) Confusion plot. (b) ROC plot.  

Fig. 21. Relationship between the input data, O&M costs and energy costs.  
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wave farm’s operation may be summed up as Capital Expenditure 
(CapEx). Decommissioning is also a part of CapEx after a project is 
finished. A. Têtu et al. provide comprehensive assessment of the litera-
ture on CapEx expenses in (Têtu and Fernandez Chozas, 2020).Costs 
found in this class consist of expenses associated to the different stages of 
developing a WEC farm from inception all the way to the handing over of 
the WEC farm to the client as detailed in Fig. 22. 

5.2.2. OpEx breakdown 
A wave energy project’s Operational Expenditures (OpEx) include all 

costs related to running the farm once a takeover certificate is given. 
These costs include those for all O&M tasks and those related to the site 
leasing and insurance. Fig. 23 summarizes the OpEx’s expenses detailed 
breakdown gathered in the comprehensive assessment of the literature 

provided in (Têtu and Fernandez Chozas, 2020). 
The yearly OpEx may be calculated as a proportion of the CapEx for a 

WEC farm where there is little available data. According to the literature, 
estimates of total annual OpEx typically fall between 1.5% and 9% of 
CapEx (Magagna, 2019; Pecher and Kofoed, 2017; Têtu and Fernandez 
Chozas, 2021). This is because of several reasons (e.g., single prototype or 
utility-scale project, distance from the shore, floating or submerged tech-
nology, advanced or traditional O&M strategies applied, etc.). 

For instance, the OPERA project (OPERA Project, 2019) shown that, 
depending on the deployment site and the dimension of the farm, the 
OpEx might get as low as 1.8%–2.2% of the CapEx when adequate novel 
O&M approaches are used. The knowledge gained from the offshore 
wind energy business, where yearly OpEx amounts to 4.5% of CapEx 
(Pecher and Kofoed, 2017) and 3% of CapEx (IRENA, 2017), respec-
tively, might be applied to utility-scale projects. Following a 2018 in-
ternational survey of wave energy developers, the following figures 
were discovered: annual OpEx for a utility scale project is in the interval 
[4%–5%] of CapEx, for a small WEC array OpEx is 6% of CapEx and for a 
single WEC device is in the interval [6%–9%] of CapEx. 

6. Results and discussion 

6.1. Classification performance and diagnosis 

A comparative study between the SVM and ANN classifiers has been 
performed to evaluate the accuracy against the number of features used. 
Both classifiers have been compared while paired with PCA or LDA 
feature extraction algorithms. The results of the simulation are illus-
trated in Figs. 24 and 25. 

The ANN classifier offers higher accuracy than that of the SVM 
classifier this may be due to the number and type of the feature inputs of 
this problem. In addition, with both classifiers the PCA outperformed the 
LDA algorithm. This may be due to the complex correlation between 
data and the difficulty of separation between the classes. 

The accuracy of the trained ANN and SVM classifiers using both 
feature extraction methods PCA and LDA is summarized in the following 
table. Table 2 shows the accuracy of the SVM and ANN obtained when 
using PCA which found 4 main features and when using LDA which 
found 3 main features. 

6.2. Economic evaluation 

All the Wells turbines at the Mutriku wave plant have exactly the 
same design. However, turbines T01 and T16 do not accumulate enough 
pressure at the inlet because chambers are not completely sealed and 
need a structural redesign. Therefore, these two turbines did not 
generate any electricity during the analyzed period and only 14 OWCs 
were operational. 

Fig. 22. CAPEX breakdown of costs for different WEC cost centers.  

Fig. 23. OpEx breakdown of costs for different cost centers.  

Fig. 24. ANN classification accuracy for different number of features using PCA and LDA.  
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The purpose of calculating the economic indicators is to determine 
the values that would enable reaching a low LCoE in order to make OWC 
in particular and WECs in general competitive to other renewable en-
ergy technologies. Using the economic assumptions described in section 
5.1. and the equations of the economic indicators defined in section 5.2., 
the parameters leading to the computations of the LCoE are summarized 
in Table 3. 

Between January 2021 and December 2021 period the total amount 
of annual energy sold was 288833 kW h during an annual cumulative 
uptime of 7972 h and an annual cumulative downtime of 788 h, hence, 
using equation (24) the availability factor is 91% and using equation 
(25) the capacity factor is 12.73%. 

With a reported total investment of 6.4M EUR, the CapEx is of 21321 
€/kW and an OpEx of around 1297.29 €/kW. Hence, using equation (28) 
the LCoE is 1174 €/MWh. This LCoE is considered high compared to 

other technologies and has to be reduced in order to meet the target 
LCoE by the year 2030 set by SET-Plan at 150 €/MWh (Temporary 
Working Group Ocean Energy, 2018). 

Using the developed classification-based OWC diagnosis to set a 
predictive maintenance instead of the unnecessary monthly and yearly 
preventive maintenances will:  

• reduce maintenance costs by decreasing the OpEx until 17% (Ocean, 
2013),  

• reduce the downtime of the OWCs by 55% which will increase the 
availability to 95% (Pecher and Kofoed, 2017),  

• increase uptime which increases the generated power by 4.4%, hence 
the capacity factor is increased to 13.28%. 

Using equation (26) the improved AEP is 301514 kW h and using 
equation (28) the obtained LCoE with the predictive maintenance is 
1112 €/MWh. 

From the results, it is obvious that the reduction of LCoE is highly 
dependent on the plant’s availability, capacity factor and AEP. It is also 
important to note that the improvement of the availability and capacity 
factor is achieved through the implementation of a good predictive 
maintenance system. In addition, an adequate maintenance system will 
reduce the OpEx, which will further decrease the LCoE. 

7. Conclusions 

In the presented research work, a classification-based approach for 
diagnosing Power Take-Off systems in wave energy converters, with the 
aim of implementing a predictive maintenance strategy. The proposed 
concept utilizes experimental data from the plant to train classifier 
models that can predict the health status of each individual unit in the 
wave energy converters farm. 

With over a decade of operation, the Mutriku wave power plant has 
been used as a study case to evaluate the suggested approach. The 
challenging environmental conditions in this case result in vibration in 
the Power Take-Off systems of the Oscillating Water Column units, 
leading to failures and breakages. These issues contribute to increased 

Fig. 25. SVM classification accuracy for different number of features using PCA and LDA.  

Table 2 
SVM and ANN classification accuracy using PCA and LDA. 

Table 3 
Economic indicators of Mutriku wave power plant with and without 
classification-based diagnosis for predictive maintenance.  

Indicator Symbol Unit Value 

without 
classification- 
based diagnosis 

with 
classification- 
based diagnosis 

Total 
operational 
OWCs 

TOWC – 14 14 

Lifetime n year 20 20 
Discount rate r % 15 15 
Availability a % 91 95 
Capacity factor Cf % 12.73 13.28 
Annual Energy 

Production 
AEP MWh 288.833 301.514 

Capital 
Expenditures 

CapEx €/kW 21621 21621 

Operational 
Expenditures 

OpEx €/kW 1297 1076 

Levelised Cost 
of Energy 

LCoE €/MWh 1174 1112  
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downtime and a higher LCoE. The objective of this study is to diagnose 
and address the vibration problem in order to optimize the LCoE by 
employing an effective predictive maintenance strategy. 

The presented work adopted two feature extraction methods namely 
the PCA and LDA to choose the most significant features for diagnosing 
OWCs. When using PCA it is found that it takes 4 features to achieve a 
cumulative explained variance of 96.74%. However, it takes 3 features 
to achieve a cumulative explained variance of 92.09% using LDA. 
Therefore, the first 3 common components were used namely the vi-
bration, the rotational speed and the pressure to design and train the 
classification models. 

Using the selected features, two classification methods were 
considered for this work the Support Vector Machine (SVM) and Arti-
ficial Neural Network (ANN) specifically the Muli-Layer Perceptron 
(MLP). The results showed that both methods successfully manage to 
perform with high accuracy. However, the ANN provided the best results 
with 98% accuracy against 81% from the SVM when using the PCA 
extraction method. 

Based on the developed classification-based OWC diagnosis the 
economic indicators of the Mutriku wave power plant are calculated and 
showed that with the implementation of a predictive maintenance it’s 
possible to reduce the OpEx until 17% and downtime to 55%, while 
increasing plant availability to reach 95% and eventually lead to a 5% 
reduction of the LCoE. This reduction has to be further improved in 
order to align with the objectives set by SET-Plan to reach a target LCoE 
of 150 €/MWh by the year 2030. 

Finally, it could be remarked that, due to the scarce experimental 
real data on wave generation plants and the lack of similar studies on 
wave farms prognostics and cost reduction, this work could be extended 
and used as a reference for other wave farms, which could be relevant 
for investors and policymakers involved in the development of emerging 
wave-based renewable technologies. 
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Nomenclature 

Abbreviations 
AEP Annual Energy Production 
ANN Artificial Neural Network 
AUC Area Under Curve 
BiMEP Biscay Marine Energy Platform 
CapEx Capital Expenditure 
IQR Inter-Quartile Range 
LCoE Levelized Cost of Energy 
LDA Linear Discriminant analysis 
LMA Levenberg-Marquardt Algorithm 
MLP Multi-Layer Perceptron 
MSE Mean Squared Error 
O&M Operational and Maintenance 
OLE Object Linking and Embedding 
OpEx Operational Expenditure 
OWC Oscillating Water Column 
PC Principal Component 
PCA Principal Component Analysis 
PLC Programmable Logic Controller 
PTO Power Take- Off 
PV Present Value 
ROC Receiver Operating Characteristic 
SVM Support Vector Machine 
TRL Technology Readiness Level 
WEC Wave Energy Converter 
WPP Wave Power Plant  

Symbols 
a availability factor 
c number of classes 
Cf capacity factor 
Ci set of data in the ith class 
Ep error penalty 
F(.) performance index 
∇F(.) gradient 
∇2F(.) Hessian matrix 
gi cumulative energy 
J(.) Jacobian matrix 
K(.) kernel function 
mi mean of the ith class 
n project lifetime 
no number of observations 
nv number of variables 
PRated rated power 
r discount rate 
SB between-class scatter matrix 
SW matrix of within-class distribution 
U feature vector 
V unitary matrix of eigenvectors 
vi eigenvectors 
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W transformation matrix 
wji neural network weights 
X matrix of data 
Yi predicted output 
Yi target output 
Δwji neural network weight’s correction 
Λ diagonal matrix of eigenvalues 
λi eigenvalues 
ξi slack variables 
Σ covariance of the data matrix 
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