
Acc
ep

ted
 M

an
us

cri
pt

Leonardo De-Maeztu · Unai Elordi · Marcos Nieto · Javier Barandiaran ·
Oihana Otaegui

A temporally consistent grid-based visual odometry
framework for multi-core architectures

Received: date / Revised: date

Abstract Most recent visual odometry algorithms based
on sparse feature matching are computationally efficient
methods that can be executed in real time on desk-
top computers. However, further efforts are required to
reduce computational complexity in order to integrate
these solutions in embedded platforms with low power
consumption. This paper presents a spacetime frame-
work that can be applied to most stereo visual odometry
algorithms greatly reducing their computational com-
plexity. Moreover, this framework enables exploiting multi-
core architectures available in most modern computing
platforms. According to the tests performed on publicly
available datasets and an experimental driverless car,
the proposed framework reduces the computational com-
plexity of a visual odometry algorithm by a factor of two
while improving the accuracy of the results.

Keywords Visual odometry, grid structure, multi-core.

1 Introduction

In the past few years, there has been a growing inter-
est in Advanced Driver Assistance Systems (ADAS) and
autonomous vehicles [2, 10, 11, 22]. In general, this inter-
est is closely related to the sustainable, innovative and
safe transport systems aspect of smart mobility inside
smart cities (see the European cities report [6]). Intelli-
gent vehicles increase fuel efficiency thanks to environ-
mentally friendly driving and reduced traffic congestion.
Additionally, considering that human factors (alone or
combined with other causes) are involved in the vast ma-
jority of accidents [18], new technological contributions

L. De-Maeztu (B) · U. Elordi · M. Nieto · J. Barandiaran ·
O. Otaegui
Vicomtech-IK4, Paseo Mikeletegi 57,
Donostia-San Sebastián, Spain
Tel.: +34 943 309230
Fax: +34 943 309393
E-mail: ldemaeztu@vicomtech.org

are expected to reduce the number of accidents thanks
to more predictable behaviors of vehicles and faster re-
sponse times.

A key component of an autonomous car is the posi-
tioning module, used to compute the localization of the
vehicle and eventually to plan future motion. Different
types of sensors can be used to compute the position
of the car in real time, such as Global Navigation Satel-
lite Systems (GNSS), Inertial Navigation Systems (INS),
laser scanners or video cameras [4].

Computer vision using cameras bring cheap and ro-
bust localization possibilities that are usually classified
as Visual Odometry (VO) or Visual Simultaneous Lo-
calization And Mapping (V-SLAM) algorithms [19]. The
main difference between both types of solutions is that,
while VO methods compute motion incrementally (frame
after frame), V-SLAM solutions optimize the global con-
sistency of the path. For this purpose, a reconstruction
of the path is needed to detect the particular situation
where the car visits the same place twice (loop closure
condition, used to enforce global consistency). From this
description, it is evident that V-SLAM solutions are in
general more complex but also more accurate than VO
methods. However, global reasoning techniques such as
loop closure detection can severely affect results in case
of failure [19].

Given the relatively low computational complexity of
most VO methods and the implementation on desktop
computers, little attention has been paid to further re-
ducing complexity by exploiting available architectural
resources or redundant information. However, the inte-
gration of VO algorithms in embedded platforms that
may execute many driving assistance algorithms requires
efficient solutions.

This paper proposes a novel framework in which most
stereo (i.e., using two cameras) VO solutions can be
casted. This framework exploits the temporal redundancy
of a video sequence and the spatial distribution of fea-
tures or keypoints over images. Temporal redundancy is
used to stabilize the number of detected features over
time and to initialize the egomotion computation for the

De-Maeztu, L., Elordi, U., Nieto, M. et al. A temporally consistent grid-based visual odometry framework for multi-core architectures. 
J Real-Time Image Proc 10, 759–769 (2015). This version of the article has been accepted for publication, after peer review (when 
applicable) and is subject to Springer Nature’s AM terms of use, but is not the Version of Record and does not reflect post-acceptance 
improvements, or any corrections. The Version of Record is available online at: https://doi.org/10.1007/s11554-014-0425-y



Acc
ep

ted
 M

an
us

cri
pt

2

Feature
 detection

Feature
 description

Feature
 matching

Egomotion 
estimation

Input 
images

Motion 
between 
frames

Grid structure

Number of features loop Egomotion loop

Fig. 1 Execution pipeline implemented by most VO algorithms (in black) along with the proposed spatial (in blue) and
temporal (in red) modifications.

current frame using the motion computed for the previ-
ous frame. The spatial distribution of features over the
input images is used to partition them into a regular grid
so that features can be detected and described indepen-
dently for each cell of the grid, enabling a parallel im-
plementation in multi-core architectures. Moreover, the
grid can be used to build a mask for feature matching in
an efficient manner. In Figure 1 the common pipeline of
most VO algorithms is summarized (most VO solutions
compute egomotion after a stage in which keypoints are
detected, described and matched between frames) along
with the proposed modifications. The effectiveness of the
framework is demonstrated by applying it to a relatively
standard VO algorithm implemented in a robotic car in
the framework of the TAXISAT FP7 project [15] that
aims to develop a driverless car that can operate au-
tonomously following a predefined path and stopping if
obstacles are detected (see Figure 2).

Fig. 2 TAXISAT driverless car.

The remainder of this paper is organized as follows.
Section 2 presents the state of the art on VO algorithms.
In Section 3 the proposed approach is introduced. Exper-
imental results are analyzed in Section 4. We close the
paper with a short conclusion and an outlook on future
work in Section 5.

2 Related work

The problem of estimating relative camera positions and
3D structures using sequences of 2D images is referred as
Structure from Motion (SfM) [7, 24]. VO is a particular
case of SfM. In general, VO assumes that the sequence of
images was acquired with a single array of cameras cap-
turing the images while moving though space. In most
cases, the camera array is composed of one (monocular)
or two (stereo) cameras. Monocular VO suffers from the
scale ambiguity problem, because the absolute scale is
unknown. In the stereo case, the path is estimated in a
known scale, since the size of the stereo baseline is known
[14]. VO algorithms compute the path by incrementally
estimating motion over consecutive frames [19].

Two steps can be clearly distinguished in most stereo
VO algorithms (in Figure 1 the first step was further
divided in three sub-steps):

1. Correspondence search between frames. The objec-
tives of correspondence search between images are
twofold. First, in multi-camera setups, correspondence
search between pictures taken at the same instant
with different cameras is used to triangulate the po-
sitions of points in 3D [7]. Second, correspondences
between frames taken with the same camera at differ-
ent instants are used in the second step to compute
motion between these instants.

2. Motion estimation. Given the computed correspon-
dences between points in two frames taken by the
same camera in different instants, motion between
both positions of cameras can be computed.

2.1 Correspondence search

Three categories of algorithms can be distinguished ac-
cording to the type of correspondences used to com-
pute motion: appearance-based, feature-based and hy-
brid methods. Appearance-based solutions use the inten-
sity information of all pixels in the input images, while
feature-based algorithms only use salient keypoints de-
termined using some kind of detector. Hybrid methods
use a combination of the previous two techniques.



Acc
ep

ted
 M

an
us

cri
pt

3

The groups of appearance-based or hybrid approaches
include the works of [12, 21]. In [12], rotation is extracted
from the intensity profile of a column intensity graph.
Then speeds are estimated based on the rate of image
change. In [21], feature-based tracking is used to ob-
tain a first estimation of the motion of the car. Then,
an appearance-based approach is deployed that improves
the accuracy of the computed rotation of the vehicle.

Feature-based solutions include [9, 20]. In both cases,
a quantitative evaluation of the performance of different
feature detectors is proposed. After evaluating detectors
on different scenarios, the authors of [9] chose CenSurE
[1]. On the other hand, after comparing a different set of
detectors and trackers, the authors of [20] concluded that
the results were not due to the accuracy of the detector,
but rather to the distribution of features in the images.
According to their results, an homogeneous distribution
of features results in better motion estimation. Different
techniques can be employed to force a homogeneous dis-
tribution of the computed keypoints. One of the simplest
methods is to partition the input images into a regular
grid and force a uniform distribution of the total number
of features over the cells of the grid [13].

According to the authors of [19], feature-based meth-
ods are in general preferred over appearance-based ones,
because they are more accurate and are computationally
less expensive. Moreover, most appearance-based meth-
ods have only been applied to monocular VO due to ease
of implementation compared to the stereo case. As a con-
sequence, most stereo VO solutions are feature-based,
and we limit our discussion from this point to this class
of methods.

2.2 Motion estimation

Once the feature correspondences between frames have
been established, motion between these frames can be
computed. Most VO algorithms include an optimization
strategy (to minimize the reprojection error of the matched
features according to the cameras parameters and the
computed motion) and a method to increase robustness
against outliers.

Minimization can be implemented as a 2D-to-2D, 3D-
to-2D or 3D-to-3D point registration method. 3D-to-2D
registration is the most implemented method. In the
monocular case because it enables faster data association
[19], and in the binocular case because it provides more
accurate results [14]. Optimization of the reprojection er-
ror is generally performed using minimization techniques
such as Gauss-Newton [5] or Levenberg–Marquardt algo-
rithm [21, 23].

To increase robustness against outliers, most meth-
ods include an implementation of the RANSAC algo-
rithm [5, 8, 9]. Also, enchanced smoothness can be ob-
tained using dynamic models of the vehicle along with
Kalman filtering [5].

3 Proposed method

Our stereo VO framework consists of an adaptive grid-
based correspondence search stage and a temporal con-
sistent motion estimation stage composed of a Leven-
berg–Marquardt minimization step along with RANSAC
outlier removal and a final Kalman filter.

3.1 Adaptive grid-based correspondence search

The correspondence search step implements the proposed
adaptive grid-based strategy and it includes feature de-
tection, description and matching (see Figure 1). Effi-
cient methods were selected for feature detection and
description, because in VO for ground vehicles corre-
sponding points are similar in consecutive frames and
thus complex requirements such as rotation or scale in-
variance are not necessary.

First, features are detected in each image of the in-
put stereo pair. In this paper we decided to use Features
from Accelerated Segment Test (FAST) [16, 17] due to
its computational simplicity and easy parametrization.
To obtain a homogeneous distribution of features, FAST
is applied individually to the cells of a grid-based repre-
sentation of the input stereo pair (see Figure 3). More-
over, an adaptive FAST threshold value is used to try
to generate the desired number of features in each cell
(i.e., the desired number of features N for the image di-
vided by the number of cells). Using a fixed value for
the FAST threshold implies obtaining a variable num-
ber of features for each frame that may be insufficient
to accurately compute motion or excessive (in this case
the excess keypoints are simply removed; however, com-
puting these unused keypoints increases computational
complexity). For this reason, and considering the high
similarity of consecutive frames of a video sequence, we
propose to update the FAST threshold for each frame tk
using the threshold of the previous frame tk−1 and the
number of detected points M in this same image accord-
ing to the following rule:

tk =

{
tk−1 − 1, if M < N.

tk−1 + 1, otherwise.
(1)

Given that the computation of the keypoints for the
left and the right images of the stereo pair is indepen-
dent, two threads can be used to compute the keypoints
of each image. Moreover, thanks to the proposed grid
structure of Figure 3b, different threads can be used to
compute the features inside each cell.

Next, features are described. Feature description can
also be easily parallelized by using different threads for
each image of the input stereo pair and for each cell of
the grid. In this particular implementation, also for sim-
plicity purposes, we decided to use Binary Robust Inde-



Acc
ep

ted
 M

an
us

cri
pt

4

(a) (b)

Fig. 3 Comparison of possible feature point distributions (a)
without and (b) with a grid structure.

pendent Elementary Features (BRIEF) [3]. The BRIEF
descriptor computes for each keypoint a 64 bits string.

Finally, the keypoints are compared and matched. In
this case, we use the Hamming distance of the BRIEF
descriptors (a very efficient operation in CPUs). Two
types of matching are performed in this step:

1. Spatial matching or stereo matching. Features cap-
tured by both cameras at the same instant are matched
to enable 3D triangulation from the 2D coordinates
of these features.

2. Temporal matching or optical flow computation. Fea-
tures captured by the same camera in consecutive
frames are matched to enable motion computation.

In order to limit the computational complexity, a pri-
ori constraints can be imposed to limit the number of
potential matches. For stereo matching, we know that in
a rectified stereo pair, correspondences have to lie on the
same epipolar horizontal line of the image. Moreover, an
interval of interest disparities can be established limit-
ing the search range between a minimum and a maxi-
mum disparity. For optical flow computation, correspon-
dence search has to be performed in all directions but
a maximum distance between candidates can be estab-
lished if we know the maximum motion of the camera be-
tween frames. Imposing these constraints before match-
ing would mean that the Euclidean distance of every pair
of features has to be computed. Unfortunately, comput-
ing Euclidean distances in order to avoid computing un-
necessary Hamming distances (which is a less complex
operation on today CPUs) is a nonsense. To overcome
this limitation, we propose an efficient cell-based solu-
tion using the grid deployed for feature detection and
description. In this way, we can mask keypoints that be-
long to distant cells using a block-based fast strategy.

For stereo matching, given the maximum disparity
dmax and the cell width W , the cells of the right image
that contain candidate matches for a certain cell of the
left image range from the same cell of the left image to
ddmax/W e cells to the left. Figure 4 contains a graphical
explanation. In this particular example ddmax/W e = 2,
so the candidate cells include the cell occupying the same
position as the one in the left image and its two neigbors
to the left.

W
dmax

(a) (b)

Fig. 4 Grid-based a priori mask computation for stereo
matching. The left image keypoints belonging to the cell high-
lighted in (a) can only be matched to the keypoints belonging
to the cells of the right image highlighted in (b).

A similar procedure is applied for selecting the can-
didate cells for optical flow matching. In this case, the
vector that joins two correspondences is two dimensional
with a maximum length of Dmax pixels. Cells dimensions
are W ×H pixels. In general, the search cells in the right
image include a rectangle of 2×dDmax/He+ 1 row cells
and 2× dDmax/W e+ 1 column cells centered in the cell
in the same position to the one of the reference image.
Figure 5 contains a graphical representation of a situa-
tion where dDmax/W e = 1 and dDmax/He = 2, so the
search region is composed by a 5×3 rectangle of cells. Of
course, potential search cells that lie outside the images
are not considered.

W
H Dmax Dmax

Dmax

Dmax

(a) (b)

Fig. 5 Grid-based a priori mask computation for optical
flow computation. The previous frame keypoints belonging
to the cell highlighted in (a) can only be matched to the key-
points belonging to the cells of the current image highlighted
in (b).

After matching, false matches can be eliminated check-
ing that stereo matches lie on the same horizontal line,
that are separated by a distance smaller than dmax and
that optical flow matches are separated by a distance
smaller than Dmax. Grid-based masking avoids most of
these erroneous correspondences but not all. Then, re-
maining false matches can be removed using the circular
match strategy [5]. This consistency check strategy ver-
ifies that a complete loop of temporal/spatial matches
finishes in the departure point. Only matches that verify



Acc
ep

ted
 M

an
us

cri
pt

5

the circular match condition are used for motion compu-
tation.

3.2 Motion estimation and filtering

Using the valid matches previously obtained (lets sup-
pose L valid circular matches), we compute the camera
motion by minimizing the sum of reprojection errors. In
particular, we use Levenberg–Marquardt minimization
to find the rotation and translation vectors that best
adapt to the corresponding 3D points in space of the
previous stereo pair of frames Xk−1 and the 2D coordi-
nates of the features detected in the current stereo pair
xk. If we define f l

r,t to be the function that projects 3D
points to 2D points in left camera considering that is has
moved according to a rotation vector r and a translation
vector t, and similarly fr

r,t for the right camera, the cost
function to minimize is:

L∑
i=1

∥∥xl
k − f l

r,t(X
l
k−1)

∥∥+
∥∥xr

k − fr
r,t(X

r
k−1)

∥∥ (2)

To increase robustness against outliers, this mini-
mization procedure is integrated in a RANSAC scheme
performing I iterations (less iterations are needed if the
number of RANSAC inliers exceeds a certain percentage
p of the total number of pixels used to compute motion).
Finally, Kalman filtering is applied to the translation
and rotation vectors to produce a statistically optimal
estimate of egomotion [5]. Given that the vehicle mo-
tion is relatively smooth, we expect the translation and
rotation vector computed for consecutive frames to be
similar. For this reason, we propose to use the Kalman
filter prediction as an initialization value for the Leven-
berg–Marquardt/RANSAC procedure in each iteration
as shown in Figure 6 to reduce the number of iterations
needed for convergence and to improve the accuracy of
the result thanks to a better departure point for opti-
mization.

Levenberg-Marquardt/
RANSAC

Valid'
matches

Kalman'filterMotion

r,t

r',t'

Fig. 6 Motion estimation and filtering pipeline.

4 Experimental results

To test the performance of the proposed VO algorithm,
two different benchmarking scenarios were designed. First,
the proposed ideas were evaluated in a laboratory com-
puter using the KITTI odometry evaluation dataset with
ground truth [4]. Then, we tested the performance of the
VO solution on the TAXISAT vehicle.

4.1 Dataset with ground truth

The KITTI Vision Benchmark Suite [4] consists of five
individual benchmarks designed to evaluate the perfor-
mance of different algorithms that are generally inte-
grated in ADAS or autonomous vehicles. One of the five
benchmarks is designed to test VO algorithms. It con-
tains 22 sequences of images recorded with a stereo pair
of cameras embedded in a car. A ground truth and an
evaluation methodology are provided for the first 11 se-
quences. The other 11 sequences are provided without
this type of information and the results have to be up-
loaded to the KITTI server to obtain an evaluation of
the accuracy of the results along with the position in a
ranking of VO/V-SLAM algorithms. As a consequence,
the first 11 sequences are useful for optimal parameter
setting and intensive testing of different configurations
as done in this paper. The platform used for evaluating
the odometry algorithm with the KITTI benchmark con-
sists in a standard PC with an Intel Core i5-3330 3.00
GHz CPU (four cores). Qt1 and TBB2 were integrated
in the implementation of the algorithm to enable parallel
computing using multiple threads along with OpenCV3

that already implements some of the methods described
in this paper.

To verify the influence of the distribution of the fea-
ture points in the odometry results, we tested the average
error on the KITTI first 11 sequences using different grid
configurations.

Table 1 Translation error (%) of the VO algorithm versus
the number of rows and columns of the grid structure.

1 2 4 8
1 2.18 2.14 2.14 2.16
2 2.17 2.13 2.10 2.12
4 2.16 2.16 2.19 2.09

Tables 1 and 2 show that a small accuracy improve-
ment is obtained when integrating the proposed grid
in the feature detection stage for certain configurations
(a 10% improvement in rotation error and a 4% im-
provement in translation error). However, this grid-based

1 http://qt-project.org/
2 http://www.threadingbuildingblocks.org/
3 http://opencv.org/



Acc
ep

ted
 M

an
us

cri
pt

6

Table 2 Rotation error (deg/m) of the VO algorithm versus
the number of rows and columns of the grid structure.

1 2 4 8
1 0.0134 0.0134 0.0133 0.0134
2 0.0134 0.0128 0.0125 0.0122
4 0.0132 0.0120 0.0121 0.0122

feature detection stage brings two new possibilities to
speedup the algorithm: feature detection inside each block
of the grid can be implemented independently (i.e., par-
allel execution in multi-core architectures) and the grid
structure of the detected features can be used to avoid
matching pixels belonging to distant blocks in an efficient
manner in the feature matching stage.

Figure 7 depicts the execution time of feature detec-
tion and description for different parallelism configura-
tions of the algorithm: without any level of paralleliza-
tion (ST), with two threads performing in parallel the
same task for the left and right images (TI), and finally
with a different thread processing each block in the grid
(TB). The analysis is repeated for different grid distri-
butions. The use of two threads for separate process-
ing of the left and right image (TI) clearly speedups the
algorithm because both processes are completely inde-
pendent. Moreover, the grid-based implementation (TB)
enables a further speedup of the algorithm thanks to
multithreading processing of the cells of the grid.

0

2

4

6

8

10

12

1x1 1x2 2x4 4x8

C
om

p
u
ta

ti
on

 t
im

e 
(m

s)

Grid size (blocks x blocks)

ST

TB

TI

TB+TI

Fig. 7 Feature detection and description execution time.

In order to stabilize the number of detected features
over time and to further speedup the feature detection
process, an adaptive threshold for the grid-based FAST
detector was proposed. In Figure 8 the average number of
detected features over all sequences is represented versus
the computation time for feature detection and descrip-
tion when using an adaptive and a fixed FAST threshold.
The speedup is more important when computing a small
set of feature points (systems with a limited computa-
tional power).

As previously explained, the use of grid-based mask-
ing was also expected to reduce the computation time of
feature matching. Grid-based masking is a computation-
ally efficient way of limiting the number of feature points

2.5

3.5

4.5

5.5

6.5

7.5

400 900 1400 1900

C
om

p
u
ta

ti
on

 t
im

e 
(m

s)

Average number of detected features

Non-adaptive

Adaptive

Fig. 8 Comparison of the computation time versus the aver-
age number of features when using a fixed value and a variable
value for the FAST feature detector threshold.

to be compared. Because computing the Euclidean dis-
tance between all potential candidates for matching has
a high computational cost, we can take advantage of the
grid partitioning of the images in our algorithm to avoid
comparing pixels that are located in distant cells.

If Figure 9 the computation time of feature point
matching is plotted when comparing all possible can-
didates, or when masking the possible matches using
pixel-based Euclidean distance computation or the pro-
posed grid-based masking. Euclidean distance masking
increases the computation time because the distance be-
tween all the possible candidates is computed. Compared
to pixel-based masking, grid-based masking is much more
computationally efficient because it compares buckets of
pixels. Compared to the no masking case, a priori mask-
ing of impossible matches (very distant pixels in opti-
cal flow or pixels on different horizontal lines in stereo
matching) is slightly faster when using large grids and
in addition it makes possible to keep a higher number
of matches for motion computation. If this matches are
not prohibited before matching, they will have to be dis-
carded after, loosing potential matches for motion com-
putation.

0

2

4

6

8

10

12

14

1x1 1x2 2x4 4x8

C
om

p
u
ta

ti
on

 t
im

e 
(m

s)

Grid sizes (blocks x blocks)

Pixel-based

No masking

Grid-based

Fig. 9 Feature matching execution time.

Finally, the proposed motion estimation loop (see
Figure 6) reduces the translation error from 2.24% to
2.09% and the rotation error from 0.0123 deg/m to 0.0122



Acc
ep

ted
 M

an
us

cri
pt

7

Table 3 Accuracy and computation time of the proposed VO algorithm.

Method Translation error Rotation error Runtime

Raw 2.33% 0.0136 [deg/m] 19.6 ms
Proposed 2.09% 0.0122 [deg/m] 9.0 ms

(a) (b)

Fig. 10 Different trajectories computed by the visual odometry algorithm embedded in the TAXISAT vehicle (image source:
Google Maps).

deg/m compared to a motion estimation stage in which
the last rotation and translation vectors are not used as
initial hypothesis for the next pair of frames . Moreover,
the convergence of the Levenberg-Marquardt / RANSAC
iterative stage is accelerated from 5.2 ms to 2.3 ms.

To summarize the performance of the proposed so-
lution and compare it to a solution without the pro-
posed optimizations, Table 3 contains the accuracy and
execution time of different solutions that include some
of the modifications proposed in this paper. The pa-
rameter configuration for both algorithms is N = 500,
Dmax = 200, dmax = 150, I = 50, p = 85%. Addition-
ally, for the proposed algorithm, a 4 × 8 grid is used.

4.2 TAXISAT vehicle tests

In the case of the real scenarios tests performed using a
robotic car with two cameras, no ground truth was avail-
able. Nevertheless, the performance of the algorithm was
previously assessed using the KITTI evaluation bench-
mark. For these tests, qualitative evaluation was carried
out using satellite maps scaled so that the computed path
and the map can be registered.

For these tests, we used the TAXISAT vehicle already
presented in Section 1. The VO system in the TAXISAT
vehicle is composed of two Point Grey Flea3 cameras
FL3-GE-13S2C-C (baseline 50 cm) fixed to the front of
the vehicle and connected via Gigabit Ethernet to an

industrial computer with an Intel Core i7-2655LE 2.2
GHz CPU. After the system installation, both cameras
were calibrated using a checkerboard pattern. Finally, a
master/slave configuration was selected for synchroniza-
tion purposes (hardware synchronization using a trig-
ger wire linking both cameras). The embedded computer
has a power consumption limited to 40 W, thus having
a smaller computational power than the desktop com-
puter. However, the resolution of the images used in this
case is also smaller than the resolution of the KITTI
stereo pairs (644 × 482 pixels). As a consequence, the
execution time is similar to the execution time in the
desktop PC (around 10 ms).

In Figure 10 the computed path is plotted on satel-
lite images with the appropriate scale. The drift is small
enough to keep the computed path inside the road for
several hundreds of meters. The fusion of VO with other
types of sensors would further improve the accuracy of
the results enabling accurate navigation in longer paths.

5 Conclusion

In this paper, we presented a new spatiotemporal frame-
work in which most VO algorithms can be casted. The
framework enables egomotion computation at high fram-
erates on a desktop computer thanks to a full exploita-
tion of multi-core architectures. Temporal improvements



Acc
ep

ted
 M

an
us

cri
pt

8

are related to using redundant information from the pre-
vious pair of frames. Spatial improvements homogeneously
distribute detected features over the images. Both types
of optimizations improve the accuracy and the compu-
tational complexity of VO algorithms that can be inte-
grated in the proposed framework.

The results of the algorithm are also demonstrated
on an embedded platform on the TAXISAT vehicle. De-
spite the lower consumption of this CPU, the proposed
framework is executed in 10 ms, producing accurate re-
sults over several hundreds of meters. Free computational
power is left for implementing other computer vision
methods such as road lane tracking or obstacle detec-
tion in real time.

Future work includes the integration of new types
of odometry sensors in the car such as GNSS or INS
with two purposes. First, to compare the results of VO
with other types of sensors. And second, to integrate the
information of many types of systems to obtain a more
accurate and robust estimation of the vehicle odometry.

6 Acknowledgements

The work described in this study was supported by the
European Union 7th Framework Programme, contract
number 277626-2, and by the NET and ETORTEK pro-
grams of the Basque Government under the projects
VITEM-F and MOVITIC respectively.

References

1. M. Agrawal, K. Konolige, and M. R. Blas. Cen-
SurE: Center surround extremas for realtime feature
detection and matching, volume 5305 LNCS of Lec-
ture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics). 2008.

2. M. Bertozzi and A. Broggi. GOLD: A parallel real-
time stereo vision system for generic obstacle and
lane detection. IEEE Transactions on Image Pro-
cessing, 7(1):62–81, 1998.

3. M. Calonder, V. Lepetit, C. Strecha, and P. Fua.
BRIEF: Binary robust independent elementary fea-
tures. In European Conference on Computer Vision,
pages 778–792. Springer, 2010.

4. A. Geiger, P. Lenz, and R. Urtasun. Are we ready for
autonomous driving? the KITTI Vision Benchmark
Suite. In IEEE Conference on Computer Vision and
Pattern Recognition, 2012.

5. A. Geiger, J. Ziegler, and C. Stiller. Stereoscan:
Dense 3d reconstruction in real-time. In IEEE In-
telligent Vehicles Symposium (IV), pages 963–968,
2011.

6. R. Giffinger, C. Fertner, H. Kramar, R. Kalasek,
N. Pichler-Milanovic, and E. Meijers. Smart cities-

ranking of European medium-sized cities. Technical
report, Centre of Regional Science, Vienna, 2007.

7. R. Hartley and A. Zisserman. Multiple view geometry
in computer vision, volume 2. Cambridge University
Press, 2000.

8. B. Kitt, A. Geiger, and H. Lategahn. Visual odome-
try based on stereo image sequences with RANSAC-
based outlier rejection scheme. In IEEE Intelligent
Vehicles Symposium (IV), pages 486–492. IEEE,
2010.

9. K. Konolige, M. Agrawal, and J. Sola. Large-scale
visual odometry for rough terrain. In Robotics Re-
search, pages 201–212. Springer, 2011.

10. J. Leonard, J. How, S. Teller, M. Berger, S. Camp-
bell, G. Fiore, L. Fletcher, E. Frazzoli, A. Huang,
S. Karaman, et al. A perception-driven autonomous
urban vehicle. Journal of Field Robotics, 25(10):727–
774, 2008.

11. J. C. McCall and M. M. Trivedi. Video-based lane
estimation and tracking for driver assistance: survey,
system, and evaluation. IEEE Transactions on In-
telligent Transportation Systems, 7(1):20–37, 2006.

12. M. J. Milford and G. F. Wyeth. Single camera vision-
only SLAM on a suburban road network. In IEEE
International Conference on Robotics and Automa-
tion, pages 3684–3689. IEEE, 2008.

13. V. Nannen and G. Oliver. Grid-based spatial key-
point selection for real time visual odometry. In In-
ternational Conference on Pattern Recognition Ap-
plications and Methods, pages 586–589, 2013.

14. D. Nistér, O. Naroditsky, and J. Bergen. Visual
odometry. In IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, vol-
ume 1, pages I–652. IEEE, 2004.

15. O. Otaegui, O. Desenfans, L. Plault, and A. Lago.
TAXISAT project website, http://www.taxisat.net/.

16. E. Rosten and T. Drummond. Fusing points and
lines for high performance tracking. In IEEE Inter-
national Conference on Computer Vision, volume 2,
pages 1508–1515, 2005.

17. E. Rosten and T. Drummond. Machine learning for
high-speed corner detection. In European Conference
on Computer Vision, pages 430–443. Springer, 2006.

18. K. Rumar. The role of perceptual and cognitive fil-
ters in observed behavior. In Human Behavior in
Traffic Safety, pages 151–170. Plenum Press, 1985.

19. D. Scaramuzza and F. Fraundorfer. Visual odometry
[tutorial]. IEEE Robotics & Automation Magazine,
18(4):80–92, 2011.

20. D. Scaramuzza, F. Fraundorfer, and R. Siegwart.
Real-time monocular visual odometry for on-road
vehicles with 1-point RANSAC. In IEEE Inter-
national Conference on Robotics and Automation,
pages 4293–4299, 2009.

21. D. Scaramuzza and R. Siegwart. Appearance-
guided monocular omnidirectional visual odometry
for outdoor ground vehicles. IEEE Transactions on



Acc
ep

ted
 M

an
us

cri
pt

9

Robotics, 24(5):1015–1026, 2008.
22. Z. Sun, G. Bebis, and R. Miller. On-road vehicle de-

tection: A review. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 28(5):694–711,
2006.

23. J.-P. Tardif, M. George, M. Laverne, A. Kelly, and
A. Stentz. A new approach to vision-aided inertial
navigation. In IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 4161–4168,
2010.

24. C. Tomasi and T. Kanade. Shape and motion from
image streams under orthography: a factorization
method. International Journal of Computer Vision,
9(2):137–154, 1992.




