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Abstract 26 

 27 

Purpose: Investigate cortical tracking of speech (CTS) in adults who stutter (AWS) compared to 28 

typically fluent adults (TFA) to test the involvement of the speech-motor network in tracking 29 

rhythmic speech information. 30 

 31 

Method: Participants’ EEG was recorded while they simply listened to sentences (listening-only) or 32 

completed them by naming a picture (listening-for-speaking), thus manipulating the upcoming 33 

involvement of speech production. We analyzed speech-brain coherence and brain connectivity 34 

during listening. 35 

 36 

Results: During the listening-for-speaking task, AWS exhibited reduced CTS in the 3-5 Hz range 37 

(theta), corresponding to the syllabic rhythm. The effect was localized in the left inferior parietal and 38 

right pre/supplementary motor regions. Connectivity analyses revealed that TFA had stronger 39 

information transfer in the theta range in both tasks in fronto-temporo-parietal regions. When 40 

considering the whole sample of participants, increased connectivity from the right superior temporal 41 

cortex to the left sensorimotor cortex was correlated with faster naming times in the listening-for-42 

speaking task. 43 

 44 

Conclusions: Atypical speech-motor functioning in stuttering also impacts speech perception, 45 

especially in situations requiring articulatory alertness. The involvement of frontal and (pre-)motor 46 

regions in CTS in typically fluent adults is highlighted. Further investigation is needed into speech 47 

perception in individuals with speech-motor deficits, especially when smooth transitioning between 48 

listening and speaking is required, such as in real-life conversational settings. 49 

 50 

Keywords: cortical tracking of speech; developmental stuttering; neural oscillations  51 
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Introduction 52 

 53 

Developmental Stuttering (DS, also known as Childhood-Onset Fluency Disorder; American 54 

Psychiatric Association, 2013) is a neurodevelopmental disorder affecting the normal flow of speech 55 

and is characterized by symptoms such as blocks, prolongations, and repetitions. People who stutter 56 

know what they want to say, but they may be unable to speak in a fluent manner. Importantly, DS 57 

may persist in adulthood, impairing the quality of life of affected individuals (Craig et al., 2009; Nang 58 

et al., 2018).  59 

DS likely has a multifactorial origin, comprising motor, linguistic, emotional, neural and 60 

genetic factors (Smith & Weber, 2017). In particular, in recent years, genetic factors have been 61 

identified (Barnes et al., 2016; Benito-Aragón et al., 2020; Chow et al., 2020; Frigerio-Domingues & 62 

Drayna, 2017; Kang et al., 2010; Kang & Drayna, 2012; Kraft & Yairi, 2011), which may facilitate 63 

the appearance of atypical structure, function and connectivity patterns of the central nervous system 64 

(Alm, 2021a; Craig-McQuaide et al., 2014; Etchell et al., 2018), also expressed as altered 65 

sensorimotor brain rhythms (Etchell et al., 2016; Ghaderi et al., 2018; Jenson et al., 2018, 2020; Joos 66 

et al., 2014; Saltuklaroglu et al., 2017). Such atypical neural traits lead to impaired capacities in 67 

sensorimotor planning and execution of speech (Alm, 2021b; Chang et al., 2019). Deficits in internal 68 

timing and motor coordination seem to be at the core of DS (Alm, 2004), affecting wide neural 69 

systems and comprising regions such as the basal ganglia, the supplementary motor area, the inferior 70 

frontal cortex, and temporal regions (Busan, 2020; Busan et al., 2019; Craig-McQuaide et al., 2014; 71 

Etchell et al., 2018; Watkins et al., 2008). Within this network, disrupted auditory-motor interactions 72 

have been reported for DS, with difficulties in integrating auditory feedback during speaking 73 

potentially contributing to overt stuttering behaviors (Bradshaw et al., 2021; Chang et al., 2016; Daliri 74 

& Max, 2015, 2018; Halag-Milo et al., 2016; Hesse, 2023; Kim et al., 2020). Interestingly, disrupted 75 

sensorimotor function in DS has also been associated with impairments in aspects of speech 76 

perception, specifically weaker or less efficient predictive processing during spoken language 77 

comprehension (Gastaldon et al., 2023). To evaluate the role of inefficient sensorimotor function in 78 

DS during speech listening, this study considers cortical tracking of speech (CTS).  79 

CTS, sometimes also referred to as “speech-brain entrainment” (Obleser & Kayser, 2019), is 80 

the temporal alignment of internal low frequency brain rhythms (delta – 0.1-3 Hz – and theta – 4-7 81 

Hz – frequency bands) to acoustic energy fluctuations (envelope amplitude) of the external speech 82 

signal. CTS is considered to be a valuable index reflecting the efficiency of neural processing of 83 

quasi-rhythmic components of speech, especially of prosodic (delta) and syllabic (theta) information 84 

(Assaneo & Poeppel, 2018; Molinaro & Lizarazu, 2018; Poeppel & Assaneo, 2020; Poeppel & Teng, 85 
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2020); disrupting such alignment can interfere with speech intelligibility (Riecke et al., 2018). 86 

Importantly, a growing body of evidence supports the view that frontal, motor and premotor regions 87 

modulate CTS in the auditory cortex in a top-down manner (Keitel et al., 2018; Park et al., 2015). 88 

Evidence also suggests that there is a preferred frequency range at which activity in the motor and 89 

auditory cortices are coupled during speech listening. Such range lies within the theta band, 90 

specifically between 3 and 5 Hz, with a peak at 4.5 Hz (Assaneo & Poeppel, 2018). This range has 91 

been associated with the rate of both production and perception of syllabic rhythm across languages 92 

(Ding et al., 2017, Poeppel & Assaneo, 2020). In this scenario, it has been proposed that the motor 93 

system generates temporal predictions via efferent motor signals, leading to phase-resetting in 94 

auditory cortices and hence to the optimization of auditory perception (Rimmele et al., 2018). Recent 95 

behavioral evidence supports this account: higher individual speech production rates (higher fluency) 96 

and stronger auditory-motor synchronization (alignment of speech production to an external rhythm) 97 

were associated with better performance in a speech comprehension task (Lubinus et al., 2023). 98 

Importantly, altered brain processes related to CTS have been proposed as a risk factor for the 99 

appearance of developmental speech and/or language disorders (Lizarazu et al., 2015; Molinaro et 100 

al., 2016; Di Liberto et al., 2018; Lizarazu et al., 2021a; Nora et al., 2024). It has been proposed that 101 

such deficits are linked to abnormalities in the cortico-basal-thalamo-cortical circuitry involved in the 102 

processing of sensory cues (such as beats in music and/or linguistic meter in speech), thus playing a 103 

role in processing and predicting events in a sequence (Ladányi et al., 2020). This may also be the 104 

case for people who stutter, especially if auditory-motor coupling is a contributory factor to both DS 105 

and CTS. Crucially, no evidence is currently available for brain processes related to CTS in stuttering. 106 

Thus, a better understanding of these phenomena in DS should be useful for improving our 107 

comprehension of 1) neuro-pathological mechanisms related to stuttering (both in the contexts of 108 

speech production and perception), and 2) the neural mechanisms involved in typical speech 109 

perception and production (and in their possible mutual interactions). 110 

To address both these issues, in the present study we investigated whether adults who stutter 111 

(AWS; stuttering onset during childhood and persisting into adulthood) show altered tracking of the 112 

speech signal when compared to typically fluent adults (TFA; no diagnosis of speech disorders). 113 

Specifically, we measured speech-brain coherence on electroencephalographic (EEG) data, both at 114 

the sensor and the neural source level, during sentence listening in conditions that either overtly 115 

recruited the articulatory system (completing the sentence by naming a picture; listening-for-116 

speaking) or not (passively listening to the entire sentence; listening-only), in order to assess whether 117 

the upcoming involvement of the speech-motor network may have modulatory effects on CTS (see 118 

Figure 1 and Materials and Methods). While not directly simulating everyday dyadic conversations, 119 
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the listening-for-speaking task still implies an alertness of the speech-motor system, in addition to 120 

higher level processes such as anticipation and planning (Corps et al., 2018), similar to the demands 121 

of conversational and turn-taking settings. We expected to find group differences in a restricted range 122 

within the theta band, at which activity in the auditory and motor regions is supposed to be inherently 123 

coupled and to contribute to the tracking of syllabic rhythm. 124 

Further insight can be obtained by studying how cortical regions interact with each other 125 

during speech listening. Standard neural models of speech processing describe the presence of a 126 

dorsal and a ventral cortical stream, jointly with a cortico-subcortical loop involving cerebellum, 127 

thalamus and basal ganglia (Friederici, 2012; Hickok & Poeppel, 2004, 2007; Kotz & Schwartze, 128 

2010; Scott & Johnsrude, 2003). While the ventral stream (comprising the auditory cortex, the 129 

anterior and posterior temporal lobe, and the inferior frontal cortex) is primarily tasked with mapping 130 

auditory information onto linguistic representations during speech comprehension, the dorsal stream 131 

(comprising the auditory cortex, inferior parietal regions, posterior temporal cortex, motor, premotor 132 

and supplementary motor regions, and the inferior frontal cortex) is concerned with mapping auditory 133 

and motor representations of linguistic sounds, primarily during speech production. However, the 134 

dorsal stream seems to be useful also during speech listening, especially in challenging listening 135 

situations (Skipper et al., 2017), thanks to the role of this network in providing temporal structure for 136 

processing, jointly with the basal ganglia (Kotz & Schwartze, 2010). This should be particularly true 137 

when specifically targeting the tracking of rhythmic information in the speech stream, which requires 138 

sensibility to temporal regularities (Ladányi et al., 2020), as is the case of the present study. For these 139 

reasons, we also analyzed brain connectivity by using partial directed coherence (PDC) to quantify 140 

directional neural interactions between brain regions implicated in sensorimotor and speech 141 

processing. This analysis allows us to investigate frequency-specific directional communication 142 

between cortical regions during envelope tracking. Previous studies that looked at frequency-specific 143 

brain connectivity during speech envelope tracking in various contexts highlighted a variety of 144 

connectivity patterns. Importantly, many of such patterns involved regions part of the dorsal stream 145 

in the delta and theta frequency ranges (e.g., Becker & Hervais-Adelman, 2023; Giordano et al., 2017; 146 

Hincapié Casas et al., 2021; Lizarazu et al., 2021a; Molinaro et al., 2016; Park et al., 2015), supporting 147 

the idea that such network is relevant for tracking rhythmic patterns in the speech stream. 148 

Based on the models and previous findings on frequency-specific connectivity in envelope 149 

tracking, we hypothesize that neural connectivity is reduced in stuttering especially in the dorsal 150 

stream, suggested to be responsible for auditory-motor transformations. This hypothesis is also 151 

supported by evidence showing that white matter tracts considered to be part of the dorsal stream are 152 

usually altered in people who stutter (Kronfeld-Duenias et al., 2016; Neef et al., 2018, 2022; Sommer 153 
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et al., 2002; Watkins et al., 2008). In fact, DS is characterized by abnormal structural and functional 154 

connectivity of large neural circuits, especially involving sensorimotor and speech brain regions (for 155 

a recent review, see Etchell et al., 2018). For example, concerning measures of white matter integrity 156 

and efficiency, Sommer et al. (2002) showed that DS is characterized by lower fractional anisotropy 157 

in fibers below cortical regions representing larynx and tongue muscles in the left primary motor and 158 

somatosensory cortices, suggesting disconnection among speech/motor cortical areas. Watkins et al. 159 

(2008) found white matter deficits in regions underlying premotor cortices, suggesting impairments 160 

in connectivity with temporal regions, primary motor cortex, and inferior parietal cortex, thus 161 

weakening integration of speech and sensory feedback, as well as execution of articulatory 162 

movements in stuttering. Neef et al. (2018) disentangled the (adaptive or maladaptive) compensatory 163 

role of right hemisphere speech/motor regions in DS showing that stuttering severity correlates with 164 

connectivity of right frontal (hyperactive) regions, as well as with fractional anisotropy of the left 165 

superior longitudinal fascicle after speech therapy (Neef et al., 2022). When considering functional 166 

evidence (especially obtained from EEG data, as employed in this work), Busan et al. (2019) suggest 167 

that DS is characterized by a delay in recruiting left hemisphere fronto-parietal networks, followed 168 

by activation in homologous regions of the right hemisphere, thus suggesting a possible neural 169 

substrate for the emergence of dysfluencies. Along this line, Caruso et al. (2023) found a reduced 170 

connectivity of the left sensorimotor circuits in motor tasks in stuttering. More specifically, inter-171 

hemispheric connectivity was weaker at lower frequencies (delta and theta range) and stronger in the 172 

beta band, suggesting that the right hemisphere might be recruited to support sensorimotor processing 173 

in DS and that an altered balance of the neural activity might be a fundamental aspect of stuttering. 174 

All this considered, a better understanding of neural connectivity is fundamental also in the 175 

context of the present work, especially when hypothesizing the relevance of auditory-motor pathways 176 

in tracking rhythmic information during speech listening. However, we remain agnostic as to specific 177 

patterns (directionality) and potential additional group differences (e.g., stronger connectivity in 178 

AWS in other pathways, reflecting compensatory mechanisms). To this extent, the PDC analysis is 179 

partially theoretically driven (identify pathways compatible with a dorsal processing stream) and 180 

partially exploratory. 181 

In summary, given the picture outlined above, we can hypothesize that: 182 

1) CTS may be reduced in AWS relative to TFA, regardless of the listening condition (“listening-183 

only” vs “listening-for-speaking”). Alternatively, differences may be detected only when listening is 184 

coupled with the upcoming necessity to overtly activate the speech-motor system, which is 185 

consequently kept in an “alert mode” in order to appropriately initiate speech (see “Sensor level 186 

analysis” section).  187 
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2) In AWS, reduced CTS may be found in speech-motor and premotor regions, in addition to auditory 188 

and associative regions (see “Source level analysis” section). 189 

3) In AWS, regions that are considered to be part of the dorsal stream (inferior frontal cortex, 190 

premotor and supplementary motor regions, sensorimotor and temporo-parietal regions) may be 191 

communicating less efficiently with auditory regions during speech tracking, thus displaying reduced 192 

connectivity (see “Partial directed coherence (PDC) analysis”). 193 

 194 

[FIGURE 1 HERE] 195 

 196 

Materials and Methods 197 

 198 

Participants 199 

 200 

We analyzed CTS in a dataset collected for a previous study on spoken sentence processing in adults 201 

who stutter, which focused on different time-windows, used different analyses and had different aims 202 

(Gastaldon et al., 2023). The original study included 14 right-handed male adults who stutter (AWS) 203 

and 14 right-handed typically fluent male adults (TFA). The participants were matched for age and 204 

handedness. All participants were native speakers of Italian. The original study was approved by the 205 

Ethical Committee for Psychological Research of the University of Padova (protocol n. 3073) and 206 

conducted in accordance with the Declaration of Helsinki. We refer the reader to the original study 207 

for further details on AWS recruitment and assessment. Out of the 28 participants of the original 208 

study, four participants were excluded due to excessively noisy EEG data during sentence frame 209 

presentation for the analyses conducted here. The remaining 24 participants, 12 AWS and 12 TFA, 210 

were matched for age (AWS: mean age = 34.44, SD = 9.37; TFA: mean age = 33.42, SD = 8.94) and 211 

handedness (AWS: mean = 83.75, SD = 20.57; TFA: mean = 85.00, SD = 23.06), as assessed by 212 

means of the Edinburgh Handedness Inventory (Oldfield, 1971). From the original study we also 213 

retrieved data about the Stuttering Severity Index (SSI-4; Riley, 2009) of each AWS, which assigns 214 

an overall individual score by considering various characteristics of stuttering events and the 215 

occurrence of concomitant movements associated with disfluencies (e.g. oro-facial and limb 216 

movements) in both reading and spontaneous speech tasks. The higher the SSI-4 score, the more 217 

severe the stuttering. The final set was composed of 6 participants with very mild severity, 4 with 218 

mild and 2 with severe. Exploratory correlations between SSI-4 and CTS and connectivity data were 219 

performed (statistical threshold for explorative correlations: p ≤ .01, two-tailed. 220 

 221 
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Stimuli and procedure 222 

 223 

The stimuli were the same used in Gastaldon et al. (2020, 2023) (see the OSF repository for additional 224 

information on stimuli characteristics: https://osf.io/tcbsh/). They consisted of 256 sentence frames 225 

(sentences without the final word, ranging in duration from 1.55 to 3.54 s; mean duration = 2.39, SD 226 

= 0.4), which were paired with 128 target words and 128 b/w line pictures (124x124 pixels), such that 227 

each word and picture appeared twice, completing a high and low constraint sentence frame. Spoken 228 

stimuli were uttered by a female native Italian speaker, recorded and digitized at 44.1 kHz using 229 

Audacity®. Audio files (*.wav) were also segmented using Audacity. During the task, participants 230 

listened to the sentence frames, then, after an 800 ms pause, either they heard a word (listening-only 231 

task) or had to produce it by naming a picture (listening-for-speaking task), in two distinct blocks, 232 

which were counterbalanced across participants. In the listening-only task, true/false comprehension 233 

questions were asked at the end of the trial in 20% of the trials, to maintain the participant’s 234 

engagement (see also Figure 1). Due to the aims of the original study (Gastaldon et al., 2023), half 235 

the sentence frames induced high constraining contexts for the final word and half induced low 236 

constraining contexts, thus manipulating target word predictability. However, in order to allow for a 237 

better estimation of CTS and increase signal-to-noise ratio (SNR) and statistical power (see below), 238 

we did not divide the sentence frames into high vs low constraining contexts in the present analyses. 239 

We recognize that this may be a highly relevant variable that should be investigated in future studies 240 

(for a study in the normal population, see Molinaro et al., 2021); however, here we were limited in 241 

terms of SNR and number of trials. Note that groups did not differ in the number of EEG data 242 

segments coming from high and low constraining sentences in either task, thus excluding the 243 

possibility of any effect of this factor on any group differences (see Supplementary Table S2). 244 

Therefore, here we focused on the manipulation of task demands, which implied two different 245 

listening conditions: listening for comprehension (listening-only) or listening in order to complete the 246 

sentence as quickly as possible by naming a picture (listening-for-speaking). Participants sat in a 247 

dimly lit room in front of a computer screen. The experimental material was delivered through E-248 

Prime 2.0 (Psychology Software Tools, Pittsburgh, PA). Auditory stimuli were presented through 249 

built-in speakers. Responses (picture naming and true/false answers) were collected via a microphone 250 

set in front of the participant. In the listening-for-speaking task, audio recording started at the onset 251 

of the picture to be named and lasted for 2 seconds. The experimental paradigm is exemplified in 252 

Figure 1. For further details on the experimental design, we refer the reader to the original study 253 

(Gastaldon et al., 2023). 254 

 255 

https://osf.io/tcbsh/
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EEG data acquisition and preprocessing  256 

 257 

During the task, the electroencephalogram (EEG) was recorded using a BrainAmp amplifier and 258 

BrainVision Recorder software (BrainProducts, Germany). EEG was recorded using 64 electrodes 259 

that were positioned according to the international 10-10 system (Nuwer et al., 1998). Scalp-electrode 260 

impedance was kept below 10Ω. The recording was referenced to the left earlobe. Electrode AFz 261 

served as the ground. Two electrodes at the outer canthi of both eyes recorded horizontal eye 262 

movements and one electrode below the left eye recorded vertical eye movements. EEG was sampled 263 

at 1000 Hz and band-pass filtered online from 0.1 to 1000 Hz. 264 

The preprocessing pipeline for the present work was the following. Heartbeat and EOG 265 

artifacts were identified using independent component analysis (ICA) and subtracted from the 266 

recordings in a linear manner. The ICA decomposition was carried out using the Infomax algorithm 267 

implemented in the Fieldtrip toolbox (Oostenveld et al., 2011). Across participants, the number of 268 

heartbeat and ocular components that were removed varied from 1 to 4 and 1 to 3 components, 269 

respectively. Furthermore, trials were visually inspected to discard any remaining artifacts. Bad 270 

channels were substituted with interpolated values computed as the average of the neighboring 271 

electrodes obtained through the triangulation method implemented in Fieldtrip. A minimum of 75% 272 

artifact-free trials per participant was required for inclusion in subsequent analyses. As noted above, 273 

this led to the exclusion of two participants from each group, resulting in a final sample of 24 274 

participants (12 AWS and 12 TFA). In the case of TFA, an average of 4.89% (SD = 3.1) trials and 275 

5.23% (SD = 3.8) trials were excluded for comprehension and production tasks, respectively. 276 

Similarly, for AWS, an average of 5.4% (SD = 3.59) trials and 8.13% (SD = 3.86) trials were excluded 277 

for comprehension and production tasks, respectively. Importantly, no significant group or task 278 

differences were observed in the number of excluded trials (all Ts < 1.6, all ps > .11, two-tailed t-279 

test). EEG data and MATLAB scripts for the analyses described in the following sections are 280 

available on a dedicated OSF repository: https://osf.io/7gpyb/. 281 

 282 

Cortical tracking of speech (CTS) analysis 283 

 284 

Sensor level analysis 285 

 286 

Coherence measures the degree of phase synchronization between two signals in the frequency 287 

domain. For each participant and condition, we used coherence to quantify the cortical tracking of 288 

speech (CTS), which represents the coupling between the speech temporal envelope and cortical 289 

https://osf.io/7gpyb/
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oscillations.  We obtained the envelope of the speech signal from the Hilbert transformed broadband 290 

stimulus waveform. According to previous research in speech processing we expected to find strong 291 

CTS in the low-frequency (< 10 Hz) spectrum and in temporal sensors (Molinaro et al., 2016; 292 

Molinaro & Lizarazu, 2018; Lizarazu et al., 2021b; Ershaid et al., 2024; Issa et al., 2024). Therefore, 293 

we selected a set of 12 channels, evenly distributed to cover the temporal lobes of the brain – 294 

precisely, 6 channels allocated over the left hemisphere (C3, C5, CP3, CP5, FC3, FC5) and additional 295 

6 over the right hemisphere (C4, C6, CP4, CP6, FC4, FC6). Artifact-free trials were segmented into 296 

1-second windows with 50% overlap. Coherence was then calculated using the cross-spectral density 297 

of the FFT of the two signals (i.e., speech envelope and EEG data segments), normalized by the power 298 

spectrum of each signal. For each EEG sensor, coherence was calculated in the 1 – 15 Hz frequency 299 

band with 1 Hz (inverse of the segment duration) frequency resolution (Molinaro et al., 2016; 300 

Molinaro & Lizarazu, 2018). This procedure was followed for each participant and task/listening 301 

condition.  302 

To estimate the coherence bias, the auditory envelopes were randomly shuffled across epochs 303 

for each participant, and coherence was recalculated in 100 permutations. The coherence data from 304 

the selected sensors of interest were separately averaged for each hemisphere and then transformed 305 

into z-scores using the mean and standard deviation derived from the 100 random EEG-audio pairings 306 

for those sensors. For each condition and frequency bin, z-score transformations were computed using 307 

the task-specific mean and standard deviation obtained from the random pairing dataset, and with an 308 

equal number of trials as the actual EEG-audio pairing dataset. 309 

For the statistical analysis, we calculated the mean CTS values (z-scored coherence) within 310 

the theta band, specifically in the 3-5 Hz frequency range. We focused on this frequency range 311 

because of two specific reasons: 1) a peak is present in our auditory stimuli in the same frequency 312 

range, indicating syllabic rhythm (see Supplementary Figure 2), and 2) the existence of a frequency-313 

restricted preference for the coupling between auditory and motor regions, as explained in the 314 

Introduction (see also Assaneo & Poeppel, 2018). To assess group differences in each task, we 315 

conducted an ANOVA on the z-transformed coherence values, with hemisphere (left vs right) as the 316 

within-subject factor and group (TFA vs AWS) as the between-subject factor (considering effects of 317 

main factors and their interaction; post-hoc analyses conducted using t-test; statistical threshold at p 318 

≤ .05, two-tailed). 319 

 320 

Source level analysis 321 

 322 
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Coherence values were also estimated at the source level for each participant and condition in the 323 

theta band (3-5 Hz), where significant results were observed at the scalp level. For the source level 324 

analysis, we utilized a frequency-domain adaptive spatial filtering imaging of coherent sources 325 

algorithm (Gross et al., 2001), implemented in the Fieldtrip toolbox. To establish the spatial 326 

relationship between electrode positions of the participants (defined with a template electrode layout) 327 

and the cortical mesh, we employed a standard boundary element head model (BEM) extracted from 328 

the Montreal Neurological Institute (MNI) template. This BEM consists of three 3-D surfaces (skin, 329 

skull, brain) derived from the MNI dataset. The forward model was computed using an 8 mm grid 330 

encompassing the entire brain compartments of the BEM, representing various source positions. To 331 

perform source analysis, we constructed common space filters utilizing the leadfield of each grid 332 

point and the cross-spectral density matrix (CSD). The CSD matrices were computed within the theta 333 

(4 Hz with ±1 Hz frequency smoothing) band by applying the fast Fourier transform to 1-second data 334 

segments in sliding windows shifting in 0.5 seconds steps. As anticipated, the selection of the theta 335 

range was based on the observation of group effects at the sensor level occurring specifically at this 336 

frequency. Beamformer coefficients were computed considering the dominant source direction within 337 

all voxels and a regularization factor of 7% was applied. The coherence for each source location was 338 

estimated using the EEG data and the spatial filter in the theta band. To ensure comparability of source 339 

coherence values across subjects, we normalized individual coherence brain maps. For this reason, 340 

the coherence at each source was converted to a z-score value by subtracting the mean coherence 341 

across all sources and dividing by the standard deviation across all sources. Successively, for each 342 

group and condition, z-scored source coherence values were projected on the brain surface mesh 343 

image BrainMesh_ICBM152_smoothed from Surf Ice (Version 12.1; 344 

https://www.nitrc.org/projects/surfice/) 345 

Finally, based on previous functional neural evidence on DS we selected five regions of 346 

interest (ROIs) from the Automatic Anatomical Labeling (AAL; Tzourio-Mazoyer et al., 2002). More 347 

specifically, ROIs were defined considering that stuttering mainly affects neural networks that are 348 

fundamental for sensorimotor processing, thus impairing speech planning, programming, and 349 

execution (compare with Chang et al., 2019). In this context, abnormal neural activity in areas such 350 

as the inferior frontal cortex, primary somato-motor regions, auditory cortex, supplementary motor 351 

area, premotor cortex, and associative regions (such as the parietal cortex) have been consistently 352 

reported as neural markers of DS (see Belyk et al., 2015, 2017; Brown et al., 2005; Budde et al., 2014; 353 

Busan, 2020; Busan et al., 2019; Chang & Guenther, 2020; Chang et al., 2019; Craig-McQuaide et 354 

al., 2014; Etchell et al., 2018; Ingham et al., 2012; Neef et al., 2015; Zhang et al., 2022). Therefore, 355 

within each cerebral hemisphere, we defined the subsequent “clusters'' of brain regions of interest (as 356 

https://www.nitrc.org/projects/surfice/
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shown in Figure 2): i) the inferior frontal gyrus (IFG, comprising the pars opercularis, pars 357 

triangularis, and pars orbitalis), ii) the premotor and supplementary motor cortex (preM), iii) the 358 

sensorimotor strip (SM, comprising the pre-central and post-central gyri), iv) the inferior parietal 359 

lobule (IPL, comprising the supramarginal and angular gyri), and v) the superior temporal gyrus 360 

(STG).  361 

For each task, we employed the Wilcoxon ranked sum non-parametric test to assess group 362 

differences on the mean of the z-scored coherence values within each ROI (statistical threshold at p 363 

≤ .05, two-tailed). 364 

[FIGURE 2 HERE] 365 

 366 

Partial directed coherence (PDC) analysis 367 

 368 

We employed partial directed coherence (PDC) to assess the causal connections between neural 369 

activity associated with speech processing within our designated ROIs (IFG, preM, SM, IPL and 370 

STG). After creating spatial filters, virtual time series in the source locations within the ROIs were 371 

reconstructed by applying the respective spatial filter to the EEG sensor data filtered in the theta (3 - 372 

5 Hz) band. Because ROIs typically comprise many point sources, we employed principal component 373 

analysis (PCA) to identify the most representative time series within each ROI. To achieve this, we 374 

conducted a PCA on all time-series within each ROI and selected the first principal vector, which 375 

represented the distribution that explained most of the variance across all time-series that entered the 376 

PCA. For each participant and task, we computed PDC between the representative time series in each 377 

ROI. PDC is based on the Granger Causality principle (Granger, 1969; Seth et al., 2015) and on vector 378 

autoregressive (VAR) modeling of the data. The VAR model of order p for a variable x is given by:  379 

 380 

𝑥(𝑡) = ∑ 𝑎(𝑟)𝑠(𝑡 − 𝑟) + 𝜀(𝑡)

𝑝

𝑟=1

 381 

 382 

(𝑠1(𝑡)  ⋅ ⋅ ⋅  𝑠𝑀(𝑡) ) = ∑ 𝑎𝑟(𝑠1(𝑘 − 𝑟)  ⋅ ⋅ ⋅ ⋅  𝑠𝑀(𝑘 − 𝑟) ) + (𝜀1(𝑡)  ⋅ ⋅ ⋅  𝜀𝑀(𝑡) )

𝑝

𝑟=1

  383 

 384 

where s(t) = (s1(t), s2(t), ... , sM(t)) are the stationary M-dimensional simultaneously measured time 385 

series in each ROI; ar are the M x M coefficient matrices of the model; and (t) is a multivariate 386 

Gaussian white noise process. In our case, M = 10 since we calculated the connectivity network 387 
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formed by five different ROIs. The model order p was selected with the Schwartz Information 388 

Criterion. This criterion selects the model order that optimizes the goodness of fit of the model, while 389 

introducing a penalty depending on the complexity of the model. In the frequency domain the version 390 

of Granger-causality is given by: 391 

 392 

𝐴𝐴(𝑓) = 𝐼 − ∑  𝑎(𝑟)𝑒−𝑖2𝜋𝑓𝑟/𝑝

𝑝

𝑟=1

 393 

 394 

The first term of the difference refers to the identity matrix (M-dimensional) and the second one to 395 

the Fourier transform of the VAR coefficients. Then, the PDC from the ROI j to ROI i is given by:  396 

 397 

PDCj → i(f)  =  
|Aij(f)|

√∑  |𝐴𝑘𝑗(𝑓)|
2

k

 398 

 399 

The PDC provides a measure of the linear directional coupling strength of 𝑠𝑗 on 𝑠𝑖 at frequency f 400 

(theta). The PDC values vary between 0 (no directional coupling) and 1 (perfect directional coupling). 401 

PDC analysis was performed using the Frequency-Domain Multivariate Analysis toolbox (FDMa, 402 

Freiburg Center for Data Analysis and University of Freiburg, Germany), and the model order was 403 

computed using algorithms developed in the Multivariate Autoregressive Model Fitting (ARfit) 404 

software package (Schneider & Neumaier, 2001). To assess group differences, separately for each 405 

task we used the Wilcoxon ranked sum non-parametric test on PDC values (statistical threshold at p 406 

≤ .05, two-tailed). 407 

 408 

Naming accuracy and response times analysis (listening-for-speaking task) 409 

 410 

For naming latencies (response times, RT), we took the data from Gastaldon et al. (2023), also 411 

available here: https://osf.io/5jkur/. Here we summarize how latencies were derived in the original 412 

study, but we refer the reader to the original article for additional details. To estimate naming times, 413 

audio recordings (2 seconds *.wav files starting at picture onset) were fed to Chronset (Roux et al., 414 

2017). Only correct responses were considered. Responses were coded as incorrect if they started 415 

with hesitation sounds, if corrections were made during the response, or if the participant could not 416 

produce enough of the target word in the 2-second recording (in order to be able to assess the 417 

correctness of the response). 418 

https://osf.io/5jkur/
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Statistical analyses were performed in R. Accuracy was analyzed with a generalized linear 419 

mixed-effects model (GLMM) with binomial distribution family. Group, lexical frequency of the 420 

target word (retrieved through PhonItalia; Goslin et al., 2014) and repetition (the same target picture 421 

was presented twice in the task, associated with two different sentence frames) were set as fixed 422 

effects, while participant and item as random intercepts. RTs were analyzed with a GLMM with 423 

gamma distribution family and identity link function. Group, lexical frequency of the target word and 424 

repetition were set as fixed effects, while participant and item as random intercepts. As explained 425 

above, we decided not to include sentence constraint as a factor here since for the coherence analysis 426 

(the main focus of the present work) we did not differentiate between the two conditions for 427 

methodological reasons. GLMM were fitted with the lme4 package (Bates et al., 2015) and contrasts 428 

set to sum coding. Finally, as for SSI-4, RTs were correlated with CTS and connectivity data 429 

(statistical threshold at p ≤ .01, two-tailed). 430 

 431 

Results 432 

 433 

Naming (listening-for-speaking task) 434 

 435 

Accuracy and response times (RTs) are shown in Figure 3, while model summaries are reported in 436 

Table 1. Participants of both groups had a very high accuracy in producing the correct word (AWS: 437 

mean = 0.96, SD = 0.2; TFA: mean = 0.99, SD = 0.1; see Figure 3A). However, the model revealed 438 

a main effect of repetition (higher accuracy when the picture appeared for the second time) and a 439 

main effect of group, with AWS less accurate than TFA (see Table 1). Regarding response times, 440 

AWS were slower than TFA (AWS: mean = 771.19 ms, SD = 267.77; TFA: mean = 650.53 ms, SD 441 

= 219.98; see Figure 3B). The model revealed a main effect of repetition and, importantly, a main 442 

effect of group (see Table 1). To test the robustness of the results to possible outliers for accuracy, 443 

we re-run the analysis by excluding the AWS participant with accuracy = 0.84 (see Figure 3), and the 444 

results are still consistent (main effect of group: t = -2.35, p = .019, 95% CI [0.33 - 0.91]). 445 

Speculatively, lower accuracy, rather than reflecting possible inefficiency in retrieving lexical items 446 

in AWS, is likely due to the limited time available for recording the responses (2 seconds after picture 447 

onset): sometimes, AWS may have provided the correct response outside this window, making it 448 

impossible to evaluate their response off-line, hence the reduced accuracy (i.e., fewer trials coded as 449 

correct). This interpretation is compatible with the fact that the accuracy outlier in the AWS group 450 

(accuracy = 0.84) is also the one with longest mean RTs for correct responses (RT = 1155 ms).  451 

 452 
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[FIGURE 3 HERE] 453 

 454 

[TABLE 1 HERE] 455 

 456 

Sensor-level CTS 457 

 458 

Initially, we conducted an assessment of sensor-level cortical tracking of speech within the 1 - 15 Hz 459 

frequency range for each group (TFA and AWS) and task (listening-only and listening-for-speaking). 460 

Consistent with previous studies, we observed that during speech listening, CTS was highest in the 461 

theta (3-5 Hz) frequency band (Figure 4A) in bilateral fronto-central, central, and centro-parietal 462 

sensors (Figure 4B), consistent with the topography usually found in M/EEG studies on coherence as 463 

measure of CTS in the theta range (Destoky et al., 2019). 464 

 465 

[FIGURE 4 HERE] 466 

 467 

For each task, we performed an ANOVA on the mean CTS values (z-scored coherence) within the 468 

theta band and across the sensors of interest in both the left and right hemispheres. In the listening-469 

only task, we did not observe any main effects or interactions in the CTS values (all Fs(1,22) < 1.97, 470 

all ps > .17, ղ2s < 0.06). However, we did observe a main effect of Group (F(1,22) = 4.07, p = .05, 471 

ղ2 = 0.15) in the CTS values for the listening-for-speaking task. Post-hoc tests showed that CTS was 472 

significantly higher in TFA compared to AWS (t = 2.02, p = .05, Cohen’s d = 0.80). No statistically 473 

significant correlations with RTs or SSI-4 were found. 474 

 475 

Source-level CTS 476 

 477 

When considering source analyses, we observed that for both the listening-only and the listening-for-478 

speaking tasks, frontal, temporal, and parietal cortical regions showed strong CTS (z-scored 479 

coherence values) in the theta band (Figure 5). Subsequently, we calculated the mean of the CTS 480 

values in each of the ROIs described in the Materials and Methods section: the inferior frontal gyrus 481 

(IFG), the premotor/supplementary motor cortex (preM), the sensorimotor strip (SM), the inferior 482 

parietal lobule (IPL), and the superior temporal gyrus (STG). 483 

 484 

[FIGURE 5 HERE] 485 

 486 
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In line with the results observed at the sensor level, we found that the CTS values were significantly 487 

stronger for individuals with TFA compared to AWS in the left IPL (MTFA = 1.92, SDTFA = 2.58; 488 

MAWS = 0.22, SDAWS = 0.34; p = .03) and in the right preM regions (MTFA = 0.07, SDTFA = 1.21; 489 

MAWS = -0.74, SDAWS = 0.36; p = .01), only for the listening-for-speaking task (Figure 6). We did not 490 

find any group differences in the listening-only task (all p > .09) (Supplementary Figure 1).  No 491 

statistically significant correlations with RTs and SSI-4 were found.  492 

 493 

[FIGURE 6 HERE] 494 

 495 

Source-level connectivity 496 

 497 

We used partial directed coherence (PDC) to assess causal functional connectivity during speech 498 

processing in the theta band (3 - 5 Hz) between different ROIs. For the listening-only task (Figure 7), 499 

we observed significantly higher connectivity in TFA compared to AWS from the left STG to the 500 

right IFG (MTFA = 0.12, SDTFA = 0.05; MAWS = 0.07, SDAWS = 0.04; p = .01), and from the right IFG 501 

to the left IPL (MTFA = 0.03, SDTFA = 0.01; MAWS = 0.02, SDAWS < 0.01; p = .04). For the listening-502 

for-speaking task (Figure 5), we observed significantly higher connectivity in TFA compared to AWS 503 

from the right STG to the left IPL (MTFA = 0.05, SDTFA = 0.06; MAWS = 0.03, SDAWS = 0.02; p = .05) 504 

and from the right STG to the left SM regions (MTFA = 0.11, SDTFA = 0.06; MAWS = 0.06, SDAWS = 505 

0.04; p = .03).  506 

 507 

[FIGURE 7 HERE] 508 

 509 

Interestingly, when considering both groups together, a statistically significant negative 510 

correlation was found in the listening-for-speaking task between RTs and the connectivity from the 511 

right STG to the left SM cortex (r = -0.56, p = .0048): stronger directional connectivity between these 512 

regions is associated with faster response times (see Figure 8). 513 

 514 

[FIGURE 8 HERE] 515 

 516 

Discussion  517 

 518 

In the present work, we analyzed cortical tracking of speech (CTS) in a group of adults who stutter 519 

(AWS) and a group of typically fluent adults (TFA). To investigate the role of the alertness state of 520 
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the speech-motor system in CTS, we analyzed two different listening situations: listening-only (no 521 

upcoming involvement of speech production) and listening-for-speaking (listen to an unfinished 522 

sentence and complete it by naming a picture; upcoming overt engagement of the speech-motor 523 

system). We observed reduced coherence in the theta range (3-5 Hz) in AWS relative to TFA in the 524 

listening-for-speaking task, both at the sensor (bilaterally around the temporal regions) and the neural 525 

source levels. More specifically, at source level, AWS showed lower CTS in the left inferior 526 

parietal/temporo-parietal cortex and in the right premotor and supplementary motor regions. Cortical 527 

connectivity measures in the theta range were differently modulated for AWS as well, with weaker 528 

connections in both listening conditions, indicating lower inter-hemispheric information exchange 529 

between frontal, auditory/temporal, and sensorimotor regions. Notably, in the listening-for-speaking 530 

task, we also found slower (speech) response times in AWS, and a significant negative correlation 531 

between RTs and connectivity from the right STG to the left SM cortex when considering all 532 

participants, reinforcing the arguments we lay out next. 533 

 534 

Cortical tracking of syllabic rhythm is reduced in Developmental Stuttering when listening for 535 

speaking 536 

 537 

The listening-for-speaking condition in this study required speech listening to be interwoven with 538 

speech production, similar to turn-taking in conversational settings (Levinson, 2016). This entails the 539 

ability to efficiently time the transition between listening and speaking, and appropriately plan 540 

production initiation while still attending to speech. The present findings suggest that CTS in AWS 541 

is impaired especially in such situations. As highlighted in the Introduction, CTS is a neural index 542 

reflecting the alignment of the phase of (internal) brain frequencies to acoustic features of the speech 543 

signal (Assaneo & Poeppel, 2018; Poeppel & Assaneo, 2020; Poeppel & Teng, 2020). Crucially, 544 

coupling between oscillatory activity in auditory and speech-motor regions in a restricted frequency 545 

range within the theta band seems to support this process, specifically for the tracking of syllabic 546 

rhythm (Assaneo & Poeppel, 2018; Keitel et al., 2018; Morillon & Baillet, 2017; Park et al., 2015). 547 

In this study we found that in a population characterized by inefficient timing and implementation of 548 

speech-motor processes, i.e., adults who stutter (Alm, 2004, 2021b; Busan, 2020; Chang & Guenther, 549 

2020), CTS is also affected as a result of disruptions to auditory-motor coupling. 550 

At the source level, in the listening-for-speaking task, we observed CTS reduction in the left 551 

inferior parietal cortex and in the right premotor and supplementary motor regions in AWS compared 552 

to TFA. All these regions are key cortical substrates for speech-motor coordination. The inferior 553 

parietal lobule (IPL), comprising the supramarginal gyrus and the angular gyrus, has been associated 554 
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with a variety of functions, including verbal working memory, auditory spatial localization, 555 

sensorimotor integration, semantic processing and action-motor control (Binder et al., 2009; 556 

Binkofski & Buccino, 2018; Bzdok et al., 2016; Shum et al., 2011). Importantly, this region and the 557 

partially overlapping (non-anatomically defined) temporo-parietal junction (TPJ; Igelström & 558 

Graziano, 2017) are nodes in many dual-route models of speech and auditory processing (Friederici, 559 

2012; Hickok et al., 2011; Hickok & Poeppel, 2004, 2007; Rauschecker, 2012). For instance, in 560 

Hickock and Poeppel’s model, the Sylvian Parietal Temporal (Spt) area (located between the inferior 561 

parietal lobule and the posterior part of the superior temporal gyrus, thus situated within the TPJ) is 562 

proposed to be an interface between auditory codes and motor programs supporting successful 563 

sensorimotor integration during speech production, instantiated in the dorsal pathway. The IPL is also 564 

key in neurocomputational models of speech production such as the DIVA/GODIVA models 565 

(Guenther, 2016), which propose that somatosensory error maps of the difference between intended 566 

and actual somatic states are computed in the IPL during speech production. Importantly, in the 567 

adjacent posterior STG/TPJ, auditory error maps are computed by comparing auditory feedback and 568 

predicted targets via motor efference copies (Guenther, 2016). Interestingly, even if not properly part 569 

of the “classical” cortico-basal-thalamo-cortical network involved in DS (Alm, 2004; Busan, 2020; 570 

Chang & Guenther, 2020; Craig-McQuaide et al., 2014), it is not uncommon for this region to be 571 

highlighted as part of a defective system in the brain of people who stutter (Busan et al., 2019; Neef 572 

et al., 2015; Yang et al., 2016). 573 

On the other hand, the premotor ROI in our study encompasses the premotor cortex and the 574 

supplementary motor complex (supplementary motor area – SMA – and pre-SMA). In the speech-575 

motor control literature, these regions have been highlighted in the composition and the timing of 576 

execution of speech-motor command sequences (Alario et al., 2006; Ghosh et al., 2008; Guenther, 577 

2016). More specifically, in the DIVA/GODIVA models, the SMA is responsible for the correct 578 

initiation of stored speech motor units, while the pre-SMA represents the global sequential structure 579 

of the syllables to be produced. On the other hand, these models propose that right hemisphere 580 

premotor regions may be a component of a feedback/control speech-motor network (Bohland et al., 581 

2010; Guenther, 2016; Tourville & Guenther, 2011; see Chang & Guenther, 2020; Civier et al., 2013 582 

for a perspective on DS). Notably, rhythm processing seems to be particularly reliant upon such 583 

cortical structures (together with subcortical regions), both in the speech and non-speech domains 584 

(Cannon & Patel, 2021; Fiveash et al., 2021; Kasdan et al., 2022; Ladányi et al, 2020). Additionally, 585 

the SMA has also been linked to the mediation of motor-sound representations in auditory prediction 586 

and speech imagery (Lima et al., 2016). Crucially, premotor and supplementary motor regions are 587 

among the regions that are found to be most dysfunctional in DS (Busan, 2020; Busan et al., 2019; 588 
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Chang & Guenther, 2020; Civier et al., 2013; Etchell et al., 2018). When related with present findings, 589 

this body of evidence is compatible with a key role of premotor/supplementary motor regions in 590 

tracking rhythmic information at the syllabic level during speech perception, speculatively by 591 

transforming motor information into auditory templates for syllabic tracking. 592 

Given this picture, our results suggest that when upcoming speech is required and neural 593 

structures supporting aspects of speech-motor production (i.e., speech-motor sequencing and 594 

initiation, rhythmic processing and motor-to-auditory transformation) are inherently inefficient or 595 

hinder the proper function of the neural circuit in which they are recruited, as is the case with DS, 596 

such structures cannot properly contribute to tracking syllabic rhythm in the speech signal. The fact 597 

that we identified regions that are commonly associated with a dorsal stream of speech processing 598 

(Friederici, 2012; Hickok & Poeppel, 2007) strengthens the connection between speech-motor 599 

abilities and auditory tracking via bidirectional motor-auditory mapping. 600 

The fact that we found differences in CTS within the theta range is also particularly interesting 601 

from a speech-motor impairment point of view. The theta rhythm has often been associated with 602 

syllabic grouping across languages, more specifically to the acoustic energy fluctuations of speech 603 

sound clusters organized around an energy peak (usually a vowel) (Strauß & Schwartz, 2017; see also 604 

Molinaro & Lizarazu, 2018; Poeppel & Assaneo, 2020). Indeed, a peak was present in the theta range 605 

in our audio stimuli (3-4 Hz), reflecting this acoustic property (see Supplementary Figure 2). 606 

Importantly, the syllable has been proposed to be an “interface” between the perceptual and the 607 

articulatory systems (Poeppel & Assaneo, 2020; Strauß & Schwartz, 2017). Articulators are 608 

biomechanically constrained as to the possible configurations they can produce and the speed at 609 

which they can be executed; the syllable represents the optimal motor-programming unit that the 610 

neural system can send to the motor system for execution (Guenther, 2016; Poeppel & Assaneo, 611 

2020). Crucially, individuals with DS seems to be impaired in the ability to automatically activate 612 

syllabic motor units associated with learned sound sequences via the basal ganglia motor loop 613 

connected to the pre-SMA and SMA (Alm, 2004, 2021a, 2021b; Busan, 2020; Chang & Guenther, 614 

2020; Civier et al., 2013). 615 

Therefore, it appears that there is a circular relationship that, stemming from biomechanical 616 

articulation constraints via neural motor program units, leads to the acoustic - and hence perceptual - 617 

phenomenon of syllabic rhythm tracking (Poeppel & Assaneo, 2020; Strauß & Schwartz, 2017). We 618 

believe that this proposed circle of joint causes is closely related to the results obtained in the present 619 

study: the speech-motor production system is involved in tracking acoustic properties that arise from 620 

articulatory-motor constraints. When such a system is unstable (as in the case of DS), perceptual 621 

tracking is also less efficient, more noticeably when listening and speaking are interwoven and 622 
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partially overlapping neural resources are required, thus overburdening an already unstable system. 623 

Behaviorally, the presence of slower RTs in AWS further supports this view. 624 

 625 

Weaker inter-hemispheric connectivity among bilateral auditory and sensorimotor regions in 626 

developmental stuttering when listening to speech 627 

 628 

We found weaker connectivity patterns in AWS relative to TFA in both listening conditions. During 629 

the listening-only task, we found weaker directional connectivity from the left STG (auditory regions) 630 

to the right IFG and from the right IFG toward the left IPL/TPJ. In the listening-for-speaking task, 631 

we found weaker directional connectivity from the right STG to the left primary sensorimotor (SM) 632 

regions and to the left IPL/TPJ. While we do not interpret the different patterns across listening 633 

conditions, all the regions involved are consistent with a dorsal stream of processing (Friederici, 2012; 634 

Hickok & Poeppel, 2007), supporting the idea that auditory-motor mapping is important for cortical 635 

tracking of speech, at least of syllabic rhythm. This may be related to the nature of the syllable itself, 636 

representing the optimal motor unit for the human speech-motor system (Poeppel & Assaneo, 2020; 637 

Strauß & Schwartz, 2017). Reduced connectivity in AWS likely reflects lower availability of neural 638 

resources for information exchange between regions that are instrumental for auditory and motor 639 

processing and integration, compatible with recent proposals suggesting the presence of a general 640 

metabolic deficit in the stuttering brain (Alm, 2021a; see also Busan et al., 2019; Han et al., 2019; 641 

Maguire et al., 2021; Turk et al., 2021). 642 

Importantly, in the listening-for-speaking task, we found a significant negative correlation 643 

between RTs and strength of right STG → left SM cortex connectivity: faster RTs were associated 644 

with increased connectivity between these regions. This may indicate that efficiently sending 645 

rhythmic auditory information to the primary sensorimotor cortex when speech listening has to be 646 

managed with (overt) upcoming speech-motor engagement facilitates speech production, possibly as 647 

a result of more efficient CTS and smoother transitioning between listening and speaking with 648 

concomitant speech planning. Note that this correlation, when explored separately for AWS and TFA, 649 

was not strongly evident in AWS (r = -0.44, p = .15) but was present in TFA (r = -0.58, p = .045; see 650 

Supplementary Table 1). As a further indication, we would also like to highlight that, albeit 651 

statistically not significant, an interesting trend was present in AWS when looking at this very same 652 

connectivity pattern and SSI-4, where a negative relation is found (r = -0.55, p = .06; see 653 

Supplementary Table 1 and Supplementary Figure 3): higher SSI-4 scores - hence, more severe 654 

stuttering - were associated with weaker right STG → left SM cortex connectivity. 655 
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Together, these findings strongly suggest that stuttering may be associated with weaker 656 

connectivity between auditory and sensorimotor regions, which is fundamental for cortical tracking 657 

of syllabic units, in turn leading to poorer behavioral performance in terms of response times. This 658 

interpretation may be also compatible with proposals according to which an effective connection 659 

between these regions may be helpful for better managing (or “by-passing”) disfluencies, perhaps by 660 

exploiting rhythmic or tracked cues (Etchell et al., 2014). Consistent with this suggestive although 661 

marginal evidence, activity in right-hemispheric fronto-temporal regions is often reported as neural 662 

markers of stuttering trait and state (e.g., Belyk et al., 2015, 2017; Brown et al., 2005; Budde et al., 663 

2014; Craig-McQuaide et al., 2014; Etchell et al., 2014, 2018; Ingham et al., 2012; Neef et al., 2015; 664 

Stasak et al., 2021), suggesting that they may have a role in compensatory (as well as in pathological) 665 

speech-motor programming and execution processes in AWS (Busan et al., 2019; Etchell et al., 2014; 666 

Neef et al., 2015, 2016, 2018b, 2023). 667 

  668 

Significance of present outcomes for CTS and DS research 669 

 670 

The present findings may advance research on both CTS and DS. More specifically, they suggest that 671 

1) CTS requires neural resources that sustain sensorimotor processes for facilitating speech 672 

perception and intelligibility, 2) DS may lead to suboptimal CTS, especially when additional 673 

resources are needed for supporting concomitant speech preparation for upcoming production, and 3) 674 

DS not only impairs speech programming and production but is a more complex neurodevelopmental 675 

disorder. Further research should clarify the extent to which DS impacts CTS (and vice versa), how 676 

this might affect people’s everyday life, hence widening the scope of possible interventions for 677 

stuttering. This is especially important in light of recent evidence suggesting that auditory-motor 678 

coupling (and individual speech production rates) may explain performance in speech comprehension 679 

tasks (Lubinus et al., 2023). Less efficient CTS may be related to more effortful spoken language 680 

comprehension at a subtle level. This is in line with the results reported in Gastaldon et al. (2023): 681 

AWS seem less efficient at generating predictions during listening, hypothesized as a result of the 682 

inability to fully exploit their speech-motor network. Thus, further studies should investigate whether 683 

there is a causal link between CTS and specific processes of speech comprehension such as 684 

prediction, and how this causal chain may impact people with different speech and language deficits, 685 

especially in interactive contexts (see also Gastaldon et al., 2024 on the importance of studying 686 

atypical populations for a better understanding of predictive speech processing). In conclusion, 687 

research should move towards turn-based and conversational contexts (e.g., Jackson et al., 2021; 688 
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Weiss, 1995) to investigate possible subtle differences in how spoken language comprehension is 689 

achieved in the stuttering brain. 690 

 691 

Limitations 692 

 693 

The study provides interesting new results, suggesting future venues for CTS and DS research; 694 

however, some limitations need to be taken into consideration. 695 

First of all, sample sizes are small. The primary reason lies in the difficulty in recruiting AWS 696 

participants. This is a common problem when studying neurodevelopmental disorders at low 697 

incidence in the population, such as DS (Jones et al., 2002). To address this, in line with increasingly 698 

relevant Open Science practices, multi-lab projects can be an efficient way to overcome small N’s 699 

and to generalize or disconfirm results from individual underpowered studies, and to appropriately 700 

quantify effect sizes by means of meta-analyses (Heinrich & Knight, 2020; Lange, 2020; McShane 701 

et al., 2019). Note that, by making data available, we provide material for future meta-analyses and/or 702 

re-analyses, in the spirit of Open Science. 703 

Another limitation related to DS that should be addressed in future research is that the current 704 

study involved male participants only. Persistent DS in adulthood is highly asymmetric according to 705 

sex, with a stronger incidence in males (about 1:5 ratio; Yairi & Ambrose, 2013), making recruitment 706 

inherently unbalanced. Furthermore, sex hormones may underlie neural changes related to speech-707 

motor control relevant for the persistence or resolution of DS in adulthood (see Neef & Chang, 2024). 708 

Thus, it would be interesting to investigate sex-related differences in neural tracking of speech in DS. 709 

Another limitation regards localization of cortical regions. This limitation is common to all 710 

studies employing EEG. However, good estimates can still be obtained when using a sufficient 711 

number of electrodes covering all the scalp (such as 64 electrodes in the present work), by following 712 

standardized electrode placement, and by imposing reliable biophysical constraints to forward and 713 

inverse solutions (Lantz et al., 2003; Michel & Brunet, 2019; Michel et al., 2004; Westner et al., 714 

2022). Future studies may employ higher density EEG systems or MEG, combined with individual 715 

structural scans, in order to provide a more accurate picture. 716 

 717 

Conclusions 718 

 719 

The present work suggests that CTS recruits (pre-)motor regions and regions responsible for 720 

sensorimotor integration, as well as auditory regions, supporting views proposing an interaction 721 

between these networks in speech/language perception (Pickering & Garrod, 2013; Skipper et al., 722 
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2017), in addition to their instrumental role in orchestrating successful speech production (Guenther, 723 

2016; Hickok et al., 2011). CTS seems to work less efficiently in DS, especially when additional 724 

neural resources are needed for managing listening-for-speaking conditions, as usually happens in 725 

more ecological communicative situations (Neef & Chang, 2024). A better understanding of CTS 726 

processes in DS under various circumstances may be informative for improving rehabilitation 727 

solutions for stuttering.   728 
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FIGURE LEGENDS 1092 

 1093 

Figure 1. Experimental design. Participants listened to sentence frames and target final words in the 1094 

listening-only task (with occasional true/false judgment questions), while they had to complete the 1095 

sentence frame by naming a picture (representing the target word) in the listening-for-speaking task. 1096 

Indexes related to cortical tracking of speech and cortical connectivity were measured during the 1097 

auditory presentation of the sentence frames. Response times at picture onset in the listening-for-1098 

speaking task were collected. 1099 

 1100 

Figure 2. Regions of interest (ROIs) selected for statistical comparison between groups in the 1101 

source and connectivity analyses. Five ROIs were selected in the left and right hemisphere: i) the 1102 

inferior frontal gyrus (IFG, comprising the pars opercularis, triangularis, and orbitalis), ii) the 1103 

premotor and supplementary motor cortex (preM), iii) the somato-motor strip (SM), iv) the inferior 1104 

parietal lobule (IPL), and v) the superior temporal gyrus (STG). 1105 

 1106 

Figure 3. Behavioral results for the listening-for-speaking task. A) Subject-level (individual) 1107 

accuracy scores (dots) and boxplots; note: y-axis starting at 0.8. B) Single-trial response times (dots), 1108 

group-level means with error bars and density distributions. 1109 

 1110 

Figure 4. Spectra distribution and topographic map of the CTS at the sensor level. A) Corrected 1111 

coherence values (coherence values converted into z-scores using the mean and standard deviation 1112 

derived from the 100 random EEG-audio combinations) in the 1 – 15 Hz frequency range can be 1113 

observed across representative sensors (C3, C5, CP3, CP5, FC3, FC5, C4, C6, CP4, CP6, FC4, FC6) 1114 

of the left (LH) and right (RH) hemisphere. B) For each group (TFA: Typical Fluent Adults; AWS: 1115 

Adults Who Stutter) and task (listening-only and listening-for-speaking), we plotted the topographic 1116 

maps of uncorrected coherence values in the theta (3 - 5 Hz) frequency band. 1117 

 1118 

Figure 5. Source reconstruction of the CTS values in the theta range. For each group (TFA: 1119 

Typical Fluent Adults; AWS: Adults Who Stutter) and listening condition (listening-only and 1120 

listening-for-speaking), we plotted the source maps of CTS values (coherence values converted into 1121 

z-scores using the mean and standard deviation derived from the CTS values in all the sources) in the 1122 

theta (3 - 5 Hz) frequency band.  1123 

 1124 
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Figure 6. Mean CTS in the 3-5 Hz range (theta band) in each region of interest for each group. 1125 

Boxplots are overlaid with individual data points and density distributions. Each dot represents data 1126 

from one of the participants (blue for TFA and red for AWS). Boxes cover the 25th to 75th percentile 1127 

(inter-quartile range; IQR). The middle of the box represents the median. Whiskers extend from the 1128 

25th percentile and 75th percentile to cover all data points lying within 1.5 times the IQR (from the 1129 

25th and 75th percentile, respectively). Regions showing a significant group effect are marked with 1130 

an asterisk. 1131 

 1132 

Figure 7. Causal functional connectivity analysis. For each task, we included the connections that 1133 

exhibited statistically significantly higher PDC values for TFA compared to AWS. We included a 1134 

seed for each of the regions of interest (IFG: inferior frontal gyrus; preM: premotor/supplementary 1135 

motor; SM: sensorimotor; IPL: inferior parietal lobule; STG: superior temporal) in both the left (LH) 1136 

and right (RH) hemisphere. 1137 

 1138 

Figure 8. Connectivity-RTs correlation (listening-for-speaking). Scatterplot showing the 1139 

correlation between response times (RTs) and connectivity from the right superior temporal gyrus to 1140 

the left sensorimotor cortex.  1141 
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TABLES 1142 

 1143 

Table 1. Model summaries for accuracy and response times for naming in the listening-for-1144 

speaking task. 1145 

  ACCURACY 

Predictor Estimates CI Statistics p-value 

(Intercept) 60.83 20.21 – 183.11 7.31 <0.001 

lexical frequency 1.22 0.97 – 1.54 1.68 0.093 

group 0.47 0.27 – 0.82 -2.64 0.008 

repetition 0.70 0.55 – 0.90 -2.84 0.005 

  RESPONSE TIMES 

Predictor Estimates CI Statistics p-value 

(Intercept) 730.15 688.82 – 771.48 34.64 <0.001 

lexical frequency -6.05 -14.21 – 2.10 -1.45 0.146 

group 60.43 34.44 – 86.41 4.56 <0.001 

repetition 36.44 29.12 – 43.76 9.76 <0.001 

 1146 

 1147 

SUPPLEMENTARY MATERIAL: Supplementary figures (Figure S1-3) and tables 1148 

(Table S1-2) 1149 


