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Abstract

Among the characteristics of traditional evolutionary algorithms governed by models, memory volatility is one of the most
frequent. This is commonly due to the limitations of the models used to guide this kind of algorithms, which are generally very
efficient when sampling, but tend to struggle when facing large amounts of data to represent. Neural networks are one type of
model which conveniently thrives when facing vast amounts of data, and does not see its performance particularly worsened by
large dimensionality. Several successful neural generative models, which could perfectly fit as a model for driving an evolutionary
process are available in the literature. Whereas the behavior of these generative models in evolutionary algorithms has already been
widely tested, other neural models -those intended for supervised learning- have not enjoyed that much attention from the research
community. In this paper, we take one step forward in this direction, exploring the capacities and particularities of back-drive, a
method that enables a neural model intended for regression to be used as a solution sampling model. In this context, by performing
extensive research into the most influential aspects of the algorithm, we study the conditions which favor the performance of the
back-drive algorithm as the sole guiding factor in an evolutionary approach.

Index Terms

Deep learning, Model-based evolutionary algorithms, Back-drive

I. INTRODUCTION

Research on model-based evolutionary algorithms (MEA) [1]–[3] such as estimation of distribution algorithms (EDA) [4]–[6]
has mainly focused on the use of probabilistic graphical models [7] (PGM) to represent the relationships between the variables
of the problem. PGMs are a concise and usually easy to interpret representation of the dependencies between the variables of
a problem. The employment of this kind of models as part of an evolutionary framework consists of two phases. Firstly, the
model induction part [8]. Secondly, sampling the models, for which several efficient methods exist, particularly those based
on a partial ordering of the variables for sampling [9].

Despite their suitability and efficiency, PGMs are difficult to combine with gradient-based optimization algorithms, which
can be extremely efficient for problems of many variables. Recently, the use of artificial neural network (NN) models has been
increasingly investigated as a way to capture and exploit the dependencies of a problem [10]–[12]. NN-based evolutionary
algorithms (EA) learn a neural model from the best solutions and use this model to generate new promising solutions.
Model learning can be framed as classification, regression, or distribution learning tasks, and can exploit fast gradient-based
optimization procedures for model learning.

A crucial step when using deep NNs (DNN) in model-based EAs is the way in which the generation of new solutions is
performed. The implementation of this step is not straightforward since, in contrast to PGMs, NNs are difficult to interpret.
This makes the task of identifying the manner in which the model maps the input to the desired output a very comlpex one.
Therefore, the usage of these models for solution generation results as non-trivial. A strategy to obtain inputs designed to
produce a desired prediction by a given NN is defined in [13]: NN inversion. This strategy was later adopted in [11], where
it was used as a controller of an EA.

In this paper we propose the usage NNs as the probabilistic model of the MEA. Moreover, the viability of the NN inversion
or back-drive algorithm for effectively sampling solutions is analyzed. Furthermore, we define different ways of training the
NN model, incorporate information from previous generations, perform the back-drive, and exploit the trained model, testing
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these variations against each other. This results in an in-depth experimentation for determining the conditions under which
back-drive offers optimal performance when used in an evolutionary framework.

The rest of this paper is organized as follows. Section II provides an overview of the DNN model and the back-drive
algorithm used in this work. Section III introduces MEAs in detail. Related work is discussed in Section IV. In Section V,
different aspects of the back-drive technique that need to be taken into account are mentioned. Section VI describes the
experiments conducted regarding the characteristics introduced in the previous section. Section VII makes a series of insights
on the aforementioned experiments. Finally, conclusions drawn from the whole process are summarized in Section VIII.

II. BACKGROUND

A. Multi Layer Perceptron

The multi-layer perceptron (MLP) is the primitive NN-based model used to perform deep learning (DL) [14]. Its most basic
configuration consists of three different types of layers, which are composed of neurons. The first layer, which takes the input
data, the last layer, which provides a prediction regarding the information placed in the input, and the hidden layers, which
are able to learn high-abstraction features of the data. In an MLP, these layers are both sequential and dense, in the sense that
every neuron in layer l−1 is connected to every other neuron in layer l, and there exist no more connections between neurons.
These layer-wise connections can be represented as matrix operations of the following form:

nl = σl(wl × nl−1 + bl) (1)

where, nl is a layer of neurons; the representation of the data computed in the l-th layer. wl, bl ∈ θ are the parameters learned
for layer l. For the input layer, nl−1 = n0 = x, the input data, and for the last layer, nl = ŷ, the prediction. σ is a function,
for which the usual choice is to be non-linear.

Commonly, wl and bl are trained employing a gradient descent method [15]. These methods differentiate an error measurement
between the outcome of the net ŷ and the desired output y, applying changes to the net parameters layer by layer, starting
from the last layer and moving backwards until the first one, in an algorithm called back-propagation [16].

B. Back-drive algorithm

The network inversion [13] or back-drive [11] algorithm exploits the propagation of error through layers in a different way
to back-propagation. This method is used for, given a trained model, making convenient alterations to the input data so that
it matches a target prediction by the model. Applying this method allows the usage of models from a very extensive research
field; supervised learning via DNN (e.g., image classification), for data generation purposes.

To contrast back-propagation and back-drive methods, in the training phase, the input data x and target value y remain
constant. θ is trained so that ŷ is as close to y as possible. The back-drive algorithm assumes an already trained θ, which is
frozen from this point on. A data point x is placed in the first layer, and the error between the prediction of the model for
that data point and the target prediction y∗ is propagated until the data point, which is now modifiable. To put it in a simple
way, instead of asking “What θ do we need for reducing ŷ − y?”, we ask “Given θ, what x do we need to reduce ŷ − y∗?”.

This way, data points x with arbitrary ŷ predictions can be modified so that the new x′ meet certain desired requirements.

III. MODEL BASED EVOLUTIONARY ALGORITHMS

Basic EAs, e.g., genetic algorithms (GA) [17], usually produce acceptable results when applied to simple problems, but tend
to struggle as the complexity of the problem increases [18]. The lack of treatment of variable dependency can be one of the
causes of this behavior. Designing effective recombination or sampling operators can be the solution. With this in mind, MEAs
were developed as more advanced algorithms, including probabilistic models able to represent the (in) dependencies between
the variables. Procedures for learning and sampling these models are required.

Algorithm 1 shows the general pseudocode of a basic MEA. The description of the functions used by the algorithm follow:
• generate population(): Generates a population of randomly initialized individuals.
• evaluate population(pop): Given a population, this function returns a list of the corresponding fitness values of the

individuals.
• select solutions(pop, fit): Given a population and its corresponding fitness values, this function returns the individuals

from which the model is to be learned.
• create model(pop, fitness): Given a set of solutions and their corresponding fitness values, this function returns a model,

which is trained using the given information.
• sample model(model): Given the model, this function generates samples from it.
• combine pop(pop, fit, offs, off fit): Given a population, new offspring, and its corresponding fitness values, this function

returns a new population and fitness values.
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Algorithm 1: Pseudo-code for a basic MEA.

1 pop = generate population();
2 fit = evaluate population(pop);
3 while halting condition is not met do
4 sel pop, sel fit = select solutions(pop, fit);
5 model = create model(sel pop, sel fit);
6 offs = sample model(model);
7 offs fit = evaluate population(offs);
8 pop, fit = combine pop(pop, fit, offs, offs fit)
9 end

IV. RELATED WORK

A. NN-based EAs

With the same goal in mind (optimization) but using a different approach compared to ours, an increasing number of recent
works [10], [11], [19], [20] propose the application of neural models, which sometimes involve deep architectures. Generally,
as in the case of this work, the NN models are used to generate new solutions for the EA.

A fundamental difference of NNs over graphical models is that the information about the problem structure is usually
represented in latent variables or distributed structures that make the interpretability of the model a difficult task.

The DNNs that have been tested for EDAs exhibit a variety of behaviors: autoencoders used in a traditional EDA scheme
in [21] are extremely fast compared to methods that learn Bayesian networks, but they fail to achieve the same efficiency as
BOA [22] in terms of function evaluations. When used as a mutation distribution in [19], GA-dA (see Table I) outperforms
BOA in some problems (notably on the knapsack problem) but it is outperformed on the hierarchical HIFF function.

The convenience of using DNNs is another important question to discern, given the impressive results of DNNs in other
domains. One of the conclusions obtained from the evaluation of the deep Boltzmann machine (DBM) neural network in EDAs
is that the effort for learning the multi-layered DBM model does not seem to pay off for the optimization process [23]. Also
in [11], where DNNs with 5 and 10 layers are used as neural models, it is acknowledged that the learning process can be time
consuming. While the Deep-Opt-GA is evaluated across a set of diverse artificial and real-world problems, it is not possible
to determine the gain of the algorithm over EDAs since it is compared to a fast local optimizer and a GA.

A categorization of NNs relevant for the work presented in this paper is based on the strategy used to sample new solutions.
Table I lists some of the main NN-based EAs, indicating whether the models used to generate solutions were conceived for
generative purposes or not.

TABLE I
DESCRIPTION OF SOME OF THE MAIN NEURAL NETWORK MODELS PROPOSED FOR MODEL-BASED EAS.

Algorithm year NN model Ref. Generative Deep
BEA 2000 HM [24] yes no

MONEDA 2008 GNG [25] no no
RBM-EDA 2010 RBM [26] no no

REDA 2013 RBM [27] yes no
DAGA 2014 DA [28] no no

DBM-EDA 2015 DBM [23] yes yes
AED-EDA 2015 DA [21] no no
GAN-EDA 2015 GAN [10] yes no

GA-dA 2016 DA [19] no no
GA-NADE 2016 NADE [19] yes no
RBM-EDA 2017 RBM [20] yes no

Deep-Opt-GA 2017 DNN [29] yes yes

B. Sampling solutions from a regression neural network

Using ANN inversion as a method to sample a trained network in an EA was firstly performed in [11]. In this work, the
author proposed a common MLP to guide the search in an EA. At each generation, all the solutions were evaluated, and their
fitness functions were scaled to [0,1]. The MLP was trained with this data, then back-driven [13] to obtain new solutions. This
inversion was performed by requiring the net to modify a mutated solution so that it would return the maximum score known
at each moment. After the sampling, the solution was improved by a hill climbing algorithm. A new population was generated
by repeating this sample-improving method. This whole process was iterated within an evolutionary framework.
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Two variations of this approach were tested against three versions of hill climbing. The proposed algorithm obtained
significantly better results optimizing a simple noisy function with continuous variables, as well as for three combinatorial
optimization problems. However, it was unable to obtain this kind of superiority when tested in 2-D layout problems.

Unlike in the paper discussed above - [11]-, in this paper, the back-drive algorithm is not assisted by any local-search
algorithm or external mutation operator of any kind. Additionally, we perform an in-depth analysis of the behavior of the
method depending on several settings applicable to the algorithm. This results in a set of guidelines to be taken into account
at the time of performing further research on this topic.

V. DEEP NEURAL NETWORK AS A MODEL

One of the main drawbacks of the PGMs that govern EDAs is the lack of scalability and memory, since these models lose
efficiency as the amount of solutions to learn from increases. Consequently, the common practice is to focus on the most
promising solutions (in terms of fitness values) guiding the search towards that direction. DNNs can learn distributions from
large datasets efficiently. However, using them for sampling solutions from these distributions to guide MEAs brings several
particularities inherent in this kind of models to the EA. Studying these singularities is essential for reaching performance
optimality and, in this case, we focus our efforts on DNN learning, and sampling using back-drive. Model learning involves
(1) parameter initialization and (2) optimization. Performing back-drive also necessitates of (3) solution initialization. (4) The
y∗ required to the model in the back-drive procedure can also be configured in multiple manners. As the cost of performing
inference with regression DNNs is considerably low, any possibility of performance improvement extracted from using the
(5) DNN as a surrogate model is worth studying. For each of these five key features, two proposals are presented in the
following sections. These pairs of proposals are later tested against each other in an extensive experimental section in an effort
to determine the best conditions in which the back-drive can operate. The goal of this work is not giving exact guidelines on
the setting of back-drive, but illustrating the directions which research should follow regarding this algorithm.

A. Model initialization
The first choice to be made is the initial value of the DNN parameters, θ. In the first generation, a straightforward procedure

is to randomly initialize the parameters to be learned. However, for the subsequent iterations of the algorithm, θ can be
reinitialized to random values again, or simply inherit the learned parameters from the previous generation.

Because the problem is constant during the whole evolution, it could be expected that some parameters in θ could be
re-utilized by the DNN across generations, especially those in the first layers. In the worst-case scenario, in which information
cannot be transferred between generations, the weights optimized in the previous generation would not be worse than a new
random initialization.

B. Training the model
As mentioned in Section II-B, the step previous to back-driving a network is training the network itself. In this work, the

network is suited to approximate a continuous problem; the mapping between the solutions and their corresponding fitness
values. Two dynamics have been identified as plausible for performing this action.

The first one is based on the traditional manner in which MEAs operate; at each generation a fixed number of solutions are
evaluated and used to train the model that will later be sampled. Commonly, MEAs maintain a fixed population size, replacing
individuals as the evolution advances, in order to keep the learning task within reasonable computational cost.

The second variant is based on the fact that DNNs offer the best performance when large amounts of data are available.
Therefore, solutions from past generations are retained, which results in more robust models after training.

C. Back-drive initialization
The individuals modified by the back-drive method need to be initialized too. Analogously to θ, in the first generation, random

initialization is the straightforward choice. The following generations, though, place the question of whether the individuals
should be reinitialized, or whether each model in each generation should take the individuals where the previous model left
them off (an approach similar to [11]).

In this case, the algorithm faces an exploration vs exploitation trade-off scenario. Reinitializing the individuals in each
generation would, intuitively, promote the creation of distributed populations. Using the individuals modified in the previous
generation as a starting point before back-driving could favor focusing on certain areas of the search space.

D. Target value
Transforming every random input to an optimal solution could be an unrealistic objective for back-drive. Additionally, it

could lead to some kind of homogeneity between solutions. These two scenarios could be avoided by introducing some level
of noise in the target variable y∗, or directly by using a sub-optimal value. Moreover, the inclusion of other forms of the
target variable, such as the logarithm, square, etc. could lead to a more informed back-drive procedure capable of generating
solutions closer to the optimal fitness. These model-related questions do not add any computational cost to the algorithm, and
could improve the results of the back-drive.
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E. DNN as surrogate model

The fact that the back-drive is able to improve individuals does not necessarily mean that all of them reach the target value.
Sometimes, back-drive does not work properly, depending, for example, on the individual initialization, or the way in which the
DNN approximates the fitness function. Discarding individuals which are unlikely to benefit the evolutionary process before
wasting evaluations is a key aspect of an efficient back-drive based EA. Reusing the same model employed for back-drive as
a surrogate, it is possible to estimate the fitness value of all the back-driven solutions in order to keep the most promising
ones. That is, generate a large number of back-driven individuals (which, with today’s technology, does not result costly) and
use the trained DNN to obtain an estimation of their fitness value. This way, the algorithm could avoid the evaluation of poor
individuals, which would be especially beneficial when facing a real-world problem in which evaluations are highly costly. In
EDAs, different models have been also used as surrogates to avoid the number of solutions evaluated [12], [30], [31].

F. Implementation

For these exploratory experiments, an MLP with two hidden layers is employed to learn the mapping between the solutions
and their fitness value. The first layer is composed of as many neurons as three times the number of variables in a solution,
whereas the second one contains twice the number of variables. The rest of the specification is as follows:
• ReLU activation function after the two hidden layers.
• Sigmoid activation function after the output layer (fitness values are scaled to [0-1] before learning).
• Weights (wl) are initialized randomly, with Xavier initialization [32].
• Biases (bl) are initialized to 0.

VI. EXPERIMENT SETUP

A. Problem benchmark

To determine what the optimal conditions for back-drive to operate in are, we have selected the widely known suite of
CEC-2005 problems [33] as implemented in [34]. Despite this not being the most recent version of the problem suite, its
extension is enough to test the different variants of the back-drive algorithm against each other. Two of the available functions
(F7 and F25) have been discarded because the range of possible values of the variables is not fixed. Although the back-drive
is able to operate in such conditions, we decided to discard the two functions for the sake of homogeneity. We adhere to the
evaluation limit suggested in the benchmark for the number of variables n = 10: 100, 000 evaluations.

B. Model learning and back-driving

In order to learn the model, 25 epochs (divided in mini-batches of size 150) have been used in all cases. For optimization,
the Adam [35] stochastic gradient descent technique was employed, with an initial learning rate of 0.001 in an offline manner
(i.e., using the complete dataset instead of incrementally adding solutions as they are evaluated). So as to modify the individuals
via back-drive, the same configuration of the gradient optimizer was used, only that, in this case, the learning was limited to
just 500 epochs, which leads to very fast sampling.

C. Preliminary experimentation

In order to reduce the different variables in the evolutionary process and ease the analysis, we test the benefit of the model
variants introduced in Section V-D in a vacuum, isolated from the evolutionary process, taking advantage of the reduced
influence of the evolutionary component on this aspect. To that end, we learn a DNN with 10, 000 points, and back-drive it
to obtain 1, 000 new points considering different experimental settings that allow the investigation of key questions about the
behavior of the back-drive technique.
• Form of the fitness value (e.g., log(f), f2, etc.).
• Percentile of the fitness for back-driving. Requiring the back-drive to produce sub-optimal values could be beneficial for

population quality or diversity.
• Noise: Whether the target value is the exact value for every sample, or has noise added to it. This could increase solution

diversity.
The variants for the different aspects to be taken into account when learning the model, which, to the knowledge of the

authors, have not been studied, are compiled in Table II. Note that the f transformations are accumulative, e.g., when requiring
f2, the three previous outputs are also included, mimicking a multiple regression scenario. Problem domains could be exploited
with this technique, e.g., additively decomposable functions could have as many outputs as subfunctions.

By investigating these aspects in isolation, we can determine the best method for setting the target variable before the
evolutionary process. For each combination, 1, 000 new random solutions were modified by back-drive and evaluated.
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TABLE II
MODEL LEARNING POSSIBILITIES TESTED (f = FITNESS VALUE).

f transformations Percentile Noise
log(f) 0 (best) f
f 10 abs(N (f, 0.01))√
f 20

f2 50
sin(f)

D. Analysis of the evolutionary process

Our next goal is to analyze the remaining components related to the use of back-drive, now within the EA framework. In
the following, we enumerate these components and explain the two settings that have been investigated per aspect.

1) Model initialization: In order to show the benefits of the different approaches available for training the model to be used
for back-drive, different tests are performed. With respect to θ initialization, two different evolutionary procedures have been
carried off. In the first one, θ was randomly initialized in the first generation, and the rest of generations inherited it from its
predecessor. In the second one, θ was randomly initialized in each generation.

2) Model training: With respect to the optimization of θ in each generation, the straightforward strategy of learning θ with
the solutions in the last generation is used as a baseline. This approach is contrasted to a more sophisticated one in which
information from the previous generations is retained:
• The first generation is retained in order to maintain diversity and provide perspective about bad solutions, i.e., give

information to the model about undesired solutions.
• An elite population (of the same size as the rest of populations) with the best solutions found during the search is kept.
• At each generation, the dataset comprising the previous k ≤ 8 populations is kept.
3) Back-drive initialization: Similarly to θ initialization, two EA configurations have been tested; reinitializing the individuals

to be back-driven in each generation, or inheriting the individuals from previous generations.
4) DNN as surrogate model: We also test whether the prediction of the model for the modified individuals is a valuable

source of information. Once the model has been trained, the cost of using back-driving on it is near constant with respect to
the number of solutions modified. We propose a variant to the simple procedure of back-driving as many individuals as needed
per generation: 20× the number of individuals in a population are back-driven, and the best ones (as many as required for the
population of the subsequent generation) are selected according to the fitness estimation given by the model.

VII. RESULTS

A. Preliminary experimentation

We investigate the three factors described in Section VI-C. An MLP is learned using a given dataset of solutions and
the corresponding fitness values for a function F. Back-drive is used to sample new solutions from the model. Solutions are
evaluated using the F function, and we use the fitness evaluation to assess the influence of each of the factors.

Fig. 1 summarizes the results of this experiment for the 24 functions in the benchmark. The left-hand side heatmap considers
the three combinations which obtained the best results for each of the problems. The x axis shows the percentile value used
as target for the back-drive algorithm. The y axis shows the different transformations of the target, and whether they had
noise added. The number and color represent the number of times that combination was present in the top three performing
combinations of the functions.

It can be clearly appreciated that requiring the model to produce the best solution (0% percentile) for each individual is the
option that achieves the best results almost every time, whereas 10% hardly ever produces top-performing evolution, and 20%
and 50% are not able to produce good results on any occasion. Regarding the addition of Gaussian noise to the target output,
it is clear that requiring the exact fitness instead of perturbations of that value is also a better option. Finally, Fig. 1 shows that
adding more outputs to the regression problem does not help the model to perform better back-drive, and, from three outputs
on, the results are considerably worse.

The figure on the right-hand side of Fig. 1 shows, for each percentile (x axis) and function (y axis), the summation of
the variances of the fitness values computed from the back-driven individuals. The summation is chosen in order to display
more readable numbers. The goal of this figure is to determine whether requiring worse solutions to the back-drive results
in larger diversity. It can be seen how, with few exceptions (F4, F6, F12, F13, F17, and F21), the variance is similar for all
percentiles. Moreover, surprisingly, for other functions (F1, F5, F15, F16, F18, F19, F20 and F24) the variance is even greater
when requiring better individuals. The rest of functions do not show such sizeable differences.

After studying these results, we can determine that simply using the exact logarithm of the fitness of the best solution
provides better results in terms of quality and diversity.
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0.044 0.057 0.051 0.062

0.024 0.034 0.053 0.179

0.271 0.080 0.084 0.103

0.100 0.113 0.133 0.256

0.593 0.595 0.589 0.596

0.263 0.281 0.284 0.296

0.147 0.139 0.137 0.155

0.504 0.505 0.502 0.508

0.299 0.424 0.461 0.564

0.014 0.020 0.077 0.481

0.095 0.083 0.080 0.078

0.440 0.291 0.287 0.310

0.459 0.208 0.186 0.202

0.317 0.277 0.293 0.397

0.239 0.025 0.017 0.017

0.228 0.030 0.020 0.019

0.242 0.034 0.021 0.021

0.087 0.067 0.074 0.110

0.005 0.002 0.002 0.002

0.056 0.064 0.093

0.070 0.033 0.033 0.037

0.070

Fig. 1. Results of the preliminary experimentation. The figure on the left-hand side shows the frequency of appearance of the parameter combinations signaled
by the x and double y axis, in the top-3 combinations for each problem. The other figure shows the variance found in the fitness value of the individuals
generated via back-drive with different target percentiles, for each problem.
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Fig. 2. Logarithm of the scaled fitness for each problem in the benchmark. The best fitness value found through the optimization process is shown.

B. Main experimentation

The characteristics of the model have been studied, and the most advantageous conditions for the back-drive to operate,
discovered. It is now time to observe back-drive’s behavior with different variations of evolutionary-bounded components.

With this goal in mind, an extensive set of experiments has been carried out. For each function in the benchmark all
combinations of the back-drive described in Section VI-D have been performed. Each one of these processes was run 30 times.
The EA consists of 100 generations of populations of size 1, 000.

Firstly, before going on to the analysis of the performance of the different formulations of the algorithm, we prove that
the algorithm is indeed capable of improving individuals in terms of their fitness value. All fitness values generated by all
2 model training methods ×2 DNN initialization methods ×2 individual initialization methods ×2 generation schemes ×30
repetitions = 4806 were normalized to (0, 1]. After that, the mean of the best fitness value at each point during evolution of
all the runs for each problem was computed. These averages are shown in Fig. 2. It can be seen how, as fitness evaluations
are performed, the best found fitness value improves. There is great variety of convergence values for the different problems.
The curves ending in higher (worse) values do so because few of the runs were able to reach much better fitness values than
the rest. This way, when the normalization is performed, only these few values reach near-zero values, whereas the rest lie
nearer to 1. Computing the mean of all runs derives in these higher fitness-valued lines.

Nevertheless, in most cases, evolution is satisfactory, as in general, the lines have a consistent decreasing slope.
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Fig. 3. Stackplot showing the frequency of appearance of each plot combination. The wider the line, the more present a parameter combination has been
between the top three of each problem. Two individual selection methods are used, one in which the individual generation consists of as many individuals
as required population, or creating 20× the size of the population then using the DNN as a surrogate model to select the best ones and discard the rest.
Two training methods are employed: One in which only the individuals from the last generations are used for learning θ, and the other in which solutions
from past generations are kept for learning. θ can be reinitialized after each generation is completed, or it can be inherited between generations. Similarly,
individuals changed by the back-drive can be inherited from the previous generation or randomly initialized each time.

We perform separate analysis of the different runs in order to devise the characteristics of the EA which makes the most of
the back-drive algorithm.

As a first step, the fitness values at every point during the evolution of all 30 repetitions for each one of the 16 strategies
are averaged. Next, for each evaluation in the averaged runs, the best registered fitness is recorded. Finally, the evolutionary
component combinations present in the top-3 of the best fitness found after a given number of evaluations for each problem
are awarded one point for that specific evaluating position. Therefore, at each position, 24× 3 = 72 points are awarded. Fig. 3
shows this information, where the wider the stack, the more points a given component combination has obtained at different
moments in the evolution.

In this figure, the common behavior of this kind of algorithm can be observed. In the first two generations the populations
are still heavily affected by randomness and the variations of the back-drive have yet to impact the evolution. Once enough
evaluations (∼ 20, 000 or ∼ 20th gen.) have been carried out, differences stabilize and it is easy to discern the component
combinations which perform the best more frequently.

At a quick glance, one can observe that two colors in particular are found more frequently in the figure; green and yellow.
These colors correspond with runs of the EA in which the DNN was trained with not only the information from the previous
generation, but also incorporating knowledge from the initial random population and an elite population in which the best
found individuals are stored, along with the individuals from the last eight generations. Due to the parity between the width of
these two colors, it is possible to determine that modifying just as many individuals as the population size or 20× that number
(and using the model as surrogate to select the most promising individuals) offer similar performances to the evolutionary
process.

Additionally, regarding the hatches in the figure, the vertical lines are the most prominent ones. This indicates that using
θ inheritance between generations is a very useful technique for the evolutionary procedure. Furthermore, it suggests that the
individuals modified by the back-drive should not be initialized taking into account their values of the previous generation, but
that they should be randomly initialized each time.

Other combinations, while also being present in varying degrees in the top-3 performing combinations, do not stand out as
much as the combinations that have been highlighted.

VIII. CONCLUSIONS

In this paper, we have performed an in-depth analysis of the back-drive algorithm as the sole driving component of an
evolutionary algorithm. Back-drive allows the usage of a DNN intended for supervised learning to learn the distribution of a
dataset in order to sample more information from that distribution. The usage of DNNs in evolutionary algorithms could help
avoid limitations traditionally present in model-based evolution. We have set the grounds of generally good practices to take
into account when designing evolutionary algorithms based on back-drive.

Firstly, we have determined the structure of the network used to perform the back-drive, in terms of the output it produces.
Because this characteristic is exclusive to the model, we have been able to perform this analysis isolated from the evolutionary
process, which prevents the introduction of unnecessary noise. We have tested whether requiring the model to produce solutions
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with fitness values known to be suboptimal, requiring different transformations of these fitness values, or adding noise to them
can have beneficial effects on the evolutionary algorithm. This analysis concluded that the trivial approach of model design,
the one requiring a single form of the best fitness without noise, is the best option.

Once this fact has been confirmed, the different variations of the usage of the model in an evolutionary algorithm have been
investigated. As the first step of this analysis, it has been proven that the back-drive technique is able to successfully drive an
evolutionary algorithm in which individuals are improved regarding their fitness value.

Moreover, this second investigation concluded that the more information the model can get when being trained regarding
previous generations, the better it will perform. Additionally, granting the model of the current generation access to the
parameters learned by the model of the previous generation has proven to be another key for improved efficiency. Other
variants which take advantage of the use of DNNs in evolutionary algorithms over more traditional approaches have not
produced visible improvements.

A. Future work

To the knowledge of the authors, this is the first work in which the back-drive as a technique is used as the sole driver of an
EA. The study performed in this paper is bounded to an initial investigation of the potential of this approach. In the following
paragraphs, we consider future research lines.

In this work, the network layout has been fixed trough all the evolution and analysis. What is more, this structure was kept
rather simple. Even though improving the structure does not imply performance improvement, intuition suggests it would.
Moreover, enabling flexibility of the model which could adapt to the necessities of the algorithm at different phases of an
evolutionary process (e.g., adding diversity vs. digging deeper into certain area of the search space) would most likely result
in a major boost for the algorithm.

This work also uses a fixed population size. It is known that DNN models perform better with large amounts of data. More
sophisticated management from the number of evaluations available could also be beneficial for the algorithm. For example,
using a larger number of evaluations during the first stages of the evolution could help the algorithm to focus on a better area
of the search space.

The way in which both the model learning and back-driving modifications are performed have also remained fixed during
the whole of the evolutionary process. Parameter tweaking in this aspect would undoubtedly ensue improvements in the final
outcome of the algorithm.

With respect to performance regarding time consumption, because the DNN training is performed based on mini-batches
of solutions, a large part of the network training could be parallelized; as solutions are evaluated, they are fed to the learning
algorithm while the rest of solutions are being evaluated. Model learning could be performed on-line, as opposed to the off-line
method employed in this work.

Although the particular framework in which we have evaluated back-drive does not lead to a state-of-the-art algorithm, we
reckon that back-drive could be an element to consider as part of these algorithms.
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[4] P. Larrañaga and J. A. Lozano, Eds., Estimation of Distribution Algorithms. A New Tool for Evolutionary Computation. Kluwer Academic Publishers,

2002.
[5] J. A. Lozano, P. Larrañaga, I. Inza, and E. Bengoetxea, Eds., Towards a New Evolutionary Computation: Advances on Estimation of Distribution

Algorithms. Springer, 2006.
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[18] P. Larrañaga and J. A. Lozano, Estimation of distribution algorithms: A new tool for evolutionary computation. Springer Science & Business Media,
2001, vol. 2.

[19] A. W. Churchill, S. Sigtia, and C. Fernando, “Learning to generate genotypes with neural networks,” CoRR, vol. abs/1604.04153, 2016. [Online].
Available: http://arxiv.org/abs/1604.04153

[20] M. Probst, F. Rothlauf, and J. Grahl, “Scalability of using restricted Boltzmann machines for combinatorial optimization,” European Journal of Operational
Research, vol. 256, no. 2, pp. 368–383, 2017.

[21] M. Probst, “Denoising autoencoders for fast combinatorial black box optimization,” in Proceedings of the Companion Publication of the 2015 Annual
Conference on Genetic and Evolutionary Computation. ACM, 2015, pp. 1459–1460.
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