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Abstract

This paper addresses the problem of sampling non-bandlimited signals within the Finite Rate of

Innovation (FRI) setting.

We had previously shown that, by using sampling kernels whose integer span contains specific

exponentials (generalized Strang-Fix conditions), it is possible to devise non-iterative, fast reconstruction

algorithms from very low-rate samples. Yet, the accuracy and sensitivity to noise of these algorithms

is highly dependent on these exponential reproducing kernels — actually, on the exponentials that they

reproduce.

Hence, our first contribution here is to provide clear guidelines on how to choose the sampling

kernels optimally, in such a way that the reconstruction quality is maximized in the presence of noise.

The optimality of these kernels is validated by comparing with Cramér-Rao’s lower bounds (CRB).

Our second contribution is to relax the exact exponential reproduction requirement. Instead, we

demonstrate that arbitrary sampling kernels can reproduce the “best” exponentials within quite a high

accuracy in general, and that applying the exact FRI algorithms in this approximate context results

in near-optimal reconstruction accuracy for practical noise levels. Essentially, we propose a universal

extension of the FRI approach to arbitrary sampling kernels.

Numerical results checked against the CRB validate the various contributions of the paper and in

particular outline the ability of arbitrary sampling kernels to be used in FRI algorithms.
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EDICS Category: DSP-SAMP

I. INTRODUCTION

Most signal acquisition systems involve the conversion of signals from analog to digital, and sampling

theorems provide the bridge between the continuous and the discrete-time worlds. Usually, the acquisition

process is modelled as in Figure 1, where the smoothing function ϕ♣tq is called the sampling kernel

and normally models the distortion due to the acquisition device. The filtered continuous-time signal

y♣tq ✏ x♣tq✝ϕ♣✁ t
T
q is then uniformly sampled at a rate fs ✏

1

T
. Following this setup, the measurements

are given by

yn ✏

➺ ✽
✁✽

x♣tqϕ

✂
t

T
✁ n

✡
dt ✏

〈

x♣tq, ϕ

✂
t

T
✁ n

✡〉
.

x♣tq h♣tq ✏ ϕ
�
✁ t

T

✟ T
yn

y♣tq

Figure 1. Traditional sampling scheme. The continuous-time input signal x♣tq is filtered with h♣tq and sampled every T

seconds. The samples are then given by yn ✏ ♣x ✝ hq♣tq⑤t✏nT .

The fundamental problem of sampling is to recover the original continuous-time waveform x♣tq using

the set of samples yn. In case the signal is bandlimited, the answer due to Shannon is well known.

Recently, it has been shown that it is possible to sample and perfectly reconstruct specific classes of non-

bandlimited signals [1]–[3]. Such signals are called signals with finite rate of innovation (FRI) since they

are completely described by a finite number of free parameters per unit of time. Perfect reconstruction is

achieved by using a variation of Prony’s method, also known as annihilating filter method [4]. Signals that

can be sampled within this framework include streams of pulses such as Diracs [1]–[3], [5], piecewise

polynomial signals, piecewise sinusoidal signals [6] and classes of 2-D signals [7]–[10]. In the presence

of noise, FRI reconstruction techniques become unstable and methods to improve resiliency to noise have

been presented in [10]–[15].

Various sampling kernels can be used to perfectly reconstruct FRI signals such as the sinc and Gaussian

functions first proposed in the original paper on FRI [1] and compact support kernels such as polynomial

and exponential reproducing kernels [2], [3], [16]. While they all allow perfect reconstruction in noiseless

settings, their behavior changes in the presence of noise. It is therefore natural to attempt to understand
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which factors cause a deterioration in performance and also to determine sampling schemes and recovery

methods that are resilient to noise.

In this paper, we focus on the family of exponential reproducing kernels [2] for two reasons: First,

they can have compact support, which is in itself a nice property when dealing with noisy measurements.

Second and more important, any compact support kernel that has so far been used in FRI sampling using

the setting of Figure 1 is a particular instance of the family of exponential reproducing kernels (see

Section II-C and Appendix B).

Our contribution is twofold: We first explain how to design the most effective exponential reproducing

kernels when sampling and reconstructing FRI signals in noisy environments. Since FRI recovery is

equivalent to estimating a set of parameters in noise, we use the Cramér-Rao bound (CRB) of this

estimation problem as our optimisation criterion when designing the kernel. For the second contribution

we depart from the previous setup and assume we have no control on the acquisition device. In such

scenario, we develop a universal FRI reconstruction strategy that works with samples taken by any kernel.

In contrast to existing techniques that attempt at finding parameters of the input exactly [1]–[3], [12],

we propose an alternative method that finds the parameters approximately. The advantage of our new

method is that, for kernels such as polynomial splines or the Gaussian function which are in practice

very unstable, it provides a much more stable and accurate recovery in the presence of noise.

The outline of the paper is as follows. In Section II we review the noiseless scenario in which we

sample and perfectly reconstruct the prototypical FRI signal: a train of Diracs. We also discuss exponential

reproducing kernels and their generalised Strang-Fix conditions [17], for which we provide a simple

proof. In Section II-B we treat the more realistic setup where noise is present in the acquisition process.

Here, we describe practical techniques to retrieve the train of Diracs and in Section III we compute the

Cramér–Rao bound (CRB) for this problem. We also present a CRB formulation based on the exponential

moments of the input that has not been used in the FRI literature to date. In Section IV we design a

family of exponential reproducing kernels that is most resilient to noise. Then, in Section V we introduce

the approximate FRI framework and develop the basic ideas to sample FRI signals with any kernel. In

Section VI we present simulation results to validate the various contributions of the paper. Interestingly,

we also show that with the new approximate framework we can improve the accuracy of the reconstruction

associated to sampling kernels for which existing exact recovery methods become unstable in the presence

of noise. Finally, we conclude the paper in Section VII.



4

II. SAMPLING SIGNALS WITH FINITE RATE OF INNOVATION

In this section we provide a brief overview of FRI theory. Specifically, we explain how to reconstruct

a stream of Diracs from noisy or noiseless samples taken by an exponential reproducing kernel. We also

highlight some of the key properties of this type of kernels which will be useful for the rest of the paper.

A. Perfect reconstruction of a stream of Diracs

Assume that the input x♣tq is a stream of K Diracs

x♣tq ✏
K✁1➳
k✏0

akδ♣t✁ tkq, (1)

where ak P R are the amplitudes and tk P R are the time locations of the Diracs. We restrict the locations

to the interval tk P r0, τq for k ✏ 0, . . . ,K ✁ 1.

Now, based on the acquisition model of Figure 1, we filter the input with the kernel ϕ♣tq and obtain

the samples

yn ✏

〈

x♣tq, ϕ

✂
t

T
✁ n

✡〉
✏

K✁1➳
k✏0

akϕ

✂
tk

T
✁ n

✡
, (2)

where n ✏ 0, 1, . . . , N ✁ 1 and the sampling period T satisfies τ ✏ NT . Moreover, we assume that ϕ♣tq

is an exponential reproducing kernel of compact support. That is, ϕ♣tq is a function satisfying:➳
nPZ

cm,nϕ♣t✁ nq ✏ eαmt, (3)

for proper coefficients cm,n, with m ✏ 0, . . . , P and αm P C. Since m ✏ 0, . . . P this is an exponential

reproducing kernel of order P � 1. These kernels are discussed in detail in Section II-C. From now on,

we also assume αm ✏ α0 �mλ for m ✏ 0, . . . , P .

Once we have sampled the input, the stream of Diracs can be unambiguously retrieved from the set of

measurements yn as follows: First we linearly combine the samples yn with the coefficients cm,n of (3),

to obtain the new sequence:

sm ✏
N✁1➳
n✏0

cm,nyn, (4)

for m ✏ 0, . . . , P . Then, given that the signal x♣tq is a stream of Diracs (1) and combining (4) with (2)

we have [2]:

sm ✏

〈

x♣tq,
N✁1➳
n✏0

cm,nϕ

✂
t

T
✁ n

✡
❧♦♦♦♦♦♦♦♦♦♦♦♦♠♦♦♦♦♦♦♦♦♦♦♦♦♥

e
αm

t
T

〉

(5)

✏
K✁1➳
k✏0

ake
αm

tk

T ✏
K✁1➳
k✏0

xku
m
k ,
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with xk ✏ ake
α0

tk

T and uk ✏ eλ
tk

T . Here it is the choice αm ✏ α0 � mλ, where m ✏ 0, . . . , P , that

makes sm have a power sum series form. We note that sm are precisely the (exponential) moments of

the signal x♣tq [6].

The new pairs of unknowns tuk, xk✉
K✁1

k✏0
can then be retrieved from the moments sm using the annihi-

lating filter method (AFM) [1], [2], [12], also known as Prony’s method [4]. Let hm with m ✏ 0, . . . ,K

be the filter with z-transform ĥ♣zq ✏
➦K

m✏0
hmz

✁m ✏
➧K✁1

k✏0

�
1✁ ukz

✁1
✟
, that is, its roots correspond

to the values uk to be found. Then, it follows that hm annihilates the observed sequence sm:

hm ✝ sm ✏
K➳
i✏0

hism✁i ✏
K✁1➳
k✏0

xku
m
k

K➳
i✏0

hiu
✁i
k❧♦♦♦♠♦♦♦♥

ĥ♣ukq

✏ 0. (6)

Moreover, the zeros of this filter uniquely define the values uk provided the locations tk are distinct.

The identity (6) can be written in matrix-vector form as:

Sh ✏ 0 (7)

which reveals that the Toeplitz matrix S, with entries sm, is rank deficient. By solving the above system,

we find the filter coefficients hm and then retrieve uk by computing the roots of ĥ♣zq. Given uk we

obtain the locations tk since uk ✏ eλ
tk

T . Finally, we determine the weights ak by solving, for instance,

the first K consecutive equations in (5). Notice that the problem can be solved only when there are at

least as many equations as unknowns, implying that P � 1 ➙ 2K. This indicates that the order P � 1 of

the exponential reproducing kernel has to be chosen according to the number of degrees of freedom of

the input signal x♣tq.

We end the above discussion by noting that all FRI reconstruction setups proposed so far ( [1]–[3],

[12]) can be unified as shown in Figure 2. Here, the samples are represented with the vector y ✏

♣y0, y1, . . . , yN✁1q
T and the moments are given by s ✏ Cy. The matrix C, of size ♣P � 1q ✂ N with

coefficients cm,n at position ♣m,nq, depends on the sampling kernel and its role becomes pivotal in noisy

scenarios as discussed throughout the paper.

B. Reconstruction of a stream of Diracs in the presence of noise

Any practical acquisition device introduces noise during the acquisition process. We therefore assume

that instead of (2) we have access to the noisy samples

ỹn ✏ yn � ǫn ✏
K✁1➳
k✏0

akϕ

✂
tk

T
✁ n

✡
� ǫn, (8)
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ϕx y C s AFM {tk, ak}
K−1
k=0

(y0, . . . , yN−1) (s0, . . . , sP )

cm,n

Figure 2. Unified FRI sampling and reconstruction. The continuous-time input signal x is filtered with ϕ and uniformly

sampled. Then, the vector of samples y is linearly combined to obtain the moments s ✏ Cy. Finally, the parameters of the

input are retrieved from s using the annihilating filter method (AFM).

with n ✏ 0, . . . , N ✁ 1 and where ǫn are i.i.d. Gaussian random variables, of zero mean and standard

deviation σ. When the samples are corrupted by noise, the sequence sm of Equation (4) changes and

perfect reconstruction is no longer possible. We now have the noisy moments:

s̃m ✏
N✁1➳
n✏0

cm,nỹn ✏
N✁1➳
n✏0

cm,nyn❧♦♦♦♦♦♠♦♦♦♦♦♥
sm

�
N✁1➳
n✏0

cm,nǫn❧♦♦♦♦♦♠♦♦♦♦♦♥
bm

✏
K✁1➳
k✏0

xku
m
k � bm, (9)

for m ✏ 0 . . . , P and where xk ✏ ake
α0

tk

T and uk ✏ eλ
tk

T with k ✏ 0, . . . ,K ✁ 1.

Consequently, in the noisy setting (7) is not satisfied any more because now S̃ ✏ S �B where B is

Toeplitz with entries bm from (9). We may however solve (7) approximately by taking more than the

critical number of moments (P �1 → 2K) and applying a singular value decomposition (SVD) to S̃. This

is the total least-squares (TLS) solution to (7). The procedure may be improved by denoising S̃ before

applying TLS using the Cadzow iterative algorithm [12], [18]. There exist other methods that attain a

similar accuracy and are not iterative. One such approach, based on solving a matrix pencil problem [19],

[20], was introduced for FRI in [11]. It has been employed in other FRI publications such as [3], [16]

and is used in the simulations of this paper as well.

These methods operate effectively when the perturbation is white, that is when the covariance matrix

of the noise B satisfies RB ✏ EtBHB✉ ✏ αI, where α is a constant factor and I is the identity matrix.

However, for many FRI kernels the white Gaussian noise assumption does not hold and in order for

SVD to operate correctly it is necessary to “pre-whiten” the noise. In our simulations we use a weighting

matrix W ✏ R
✁✿④2
B [21] such that RA ✏ EtAHA✉ ✏ I with A ✏ BW. Here, ♣☎q✿④2 is the square root

of the pseudoinverse of ♣☎q. Therefore, we work with matrix S̃W, which is now characterised by white

noise.

To conclude this part, we summarise the noisy FRI recovery method which we use in our simulations

in insert Algorithm 1.
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7

Algorithm 1 Reconstruction of a stream of K Diracs in the presence of noise.

1: Calculate the sequence of P � 1 moments (9) from the N noisy samples ỹn of (8). Then, build the

Toeplitz matrix S̃ with the sequence s̃m. Here S̃ ✏ S�B.

2: Estimate RB ✏ EtBHB✉ and define the new matrix S̃✶ ✏ S̃W, where W ✏ R
✁✿④2
B .

3: Apply the matrix pencil method to S̃✶: Obtain the decomposition S̃✶ ✏ UΛVH , keep the K columns

of U corresponding to the K dominant singular values and estimate uk as the eigenvalues of U�
KUK .

Here, ♣☎q and ♣☎q are operations to omit the last and first rows of ♣☎q.

4: Compute the K locations of the Diracs as tk ✏
T
λ
ln♣ukq.

5: Calculate ak as the least mean square solution of the N equations ỹn✁
➦K✁1

k✏0
akϕ

�
tk
T
✁ n

✟
✓ 0 for

n ✏ 0, . . . , N ✁ 1.

C. Exponential reproducing kernels

An exponential reproducing kernel is any function ϕ♣tq that, together with a linear combination of its

shifted versions, can reproduce functions of the form eαmt, with complex parameters αm. This can be

expressed mathematically as follows:

➳
nPZ

cm,nϕ♣t✁ nq ✏ eαmt, (10)

for properly chosen coefficients cm,n P C and where m ✏ 0, . . . , P and αm P C. Exponential reproducing

kernels for which (10) is true satisfy the so-called generalised Strang-Fix conditions [17] (see Appendix A

for a simple proof). In particular, Equation (10) holds if and only if

ϕ̂♣αmq ✘ 0 and ϕ̂♣αm � 2jπlq ✏ 0, (11)

for m ✏ 0, . . . , P and l P Z③t0✉, where ϕ̂♣αmq represents the bilateral Laplace transform of ϕ♣tq, i.e.

ϕ̂♣sq ✏
➩✽
✁✽ ϕ♣tqe

✁stdt, at s ✏ αm. Moreover, the coefficients cm,n in (10) are given by

cm,n ✏
〈

eαmt, ϕ̃♣t✁ nq
〉

✏

➺ ✽

✁✽
eαmtϕ̃ ♣t✁ nq dt ✏ cm,0e

αmn, (12)

where ϕ̃♣tq forms a biorthonormal set with ϕ♣tq [2], and where cm,0 ✏
➩✽
✁✽ eαmxϕ̃♣xqdx.

Any exponential reproducing kernel can be written as ϕ♣tq ✏ γ♣tq ✝ β~α♣tq [2], [22], [23], where

γ♣tq is an arbitrary function, even a distribution, and β~α♣tq is an E-Spline. A function βα♣tq with

Fourier transform β̂α♣jωq ✏ 1✁eα✁jω

jω✁α
is an E-spline of first order. Higher order E-Splines can be

obtained through convolution of first order ones. For instance β~α♣tq ✏ ♣βα0
✝ βα1

✝ . . . ✝ βαP
q ♣tq, where

~α ✏ ♣α0, α1, . . . , αP q is an E-Spline of order P � 1, has compact support P � 1 and has P ✁ 1

https://www.researchgate.net/publication/37446486_Sampling_Moments_and_Reconstructing_Signals_of_Finite_Rate_of_Innovation_Shannon_Meets_Strang-Fix?el=1_x_8&enrichId=rgreq-039bf69a-bb7f-4e44-b756-69d17cad1f92&enrichSource=Y292ZXJQYWdlOzI1ODM1NTA4MjtBUzoxMDQyMzMzOTUyOTQyMTJAMTQwMTg2MjU4NjQ2NQ==
https://www.researchgate.net/publication/37446486_Sampling_Moments_and_Reconstructing_Signals_of_Finite_Rate_of_Innovation_Shannon_Meets_Strang-Fix?el=1_x_8&enrichId=rgreq-039bf69a-bb7f-4e44-b756-69d17cad1f92&enrichSource=Y292ZXJQYWdlOzI1ODM1NTA4MjtBUzoxMDQyMzMzOTUyOTQyMTJAMTQwMTg2MjU4NjQ2NQ==
https://www.researchgate.net/publication/3319219_Cardinal_Exponential_Splines_Part_I-Theory_and_Filtering_Algorithms?el=1_x_8&enrichId=rgreq-039bf69a-bb7f-4e44-b756-69d17cad1f92&enrichSource=Y292ZXJQYWdlOzI1ODM1NTA4MjtBUzoxMDQyMzMzOTUyOTQyMTJAMTQwMTg2MjU4NjQ2NQ==
https://www.researchgate.net/publication/252154485_Generalized_L-Spline_Wavelet_Bases?el=1_x_8&enrichId=rgreq-039bf69a-bb7f-4e44-b756-69d17cad1f92&enrichSource=Y292ZXJQYWdlOzI1ODM1NTA4MjtBUzoxMDQyMzMzOTUyOTQyMTJAMTQwMTg2MjU4NjQ2NQ==
https://www.researchgate.net/publication/225999843_Factorization_theorems_for_univariate_splines_on_regular_grids?el=1_x_8&enrichId=rgreq-039bf69a-bb7f-4e44-b756-69d17cad1f92&enrichSource=Y292ZXJQYWdlOzI1ODM1NTA4MjtBUzoxMDQyMzMzOTUyOTQyMTJAMTQwMTg2MjU4NjQ2NQ==
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continuous derivatives. This function can reproduce any exponential in spanteα0t, eα1t, . . . , eαP t✉ [2],

[22]. Moreover, when αm ✏ 0 for m ✏ 0, . . . , P , the function β~α♣tq becomes a B-Spline and no longer

reproduces exponentials but polynomials up to degree P .

D. Remarks

In this paper we work with real valued sampling kernels, therefore we require that γ♣tq and β~α♣tq

be real functions. E-Splines β~α♣tq are real if the exponents ~α ✏ tαm✉
P
m✏0

are real or exist in complex

conjugate pairs. Since we also restrict the exponents to be of the form αm ✏ α0 �mλ, m ✏ 0, . . . , P ,

then either λ and α0 are real or λ is purely imaginary and α0 is complex with Imtα0✉ ✏ ✁P Imtλ✉
2

. For

the rest of the paper we use αm ✏ α� j π
L
♣2m✁P q, m ✏ 0, . . . , P , which satisfies all the requirements

with α0 ✏ α✁ j πP
L

and λ ✏ j 2π
L

.

Note that since λ is purely imaginary then there may exist ambiguities when obtaining the locations

tk from uk. This is because tk and tk � LTℓ, where ℓ P Z, produce the same annihilating filter roots

uk ✏ eλ
tk

T ✏ ej
2π

LT
tk ✏ ej

2π

LT
♣tk�LTℓq. It is thus necessary that 0 ↕ tk ➔ LT for k ✏ 0, . . . ,K ✁ 1 in

order to retrieve the locations unambiguously.

III. MEASURING THE PERFORMANCE

FRI signals are completely characterised by their innovation parameters. For instance, a stream of K

Diracs can be determined from the locations tk and amplitudes ak. The goal of FRI reconstruction is to

estimate Θ ✏ ♣t0, . . . , tK✁1, a0, . . . , aK✁1q
T from the vector of N noisy samples ỹ ✏ ♣ỹ0, . . . , ỹN✁1q

T

given by (8). For simplicity we assume the sampling period is T ✏ 1. A way to determine the CRB of

this estimation problem was given in [12] assuming ǫn is a zero-mean Gaussian noise with covariance

matrix R ✏ EteeH✉ ✏ σ2I, where e is the vector of length N with values ǫn. In this set-up any unbiased

estimate of the unknown parameters Θ̂♣ỹq ✏ ♣t̂0, . . . , t̂K✁1, â0, . . . , âK✁1q
T has a covariance matrix that

is lower bounded by

cov♣Θ̂♣ỹqq ➙ ♣ΦT
yR

✁1Φyq
✁1, (13)

https://www.researchgate.net/publication/37446486_Sampling_Moments_and_Reconstructing_Signals_of_Finite_Rate_of_Innovation_Shannon_Meets_Strang-Fix?el=1_x_8&enrichId=rgreq-039bf69a-bb7f-4e44-b756-69d17cad1f92&enrichSource=Y292ZXJQYWdlOzI1ODM1NTA4MjtBUzoxMDQyMzMzOTUyOTQyMTJAMTQwMTg2MjU4NjQ2NQ==
https://www.researchgate.net/publication/3319219_Cardinal_Exponential_Splines_Part_I-Theory_and_Filtering_Algorithms?el=1_x_8&enrichId=rgreq-039bf69a-bb7f-4e44-b756-69d17cad1f92&enrichSource=Y292ZXJQYWdlOzI1ODM1NTA4MjtBUzoxMDQyMzMzOTUyOTQyMTJAMTQwMTg2MjU4NjQ2NQ==
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where the matrix Φy is given by (14).1

Φy ✏

☎
✝✝✝✝✝✝✆

a0ϕ
✶♣t0q . . . aK✁1ϕ

✶♣tK✁1q ϕ♣t0q . . . ϕ♣tK✁1q

a0ϕ
✶♣t0 ✁ 1q . . . aK✁1ϕ

✶♣tK✁1 ✁ 1q ϕ♣t0 ✁ 1q . . . ϕ♣tK✁1 ✁ 1q
...

. . .
...

...
. . .

...

a0ϕ
✶♣t0 ✁ ♣N ✁ 1qq . . . aK✁1ϕ

✶♣tK✁1 ✁ ♣N ✁ 1qq ϕ♣t0 ✁ ♣N ✁ 1qq . . . ϕ♣tK✁1 ✁ ♣N ✁ 1qq

☞
✍✍✍✍✍✍✌
. (14)

While this is one possible way to measure the performance of various FRI recovery techniques [11],

[12] given the noisy samples ỹ, we also note that in practice FRI reconstruction methods operate on the

moments s̃ ✏ Cỹ. We therefore present the CRB associated to the moments, since this will indicate the

best performance that can be achieved when working with s̃. In this case the bound is given by [24]:

cov♣Θ̂♣s̃qq ➙ ♣ΦH
s R✁1

b Φsq
✁1, (15)

where Φs takes the form (16)

Φs ✏

☎
✝✝✝✝✝✝✆

a0α0e
α0t0 . . . aK✁1α0e

α0tK✁1 eα0t0 . . . eα0tK✁1

a0α1e
α1t0 . . . aK✁1α1e

α1tK✁1 eα1t0 . . . eα1tK✁1

...
. . .

...
...

. . .
...

a0αP e
αP t0 . . . aK✁1αP e

αP tK✁1 eαP t0 . . . eαP tK✁1

☞
✍✍✍✍✍✍✌

(16)

and Rb ✏ EtbbH✉. Here, ♣☎qH is Hermitian transpose and b is the vector of P � 1 noisy values bm.

Furthermore, since we have assumed that the noise ǫn added to the samples is additive, white and

Gaussian (AWGN), with variance σ2, the covariance matrix of the transformed noise is Rb ✏ EtbbH✉ ✏

σ2CCH . Then, by taking into account that s̃ ✏ C♣y � eq ✏ s � b and also that Φs ✏ CΦy, we may

write

cov♣Θ̂♣ỹqq ➙ ♣ΦH
y R✁1Φyq

✁1 ✏ σ2♣ΦH
y Φyq

✁1,

since the noise ǫn is AWGN. Consequently, it is true that

cov♣Θ̂♣s̃qq ➙ ♣ΦH
s R✁1

b Φsq
✁1 ✏ σ2♣ΦH

y CH♣CCHq✁1CΦyq
✁1 ✏ σ2♣ΦH

y C✿CΦyq
✁1,

where C✿ ✏ CH♣CCHq✁1 is the left pseudo-inverse of C. When the number of moments P � 1 equals

the number of samples N , then (13) and (15) are equivalent. This is easily seen since in such case

C✿C ✏ C✁1C ✏ IN . A moment-based algorithm is, of course, likely to underperform a sample-based

algorithm because it is the number of these moments that are an indicator of the quality of the retrieval,

not the number of samples (which is always larger than the number of moments).

1The matrix can be obtained calculating the derivative of ỹn with respect to each parameter in Θ. That is, the columns of

Φy to the left of ⑤ are ❇ỹn
❇tk

and the columns of Φy to the right of ⑤ are ❇ỹn
❇ak

.
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We have seen experimentally that FRI algorithms reach the bound (15) when C is sufficiently well

conditioned. Therefore our goal now is to design kernels that lead to properly conditioned C that

minimise (15) for any choice of P .2

IV. OPTIMAL EXPONENTIAL REPRODUCING KERNELS

As mentioned before, an exponential reproducing kernel can be written as ϕ♣tq ✏ γ♣tq ✝ β~α♣tq, where

γ♣tq is arbitrary and β~α♣tq is an E-Spline. In this section we want to find rules on how to choose the

exponential parameters of the E-Spline αm ✏ α � j π
L
♣2m ✁ P q for m ✏ 0, . . . , P and the function

γ♣tq in order to make FRI recovery techniques with these kernels as stable as possible. Finding the best

parameters translates into the optimisation of the matrix of coefficients C. Therefore we first determine

the properties that C has to satisfy and then design the kernels that lead to our choice of C.

A. How to choose matrix C

The first step in the FRI reconstruction stage is to transform the vector of samples y into the vector

of moments s ✏ Cy, therefore, our first aim is to get a well conditioned C. From equation (12) we note

that matrix C is composed of elements cm,n ✏ cm,0e
αmn at position ♣m,nq, where n ✏ 0, . . . , N ✁ 1

and m ✏ 0, . . . , P :

C ✏

☎
✝✝✝✝✝✝✆

c0,0 0 ☎ ☎ ☎ 0

0 c1,0 ☎ ☎ ☎ 0

...
...

. . .
...

0 0 ☎ ☎ ☎ cP,0

☞
✍✍✍✍✍✍✌

❧♦♦♦♦♦♦♦♦♦♦♦♦♦♦♠♦♦♦♦♦♦♦♦♦♦♦♦♦♦♥
D

☎
✝✝✝✝✝✝✆

1 eα0 ☎ ☎ ☎ eα0♣N✁1q

1 eα1 ☎ ☎ ☎ eα1♣N✁1q

...
...

. . .
...

1 eαP ☎ ☎ ☎ eαP ♣N✁1q

☞
✍✍✍✍✍✍✌

❧♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♠♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♥
V

.

Here, D is diagonal and V Vandermonde. Hence, to have a stable C we want the absolute values of the

diagonal elements of D to be the same, for instance ⑤cm,0⑤ ✏ 1. Moreover, we want the elements in V

to lie on the unit circle:

eαmn ✏ ej
π

L
♣2m✁P qn for m ✏ 0, . . . , P , i.e. α ✏ 0. (17)

Clearly, purely imaginary αm make the Vandermonde matrix V better conditioned [25]. We are

therefore only left with the problem of finding the best L in (17). Since we have experimentally seen

2The condition P � 1 ✏ N can be imposed only for blockwise sampling, e.g. when sampling periodic signals using N

samples. This condition cannot be imposed on infinite length signals since sequential reconstruction algorithms will operate on

blocks with possibly varying number of samples.
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that FRI algorithms are able to reach the CRB (15) if C is well conditioned, one way to determine L is

to choose the value that minimises (15) for the location of a single Dirac. It turns out the minimum is

always achieved when L ✏ P �1, as shown in Figure 3 for various choices of P and L, given ⑤cm,0⑤ ✏ 1

for all m.
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0
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)
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Figure 3. CRB vs. L. Here we plot various CRB values (15) (σ ✏ 1) for coefficients satisfying ⑤cm,0⑤ ✏ 1, m ✏ 0, . . . , P

when we vary L in equation (17). For any value of P the CRB is minimised when L ✏ P � 1 (note that all the lines are

monotonically increasing).

To some extent, this is not surprising since this choice ensures that the exponentials span the entire

unit circle, which is well known to be the best configuration when recovering the parameters of a power

sum series [26]. Finally, when we impose P � 1 ✏ N with L ✏ P � 1, besides minimising (15), we also

ensure that the moment-based CRB in (15) matches the sample-based bound in (13), leading to the best

possible performance. In this situation, the matrix C ends up being square and unitary. This is the most

stable numerical transformation since its condition number is one.

In summary, the best exponential reproducing kernels should reproduce exponentials with exponents

of the form αm ✏ j π
P�1♣2m ✁ P q and have ⑤cm,0⑤ ✏ 1 for m ✏ 0, . . . , P . Finally, whenever possible,

the order of the kernel (which equals the number of moments) should be P � 1 ✏ N . In the next section

we show how to obtain such kernels.

B. Exponential MOMS

Equipped with the analysis of the previous section, we now design optimal exponential reproducing

kernels of maximum-order and minimum-support (e-MOMS). We require ⑤cm,0⑤ ✏ 1 for m ✏ 0, . . . , P
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and exponential parameters of the form:

αm ✏ jωm ✏ j
π

P � 1
♣2m✁ P q m ✏ 0, . . . , P. (18)

By taking into account that any exponential reproducing kernel ϕ♣tq can be written as ϕ♣tq ✏ γ♣tq ✝

β~α♣tq, we design γ♣tq so that ⑤cm,0⑤ ✏ 1 is satisfied. We note that, by using (3), we have that

eαmt ✏ cm,0

➳
nPZ

eαmnϕ♣t✁ nq.

Consequently

1 ✏ cm,0

➳
nPZ

eαm♣n✁tqϕ♣t✁ nq

♣aq
✏ cm,0

➳
kPZ

ϕ̂♣αm � j2πkqej2πkt

♣bq
✏ cm,0ϕ̂♣αmq,

where ♣aq follows from Poisson summation formula3 and ♣bq from the application of the generalised

Strang-Fix conditions (11). Therefore, we have that for any exponential reproducing kernel cm,0 ✏

ϕ̂♣αmq
✁1. We then realise that imposing ⑤cm,0⑤ ✏ 1 is equivalent to requiring ⑤ϕ̂♣αmq⑤ ✏ 1. Finally, by

using the fact that ϕ̂♣αmq ✏ γ̂♣αmqβ̂~α♣αmq and evaluating the Laplace transforms at αm ✏ jωm, we

arrive at the following condition on γ̂♣jωmq:

⑤ϕ̂♣jωmq⑤ ✏ ⑤γ̂♣jωmqβ̂~α♣jωmq⑤ ✏ 1 Ø ⑤γ̂♣jωmq⑤ ✏ ⑤β̂~α♣jωmq⑤
✁1, (19)

where we now work with the Fourier transform of each function.

Among all the admissible kernels satisfying (19), we are interested in the one with the shortest support

P � 1. We thus consider the kernels given by a linear combination of various derivatives of the original

E-Spline β~α♣tq, i.e.:

ϕ♣tq ✏
P➳
ℓ✏0

dℓβ
♣ℓq
~α ♣tq, (20)

where β
♣ℓq
~α ♣tq is the ℓth derivative of β~α♣tq, with β

♣0q
~α ♣tq ✏ β~α♣tq, and dℓ is a set of coefficients. This is

like saying that γ♣tq is a linear combination of the Dirac delta and its derivatives, up to order P [23].

These kernels are still able to reproduce the exponentials eαmt and are a variation of the maximal-order

minimal-support (MOMS) kernels introduced in [27]. This is why we call them exponential MOMS (or

e-MOMS). They are also a specific case of the broader family of generalised E-Splines presented in [28].

3Poisson summation:
➳
nPZ

f♣t� nT q ✏
1

T

➳
kPZ

f̂

✂
j
2πk

T

✡
e
j2πk t

T .
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The advantage of this formulation is twofold: first the modified kernel ϕ♣tq is of minimum support P �1,

the same as that of β~α♣tq; second we only need to find the coefficients dℓ that meet the constraint (19),

in order to achieve ⑤cm,0⑤ ✏ 1. Using the Fourier transform of (20), which is given by:

ϕ̂♣jωq ✏ β̂~α♣jωq
P➳
ℓ✏0

dℓ♣jωq
ℓ,

we realise that we can satisfy (19) by choosing the coefficients dℓ so that the resulting polynomial

γ̂♣jωq ✏
➦

ℓ dℓ♣jωq
ℓ interpolates the set of points (jωm, ⑤β̂~α♣jωmq⑤

✁1q for m ✏ 0, 1, . . . , P .

Once we have designed the kernels satisfying that cm,0 has modulus one for all m, we are left with

a phase ambiguity. Hypothesising a linear phase behavior, this ambiguity can be reduced to a time shift

∆ for the E-Spline in (20), introducing an additional degree of freedom. It is possible to show that, in

order for the exponential MOMS with ⑤cm,0⑤ ✏ 1 and parameters (18) to be continuous-time functions,

then cm,0 ✏ ⑤cm,0⑤e
jωm∆ for m ✏ 0, . . . , P , where ∆ is an integer larger than or equal to 1 and smaller

than or equal to P .

In Figure 4 we present some of the kernels obtained by implementing the procedure explained above.

Interestingly, as shown in Appendix B, these specific functions always equal one period of the Dirichlet

kernel. We also point out that when P � 1 ✏ N the scenario derived using this family of exponential

reproducing kernels converges to the original FRI formulation of [1] when we periodise the input or,

equivalently, the sampling kernel.
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(c) P � 1 ✏ 31

Figure 4. Examples of exponential MOMS. These are 3 of the 30 possible kernels with support P � 1 ↕ N ✏ 31 samples.

They coincide with one period of the Dirichlet kernel of period P � 1 for P even or 2♣P � 1q for P odd (see Appendix B). All

of them are built selecting the phase of cm,0 such that they are continuous-time functions centred around ∆ ✏ rP�1

2
s, where

r☎s indicates rounded to the nearest integer. They are shown in the middle of the sampling interval for T ✏ 1.
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V. UNIVERSAL SAMPLING OF SIGNALS WITH FRI

In the previous section we have shown how to design optimal exponential reproducing kernels for noisy

FRI sampling. In many practical circumstances, however, the freedom to choose the sampling kernel ϕ♣tq

is a luxury we may not have.

Essential in the FRI setting is the ability of ϕ♣tq to reproduce exponential functions, because this allows

us to map the signal reconstruction problem to Prony’s method in spectral-line estimation theory. In this

section we relax this condition and consider any function ϕ♣tq for which the exponential reproduction

property (3) does not necessarily hold. For these functions it is still possible to find coefficients cm,n such

that the reproduction of exponentials is approximate rather than exact. We propose to use this approximate

reproduction and the corresponding coefficients cm,n to retrieve FRI signals from the samples obtained

using these kernels.

This new approach has several advantages: First, it is universal in that it can be used with any kernel

ϕ♣tq. In fact, as we shall show in the following sections, this new formulation does not even require an

exact knowledge of the kernel. Second, while reconstruction of FRI signals with this new method is not

going to be exact, we will show that in many cases a proper iterative algorithm can make the reconstruction

error arbitrarily small. Finally, it can be used to increase the resiliency to noise of some unstable kernels

proposed in the FRI literature. For example, kernels like polynomial splines or the Gaussian function

lead to very ill-conditioned reconstruction procedures. We show that by replacing the original C with the

one formed from properly chosen coefficients cm,n, based on approximate reproduction of exponentials,

we achieve a much more stable reconstruction with the same kernels.

A. Approximate reproduction of exponentials

Assume we want to use the linear combination of a function ϕ♣tq and its integer shifts to approximate

the exponential eαt. Specifically, we want to find the coefficients cn such that:

➳
nPZ

cnϕ♣t✁ nq ≅ eαt. (21)

This approximation is exact only when ϕ♣tq satisfies the generalised Strang-Fix conditions (11). For

any other function it is of particular interest to find the coefficients cn that best fit (21). In order to do



15

so, we directly use4 cn ✏ c0e
αn and introduce the 1-periodic function

gα♣tq ✏ c0
➳
nPZ

e✁α♣t✁nqϕ♣t✁ nq. (22)

We then find that approximating the exponential eαt with integer shifts of ϕ♣tq can be transformed

into approximating gα♣tq by the constant value 1. The reason is that we can rewrite (21) in the form of

the right-hand side of (22) by substituting cn ✏ c0e
αn and moving eαt to the left-hand side.

As a consequence of Poisson summation formula, we have that the Fourier series expansion of gα♣tq

is given by

gα♣tq ✏
➳
lPZ

gle
j2πlt ✏

➳
lPZ

c0ϕ̂♣α� j2πlqej2πlt

and that our approximation problem reduces to:

gα♣tq ✏
➳
lPZ

c0ϕ̂♣α� j2πlqej2πlt ≅ 1. (23)

This shows more deeply the relation between the generalised Strang-Fix conditions (11) and the approx-

imation of exponentials. If ϕ♣tq satisfies the generalised Strang-Fix conditions (11) then ϕ̂♣α�j2πlq ✏ 0

for l P Z③t0✉ and (23) holds exactly when c0ϕ̂♣αq ✏ 1. Otherwise, the terms ϕ̂♣α� j2πlq for l P Z③t0✉

do not vanish, and we can only find the coefficient c0 so that gα♣tq ≅ 1. However, the closer the values

ϕ̂♣α� j2πlq are to zero, the better the approximation in (21) is.

In general ϕ♣tq can be any function and we can find different sets of coefficients cn in order for (21)

to hold. Regardless of the coefficients we use, we can determine the accuracy of our approximation by

using the Fourier series expansion of gα♣tq. In fact, the error of approximating f♣tq ✏ eαt by the function

s♣tq ✏
➦

nPZ cnϕ♣t✁ nq with coefficients cn ✏ c0e
αn is equal to:

ε♣tq ✏ f♣tq ✁ s♣tq ✏ eαt r1✁ gα♣tqs (24)

✏ eαt

✓
1✁ c0

➳
lPZ

ϕ̂♣α� j2πlqej2πlt

✛
.

Note that, if the Laplace transform of ϕ♣tq decays sufficiently quickly, very few terms of the Fourier

series expansion are needed to have an accurate bound for the error.

A natural choice of the coefficients cn ✏ c0e
αn is the one given by the least-squares approximation.

Despite the fact that f♣tq is not square-integrable, we can still obtain the coefficients by computing the

4The exact exponential reproducing coefficients always satisfy cn ✏ c0e
αn. We now anticipate that different sets of

approximation coefficients we derive throughout the section also have the same form.
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orthogonal projection of f♣tq onto the subspace spanned by ϕ♣t✁ nq [29]. They are

cn ✏
ϕ̂♣✁αq

âϕ♣eαq
eαn,

where âϕ♣e
αq ✏

➦
lPZ aϕrlse

✁αl is the z-transform of aϕrls ✏ 〈ϕ♣t✁ lq, ϕ♣tq〉, evaluated at z ✏ eα.

The least-squares approximation has the disadvantage that it requires exact knowledge of ϕ♣tq. How-

ever, as we stated before, if the Laplace transform of ϕ♣tq decays sufficiently quickly, we can assume

the terms ϕ̂♣α � j2πlq are close to zero for l P Z③t0✉. In this case we have that the error in (24) is

easily minimised by choosing c0 ✏ ϕ̂♣αq✁1. We denote this second type of approximation constant least-

squares. Besides its simplicity, a second advantage of choosing cn ✏ ϕ̂♣αq✁1eαn is that it requires only

the knowledge of the Laplace transform of ϕ♣tq at α. If we put ourselves in the FRI setting where we

require the approximate reproduction of the exponentials eαmt with m ✏ 0, . . . , P , then this simplified

formulation needs only the knowledge of the Laplace transform of ϕ♣tq at αm, m ✏ 0, . . . , P .

Finally, a third interesting choice of coefficients is the one that ensures that s♣tq interpolates f♣tq

exactly at integer points in time t ✏ ℓ P Z [22], [30]. These coefficients are as follows:

cn ✏
1➦

lPZ e
✁αlϕ♣lq

eαn.

Note that in order to use the interpolation coefficients we only need information on ϕ♣tq at integer instants

of time. We summarise the previous results in Table I.

Table I

COEFFICIENTS FOR THE APPROXIMATE REPRODUCTION (21)

Type Coefficients

Least-squares cn ✏
ϕ̂♣✁αq

âϕ♣eαq
e
αn

Constant least-squares cn ✏ ϕ̂♣αq✁1
e
αn

Interpolation cn ✏
1➦

lPZ e
✁αlϕ♣lq

e
αn

According to our experience, in most cases, the constant least-squares approximation is just as good

as the least-squares approximation and has the advantage of requiring only the knowledge of the Laplace

transform of the kernel at s ✏ α. Interpolation coefficients are also very easy to compute. However,
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they always provide a worse approximation quality. Therefore, for the rest of the paper, we use constant

least-squares approximation and constant least-squares coefficients.

We show an example of the above analysis in Figure 5. Here we want to approximate exponentials using

linear combinations of integer shifts of a linear spline. First, note that this spline reproduces polynomials

of orders 0 and 1 exactly, as shown in Figure 5 (a-b). Then, with the same function, we approximately

reproduce 4 complex exponentials eαmt ✏ ej
π

16
♣2m✁7qt for m ✏ 0, . . . , 3, using the constant least-squares

coefficients cm,n ✏ ϕ̂♣αmq
✁1eαmn. We present the approximation of their real part in Figure 5 (c-f). We

notice that some exponentials are better approximated than others, in this example the ones with lower

frequency. If we used a higher order spline, the approximation quality would improve. However, we have

chosen a linear spline for illustration purposes. Also note that the number of exponentials that can be

approximated is now independent of the order of the spline.
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Figure 5. B-Spline kernel reproduction and approximation capabilities. Figures (a-b) show the exact reproduction of polynomials

of orders 0 and 1 with a linear spline. Figures (c-f) show the approximation of the real parts of 4 complex exponentials:

e
αmt ✏ e

j π
16

♣2m✁7qt for m ✏ 0, . . . , 3, with the constant least-squares coefficients cm,n ✏ ϕ̂♣αmq✁1
e
αmn, using a linear

spline. We plot the weighted and shifted versions of the splines with dashed blue lines, the reconstructed polynomials and

exponentials with red solid lines, and the original functions to be reproduced with solid black lines.
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B. Approximate FRI recovery

Consider again the stream of Diracs x♣tq ✏
➦K✁1

k✏0 akδ♣t✁ tkq and the noiseless samples

yn ✏

〈

x♣tq, ϕ

✂
t

T
✁ n

✡〉
✏

K✁1➳
k✏0

akϕ

✂
tk

T
✁ n

✡
. (25)

We want to retrieve the locations and amplitudes of the Diracs from the samples (25), but now we

make no assumption on the sampling kernel. We find proper coefficients for ϕ♣tq to approximate the

exponentials eαmt, where m ✏ 0, . . . , P , αm ✏ α0 �mλ, and α0, λ P C. From the previous section we

know that a good approximation is achieved if we choose cm,n ✏ cm,0e
αmn with cm,0 ✏ ϕ̂♣αmq

✁1. We

thus only need to know the Laplace transform of ϕ♣tq at αm, m ✏ 0, . . . , P . Also, note that P no longer

needs to be related to the support of ϕ♣tq, but we can use any value subject to P � 1 ➙ 2K.

In order to retrieve the innovation parameters ttk, ak✉
K✁1
k✏0 , we proceed as in the case of exact repro-

duction of exponentials, but now using (24) we have that the moments are

sm ✏
N✁1➳
n✏0

cm,nyn ✏

〈

x♣tq,
N✁1➳
n✏0

cm,nϕ

✂
t

T
✁ n

✡
❧♦♦♦♦♦♦♦♦♦♦♦♦♠♦♦♦♦♦♦♦♦♦♦♦♦♥

e
αm

t
T ✁εm♣ t

T
q

〉

(26)

✏
K✁1➳
k✏0

xku
m
k ✁

K✁1➳
k✏0

akεm

✂
tk

T

✡
❧♦♦♦♦♦♦♦♦♠♦♦♦♦♦♦♦♦♥

ζm

where xk ✏ ake
α0

tk

T and uk ✏ eλ
tk

T . There is a model mismatch due to the approximation error εm♣tq

of (24), equal to ζm. We treat it as noise and retrieve the parameters of the signal using the methods

of Section II-B. The model mismatch depends on the quality of the approximation, dictated by the

coefficients cm,n, the parameters αm and P , and the kernel ϕ♣tq. The estimation of the Diracs can be

refined using the iterative algorithm shown in the box Algorithm 2. The basic idea of the algorithm is

that, given an estimate of the locations of the Diracs, we can compute an approximation of ζm and use

it to refine the computation of the moments sm. In noisy scenarios, if ζm is negligible when compared

to other forms of noise then the procedure is sufficiently good.

C. How to select the parameters αm

In Section IV we have determined that, if we have full control on the design of the sampling kernel,

we should use as many moments as samples: P � 1 ✏ N , the exponential parameters should be purely

imaginary and of the form αm ✏ j π
P�1♣2m✁P q and the coefficients cm,n should be such that ⑤cm,0⑤ ✏ 1
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Algorithm 2 Approximate recovery of a train of K Diracs

1: Calculate the approximation coefficients cm,n by choosing one expression from Table I subject to

the available information on the kernel ϕ♣tq.

2: Compute the moments s0m ✏
➦

n cm,nyn, from the original data yn, n ✏ 0, . . . , N ✁ 1 and set

sim ✏ s0m, m ✏ 0, . . . , P . The iteration is i ✏ 1.

3: Obtain tuik, x
i
k✉

K✁1
k✏0 by applying either TLS and Cadzow or matrix pencil to the sequence sim.

Determine the locations tik and amplitudes aik, for the ith iteration.

4: Recalculate the moments for the next iteration i�1 by removing the model mismatch from s0m. This

can be done by using (26) as follows:

si�1m ✏ s0m �
K✁1➳
k✏0

aikεm

✂
tik
T

✡
,

for m ✏ 0, . . . , P and where εm♣tq is the error of the approximation (24).

5: Repeat steps 3 and 4 until convergence of the values ttik, a
i
k✉

K✁1
k✏0 .

for m ✏ 0, . . . , P . However, in the approximated FRI scenario, the sampling kernel is fixed and we can

only choose the number of moments P � 1 and the values αm but we cannot impose ⑤cm,0⑤ ✏ 1.

This fact leads to a trade-off in the choice of αm. On the one hand, we want them to be purely imaginary:

αm ✏ jωm and to span the entire unit circle. On the other hand, we want the values cm,0 ✏ ϕ̂♣jωmq
✁1

to have modulus as close as possible to 1. Since ⑤ϕ̂♣jωq⑤ is normally a low-pass filter, the condition

⑤cm,0⑤ ≅ 1 for m ✏ 0, . . . , P is satisfied when all ωm are very close to zero, which is contrary to

spanning the unit circle. We therefore choose the exponential parameters to be of the form:

αm ✏ jωm ✏ j
π

L
♣2m✁ P q m ✏ 0, . . . , P, (27)

and then determine P and L that optimise the above trade-off.

Again the criterion we follow is to choose the values of P and L that minimise the CRB (15) when

retrieving the location of a single Dirac. We have found that the best P is normally greater or equal

than the support of the sampling kernel ϕ♣tq and that L should be in the range P � 1 ↕ L ↕ 4♣P � 1q.

We show an example of the choice of L in Figure 6 for the case where ϕ♣tq is a B-Spline of order 6.

Here, we first determine a value for L and compute parameters (27). Then, we calculate the coefficients

cm,n ✏ ϕ̂♣jωmq
✁1ejωmn for m ✏ 0, . . . , P , where ϕ̂♣jωq is the Fourier transform of ϕ♣tq. We finally

build matrix C and compute (15) for a single Dirac. The minima of the CRB in this example are always

around L ✏ 1.5♣P � 1q.
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Figure 6. CRB vs. L. Here we plot different CRB values (15) (σ ✏ 1) for exponential parameters (27) when we vary L. We

use cm,n ✏ ϕ̂♣ωmq
✁1

e
jωmn for m ✏ 0, . . . , P , where ϕ̂♣jωq is the Fourier transform of a B-Spline of order 6. Note that the

minima are always for L around L ✏ 1.5♣P � 1q.

VI. SIMULATIONS

We now present simulation results to validate the main contributions of the paper. Specifically, we

show the performance of the e-MOMS kernels introduced in Section IV-B and of the approximate FRI

recovery method introduced in Section V.

A. The experimental setup

We take N samples following the scheme of Figure 1 by directly calculating yn ✏
➦K✁1

k✏0
akϕ

�
tk
T
✁ n

✟
for n ✏ 0, . . . , N ✁ 1, since we have a train of K Diracs as the input. We then either use the noiseless

samples or corrupt them with additive white Gaussian noise of variance σ2. The variance is chosen

according to the target signal-to-noise ratio defined as SNR♣dBq ✏ 10 log
⑥y⑥2

Nσ2 . We finally compute the

P � 1 noisy moments and then retrieve the innovation parameters tak, tk✉
K✁1

k✏0
of the input using the

matrix pencil method.

We present results for single realisations of the sampling and reconstruction process or for average

performance over multiple trials. For the latter, we are mainly interested in the error in the estimation of

the time locations, since these are the most challenging parameters to retrieve. For each Dirac, we show

the standard deviation of this error:

∆tk ✏

❞➦I✁1

i✏0
♣t̂
♣iq
k ✁ tkq2

I
k ✏ 0, . . . ,K ✁ 1, (28)
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where t̂
♣iq
k are the estimated time locations at iteration i and I is the total number of iterations. We

calculate (28) for a range of fixed signal-to-noise ratios and average the effects using I ✏ 1000 noise

realisations for each SNR. We compare the performance (28) with the square root of the variance predicted

by the two different Cramér–Rao bounds (CRB) of Section III: the sample-based CRB (13) and the

moment-based CRB (15).

B. Exponential MOMS

In Figure 7(a-b) we present simulation results when we retrieve K ✏ 2 Diracs from N ✏ 31

samples using a standard E-Spline and the exponential MOMS kernels of Section IV-B. The former are

characterised by purely imaginary exponents αm ✏ j π
2♣P�1q♣2m✁ P q for m ✏ 0, . . . , P . The sampling

period is such that τ ✏ NT ✏ 1.
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(a) e-MOMS P � 1 ✏ 16
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Figure 7. Performance of e-MOMS kernels. (a-b) compare the performance of e-MOMS and E-Splines of different orders

P � 1 when noise is added to N ✏ 31 samples. We show the recovery of the first of K ✏ 2 Diracs. Note that e-MOMS always

outperform E-splines and achieve the moment-based CRB (s-CRB). This bound gets closer to the sample-based CRB (y-CRB)

as the value of P � 1 increases and matches it when P � 1 ✏ N . Finally, (c) shows the retrieval of K ✏ 20 Diracs randomly

spaced over τ ✏ NT ✏ 1. The signal-to-noise ratio is 15dB, and we use N ✏ 61 samples and P � 1 ✏ N moments.

We see that for any order P � 1, e-MOMS outperform E-splines. Moreover, e-MOMS always achieve

the moment-based CRB (in red and denoted s-CRB in the legend). This bound gets closer to the sample-

based CRB (in black and denoted y-CRB in the legend) as the value of P � 1 increases and as expected

matches it when P � 1 ✏ N .

To further illustrate the stability of e-MOMS, in Fig. 7(c) we show the retrieval of K ✏ 20 Diracs

randomly spaced over τ ✏ NT ✏ 1 and with arbitrary amplitudes. We obtain N ✏ 61 samples,

contaminate them with AWGN of signal-to-noise ratio equal to 15dB and estimate the Diracs from

P � 1 ✏ N moments.
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C. Approximate FRI Recovery

In this section we apply the approximate FRI sampling methods of Section V to two unstable kernels: B-

Splines and Gaussian kernel. We show that this new framework leads to much more precise reconstructions

than those obtained using the traditional exact FRI recovery methods.

1) The B-Spline case: In this example we compare the performance of our method with the traditional

recovery strategy based on the exact reproduction of polynomials [2]. We sample a stream of K ✏ 6

Diracs that has been filtered with a B-Spline kernel of order M � 1 ✏ 16. We then reconstruct the input

from N ✏ 31 noisy samples by obtaining P � 1 moments using the constant least-squares coefficients.

These take the form cm,n ✏ ϕ̂♣αmq
✁1eαmn, where ϕ̂♣sq represents the Laplace transform of the B-Spline.

We adjust L as suggested in Section V-C to choose appropriate exponential parameters αm ✏ j π
L
♣2m✁P q,

m ✏ 0, . . . , P . The Diracs are located at random over τ ✏ NT ✏ 1 and have arbitrary amplitudes. The

signal-to-noise ratio is SNR ✏ 25dB.

In Figure 8(b) we present the estimation for the method based on reproduction of polynomials with

M � 1 ✏ 16 moments. Note that not all the Diracs can be found. In Fig. 8(c) we show the estimation

given by the method based on approximation of exponentials, when we select L ✏ 1.5♣P � 1q and

generate P � 1 ✏ 21 exponential moments. In this case all the Diracs are retrieved with a root mean

squared error on the estimation of the locations of the order of 10✁3.
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Figure 8. Estimation of multiple Diracs with the B-Spline kernel. We recover K ✏ 6 Diracs from (a) N ✏ 31 noisy samples

taken by a kernel of order M �1 ✏ 16. (b) Default polynomial recovery of [2], enhanced using pre-whitening. (c) Approximate

recovery with αm ✏ j π
1.5♣P�1q

♣2m✁ P q, m ✏ 0, . . . , P where P � 1 ✏ 21. The SNR in both cases is 25dB.

We show further results when we use the approximate method to retrieve K ✏ 2 Diracs from N ✏ 31

noisy samples taken by a B-Spline kernel of order M � 1 ✏ 6. We use exponential parameters αm ✏

j π
L
♣2m✁ P q with m ✏ 0, . . . , P and L ✏ 1.5♣P � 1q. In Figure 9 we show that, even though the order
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of the kernel is fixed at M � 1 ✏ 6, we improve the performance by generating more moments, that

is, by choosing P → M . As the number of moments increases, the performance improves to eventually

reach the sample-based CRB as shown in Fig. 9(c).
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Figure 9. Approximate retrieval using a B-Spline. These figures show the error in the estimation of the first Dirac out of

K ✏ 2 retrieved using the approximated FRI recovery. We show how, even when we fix the order of the kernel P � 1, we can

reconstruct any number of moments P � 1 and improve the performance. In fact, with the appropriate choice L ✏ 1.5♣P � 1q

the performance improves until the sample-based CRB is reached.

2) The Gaussian kernel case: We conclude this set of simulations by showing an example with the

Gaussian kernel hγ♣tq ✏ e✁t2④♣2γ2q [1]. Since for this kernel the samples are yn ✏ 〈x♣tq, hγ♣nT ✁ tq〉

the approximation problem (21) becomes:

eα
✶t ✓
➳
nPZ

cnhγ♣t✁ nT q.

In order to use the coefficients of Table I we need to consider α✶ ✏ α
T

and ϕ♣tq ✏ hγ♣Ttq and manipulate

the original expressions. For example, the constant least-squares coefficients are now given by cm,n ✏

T ĥγ♣α
✶
mq

✁1eα
✶
mnT . Here, again α✶

m ✏ j π
L
♣2m ✁ P q, m ✏ 0, . . . , P and we adjust L as suggested in

Section V-C.

In Figure 10 we show the reconstruction of K ✏ 5 Diracs from N ✏ 61 noisy samples taken by a

Gaussian kernel of standard deviation γ ✏ 0.09677 with sampling period T ✏ 1

31
. The signal-to-noise

ratio is SNR ✏ 25dB. We choose L ✏ 3.5T ♣P � 1q to compute the constant least-squares coefficients

and generate P � 1 ✏ 21 moments to estimate the parameters of the Diracs. The Diracs have random

locations in the interval r0, 1.2s. Fig. 10(b) shows that all the Diracs are correctly retrieved with a root

mean squared error on the estimation of the locations of the order of 3 ☎ 10✁3. We also note that this

kernel is so unstable that the traditional FRI exact recovery method of [11] fails completely in this case.
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Figure 10. Approximate FRI with the Gaussian kernel. We recover K ✏ 5 Diracs from (a) N ✏ 61 noisy samples taken by

a Gaussian kernel of standard deviation γ ✏ 0.09677 with period T ✏ 1

31
. (b) Recovery using the approximate method with

αm ✏ j π
3.5T ♣P�1q

♣2m✁ P q, m ✏ 0, . . . , P where P � 1 ✏ 21. The SNR is 25dB.

D. Approximation error and accuracy of the reconstruction

In this example we test the hypothesis that better approximation of exponentials leads to more accurate

reconstruction of Diracs. Assume we sample a single Dirac with a linear spline and we recover its location

using approximation of exponentials. In Figure 5 we have shown that the linear spline can approximate

complex exponentials of lower frequencies better than those with higher frequencies. We now generate

four moments sm using the constant least-squares coefficients that are associated to the same exponentials

eαmt ✏ ej
π

16
♣2m✁7qt for m ✏ 0, . . . , 3 of Figure 5. Finally, we compare the estimation of the location

of the Dirac obtained from the moments associated to the higher frequencies (HF) s0 and s1 to the

estimation obtained from the moments associated to the lower frequencies (LF) s2 and s3.

In Table II we show the root mean squared error of the estimation obtained from either pair of

moments. The error is averaged over 100 realisations each of which corresponds to placing the Dirac

at t0 ✏ 0.15♣i✁ 1q for i ✏ 1, . . . , 100. As expected the approximation with lower frequency achieves a

better performance.

Table II

ACCURACY OF THE RECONSTRUCTION

HF LF

s0 s1 s2 s3

Approximation error 0.061 0.028 0.0093 0.00098

Reconstruction error 0.0018 0.00019
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E. Alternative FRI signals

We conclude the simulations by showing that it is possible to adapt the approximate FRI framework to

sample and reconstruct alternative FRI signals. For example, sampling a piecewise constant function with

a kernel ϕ♣tq and calculating the first finite difference of the samples zn ✏ yn ✁ yn�1 yields the same

measurements as sampling the derivative of the signal with φ♣tq ✏ ϕ♣tq ✝ β0♣tq, where β0♣tq is a box

function [2]. The derivative of the signal is a train of K Diracs. Consequently, we may recover the signal

by calculating cm,n for the linear combination of shifted versions of φ♣tq to approximate exponentials

and then applying the annihilating filter method to the moments sm ✏
➦

n cm,nzn.

We illustrate the process in Figure 11. Here, we sample a piecewise constant function with K ✏ 6

discontinuities using a B-Spline kernel of order M�1 ✏ 6. The sampling period is T ✏ 1

15
. In Fig. 11(a)

we show the N ✏ 32 samples contaminated with additive white Gaussian noise and in Fig. 11(b) we

show their first order difference. Then, we generate P �1 ✏ 21 moments using the constant least-squares

coefficients from exponential parameters αm ✏ j π
L
♣2m ✁ P q with m ✏ 0, . . . , P and L ✏ 1.4♣P � 1q.

The signal-to-noise ratio is 25dB. Note that the order of the spline is not sufficient to apply the retrieval

method based on reproduction of polynomials of [2]. On the contrary, we can use the method based on

approximation of exponentials as long as P � 1 ➙ 2K. The original and reconstructed signal are shown

in Fig. 11(c).
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Figure 11. Piecewise constant functions and B-Splines. These figures show the sampling and retrieval process, based on

approximation of exponentials, for a piecewise constant function with K ✏ 6 discontinuities in the presence of noise of 25dB.

VII. CONCLUSIONS

In this paper we have considered the FRI reconstruction problem in the presence of noise. We have

first revisited existing results in the noiseless setting, and the most effective treatment of noise in the
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current literature. Then, we have studied robust alternatives to the previous line of work.

More specifically, our contribution is twofold: We have determined how to design optimal exponential

reproducing kernels, in the sense that they lead to the most stable signal reconstruction. Moreover, we

have departed from the ideal situation in which we have full control of the sampling kernel and considered

the case where we are given corrupted samples taken with an arbitrary acquisition device. In this situation,

we have developed a universal FRI reconstruction strategy that works with any kernel. In contrast to the

original FRI framework, which tries to find the exact parameters of the input signal, we have proposed an

approximate recovery of the input based on the approximate reproduction of exponentials. The advantage

of our new approach is that it can be applied to any sampling kernel and provides more stable and precise

reconstructions than those obtained with specific classes of kernels used in the past.

APPENDIX A

GENERALISED STRANG-FIX CONDITIONS

An exponential reproducing kernel is any function ϕ♣tq that, together with a linear combination of its

shifted versions, can generate exponential polynomials of the form treαmt [22], [28] for m ✏ 0, . . . , P

and r ✏ 0, . . . , R. The parameters αm are in general complex. In this appendix we prove that exponential

reproducing kernels satisfy the generalised Strang-Fix conditions. More specifically, a kernel ϕ♣tq is able

to reproduce exponential polynomials, i.e.:

treαmt ✏
➳
nPZ

cm,n,rϕ♣t✁ nq,

if and only if

ϕ̂♣rq♣αmq ✘ 0 and ϕ̂♣rq♣αm � j2πlq ✏ 0

for l ✘ 0, r ✏ 0, . . . , R and m ✏ 0, . . . , P . Here, ϕ̂♣rq♣sq represents the rth order derivative of the

double-sided Laplace transform of ϕ♣tq.

The proof is obtained from the Strang-Fix conditions for polynomial reproducing kernels, by consider-

ing the function ψ♣tq ✏ e✁αmtϕ♣tq that clearly reproduces polynomials of the form tr for r ✏ 0, . . . , R.

The Strang-Fix conditions [2], [31] state that a kernel ψ♣tq is able to reproduce polynomials, i.e.:

tr ✏
➳
nPZ

cr,nψ♣t✁ nq,

if and only if

ψ̂♣0q ✘ 0 and ψ̂♣rq♣j2πlq ✏ 0
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for l ✘ 0 and r ✏ 0, . . . , R. Here, ψ̂♣jωq is the Fourier transform of ψ♣tq, and ψ̂♣rq♣jωq represents its

rth order derivative. Then, by taking into account that the Fourier transform of ψ♣tq is related to the

Laplace transform of ϕ♣tq through ψ̂♣jωq ✏ ϕ̂♣αm � jωq, the above equation turns into the generalised

Strang-Fix conditions for ϕ♣tq:

ϕ̂♣αmq ✘ 0 and ϕ̂♣rq♣αm � j2πlq ✏ 0

for l ✘ 0, r ✏ 0, . . . , R and m ✏ 0, . . . , P . Now ϕ̂♣rq♣sq represents the rth order derivative of the

double-sided Laplace transform of ϕ♣tq. This proves that a kernel that reproduces exponential polynomials

satisfies the generalised Strang-Fix conditions.

The converse is also true. Consider a kernel ϕ♣tq that satisfies the generalised Strang-Fix conditions.

Then, a kernel ψ♣tq with Fourier transform ψ̂♣jωq ✏ ϕ̂♣αm� jωq is guaranteed to satisfy the Strang-Fix

conditions and, consequently, reproduces polynomials tr for r ✏ 0, . . . , R. Finally, due to the relation

of the kernels in the Laplace domain it follows that ψ♣tq ✏ e✁αmtϕ♣tq implying that ϕ♣tq reproduces

exponential polynomials treαmt for l ✘ 0, r ✏ 0, . . . , R and m ✏ 0, . . . , P , which completes the proof.

APPENDIX B

E-MOMS INCLUDE THE DIRICHLET AND SOS KERNELS

Let us consider the exponential reproducing kernel ϕ0♣tq ✏ ϕ
�
t� P�1

2

✟
of support P �1 and centred

in zero, with ϕ♣tq ✏ γ♣tq ✝ β~α♣tq, where β~α♣tq is an E-Spline. We restrict our analysis to P being even

and we use exponential parameters

αm ✏ jωm ✏ j
π

P � 1
♣2m✁ P q, (29)

where m ✏ 0, . . . , P . We next use the P �1–periodic extension of ϕ0♣tq, that is ϕP�1♣tq ✏
➦

lPZ ϕ0♣t�

l♣P � 1qq, which is equivalent to:

ϕP�1♣tq ✏
1

P � 1

➳
kPZ

ϕ̂0

✂
j

2πk

P � 1

✡
e
j 2πk

P�1
t
, (30)

from the application of Poisson summation formula. The case of P being odd can be derived likewise,

but by periodising over 2♣P �1q. Also note that the Fourier transform of the shifted kernel ϕ0♣tq is equal

to:

ϕ̂0♣jωq ✏ γ♣jωq
P➵

m✏0

sinc

✂
ω ✁ ωm

2

✡
. (31)

The set of equations

ϕ̂0♣jωmq ✏ ⑤ϕ̂♣jωmq⑤ ✏ ⑤γ̂♣jωmqβ̂~α♣jωmq⑤ ✏ ηm, (32)
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are just like (19) and lead to design exponential reproducing kernels of maximum order and minimum

support (e-MOMS), different from those of Section IV-B, but that still correspond to a specific subfamily

of the generalised exponential reproducing kernels of [28].

In (30) the Fourier transform ϕ̂0♣jωq is evaluated at jωk ✏ j 2πk
P�1

. Taking into account (32), we know

that ϕ̂0♣jωkq ✏ ηk for k ✏ ✁P
2
, . . . , P

2
. We also have that ϕ̂0♣jωkq ✏ 0 for any other k, because we can

find a term in the product (31) equal to sinc♣ℓπq ✏ 0, ℓ P Z. Therefore, (30) can be reduced to:

ϕP�1♣tq ✏
1

P � 1

P

2➳
k✏✁P

2

ηke
j 2πk

P�1
t
. (33)

Note that when the values ηk ✏ 1 for all k, then (33) reduces to one period of the Dirichlet kernel of

period P � 1:

ϕP�1♣tq ✏
1

P � 1

P

2➳
k✏✁P

2

e
j 2πk

P�1
t ✏

1

P � 1

sin♣πtq

sin♣ πt
P�1

q
.

And this is precisely the P � 1–periodic extension of the e-MOMS kernels of Section IV-B.

To end, we now consider one period of (33) and denote t ✏ x
T

, N ✏ P � 1 and τ ✏ NT ✏ ♣P � 1qT .

Then we get the time domain definition of the SoS kernel [3]:

ϕP�1

✁ x
T

✠
✏ g♣xq ✏ rect

✁x
τ

✠ 1

N

➳
kPK

ηke
j 2πk

τ
x.

Here, the number of samples N needs to be odd, since P is even, and the set of indices K ✏ t✁N✁1

2
, . . . , N✁1

2
✉.
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