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We present a detailed study of the magnetic behavior of Permalloy (Ni80Fe20 alloy) circular 
nanodots with small radii (30 nm and 70 nm) and different thicknesses (30 nm or 50 nm). 
Despite the small size of the dots, the measured hysteresis loops manifestly display the features 
of classical vortex behavior with zero remanence and lobes at high magnetic fields. This is 
remarkable because the size of the magnetic vortex core is comparable to the dot diameter, as 
revealed by magnetic force microscopy and micromagnetic simulations. The dot ground states 
are close to the border of the vortex stability and, depending on the dot size, the magnetization 
distribution combines attributes of the typical vortex, single domain states or even presents 
features resembling magnetic skyrmions. An analytical model of the dot magnetization reversal, 
accounting for the large vortex core size, is developed to explain the observed behavior, 
providing a rather good agreement with the experimental results. The study extends the 
understanding of magnetic nanodots beyond the classical vortex concept (where the vortex 
core spins have a negligible influence on the magnetic behavior) and can therefore be useful for 
improving emerging spintronic applications, such as spin-torque nano-oscillators. It also delimits 
the feasibility of producing a well-defined vortex configuration in sub-100 nm dots, enabling the 
intracellular magneto-mechanical actuation for biomedical applications 

Introduction 
The magnetic properties of materials at the nanoscale and the wide range of innovative 
applications that they disclose are absolutely compelling. The fields of nanomagnetism 
and spintronics are actively exploiting these properties with outstanding 
achievements.1,2 A paradigmatic example of the paramount importance of size in 
magnetism is the absence of magnetic domains, which dominate the magnetization 
processes of macroscopic materials, in magnetic nanoparticles. In the single domain 
state, the exchange energy dominates and the magnetic nanoparticle behaves as a 
simple giant spin.3 Increasing the particle size, the role of magnetostatic energy increases 
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and disc-shaped particles of adequate dimensions can display the so-called spin-vortex 
configuration, a kind of magnetic  topological  soliton  stabilized  in  a  restricted 
geometry.4,5 The vortex state is characterized by the magnetic moments being curled in 
the plane of the dot, configuring closed circles to minimize the magnetostatic energy. 
Only at the dot center, at the core of the vortex, the magnetic moments get out of 
the plane and point perpendicularly, to avoid the singularity. The magnetic behavior as 
a function of the in-plane applied magnetic field is characteristic for vortex structures: at 
low fields, the vortex core is displaced reversibly in the plane until it reaches the dot 
lateral border, where it is annihilated and the sample becomes magnetically saturated. 
Reducing the magnitude of the applied field, the vortex is nucleated again, but at a 
magnetic field of lower intensity than the one of the annihilation, and then follows back 
the original reversible path. This originates a very peculiar hysteresis loop with no 
remanence or coercive field and open lobes at high fields,6 as exemplified in the inset of 
Figure 1. 
 

 
Figure 1. Schematic phase diagram of the magnetic ground state of Permalloy dots, as a function of their thickness 
and radius. The dashed lines separate the regions with different magnetic configurations and their position is 

sketched according to previous diagrams elaborated from experimental and theoretical results.5,18-21 (When 
necessary, the value of the exchange length Le = 5.7 nm, as provided in Ref. 5, has been used to scale the results). 
The arrows drawn in the cylinders reflect the configuration of the magnetization. The samples studied in this work 
are situated in the diagram by red dots, labelled according to the nomenclature introduced in Table I. The inset 
displays the shape of a typical hysteresis loop in the vortex state (obtained from a micromagnetic simulation). 

 

 

The vortex magnetic arrangement possesses attractive features for very diverse 
applications. In magnetic information storage, the vortex spin configuration, is expected 
to display smaller thermal and quantum fluctuations than conventional systems, as it 
comprises many spins.7 Vortex-state dots are also used as an active layer in the spin-
torque nano-oscillators generating microwaves excited by a DC spin-polarized current.8 
Furthermore, vortex-state dots, dispersed in water, can act as magneto-mechanical 
actuators: the force generated by their oscillation in a low-amplitude and low frequency 
magnetic field is capable to damage the membrane of cancer cells9,10 or to be used as 
drug delivery agents.11 Smaller particles with the same magnetic characteristics would 
be promising because they could largely expand the application range. For all these 
applications, a detailed understanding of the magnetic features and the magnetization 
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processes of the dots with vortex-state becomes essential. 
 
In micron-sized dots, the vortex state has been extensively studied, both 
experimentally, by different magnetometry techniques,12 magnetic force microscopy 
(MFM)13 or spin- polarized scanning tunneling microscopy (SP-STM),14 and 
theoretically, using micromagnetic modelling15 and fully analytical descriptions.6 
Typically, in micron-sized dots the core of the vortex occupies a negligible area of the dot, 
being about 20-30 nm wide, and therefore, its effect can be safely neglected in the 
description of the overall magnetic behavior. Despite its relevance, a very scarce number 
of works can be found on sub-100 nm vortex structures, mainly due to the difficulty 
of sample preparation and the limitations of the characterization techniques. A notable 
work on Fe dots with diameters down to 52 nm, prepared using alumina templates, reveals 
the existence of a transition from a single domain to vortex state depending on the dot 
diameter,16 whereas the vortex core has a diameter of about 20 nm.17 We have recently 
reported the preparation of 60 nm Permalloy (Ni80Fe20) dots by hole mask colloidal 
lithography (HCL) with a very well defined vortex state.18 The determination of the nature 
of the magnetization processes in such structures ought to have a relevant role in their 
application in spintronic devices as well as in biomedicine where the particle reduced size 
favors the internalization by the cells. 
 
We are especially interested in downsizing dot-shaped particles while maintaining the 
vortex configuration that allows the magneto-mechanical actuation. In this work, we 
present a complete study on the magnetization processes and the magnetic vortex 
characteristics of a set of Permalloy dots, prepared by HCL, with two different radii, 30 and 
70 nm, and two different thicknesses, 30 and 50 nm. With a radius of 30 nm, according 
to the magnetic phase diagram (Figure 1), the variation of the aspect ratio of the dots 
can produce considerable changes in the magnetic ground state, evolving from the in-plane 
single domain to the vortex state and approaching to the boundary of the out-of-plane 
single domain as the thickness of the dot is increased. Therefore, the dots that we have 
selected, could delimit the region with a definite vortex configuration. The dots with a 
radius of 70 nm are expected to present a clear vortex configuration for both thicknesses, 
and are included in the study to help understanding the behavior of the dots with smaller 
size. 
 

The precise morphology of the samples is determined by electron and atomic force 
microscopies (these results are available as the electronic supplementary information to 
the manuscript). Afterwards, we describe the magnetic measurements that reveal 
hysteresis loops with very well-defined vortex behavior. Magnetic force microscopy 
images could only be obtained in the dots having a radius of 70 nm, but they clearly 
show that the size of the vortex core is comparable to the size of the dot, a situation that 
has been predicted theoretically before and denominated large vortex core.21 
Micromagnetic simulations provide a description of the distribution of the magnetization 
in the dots. They confirm the existence of a large vortex core that, in dots with a radius 
of 30 nm, can be even larger than the dot itself (extra-large vortex core), depending 
on the thickness. The large vortex core notably influences the magnetic behavior of the 
nanostructures, but previous analytical descriptions of the magnetization reversal in 
vortex dots assume that the influence of the vortex core spins can be neglected due the 



small core size.6 Since this is no longer the case in small radius dots, a new analytical 
model is developed, whose predictions are shown to match reasonably to the 
experimental results. This model is finally used to discuss the magnetization reversal 
process of the dots having different radius and thickness. 
 

Experimental 

Sample description and morphological characterization 
The nanodots were prepared by hole mask colloidal lithography (HCL).18,22 Basically, 
this technique consists in creating an array of holes using polystyrene spheres as templates 
and filling them with the desired material. In our case, the dots were sputter-deposited 
from Permalloy (Ni80Fe20 alloy) targets onto Si wafers topped with a 400 nm SiO2 
layer. The HCL technique produces a dense but non- regularly distributed pattern of 
nanostructures, as illustrated in Figure 2. The diameter of the nanodots is mainly 
determined by the size of the polystyrene spheres used to create the template, whereas 
their thickness is controlled by the deposition time. Slight deviations beyond control in the 
multiple-step preparation process produce small differences between the nominal 
geometries and the ones obtained actually. Scanning electron microscopy (SEM, 
MEBFEG JEOL 7000F) and atomic force microscope (AFM, Nanotec Electrónica using the 
dynamic mode with a Cr20Au30 tip of 8 nm radius from MikroMasch) were used to perform 
the morphological assessment of the nanodots. The lateral size distribution was 
established by the analysis of SEM images using ImageJ software.23 The thickness of the 
dots was determined from AFM profiles. The complete morphological characterization is 
presented as electronic supplementary information. Note that some of the samples are 
capped with a thin gold layer (3 or 4 nm) that does not interfere with the magnetic 
measurements. Table I identifies the magnetic nanostructures studied in this work and 
complies the relevant morphological data about them. 
 

 
Figure 2. SEM image of Ni80Fe20 nanodots prepared by hole mask colloidal lithography corresponding to the 
sample L50, with a nominal radius R = 70 nm and thickness T = 50 nm.  
 
 
 
 
 
 



Table I. Sample identification and morphological data (R = radius, T = thickness) of the Permalloy nanodots 
studied in this work. 

 

 

Magnetic characterization 

The hysteresis loops measured either by superconducting quantum interference device 
(SQUID) or magneto-optical Kerr effect (MOKE) provide experimental information about 
the magnetization reversal mechanism in the nanostructures. SQUID measurements, with 
a sensitivity of the order of 10−11 Am2, average the contribution of about 5 ´ 107 
nanodots whereas the 20 µm wide laser spot used in the MOKE system collects information 
from about 103 dots. The loops obtained by both methods are very similar, confirming 
the homogeneity of the properties of the dots over the whole patterned surface. The MFM 
measurements were performed with a scanning force microscope from Nanotec Electrónica 
in the amplitude modulation mode, oscillating 12 nm and with a typical retrace lift of 20 nm. 
A second feedback loop, phase lock loop (PLL), was enabled to keep the maximum amplitude 
and make the phase zero. MFM probes (Nanosensors PPP-FMR) were laterally coated with 
40 nm of Cobalt in a home-made built sputtering. 

 

Experimental Results 
The measured hysteresis loops for the dots having a radius of R = 30 nm are presented 
in Figure 3. It is especially significant that they definitely present the characteristic shape 
produced by the vortex configuration and its magnetization reversal process, displaying 
negligible coercivity, large permeability at zero field and hysteretic lobes at higher fields. 
Previous experimental evidence of the vortex behavior in these range of dimensions have 
not produced such perfectly shaped loops.16,24 Dots with the same lateral diameter 
but thinner (T = 20 nm) present a definite in-plane single domain behavior as shown in 
the inset of Figure 3.a, in accordance with the magnetic phase diagram (Figure 1). The dots 
with T = 30 nm (Figure 3.a), although in definite vortex state, are close to the transition to 
in-plane single domain behavior. In fact, their hysteresis loop hints some reminiscence of 
single domain behavior by the presence of some remanence in the loop. In the results 
reported for slightly larger and thinner Permalloy dots (97 nm in diameter and 26 nm 
thick), this mixed behavior is much more evident and were attributed to the existence of 
an intermediate metastable state between in-plane single domain and vortex.12 On the 
contrary, the dots with T = 50 nm (Figure 3.b) display the features of the vortex state with 
no remanence. However, the loop presents a marked slanted shape that deviates from 
the canonical vortex shape depicted in the inset of Figure 1. The slanted shape is especially 
evident by the fact that there is no sharply defined annihilation field and also because 
the regime of the loop that should remain at saturation until the vortex is nucleated back 

 

Sample 
label 

Nominal size Real size1 
R (nm) T (nm) R (nm) T (nm) 

S30 30 30 35 ± 3 28 ± 1 
S50 30 50 31 ± 3 52 ± 1 
L30 70 30 73 ± 3 33 ± 1 
L50 70 50 73 ± 3 53 ± 1 

1Uncertainty in R corresponds to the standard deviation s of the size 
distribution. The uncertainty in T is an estimated upper limit. 



does not present a constant value. This behavior evidences a mixture of magnetization 
mechanisms. The main characteristics of the vortex magnetization reversal prevail, but 
there is also some degree of coherent rotation of the magnetization, indicating the 
existence of a significant out-of-plane component of the magnetization (to support this 
assertion, the inset of Figure 3.b display the loop of an ideal monodomain spheroidal 
particle in which the magnetization reversal takes place completely by coherent rotation). 
This result is clearly a consequence of the closeness of this sample in the phase diagram to 
the region of the stable out-of-plane single domain state. 

 

 
Figure 3. Hysteresis loops of Ni80Fe20 nanodots with nominal radius of R = 30 nm. 
a) SQUID loop of sample S30 with a thickness T = 30 nm. The inset shows the loop measured in a sample with T = 20 
nm, displaying a in-plane single domain behaviour. 
b) MOKE loop of sample S50 with a thickness T = 50 nm. The inset represents the magnetization curve of an ideal 
out-of-plane monodomain spheroidal particle in which the magnetization reversal takes place by coherent rotation. 

 

 

Figure 4 displays the hysteresis loops measured in the dots with R = 70 nm. For both 
samples with different thicknesses T = 30 nm and T = 50 nm, the shape of the hysteresis 
loop is the canonical one corresponding to the classical vortex behavior (the finite 
remanence and coercivity present in the SQUID measurement plotted in Figure 4.a come 
from a non- representative, badly patterned part of the sample, probably at the border 
of the substrate, since it is not present in the loop measured by MOKE, shown in the 
inset). Note that the central linear part of the loop in Figure 4.b presents certain similitude 
with the loop in the inset of Figure 3.b, but this is only a coincidence, since the magentization 
processes are completely different. 



 
Figure 4. Hysteresis loops of Ni80Fe20 nanodots with nominal radius of R = 70 nm. 
a) SQUID loop of sample L30 with a thickness T = 30 nm. 
b) SQUID loop of sample L50 with a thickness T = 50 nm. 
The insets show the MOKE loops measured in the same samples. 

 
 

The value of the annihilation field Han is indicated in Figures 3 and 4 for the dots with 
different sizes. It corresponds to the value of the applied field at which the vortex is expelled 
from the dot and the sample becomes magnetically saturated. From the experimental 
curves, it is determined with an estimated uncertainty of about ± 2 mT, since the saturation 
does not take place sharply. The annihilation field is an important parameter to test the 
validity of theoretical models, since Han can be calculated analytically by energy 
minimization as the value of the in-plane magnetic field at which the core center reaches 
the border of the dot. In micron-sized dots, where the dimension of the vortex core can be 
neglected, the modelling produces quite accurate results.6 

 

Figure 5 shows the MFM image obtained in the sample L50 (R = 70 nm and T = 50 
nm), revealing the initial magnetic state of three nanodots. The vortex cores can be 
clearly observed as black or white spots in the center of the dots, depending if the 
magnetization at the core points up or down. For this sample, additional MFM images 
have been recorded under in-plane magnetic fields, showing the displacement of the 
vortex towards the edge of the dot. The images, shown in the  electronic 
supplementary information accompanying this work, nicely correspond to the magnetic 
states revealed in the hysteresis loop. It is considerably challenging to obtain high- quality 
MFM images in such small structures. In this case, homemade Co coated tips were 
specifically prepared for these measurements to avoid modifications caused by the high 
stray fields coming from commercial MFM tips.25,26 The image shown in Figure 5 is 
clear enough to estimate the radius of the vortex core Rc to be about half of the dot 
radius: Rc ~ 30 nm. 



 

Figure 5. Magnetic force micrograph of Ni80Fe20 nanodots prepared by hole-mask colloidal lithography (nominal 
radius R = 70 nm and thickness T = 50 nm) at the initial magnetic state with the vortex cores at the centre of the 
dots pointing up or down (black or white). 

 
 
Vortex structure from micromagnetic simulations 

To complement the experimental results and to gain insight in the magnetic behavior of the 
small vortex dots, we have performed micromagnetic simulations in dots of the same 
geometries. Basically, the micromagnetic simulations solve the magnetization equation of 
motion and can calculate the complete behavior of the sample as a function of the applied 
field (in fact, the inset in Figure 1 has been obtained in this way). Here, we are interested 
in obtaining the configuration of the magnetization in the ground state, at zero applied field, 
to analyze the structure of the vortex. The simulations were performed with the OOMMF 
code,27 using typical Permalloy parameters. The details of the calculation are given in the 
Methods section, below. Figure 6 represents the calculated out-of-plane component of 
the magnetization mz as a function of the radial coordinate r, measured from the center 
of the dot (mz is the reduced value of the magnetization Mz/Ms, being Ms the saturation 
magnetization). The actual magnetization can be slightly different along the thickness 
of the dot, so Figure 6 represents, for each radial position, the value of mz averaged along 
the dot thickness. In a classical magnetic vortex, the magnetization is curled in the 
plain (mz = 0), and only at the center, in the vortex core, it points perpendicularly. In the 
results of Figure 6, the radius of the vortex core Rc can be identified as the radial 
coordinate where mz vanishes, i.e., mz(Rc) = 0. The simulation results show that mz can 
also be negative, indicating that the individual moments are not perfectly in-plane even out 
of the vortex core. The determination of the core size by the criteria mz = 0 is therefore  
affected  by  some  uncertainty.  Considering  the magnitude of the negative mz values, we 
can estimate the uncertainty in the determination of Rc to be about 3 to 6 nm. The values of Rc 
are compiled in Table II. In any case, the simulation results clearly confirm that, in all the 
geometries, the vortex core extends up to a distance of the order of 30 nm from the dot center. 
This is in very good agreement with the MFM results, at least for the dots with R = 70 nm, where 
MFM images could be obtained. The size of the vortex core Rc is comparable to radius of the dot 
R. This situation is denominated large vortex core, in contrast with the situation of negligibly 
small vortex core Rc << R, occurring in micron- sized dots, designated as classical vortex. What is 
definitively remarkable is that, for the small dots with radius R = 30 nm, the vortex core extends 



to the border of the dot. In the case of sample S50, the core seems to be even larger that the dot 
(Rc > R), which we call extra-large vortex core, but this situation does not prevent the existence 
of well-defined vortex-like reversal behavior as evidenced in the hysteresis loops displayed in 
Figure 3. The color profiles embedded in Figure 6 provide a descriptive illustration of the size 
and shape of the core of the vortex in the different dots. They correspond to the distribution 
of mz values in the plane situated at half height of the dots. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
Figure 6. Radial dependence of the z-component of the magnetization, obtained from micromagnetic simulations. 
The curves represent the value averaged over the thickness of the dot. The colour profiles are created form the mz 
values in the plane situated at half height of the dots. 
 
 
 
The magnetization profiles represented in Figure 6 deserve a last remark. The negative 
values of mz present in the samples S30, L30, and L50 recall the situation encountered in 
Bloch magnetic skyrmions,28 in which the magnetization points in opposite directions 
between the core and the outer part of the structure. In this sense, the magnetization 
configuration in the large vortex core dots appears to be evolving from a classical vortex 
to a situation that recalls a Bloch-skyrmion configuration (it should be reminded here 
that the latter is n3 to 6 nmot supposed to be stable in Permalloy dots, with no 
Dzyaloshinskii-Moriya interaction and null perpendicular anisotropy).28 
 

Model of magnetization reversal in the large vortex case 

The large vortex core situation encountered experimentally and confirmed by the 
simulation results, cannot be described within the analytical approach for the classical (Rc 
<< R) vortex magnetization reversal, developed in Ref. [6]. A revised theory is needed for 
sub-100 nm dots, where the vortex core is large compared with the size of the dot. The 
detailed theoretical description is given in the Methods section below. Here, we only 
outline the most relevant aspects and results. In particular, we present the expression 
that the model gives for the annihilation field Han as a function of the parameter 
c = Rc/R, the vortex core radius relative to the radius of the dot, since Han can be 
directly compared with experimental results. 
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As the distances between the dots are much larger than their diameter for all the 
samples, we assume that the dipolar inter-dot interaction is negligibly small in 
comparison with the in-dot magnetic energies.29 Therefore, the problem of the 
magnetization reversal of a dot array is reduced to the problem of the magnetization 
reversal of a single circular dot of given radius R and thickness T. 
 
The magnetic energy density (per unit of the dot volume 𝑉 = 𝜋𝑅%𝑇) can be written as 
 

 𝑤 = 𝐴(∇𝑚,)% −
/
%
𝑀1𝐦𝐇𝐦 + 𝑤5 (1) 

 
where 𝐴	 is the exchange constant (which quantifies the strength  of  the  
magnetic  interaction),  𝛼	=	𝑥,	𝑦,	𝑧, 𝐦	=	𝐌/𝑀𝑠	is the unit magnetization vector, 𝐇𝐦	is 
the magnetostatic field, and 𝑤𝐻	 is the Zeeman energy density in an in-plane magnetic 
field. 
 
The different terms in (1) can be calculated (see Methods) for the case of c = Rc/R > 1 
(extra-large core) to obtain the energy 𝑊(𝑐,	𝑠,	𝐻)	as a function of c, the position of the 
vortex core in the plane of the dot (represented by s in reduced coordinates) and the 
applied field H. The minimization of the energy 𝜕𝑊⁄𝜕𝑠	=	0	 gives the equilibrium 
position 𝑠0	 of the vortex core for each applied field. The vortex annihilation field is then 
obtained as the field at which the position of the core equals the radius of the dot (𝑠0	= 1). 
The resulting expression is 

 𝐻EF(𝑐, 𝛽, 𝑅) =
(/HIJ)
%I

𝜅(𝑐, 𝛽, 𝑅)𝑀1, (2) 

 
where 𝛽	=	𝑇/𝑅	 is the aspect ratio of the dot and 𝜅(𝑐,	𝛽,	𝑅)	 is the magnetic stiffness 
coefficient. 
 
The expression in (2) is plotted as a function of c in Figure 7.a, for the geometrical 
parameters corresponding to the sample S50 (R = 30 nm, T = 50 nm) and using a value 
for the saturation magnetization µ0Ms = 0.75 T, assumed to be equal to the one 
measured in a thin film of the same composition. 



 
Figure 7. Evaluation of theory results using the data corresponding to sample S50: dot thickness T = 50 nm, 
radius R = 30 nm, µ0Ms = 0.6 T, A = 1.3 ´ 10-11 J/m. 
a) The vortex annihilation field as function of the reduced vortex core radius c, calculated by equation 2 for the case 
c > 1. 
b) Magnetic energy calculated by equation 1. The equilibrium value of the vortex core radius c0 is given by the 
minimum of the energy. This c0 value determine the annihilation field for this case to be µ0Han = 40 mT, as shown 
in the upper plot (a). 
 

On the other hand, the equilibrium vortex core radius 𝑐0	 can be found by minimizing 
the magnetic energy 𝜕𝑊/𝜕𝑐	=	0, calculated with the vortex core situated at the center 
of the dot (s = 0). Figure 7.b represents the dependence of 𝑊(𝑐)	(calculated with the 
values corresponding to sample S50). The energy minimum correspond to the equilibrium 
vortex core radius value of c0 = 1.4. Using this value in the expression of the 
annihilation field (Eq.  2 and Figure 7.a) we obtain µ0Han = 40 mT, in very good 
agreement with the measured result. 
 
Discussion 
We will analyze the large vortex core state discovered in dots with small radius by 
comparing the experimental results, the magnetization profiles obtained by the 
micromagnetic simulations, and the predictions of the theory. 

 
The analytical model that produces Equation (2) has been developed for the case c > 1 
(Rc > R), the extra-large vortex core, where the vortex core overflows the limits of the 
dot. It gives very good results for the sample S50 that seems to be in that situation 
according to the magnetization profile obtained in the micromagnetic simulations. 



 
The analytical model for the classical magnetic vortex with c << 1 (Rc << R), where 
the core radius is negligible, yields the expresion6 
	

  𝐻EF = [4𝜋𝐹/(𝛽) − (𝐿P/𝑅)%]𝑀1, (3) 

where the function 𝐹1(𝛽), defined in methods, depends on the aspect ratio of the dot 
and the shape assumed for the vortex core within the rigid vortex model, and 𝐿𝑒	 is 
the exchange length, related with the magnetic exchange stiffness constant. The values 
of Han obtained from (3) for the classic vortex (c << 1) are essentially larger than 
those obtained from Eq. (2) for the extra-large core vortex (c > 1). If the core of the 
vortex is smaller than the dot but is still large (c < 1) equation (3) can be adapted as 

 𝐻EF(𝑐, 𝛽, 𝑅) = (1 − 𝑐)⌊4𝜋𝐹/(𝛽) − (𝐿P/𝑅)%⌋𝑀1.  (4) 

 

This is the expression that should be, in principle, applicable to samples S30, L30 and L50 
which, according to the micromagnetic simulations, are in the case c < 1 (Rc < R). 

 
The calculated values obtained from equations (2) and (4) for the different samples, 
together with the experimental and simulated results, are compiled in Table II. The 
dimensions of the dots are affected by some uncertainty (see Table I), so the theory column 
of Table II displays values for Han and c calculated using sample parameters within 
those uncertainties. 
 
Table II. Compilation of the values of the reduced vortex radius (c = Rc/R) and annihilation field Han obtained from 
magnetic measurements, micro- magnetic simulations and analytical model 

 
For sample S30, equation (4) gives values between 36 and 41 mT, which are significantly 
larger than experimentally measured value of 23 mT. As explained before, the hysteresis 
loop of Figure 2.a evidence that, although the general behavior is typically vortex-like, the 
sample present features of in-plane single domain state. This mixed behavior limits the 
applicability of the analytical model. Alternatively, it is also possible that part of the dots of 
the sample were actually in in- plane single domain state, due to the closeness of the 
sample to the frontier in the phase diagram, producing in the measurement an average 
annihilation field Han smaller than the one that the theory predicts. 
 
The results for sample S50 agrees satisfactorily with the theory behind equation (2) for the 
extra-large vortex core state in which the vortex core is larger than the dot itself (c > 1). 

 

sample 
measured simulation theory2 vortex 

type3 µ0Han (mT) Rc (nm) c = Rc/R µ0Han c 
S30 23 ± 2 26 ± 3 0.7 ± 0.1 36 - 41 0.7 - 0.8 L 
S50 40 ± 2 361 1.2 40 - 41 0.8 - 1.4 XL/L 
L30 63 ± 2 30 ± 4 0.4 ± 0.1 60 - 61 0.5 - 0.6 L 
L50 84 ± 2 34 ± 6 0.5 ± 0.1 68 - 70 0.5 - 0.6 L 

1 approximate value obtained by extrapolation (Figure 6.b). 
2 range of values obtained within sample size uncertainties (Table I). 
3 L = large vortex core. XL = extra-large vortex core. 



However, if the inputs to the equation corresponding to the dot size are increased 
slightly (within the errors given in Table I), the large vortex core state become energetically 
favorable, giving an equilibrium radius of c0 = 0.8, and an annihilation field (using Eq. 
4) of Han = 41 mT, which is also close to the value measured experimentally. This means 
that the sample must possibly be close to the crossover from c > 1 (extra-large vortex core 
state) to c < 1 (large vortex core state). Incidentally, this also demonstrates the 
continuity between the results given by equation 4 for c < 1 and equation 2 for c > 1. 
In any case, the size of the vortex core in this sample S50 is significantly larger than those 
of the other studied samples. While being circularly curled, the magnetization conserves a 
considerable z-component over the whole surface of the dot, which is definitely caused by 
the proximity the out-of-plane single domain region in the phase diagram. The extra-large 
vortex core with its enhanced out-of-plane magnetization component makes that the 
reversal process occur with some coherent rotation of the magnetization as discussed in 
the experimental results section. 
 
The samples with larger radii, L30 and L50, are properly described in the large vortex core 
(c < 1) framework represented by equation 4. Their calculated equilibrium vortex core 
radius is approximately half of the dot radius (c0 ~ 0.5) in accordance to the experimental 
MFM measurements and simulated magnetization profiles. The calculated value of the 
annihilation field for L30 is in rather good agreement with the experiment. Besides, the 
theory correctly reproduces the observed tendency for Han, although the calculated value 
for L50 is clearly smaller than the measured one (which can be caused by the strong 
sensitivity of Eq. 2 and 4 to small variations of c). 
 

Based on the above results, we can conclude that all the examined samples present a large core 
vortex  about  3 0 nm in  radius, but the actual size of the core depends on the aspect 
ratio of the dot. The vortex core becomes larger for thicker samples, as the sample 
approaches towards the out-of-plane single domain state (this is graphically observed in 
Figure 6, where the vortex core of samples S50 and L50 is larger than those of S30 and 
L30, respectively). In samples with a radius of 30 nm, the large vortex core can result in 
the development of an extra-large vortex core state, which is proven to be an 
intermediate stable state between the large vortex core (c < 1) and perpendicular single 
domain state (c >> 1). The magnetization reversal process in this state can accurately be 
described by the theory that leads to equation 2, whereas the transition from the vortex 
state to the single domain state, maintaining the axial distribution of the magnetization, 
was described theoretically in Ref. [30] and, in greater detail in Ref. [20]. The sample S50 
(R = 30 nm, T = 50 nm), which is the one with the largest aspect ratio, is the closest to that 
extra-large vortex core state. According to the analytical models, this sample is within the 
range of dot sizes where either the large vortex core (c < 1) or the extra-large vortex core 
(c > 1) can be stable (and the other one metastable) simultaneously. 

 
From the point of view of applications, for fabricating small dots with a radius of R = 
30 nm, the thickness of sample S50 (50 nm), is probably at the limit for presenting a well-
defined vortex magnetization reversal, before approaching to the boundary of the out-of-
plane single domain. On the other boundary, the thickness of sample S30 (30 nm) is 
probably the minimum possible for obtaining clear vortex behavior without the 
dominance of the in-plane single domain reversal processes. 



 
Conclusions 
We have demonstrated experimentally that magnetic circular dots with small radius (R = 30 
nm) stick to a magnetic vortex configuration within a thickness range of T = 30 to 50 nm, 
although the vortex core, that is the region where the magnetization is out of the dot plane, 
is large compared with the total size of the dot. This has consequences in the magnetization 
reversal mechanism, and contrasts with the situation in the classical vortex state present in 
micron-sized dots, where the vortex core can be neglected in describing the magnetization 
reversal. To the best of our knowledge, this is the first experimental detection of the 
large-radius-core vortex state in circular magnetic dots. Within the dominant vortex 
configuration, there are differences between the samples depending on their geometry. 
The most dramatic case corresponds to the sample S50 (T = 50 nm), where the radius of 
the core is even larger than the dot radius (extra-large vortex core) as confirmed by 
micromagnetic simulations and analytic calculations. The sample S30 (T = 30 nm), with a 
lower aspect ratio, presents a mixture of in-plane single domain state and large vortex 
core state. Nanodots with larger radius (R = 70 nm), reveal a behavior closer to the 
classical vortex state, although the large vortex core produces a magnetic configuration 
that resembles that of a Bloch magnetic skyrmion. The analytical model developed 
to describe the large vortex core state for either (Rc > R) or (Rc ≤ R), is able to successfully 
explain the measured vortex annihilation fields. This study experimentally confirms the 
feasibility of obtaining well-defined vortex behavior in circular dots with radii down to 30 
nm, for emerging spintronic and biomedical applications. 
 

Calculation methods 

Micromagnetic simulations 
We solve the Landau-Lifshits-Gilbert equation for the magnetization motion numerically, 
which produces the equilibrium configuration of the magnetization for a given geometry, 
material parameters and applied magnetic field. Micromagnetic simulations were 
performed with OOMMF software.27 Although the usual cell size in this kind of simulations 
is 4 nm, we obtained the same results with smaller cell sizes. To increase the density of 
points in Figure 6, the data were obtained using cell sizes of 1 nm for samples S30 and S50 
(R = 30 nm), and of 2 nm for L30 and L50 (R = 50 nm). The material parameters used in the 
simulation are the ones commonly used for Permalloy:5 saturation magnetization Ms 
= 8 ´ 105 Am-1   (µ0Ms = 1 T),   exchange   constant A = 1.3 ´ 10-11 Jm-1, no anisotropy. 
The Gilbert damping coefficient α was set to 0.5 to speed up the calculations. The equilibrium 
configuration was determined for zero applied field. 
 

Analytical calculations 
We use cylindrical coordinates (𝝆,	𝝋)	to describe the in-plane radius vector 𝛒(𝒙,	𝒚)	 and 
assume that the dot magnetization can be averaged over the thickness, that is, over 
the 𝒛		coordinate. The position of the vortex core 𝐗	=	(𝑿,	𝒀)	 in the dot is expressed in 
reduced variables as 𝐬	=	𝐗/𝑅. If an external in-plane magnetic field 𝑯	 is applied, then it 
is convenient to express  the  dot  magnetization  as  𝐌(𝛒,	𝐗)	=	𝐌(𝛒	−	𝐗), assuming 
that the vortex is rigidly shifted from its equilibrium position at the dot centre. 
 
The total magnetic energy 𝑊	 =	 𝐿	∫	𝑑2𝛒𝑤	 can be decomposed in series on the small 
parameter |𝑠|	≪	1	as 



	

 𝑊(𝑠) = 𝑊(0) + 𝜅|𝑠|%/2 − 𝐻〈𝑀〉𝑉, (M1) 

 
where 𝜅	 is the stiffness coefficient, and 〈𝑀〉	 is the averaged dot  magnetization  
component  along  the  in-plane  bias magnetic field 𝐻	direction. 
 
The problem is reduced to the calculation of the magnetic energy 𝑊(𝑠). We use the 
complex variables 𝑧	=	(𝑥	+	𝑖𝑦)/𝑅	and an analytic function 𝑓(𝑧)	to describe the displaced 
vortex. The magnetization components can be expressed as 
 

 𝑚j + 𝑖𝑚k =
%l(m)

/H|l(m)|J
,    𝑚m =

/n|l(m)|J

/H|l(m)|J
.  (M2) 

 

We apply the rigid vortex model 𝑓(𝑧)	=	𝑒𝑖Φ0	(𝑧	−	𝑠)/𝑐, which corresponds to the vortex 
equilibrium skyrmion-like magnetization   profile   𝑐𝑜𝑠Θ0(𝜌)	=	(𝑅2	−	𝜌2)/(𝑅2	+	𝜌2). 
Here, 𝑐	=	𝑅𝑐/𝑅	≥	1	 is the reduced vortex core radius (the case of c<<1 was considered by 
Guslienko et al) and 𝜙u =𝐶𝜋/2	(𝐶	=	±1	is the vortex chirality). 
 

According to Eq. 1 there are exchange and magnetostatic contributions to the dot 
magnetic energy of the vortex displaced from the dot center. The exchange 
contribution to the stiffness coefficient 𝜅	 is 𝜅𝑒𝑥(𝑐)	=	−32𝜋𝐴𝑇𝑐2/(1	+	𝑐2)3. To calculate 
the vortex magnetostatic energy 𝑤𝑚	we distinguish the energy of the bulk, side surface 
and face dot surface magnetic charges. The energy cannot be simply expressed via the 
analytical function 𝑓(𝑧). Therefore, we used a direct calculation of 𝑤𝑚	 via the 
magnetization bulk and surface divergence, 𝑑𝑖𝑣	𝐦	and (𝐦	∙	𝐧)	respectively, where the 
vector 𝐧	 is normal to the dot surface (𝐧	=	𝒛̂,	𝝆̂	 for the face and side surface charges, 
correspondingly). The bulk magnetic charges are absent within the rigid vortex model (𝑑𝑖𝑣	
𝐦	=	0). The magnetostatic energy of the face and side surface charges of the displaced 
vortex can be calculated by the equation 
 

 𝑊}(𝐬) =
/
%
𝜇u𝑀1

% ∫𝑑𝑆 ∫𝑑𝑆′ }�(𝐫,𝐬)}�(𝐫�,𝐬)
|𝐫n𝐫�|

,  (M3) 

 
where 𝑚𝑛	=	(𝐦	∙	𝐧)	is the surface divergence. 
 
The side surface charges stiffness coefficient, calculated from Eq. M3, is 

 𝜅}1 (𝑐, 𝛽) = 16𝜋%𝑀1
%𝑅%𝑇𝑐%(1 + 𝑐%)n�𝐹/(𝛽), 

 
where 
 

𝐹/(𝛽) = ∫ 𝑑𝑡𝑡n/�
u 𝑓(𝛽𝑡)𝐽/%(𝑡), 			𝑓(𝑥) = 1 − �1 − 𝑒𝑥𝑝(−𝑥)�/𝑥, 

and 𝛽	=	𝑇/𝑅	 is the dot aspect ratio. The face magnetic charges stiffness 
coefficient is calculated as 
 

𝜅}
l (𝑐, 𝛽) = 32𝜋%𝑀1

%𝑅%𝑇/(𝛽𝑐%) ∫ 𝑑𝑘(1 − exp(𝛽𝑘))�
u 𝐹(𝑘, 𝑐),  



 
 
 

where the function 𝐹(𝑘,	𝑐)	is given by 

𝐹(𝑘, 𝑐) = 2 �� 𝑑𝜌𝜌%𝐽/(𝑘𝜌)/(1 + 𝜏)%
/

u
�
%

/𝑐%

+ � 𝑑𝜌𝜌𝐽u(𝑘𝜌)(1 − 𝜏)/(1 + 𝜏)� 𝑑𝜌𝜌𝐽u(𝑘𝜌)(𝜏 − 1)/(1 + 𝜏)�
/

u

/

u
 

and 𝜏	=	(𝜌⁄𝑐)2.	

	
We can write the total stiffness coefficient 

 𝜅 = 𝜅Pj + 𝜅}1 + 𝜅}
l   

(in units of 𝑀2𝑉) for the circular dot as 
 

𝜅(𝑐, 𝛽, 𝑅) = −16 ���
�
�
% IJ

(/HIJ)�
+ /��IJ

(/HIJ)J
𝐹/(𝛽) +	

�%�
IJ� ∫ 𝑑𝑘(1 − exp	(−𝛽𝑘))𝐹(𝑘, 𝑐)�

u  , (M4) 

 
 
where 𝐿𝑒	=	√2𝐴/𝑀𝑠	 is the exchange length. 
 
Calculating the average in-plane dot magnetization, the Zeeman energy density can 
be expressed as 

 𝑤5(𝑠) = − %I
/HIJ

𝐻𝑀1. (M5) 

 

The equilibrium vortex core position displacement 𝑠0	 in a small in-plane magnetic field 
(𝐻)	 can be calculated from the equation 𝜕𝑊/	𝜕s	=	0	as 

  𝑠u = 2𝑐𝐻/𝜅(1 + 𝑐%)𝑀1. 

Following the paper6 we consider that the field at which the vortex core center crosses the 
dot border 𝑠0	=	1	should give a good estimation of the vortex annihilation field, 𝐻𝑎𝑛, for 
𝑐	>	1. 

 𝐻EF(𝑐, 𝛽, 𝑅) =
(/HIJ)
%I

𝜅(𝑐, 𝛽, 𝑅)𝑀1, (M6) 

 

where the stiffness coefficient 𝜿(𝒄,	𝜷,	𝑹)	is given by Eq. M4. 
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