
1

Self-Tuning Yaw Control Strategy of an Horizontal Axis 2

Wind Turbine based on Machine Learning 3

Aitor Saenz-Aguirre, Ekaitz Zulueta, Unai Fernandez-Gamiz 4
Jose Antonio Ramos-Hernanz and Jose Manuel Lopez-Guede 5

6
7
8
9

Abstract The design procedure of a Machine Learning (ML) based yaw control strategy for an Hori-10
zontal Axis Wind Turbine (HAWT) is presented in the following chapter. The proposed yaw control strat-11
egy is based on the interaction of three different Artificial Intelligence (AI) techniques to design a ML 12
system: Reinforcement Learning (RL), Artificial Neural Networks (ANN) and metaheuristic optimization 13
algorithms. The objective of the designed control strategy is to achieve, after a training stage, a fully auton-14
omous performance of the wind turbine yaw control system for different input wind scenarios while opti-15
mizing the electrical power generated by the wind turbine and the mechanical loads due to the yaw rotation. 16
The RL algorithm is known to be able to learn from experience. The training process could be carried out 17
online with real-time data of the operation of the wind turbine or offline, with simulation data. The use of 18
an ANN to store the data of the matrix Q(s,a) related to the RL algorithm eliminates the large scale data 19
management and simplifies the operation of the proposed control system. Finally, the implementation of a 20
metaheuristic optimization algorithm, in this case a Particle Swarm Optimization (PSO) algorithm, allows 21
calculation of the optimal yaw control action that responds to the compromise between the generated power 22
increment and the mechanical loads increase due to the yaw actuation. 23

24
Keywords Wind Turbine Control; Yaw Control; Reinforcement Learning; Artificial Neural Network; 25

Optimization; Pareto Front. 26
27
28
29

A. Saenz-Aguirre () ꞏ E. Zulueta ꞏ J.M. Lopez-Guede30
Automatic control and System Engineering Dep., University of the Basque Country, Nieves Cano 12,31
01006 Vitoria-Gasteiz, Araba, Spain32
email: asaenz012@ehu.eus33

34
E. Zulueta35
email: ekaitz.zulueta@ehu.eus36

37
J.M. Lopez-Guede38
email: jm.lopez@ehu.eus39

40
U. Fernandez-Gamiz41
Nuclear Engineering and Fluid Mechanics Dep., University of the Basque Country, Nieves Cano 12,42
01006 Vitoria-Gasteiz, Araba, Spain43
email: unai.fernandez@ehu.eus44

45
J.A. Ramos-Hernanz 46
Electrical Engineering Dep., University of the Basque Country, Nieves Cano 12, 01006 Vitoria-Gasteiz, 47
Araba, Spain 48
email: josean.ramos@ehu.eus 49

50
51
52
53
54

Saenz-Aguirre, A., Zulueta, E., Fernandez-Gamiz, U., Ramos-Hernanz, J., Lopez-Guede, J. (2021). Self-tuning Yaw Control
Strategy of a Horizontal Axis Wind Turbine Based on Machine Learning. In: Mahdavi Tabatabaei, N., Bizon, N. (eds)
Numerical Methods for Energy Applications. Power Systems. Springer, Cham. This version of the article has been
accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use, but is not
the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is
available online at: https://doi.org/10.1007/978-3-030-62191-9_32

2 A. Saenz-Aguirre et al.

Abbreviation and Acronyms 55
 56
ML Machine Learning 57
HAWT Horizontal Axis Wind Turbine 58
AI Artificial Intelligence 59
RL Reinforcement Learning 60
ANN Artificial Neural Network 61
PSO Particle Swarm Optimization 62
LCOE Levelized Cost of Energy 63
MLP-BP MultiLayer Perceptron with BackPropagation 64
MDP Markov Decision Process 65
DP Dynamic Programming 66
MC Monte Carlo 67
TD Temporal Differences 68
PoF Pareto optimal Front 69
GA Genetic Algorithm 70
DE Differential Evolution 71
PID Proportional Integral Derivative 72
FAST Fatigue, Aerodynamics, Structure and Turbulence 73
NREL National Renewable Energies Laboratory 74
MSE Mean Squared Error 75
DM Decision Making 76
 77

III-16.1. Introduction 78

The gradual depletion of the fossil fuels and the atmospheric pollution originated by their combustion 79
have brought an important growth of the renewable energy generation systems. Plus, as a result of the yearly 80
increasing electrical power consumption, the research work with the objective of enhancing the efficiency 81
of renewable energy systems and maximize their power production has been placed on the focus of many 82
research institutes and universities [1]. 83

The most important renewable energy generation source nowadays is the wind energy. Many studies 84
showing the positive tendency of the wind energy these days can be found in the literature. For example, 85
according to some studies presented by Rosales-Asensio et al. [2], the sustainable power production with 86
wind origin in Denmark achieved a 40% of the power produced in the country in 2015. This same value 87
was quite smaller in Spain, with a 17% in 2015, but having raised from a 10.4% in 2007. More recent 88
studies elaborated by WindEurope [3], and summarized in Figure III-16.1, show remarkable increments in 89
the wind energy installed power in 2018 especially in four countries: a 29% in Germany, a 16% in the 90
United Kingdom, a 13% in France and a 6% in Sweden. All these data indicate the importance of the wind 91
energy to lead the change of the electrical power generation structures towards a sustainable generation in 92
the coming years. 93

 94

 95

Figure III-16.1. Wind energy generation increase during year 2018 in some European countries [3] 96

III.16 Self-Tuning Yaw Control Strategy of an Horizontal
 Axis Wind Turbine based on Machine Learning 3

The power generation increase in wind energy systems is tightly related to the investigation work carried 97
out to reduce the Levelized Cost of Energy (LCOE) of the wind turbines, which encourages capital invest-98
ment in the sector. An optimization exercise to reduce the LCOE of a 10 MW wind turbine is presented in 99
the work of Nyanteh et al. [4]. One main topic of this research work is the development of advanced control 100
strategies to optimize the performance of the wind turbines. In this context, a robust H∞ controller to en-101
hance the operation and reduce the mechanical loads of a wind turbine is presented by Kim et al. [5]. In the 102
work of Merabet et al. [6] a Sliding Mode Control strategy is introduced to the control system of a wind 103
turbine. 104

In this chapter, the design procedure of a yaw control system of an Horizontal Axis Wind Turbine 105
(HAWT) based on Machine Learning (ML) is presented. The designed intelligent control system is based 106
on the interrelation of a Reinforcement Learning (RL) algorithm, detailed in the work of Watkins et al. [7], 107
an Artificial Neural Network (ANN) in form of a MultiLayerPerceptron with BackPropagation (MLP-BP), 108
presented by Erdogmus et al. [8], and a Particle Swarm Optimization (PSO) metaheuristic algorithm, intro-109
duced in the work of Ho et al. [9]. 110

The objective of the ML based control strategy developed in this chapter is to achieve a fully autonomous 111
performance of the yaw system of the wind turbine based on its own experience, which could be acquired 112
via an offline training, i.e., when the wind turbine is paused, or an online training, i.e., during operation of 113
the wind turbine. An offline training process is proposed in this chapter. However, a continuous online 114
training process with real data acquired during operation of the wind turbine to continuously learn from 115
experience could be implemented as well. The MLP-BP is used to store the data of the matrices Q(s,a) 116
related to the RL algorithm and manage them as continuous functions, Q(s(t),a(t)). This process avoids 117
quantification and large data management problems. The combination of an RL strategy and an ANN is 118
widely known as Deep Reinforcement Learning [10,11]. An example of the RL and ANN based yaw control 119
strategy to autonomously maximize the power generated by a wind turbine is presented in the work of 120
Saenz-Aguirre et al. [12]. Finally, with the introduction of additional features based on the multivariable 121
PSO optimization algorithm, an increment of the power generated by the wind turbine with a considerable 122
reduction of the mechanical loads due to the yaw rotation is expected to be achieved. 123

This chapter is structured as follows: the objectives and applications of the proposed yaw control strategy 124
are presented in Section III-16.2. Section III-16.3 details the theoretical basis of the different Artificial 125
Intelligence (AI) techniques used to design the ML system. The design procedure of the yaw control system 126
based on ML is exposed in Section III-16.4. Finally, Section III-16.5 presents the conclusions. 127

 128
III-16.2. Objectives and Applications 129

The main factor that determines the power output of a wind turbine is the wind incident to its rotor. 130
However, the wind is originated as a result of very complex meteorological processes, which, as stated by 131
Bivona et al. [13], are very complex to model, and can, thus, suffer from unpredictable important variations. 132
Some wind gusts can even exceed the safe wind speed operation range of the wind turbine and endanger 133
its correct performance. To avoid this issue, a control system is implemented in the wind turbines. 134

The control system of a wind turbine is formed by different control strategies designed to regulate the 135
rotational speed of the rotor in the whole range of operating points of the wind turbine. A scheme of the 136
different control loops oriented to regulate the rotational speed of the rotor is presented in Figure III-16.2 137
(a). As a result of these control strategies, the power output of the wind turbine is predefined for the whole 138
range of wind speed values in which the turbine operates. The curve that relates the power output of the 139
wind turbine with the wind speed is known as the power curve. The power curve of the NREL 5MW wind 140
turbine, presented in the work of Jonkman et al. [14], is illustrated in Figure III-16.2 (b). 141

 142

4 A. Saenz-Aguirre et al.

 143
(a) 144

 145
(b) 146

Figure III-16.2. (a) Scheme of the torque and pitch control strategies of a wind turbine [15] (b) Power curve of 147
the NREL 5MW wind turbine 148

There are two main control loops to regulate the rotational speed of the wind turbine: The torque loop 149
and the pitch loop. Each one of them is active in a different zone of the power curve. The torque loop, 150
explained in detail in the work of Harris et al. [16], is active in the partial power zone of the power curve, 151
plotted in blue color in Figure III-16.2 (b). On the other hand, in the rated power zone, plotted in red color 152
in Figure III-16.2 (b), the objective is to reduce the power received by the wind turbine from the wind by 153
means of the pitch control, explained in the work of Harris et al. [16]. 154

The main control objective in the partial power zone is to maximize the power the wind turbine extracts 155
from the wind, which can be expressed as in Eq. (III-16.1). 156

𝑃௢௣௧ ൌ
1
2
൉ 𝜌 ൉ 𝐶௉ ൉ 𝐴 ൉ 𝑣ଷ ሾ𝑊ሿ (III-16.1)

where 𝜌 [kg/m3] is density of the air, 𝐶௉ [-] is the power coefficient, 𝐴 [m2] is the area covered by the 157
rotor and 𝑣 is the wind speed. 158

However, in order to express the real power the wind turbine extracts from the wind, the misalignment 159
between the incident wind and the rotor must be considered, commonly known as the yaw angle. The ex-160
pression is shown in Eq. (III-16.2). 161
 𝑃 ൌ 𝑃௢௣௧ ൉ 𝑐𝑜𝑠ଷ൫𝜃௬௔௪൯ ሾ𝑊ሿ (III-16.2)

where 𝜃௬௔௪ is the yaw angle. 162

III.16 Self-Tuning Yaw Control Strategy of an Horizontal
 Axis Wind Turbine based on Machine Learning 5

As it can be observed in Eq. (III-16.2), a correct alignment of the wind turbine with the direction of the 163
incident wind can make the power generated by the wind turbine increase considerably. The control system 164
that allows a correct alignment of the wind turbine with respect to the incident wind is the yaw control. A 165
detailed explanation about the yaw control system of a 5 kW wind turbine is introduced in the work of 166
Yücel et al. [17]. Hence, an adequate design of the yaw control strategy of the wind turbine can be translated 167
into a considerable increment of the power generated by the system. 168

On the other hand, as a result of the high inertia values of the mechanical components that participate in 169
the yaw rotation, remarkable mechanical loads arise in different elements of the wind turbine. The physical 170
effect that explains these loads is known as the gyroscopic effect. An study of possible control strategies 171
aimed to attenuate the high mechanical loads resulting from the gyroscopic effect are presented in [18,19]. 172
Additionally, an analysis of the mechanical loads generated as a consequence of the yaw rotation is pre-173
sented in the work of Shariatpanah et al. [20]. 174

As a result, an adequate design of the yaw control strategy allows not only maximization of the power 175
generated by the wind turbine, but also reduction of the mechanical loads in several elements of the wind 176
turbine, and, thus, to increment its lifetime. 177

The objectives of the proposed yaw control strategy are: 178

- Achieve a fully autonomous and self-tuning yaw control strategy to be implemented in the wind 179
turbine. 180

- Design a control strategy based on ML that can continuously learns from its own experience. 181

- Selection of the optimal yaw control action (maximal power and minimal loads possible) for every 182
possible scenario of the wind turbine operation. 183

The main applications of the designed yaw control strategy are: 184

- Increment of the power produced by the wind turbine, with the consequent enhancement of its effi-185
ciency, and the reduction of the LCOE. 186

- Reduction of the mechanical loads originated as a result of the yaw rotation, with the consequent 187
increment of the lifetime of the mechanical components of the wind turbine, and the reduction of 188
the LCOE. 189

 190
III-16.3. Machine Learning and Artificial Intelligence techniques 191

The AI is the science that studies the projection of the human intelligence in technological machines. In 192
other words, the AI is the science that analyses the possibility to develop smart behavior patterns in tech-193
nological machines. The AI is considered to exist since the time of ancient Greek civilizations. In fact, there 194
are Greek myths about mechanical systems designed to emulate the human behavior. Later, during 19th 195
and 20th centuries, the development of the first computers is considered as an attempt to emulate the work-196
ing principle of the human brain in terms of calculations and memory. Nowadays, with the technological 197
advances in the field of the informatics and the existence of very large amounts of data to be processed, the 198
AI is on the focus of the research work. 199

The field of the AI is composed by numerous different techniques, which, in general, have been devel-200
oped to emulate the human intelligence or decision making capability, as it is explained in the work of 201
Wang et al. [21]. The most important AI techniques are the RL, ANNs, Fuzzy Logic, bio-inspired or me-202
taheuristic optimization algorithms and Bayesian Networks. Each AI techniques serves to a determined 203
goal and could be used individually or in interrelation with other AI techniques. 204

Bayesian Networks [22,23] are probability based networks that allow selection of the best action when 205
a priori probabilities are known. Metaheuristic optimization algorithms [24,25] allow selection of the opti-206
mal action when the process is defined in a cost function. Bayesian Networks and optimization algorithms 207
emulate the capability of the human brain to make decisions. 208

One of the most important features that offers the AI is the capability of the systems to learn automati-209
cally. This feature of self-learning is commonly known as ML, as it is explained in detail in the work of 210
Fadlullah et al. [26]. The ML has undergone an important boom after the development of the ANNs, which 211
are able to continuously learn from very large amounts of data. RL is another type of ML, in which the 212
systems learns to make the best decisions in a given environment by using its own experience. 213

With the technological boom and the increasing processing capability of the processors a new learning 214
method known as Deep Learning [26] has been born, in which new and amplified configurations of ANNs 215
are used for the ML process. In the same way, the Deep Reinforcement Learning [26] method has also been 216

6 A. Saenz-Aguirre et al.

created, which combines the use of the RL algorithm and ANNs to store the matrix Q(s,a) related to the RL 217
algorithm. 218

The AI has numerous applications nowadays. Optimization algorithms are widely used in the business 219
and public sectors due to their good results to reduce costs and increase gain margins [27]. Big companies 220
like Amazon use predictions based on online searches and ML to carry out market studies and maximize 221
their profits. The application SIRI of Apple brand mobile phones is a digital personal assistant that uses 222
ML techniques to continuously self-learn. RL techniques are used in different fields such as the continuous 223
learning of manufacturing robots, in Fanuc for instance, or to predict optimal trading strategies in the fi-224
nancial sector. 225

The self-tuning ML based yaw control strategy presented in this chapter makes use of three different AI 226
techniques: RL, ANN and metaheuristic optimization algorithms. This section is structured as follows: the 227
theoretical background of the RL is explained in Subsection III-16.3.1. Subsection III-16.3.2 analyses the 228
theory behind the ANNs. And, finally, the theoretical basis of the optimization algorithms is introduced in 229
the Subsection III-16.3.3. 230

III-16.3.1. Reinforcement Learning 231

RL [10,28-30] is an AI technique, corresponding to a type of ML, in which a determined system learns 232
from the experience of its own interaction with the environment in which it is placed. As it is stated in the 233
work of Sutton et al. [28], the training process of a RL algorithm is achieved by trial and error with the 234
objective of maximizing a reward function defined numerically and by mapping of situations to actions. 235

A pipeline with the basic operating principle of a RL algorithm is presented in Figure III-16.3. A defined 236
agent which is in a determined environment receives information of its state (𝑠 ∈ 𝑆) and decides to take the 237
action (𝑎 ∈ 𝐴). As a result of this action, the agent receives information of its new state and the immediate 238
reward of the action (𝑟 ∈ 𝑅). The objective of the RL algorithm is to find a map of states to actions, known 239
as policy, to maximize the long-term reward in different situations. In other words, the RL controller selects 240
the future actions with regard to the experiences of a whole range of actions in predefined states. The ex-241
periences are obtained by trial and error by interaction with a dynamic environment, as exposed in the work 242
of Kaelbling et al. [31]. 243

 244

 245

Figure III-16.3. Basic pipeline of a RL algorithm [12] 246

The main elements of a RL algorithm are: 247

- State (𝑠 ∈ 𝑆ሻ: Defines the state of an agent that is placed in a determined environment. 248

- Action (𝑎 ∈ 𝐴ሻ: Defines the action taken by an agent that is in a defined state (𝑠 ∈ 𝑆ሻ in a determined 249
environment. 250

- Reward (𝑟 ∈ 𝑅ሻ: Defines the immediate reward received by an agent that takes a certain action (𝑎 ∈251
𝐴ሻ in a given state (𝑠 ∈ 𝑆ሻ. 252

- Policy ሺ𝜋ሻ: It is a mapping of the actions (𝑎 ∈ 𝐴ሻ to the states (𝑠 ∈ 𝑆ሻ. Thus, it defines the behavior 253
of the agent. 254

- Long-term reward ሺ𝑅௧ሻ: Indicates the long term reward received by the agent if a certain action (𝑎 ∈255
𝐴ሻ in a given state (𝑠 ∈ 𝑆ሻ is taken. The long-term reward is the value to be maximized. 256

The long-term reward 𝑅௧ of a RL algorithm can be numerically calculated in different ways. The most 257
widely-used expression is based on the addition of the immediate rewards (𝑟 ∈ 𝑅ሻ received by the agent 258
during a determined period of time and using a discount factor 𝛾, as it is shown in Eq. (III-16.3). 259

Agent

Environment

Action, a State, s Reward, r

III.16 Self-Tuning Yaw Control Strategy of an Horizontal
 Axis Wind Turbine based on Machine Learning 7

𝑅௧ ൌ෍𝛾௞ ൉ 𝑟௧ା௞ାଵ

௧ା்

௞ୀ௧

 (III-16.3)

where the discount factor 𝛾 is set to 0 ൏ 𝛾 ൏ 1. 260
From now on, in order to refer to the function that indicates the long-term reward 𝑅௧ expected by the 261

agent a new expression is shown in Eq. (III-16.4). 262

𝐸 ൭෍𝛾௞ ൉ 𝑟௧ା௞ାଵ

௧ା்

௞ୀ௧

൱ (III-16.4)

One important aspect related to the RL algorithms is that the environment in which the agent is placed 263
is defined as a Markov Decision Process (MDP). This means that the environment transitions are independ-264
ent on past states and exclusively depend on the current state (𝑠 ∈ 𝑆ሻ and the action taken (𝑎 ∈ 𝐴ሻ. There-265
fore, the expressions of the state and reward transitions are presented in Eq (III-16.5) and Eq. (III-16.6), 266
respectively. 267
 𝑝௦௦ᇱ௔ ൌ 𝑝 ሼ𝑠௧ାଵ ൌ 𝑠ᇱ| 𝑠௧ ൌ 𝑠 ,𝑎௧ ൌ 𝑎 ሽ (III-16.5)

 𝑅௦௦ᇱ௔ ൌ 𝐸 ሼ𝑟௧ାଵ| 𝑠௧ ൌ 𝑠,𝑎௧ ൌ 𝑎, 𝑠௧ାଵ ൌ 𝑠ᇱሽ (III-16.6)

The policy 𝜋 followed by the agent defines the mapping of actions to states and, thus, dictates the criteria 268
to take determined actions. Hence, the policy 𝜋 defines the probability to select each action (𝑎 ∈ 𝐴ሻ in each 269
determined state (𝑠 ∈ 𝑆ሻ. As a result, the expected long-term reward with respect to the current state (𝑠 ∈270
𝑆ሻ and the policy 𝜋 followed, known as 𝑉గሺ𝑠ሻ, and the expected long-term reward with respect to the 271
current state (𝑠 ∈ 𝑆ሻ, the current action (𝑎 ∈ 𝐴ሻ and the policy 𝜋 followed, known as 𝑄గሺ𝑠,𝑎ሻ, can be 272
numerically calculated as shown in Eq. (III-16.7) and Eq. (III-16.8), respectively. 273

𝑉గሺ𝑠ሻ ൌ 𝐸గ ሼ𝑅௧| 𝑠௧ ൌ 𝑠ሽ ൌ 𝐸గ ൝෍𝛾௞ ൉ 𝑟௧ା௞ାଵ

௧ା்

௞ୀ௧

| 𝑠௧ ൌ 𝑠ൡ (III-16.7)

𝑄గሺ𝑠,𝑎ሻ ൌ 𝐸గ ሼ𝑅௧| 𝑠௧ ൌ 𝑠,𝑎௧ ൌ 𝑎ሽ ൌ 𝐸గ ൝෍𝛾௞ ൉ 𝑟௧ା௞ାଵ

௧ା்

௞ୀ௧

| 𝑠௧ ൌ 𝑠, ,𝑎௧ ൌ 𝑎ൡ (III-16.8)

The optimal values of both 𝑉గሺ𝑠ሻ and 𝑄గሺ𝑠,𝑎ሻ can be expressed as in Eq. (III-16.9) and Eq. (III-16.10). 274
 𝑉ሺ𝑠ሻ ൌ max ሺ𝑉గሺ𝑠ሻሻ (III-16.9)

 𝑄ሺ𝑠,𝑎ሻ ൌ max ሺ𝑄గሺ𝑠,𝑎ሻሻ (III-16.10)

The objective of the RL algorithm is to find the optimal mapping of actions to states so that the value of 275
the Q(s,a) expressed in Eq. (III-16.10) is maximized for each par of state (𝑠 ∈ 𝑆ሻ and action (𝑎 ∈ 𝐴ሻ. To 276
that end, there are 3 different methods to solve a MDP process: Dynamic Programming (DP), Monte Carlo 277
(MC) method and Temporal Differences (TD). In the following lines an explanation on each one of them 278
is introduced. 279

- Dynamic Programming 280

The DP method, explained in detail in the works of Bertsk et al. [32-34], is based on the knowledge of 281
a model of the environment in which the agent is placed. That means that the state transitions 𝑝௦௦ᇱ௔ , see Eq. 282
(III-16.5), and the reward transitions 𝑅௦௦ᇱ௔ , see Eq. (III-16.6), can be calculated analytically. As a result, the 283
value of 𝑉గሺ𝑠ሻ and 𝑄గሺ𝑠,𝑎ሻ can also be represented analytically using Bellman equations, as shown in Eq. 284
(III-16.11) and Eq. (III-16.12). 285
 𝑉గሺ𝑠ሻ ൌ 𝐸గ ሼ𝑟௧ାଵ ൅ 𝛾 ൉ 𝑉గሺ𝑠௧ାଵሻ| 𝑠௧ ൌ 𝑠ሽ

ൌ෍ 𝜋ሺ𝑠,𝑎ሻ෍ 𝑝௦௦ᇱ௔ ൉ ሾ𝑅௦௦ᇱ௔
௦೟శభ௔

൅ 𝛾 ൉ 𝑉గሺ𝑠௧ାଵሻሿ
(III-16.11)

8 A. Saenz-Aguirre et al.

 𝑄గሺ𝑠,𝑎ሻ ൌ 𝐸గ ሼ𝑟௧ାଵ ൅ 𝛾 ൉ 𝑄గሺ𝑠௧ାଵ ,𝑎௧ାଵ ሻ| 𝑠௧ ൌ 𝑠 ,𝑎௧ ൌ 𝑎 ሽ

ൌ෍ 𝜋ሺ𝑠,𝑎ሻ෍ 𝑝௦௦ᇱ௔ ൉ ሾ𝑅௦௦ᇱ௔
௦೟శభ௔

൅ 𝛾 ൉ 𝑄గሺ𝑠௧ାଵ ,𝑎௧ାଵ ሻሿ
(III-16.12)

The numerically calculated values of 𝑉గሺ𝑠ሻ and 𝑄గሺ𝑠,𝑎ሻ are used to perform an iterative algorithm in 286
which every action (𝑎 ∈ 𝐴ሻ of every possible state (𝑠 ∈ 𝑆ሻ is considered and the policies 𝜋 that maximize 287
the value of Q(s,a) are to be found. 288

One of the biggest drawbacks of this method is the computational cost, since for the calculation of each 289
policy 𝜋 calculations related to a great number of states and actions have to be performed. A pseudocode 290
of the DP algorithm is presented in Algorithm III-16.1. 291

 292
Dynamic Programming algorithm

% Initialize Q(s,a) randomly

Q(s,a) = Q(s,a)_ini

% Start the DP algorithm

while (∆ > β) do

% Initialize the minimum Q(s,a) improvement

 ∆ = 0

% Define the actual state and select an action

 s  (s ∈ S)
 a  (a ∈ A)
% Calculate Q(s,a)

 Q(s,a)  Eq. (III‐16.12)
% Calculate the Q(s,a) improvement

 ∆ = abs(Q_ant(s,a) ‐ Q(s,a))

 Q_ant(s,a) = Q(s,a)

end
Algorithm III-16.1. Pseudocode of a DP based RL algorithm 293

- Monte Carlo method 294

The MC method [35,36] is based on the assumption that a model of the environment is unknown, and 295
thus, its performance depends on the experimental data. Since the model is unknown, the values of the state 296
transitions 𝑝௦௦ᇱ௔ , see Eq. (III-16.5), and the reward transitions 𝑅௦௦ᇱ௔ , see Eq. (III-16.6), and as a result, the 297
values of 𝑉గሺ𝑠ሻ and 𝑄గሺ𝑠,𝑎ሻ cannot be analytically computed, so they are calculated as an average of the 298
experimentally obtained reward values. 299

The objective is to try to calculate the value of 𝑄గሺ𝑠,𝑎ሻ for all the state-action pairs and find the policies 300
𝜋 that maximize the value of Q(s,a). To that end, usually stochastic policies that have probabilities greater 301
than 0 to consider each state (𝑠 ∈ 𝑆ሻ and action (𝑎 ∈ 𝐴ሻ are implemented. 302

Different MC based algorithms can be implemented: 303

o Off-policy algorithms: The calculated policies are simultaneously used for the control 304
strategy implemented in the system. 305

o On-policy algorithms: The policies calculated by the ongoing MC algorithm and the pol-306
icies used by the control strategy implemented in the system are separated. 307

A pseudocode of the DP algorithm is presented in ¡Error! No se encuentra el origen de la referencia.. 308
 309
 310
 311
 312
 313
 314
 315
 316

III.16 Self-Tuning Yaw Control Strategy of an Horizontal
 Axis Wind Turbine based on Machine Learning 9

Monte Carlo algorithm

% Define a policy π and select an episode

% For each state s select an action a

s  (s ∈ S)
a  (a ∈ A)
% Calculate the long term reward Rt

Rt  Eq. (III‐16.3)
Rt_vec = [Rt_vec, Rt]

% Calculate Q(s,a) as a weighted average

Q(s,a) = average (Rt_vec)

% Evaluate the policy π

Algorithm III-16.2. Pseudocode of a MC method based RL algorithm 317

- Temporal Differences 318

The TD method is a combination of DP and MC methods having the advantages associated to each one 319
of them. It is based on analytical calculation, like the DP method, but, like the MC method, it does not 320
depend on a model of the environment. In this method, the calculations to continuously learn are performed 321
between successive predictions instead of between predictions and the final value. Hence, the convergence 322
is faster and the computational cost is remarkably reduced. The two principal TD based algorithms are Q-323
Learning, explained in detail in the works of Watkins et al. [7,37], and SARSA, introduced in the work of 324
Adam et al. [38]. 325

The principal difference between both methods is the calculation of the values of Q(s,a). In the Q-Learn-326
ing algorithm the state and actions are quantified and a matrix is obtained as a result of mapping a Q(s,a) 327
value to each state-action par. However, in SARSA, the function Q(s,a) is considered as an exponential 328
moving average continuous function. 329

The calculation of the Q(s,a) in SARSA algorithm can be expressed as shown in Eq. (III-16.13). 330
 𝑄ሺ𝑠௧ ,𝑎௧ሻ ൌ 𝑄ሺ𝑠௧ ,𝑎௧ሻ ൅ 𝛼 ൉ ሾ𝑟 ൅ 𝛾 ൉ 𝑄ሺ𝑠௧ାଵ,𝑎௧ାଵሻ െ 𝑄ሺ𝑠௧ ,𝑎௧ሻሿ (III-16.13)

The calculation of the Q(s,a) in Q-Learning algorithm can be expressed as shown in Eq. (III-16.14). 331
 𝑄ሺ𝑠௧ ,𝑎௧ሻ ൌ 𝑄ሺ𝑠௧ ,𝑎௧ሻ ൅ 𝛼 ൉ ሾ𝑟 ൅ 𝛾 ൉ 𝑚𝑎𝑥௔𝑄ሺ𝑠௧ାଵ,𝑎௧ାଵሻ െ 𝑄ሺ𝑠௧ ,𝑎௧ሻሿ (III-16.14)

A simplified pseudocode of the SARSA and Q-Learning algorithms is presented in ¡Error! No se en-332
cuentra el origen de la referencia.. 333

 334
SARSA algorithm Q‐Learning algorithm

% Initialize Q(s,a) randomly

Q(s,a) = Q(s,a)_ini

% Start the SARSA algorithm

while (s ∈ Episode) do
% Define the actual state and select an action

 s  (s ∈ S)
 a  (a ∈ A)
% Observe r and st+1

% Define the next action

 at+1  (a ∈ A)
% Calculate Q

 Q(s,a)  Eq. (III‐16.13)
 s = st+1

% Evaluate the policy π

end

% Initialize Q(s,a) randomly

Q(s,a) = Q(s,a)_ini

 % Start the Q‐Learning algorithm

while (s ∈ Episode) do
% Define the actual state and select an action

 s  (s ∈ S)
 a  (a ∈ A)
% Observe r and st+1

% Define the next action

 at+1  (a ∈ A)
% Calculate Q

 Q(s,a)  Eq. (III‐16.14)
 s = st+1

% Evaluate the policy π

end

(a) (b) 335

10 A. Saenz-Aguirre et al.

Algorithm III-16.3. (a) Pseudocode of a SARSA based RL algorithm (b) Pseudocode of a Q-Learning based RL 336
algorithm 337

III-16.3.2. Artificial Neural Networks 338

ANNs correspond to a branch of the AI intended to mimic the performance of a biological brain. Bio-339
logical brains are composed by millions of neurons distributed in layers and widely interconnected between 340
them. Through these interactions between neurons the information flow from one neuron to another occurs. 341
Furthermore, the information flow happens always in one direction, which can be either forwards or back-342
wards. ANNs [39-41], which try to emulate this behavior, are digital systems with a variable number of 343
neurons distributed in a structure similar to that of biological networks and with a similar functionality. 344

According to the work of Yang [42], the first standard artificial neuron design was introduced by W. 345
McCulloch and W. Pitts in 1943 and, after that, they have undergone an important development. Nowadays 346
they are very precious especially for their good performance in parallel processing, distributed memory 347
alongside the number of neurons and the adaptability to the environment and the generalization capability. 348

ANNs are a compound of a variable number of neurons distributed in different ways and with a different 349
type of interconnections. An individual neuron, shown in Figure III-16.4, is the smallest element of an ANN 350
and presents the following structure: 351

 352

 353

Figure III-16.4. Neuron of an ANN 354

The main elements of an artificial neuron are: 355

- Inputs (𝑥௝ሻ: Define the inputs to the neuron. 356

- Input weights (𝑤௝ሻ: Define the weights of each input to the neuron. 357

- Propagation rule (ℎ௜ሻ: It defines the combination of the different inputs of the neuron before the 358
activation function. The most common propagation rule is the linear combination of the product of 359
each input and its weight. Moreover, usually another parameter commonly expressed as θ is added. 360
Therefore, the propagation rule can be mathematically expressed as shown in Eq. (III-16.15). 361

ℎ ሺ𝑥ଵ, … , 𝑥௝ ,𝑤ଵ, … ,𝑤௝ሻ ൌ෍𝑤௝ ൉ 𝑥௝ െ 𝜃

௡

௝ୀଵ

 (III-16.15)

- Activation function (𝑓௜ሻ: The activation function defines the activation state of the neuron. Addi-362
tionally, it represents the output of the neuron. 363

If it is an on/off neuron, the activation function of the neuron can be expressed as in Eq. (III-16.16). 364
The output of this neuron is discrete, and corresponds to the original one introduced by W. McCul-365
loch and W. Pitts in 1943. 366

𝑦 ൌ

⎩
⎪
⎨

⎪
⎧1 𝑖𝑓 ෍𝑤௝ ൉ 𝑥௝ ൒ 𝜃

௡

௝ୀଵ

0 𝑖𝑓 ෍𝑤௝ ൉ 𝑥௝ ൏ 𝜃

௡

௝ୀଵ

 (III-16.16)

III.16 Self-Tuning Yaw Control Strategy of an Horizontal
 Axis Wind Turbine based on Machine Learning 11

However, when a continuous output of the neuron is desired, usually a sigmoid function [43] is used 367
as the activation function, as shown in Eq. (III-16.17). 368

𝑓 ሺ𝑥ሻ ൌ

1
1 ൅ 𝑒ିఉ൉௫

 (III-16.17)

where the value associated to the exponential factor is 𝛽 ൐ 0. 369
ANNs are formed by compound of a variable number of neurons in different structures and interconnec-370

tion patterns. The neurons are divided in layers. As it is shown in Figure III-16.5, usually in a standard 371
ANN there are 3 different neuron layers: The input layer (contains the input neurons, which are in number 372
the same as the inputs of the ANN), the hidden layer (contains the processing neurons) and the output layer 373
(contains the output neurons, which are in number the same as the outputs of the ANN). The number of 374
hidden layers and the number of neurons in each hidden layer is adaptable and can be modified by the 375
designer of the ANN. 376

There are different types of ANNs. The classification can be done according to different factors: 377
According to the number of layers: 378

- Sinple layer: ANNs with only one neuron layer. 379

- MultiLayer: ANNs with the neurons distributed in more than one layer. 380

According to the information flow: 381

- Feedforward: The information flow occurs exclusively in the direction from the input layer to the 382
output layer. One example of this architecture is the MultiLayer Perceptron. 383

- Feedback or recurrent: There is information flow in both directions, i.e., from the input layer to the 384
output layer and from the output layer to the input layer direction. One example of this architecture 385
is the NonLinear Autoregressive Neural Network. 386

 387

Figure III-16.5. Layer based structure of an ANN [44] 388

The training algorithms of the ANNs are the responsible for making the ANN learn from its input values. 389
There are two main ANN training method groups: The supervised learning and the unsupervised learning. 390
As it is exposed in the work of Chen et al. [39], the supervised learning adjusts the values of the weights 391
related to the interconnection between neurons with the objective of minimizing the error existent between 392
the output of the ANN and the reference output. That means that a reference output for the ANN should be 393
known in the case of a supervised learning. The most important application of the supervised learning is 394
for regressions or modelling of systems. One of the most used examples of supervised learning is the Back-395
Propagation algorithm. 396

The unsupervised learning do not need an output reference and the ANN is trained with numerous input 397
patterns to explore the relation between them and categorize them. The most important application of the 398
unsupervised learning is the clustering of data. A combination of supervised and unsupervised learning 399
methods in an hybrid learning strategy is also possible. 400

III-16.3.3. Optimization Algorithms 401

Optimization algorithms are techniques designed and aimed to find the maximum/minimum or optimal 402
solution of a determined function or problem. First optimization algorithms were introduced in the 20th 403

12 A. Saenz-Aguirre et al.

century. Nowadays, optimization algorithms are applied to a grand variety of applications. As it is explained 404
in the work of Yang et al. [42], one of the biggest application fields of the optimizations algorithms is the 405
industrial engineering world, where the reduction of costs, the increment of the efficiency and the optimi-406
zation of the industrial processes have become of capital importance. 407

Among the advantages of the optimization algorithms is the existence of processors with high capacity 408
that allow the execution of the optimization algorithms at a considerable speed. The main drawback of the 409
optimization algorithms is the necessity to have reliable models of the process that is to be optimized. 410

There are several types of optimization algorithms. In the work of Yang et al. [42], a classification of 411
the optimization algorithms is proposed: 412

According to the existence of derivatives in the algorithm: 413

- Gradient based: They have derivatives in their optimization code. For instance, Gauss-Newton 414
methods belong to this group. 415

- Gradient-free: They do not have derivatives in their optimization code. For example, the Nelder-416
Mead downhill simplex method belongs to this group. 417

According to the existence of randomness in the algorithm: 418

- Deterministic: There is no randomness in the optimization code. The result is always the same if the 419
initial point is the same. An example of a deterministic optimization algorithm is the Hill climbing 420
algorithm without random start. 421

- Stochastic: There is randomness in the optimization code. Hence, the result is not always the same 422
even if the initial point is the same. An example of a stochastic optimization algorithm is the Genetic 423
Algorithm (GA). 424

According to the mobility: 425

- Local: They typically converge to local optima because they do not have the ability to escape from 426
them as a result of the lack of randomness in the optimization code. They are usually deterministic 427
algorithms. 428

- Global: They always try to find the global optima. They have the ability to escape local optima as a 429
result of the randomness in the optimization code. They are usually stochastic algorithms. 430

An important group inside the optimization algorithms is the bio-inspired or metaheuristics algorithms, 431
which are inspired in natural processes to solve optimization problems. The metaheuristic algorithms [45-432
47] have been widely studied in the literature. There are many metaheuristic algorithms: Ant algorithm 433
[48], bee algorithm [49], simulated annealing [50], GA, PSO, Differential Evolution (DE), etc. 434

The most widely used metaheuristic optimization algorithms are introduced in the following lines. 435
 436

- Genetic Algorithms 437

The GAs [51,52] are metaheuristic optimization algorithms inspired in the evolution of biological indi-438
viduals proposed by Charles Darwin. The GAs were first developed by Holland [53] during the decades of 439
the 1960s and the 1970s. 440

As it is explained in detail in the work of Wang et al. [45], a GA is formed by a population of chromo-441
somes or individuals, each one of them representing a solution to the optimization problem. Additionally, 442
a fitness/cost function that evaluates each one of the individuals and provide them with a fitness value is 443
necessary. The fitness function evaluates the specification fulfillment corresponding to each one of the 444
individuals and, thus, the fitness value is an indicator of the chances of survival and reproduction of each 445
one of the individuals. As a result, the individuals with the best fitness value tend to survive and the algo-446
rithm evolves towards the optimal solutions. 447

The execution of a GA could be summarized in the following 5 steps: 448

1) Initialization. Traditionally, the population is formed by a group of randomly generated individual 449
solutions. 450

2) Evaluation. The fitness of each individual in the population is evaluated. 451
3) Selection. Individuals are selected based on the fitness value to breed a new generation. 452
4) Evolution. New individuals are created through crossover and mutation operations. The new popula-453

tion is composed of the individuals in the new generation and a few individuals from the previous genera-454
tion. 455

III.16 Self-Tuning Yaw Control Strategy of an Horizontal
 Axis Wind Turbine based on Machine Learning 13

5) Termination. Steps 2 to 4 are repeated until a termination condition has been reached. 456
 457

- Particle Swarm Optimization 458

The PSO [54] algorithms are metaheuristic optimization algorithms inspired in the behavior of a group 459
of particles, referred as swarm, in a search space and evolving towards an optimal solution. As it is ex-460
plained in the work of Wang et al. [46], this algorithm is widely used due to its high robustness, small 461
number of tunable parameters and its easy implementation. 462

As introduced in the work of Khan et al. [46], each particle is a possible solution to the optimization 463
problem, and is associated with a position vector 𝑥௜,௧ and a velocity vector 𝑣௜,௧. Exactly as in the case of the 464
GAs, in a PSO algorithm there must be a fitness function that evaluates the specification fulfillment of each 465
particle and provides them with a fitness values. 466

The velocity and position update of each particle is calculated with the following expressions presented 467
in Eq. (III-16.18) and Eq. (III-16.19), respectively. 468
 𝑣௜,௧ାଵ ൌ 𝐻 ൉ 𝑣௜,௧ ൅ 𝜑ଵ ൉ ൫𝑥_𝑜𝑝𝑡௜,௧ െ 𝑥௜,௧൯ ൅ 𝜑ଶ ൉ ൫𝑥_𝑔𝑙𝑜𝑏𝑎𝑙_𝑜𝑝𝑡௜,௧ െ 𝑥௜,௧൯ (III-16.18)

 𝑥௜,௧ାଵ ൌ 𝑥௜,௧ ൅ 𝑣௜,௧ାଵ ൉ ∆t (III-16.19)

where H [kgꞏm2] is the inertia constant of the system, 𝜑ଵ [-] is the exploitation factor, 𝜑ଶ [-] is the 469
exploration factor, 𝑥_𝑜𝑝𝑡௜,௧ [m] is the best solution of the particle and 𝑥_𝑔𝑙𝑜𝑏𝑎𝑙_𝑜𝑝𝑡௜,௧ [m] is the best solu-470
tion of the whole swarm. 471

As it can be observed in Eq. (III-16.18), the velocity of each particle is computed with regard to the 472
personal best fitness obtained by that particle and the global best fitness obtained by the whole swarm. By 473
modifying factors 𝜑ଵ [-] and 𝜑ଶ [-] the exploration and exploitation capability of the algorithm can be 474
configured. Furthermore, the inertia constant H [kgꞏm2] defines the movement capacity of the particles. 475

The execution of a PSO could be summarized in the following 5 steps: 476

1) Initialization. The swarm population is randomly formed. 477
2) Evaluation. The fitness of each individual particle is evaluated. 478
3) Modification. The best position of each particle, the best position of the whole swarm and each par-479

ticle’s velocity are computed. 480
4) Update. Move each particle to the new position. 481
5) Termination. Steps 2 to 4 are repeated until a termination condition has been satisfied. 482
 483

- Differential Evolution 484

The DE algorithm is metaheuristic optimization algorithm inspired in the evolutionary principles and 485
intended to solve global optimization problems. The original DE algorithm was first introduced in the work 486
of Storn and Price [55]. The DE algorithm starts with randomly initialized solution vectors, and like the 487
GA algorithm is based on the principles of mutation, crossover and selection. Nevertheless, in contrast to 488
GAs, the DE algorithms operate over each dimension of the solution separately. 489

The mutation is based on the recombination of three randomly chosen vectors, as shown in Eq. (III-490
16.20). 491
 𝑣௜,௧ାଵ,ൌ 𝑥௔,௧ ൅ 𝑇 ൉ ሺ𝑥௕,௧ െ 𝑥௖,௧ሻ (III-16.20)

where 𝑇 ∈ ሾ0,2ሿ is commonly known as the differential weight and is a parameter adjustable by the 492
designer. 493

After the mutation a crossover stage based on the crossover probability 𝐶௥ ∈ ሾ0,1ሿ is performed and the 494
fitness of the individuals is evaluated. The selection stage is based on the fitness value of each individual, 495
exactly as in the case of the GAs. 496

The execution of a DE algorithm could be summarized in the following 5 steps: 497

1) Initialization. Traditionally, the population is formed by a group of randomly generated individual 498
solutions. 499

2) Mutation. The mutation shown in Eq. (III-16.20) is performed. 500
3) Crossover. The individual of the new generation are formed based on the crossover probability. 501
4) Selection. The individuals are selected based on their fitness value to breed a new generation 502

14 A. Saenz-Aguirre et al.

5) Termination. Steps 2 to 4 are repeated until a termination condition has been reached. 503
 504

- Multiobjective optimization. Pareto optimal Front 505

A multiobjective optimization [56-58] problem is that in which more than one objective is to be opti-506
mized. In contrast to single-objective optimization problems, in multiobjective cases there is not only one 507
unique optimal solution, but a set of optimal solutions that respond to the trade-off or compromise necessity 508
between the objectives to be optimized. 509

The concept of optimization of multiobjective problems was generalized in the work of Vilfredo Pareto 510
[59] in 1896. In these type of problems a solution is dominated if there is any other solution that has a better 511
(higher or lower depending on the context of the optimization problem) fitness value for all the objectives 512
to be optimized. If there is no such a solution, i.e., if the improvement of one objective causes the degrading 513
of any other objective, then the solution is known as non-dominated. The set of non-dominated solutions is 514
known as the Pareto optimal Front (PoF). A PoF of a double-objective optimization problem is illustrated 515
in Figure III-16.6. 516

 517

Figure III-16.6. PoF of a double-objective optimization problem [57] 518

As it can be observed in Figure III-16.6, all the points forming the continuous line marked as the PoF 519
respond to the same principle of compromise necessity between the objectives. If the value of one of the 520
objectives is improved, the other one degrades. An algorithm to find the PoF of a multiobjective problem 521
could be implemented in any of the previously presented metaheuristic optimization algorithms. 522

 523
III-16.4. Machine Learning based wind turbine yaw control 524

An adequate alignment of the wind turbine rotor with respect to the incoming wind by means of the yaw 525
system of the wind turbine enables increment of the power generation. Nevertheless, as it was exposed in 526
Section III-16.2 of this chapter, the enhancement of the generated power is achieved at cost of an increase 527
of the mechanical loads in different elements of the wind turbine, especially the yaw bearings. Hence, an 528
adequate design and tuning of the yaw control system is of great importance to both optimize the power 529
generation of the wind turbine and ensure its safe operation. The absence of an adequate control strategy 530
could result in an excessively aggressive yaw activity, which could endanger the safety of the mechanical 531
components of the wind turbine and reduce their lifetime. 532

Usually, classical control structures based on PIDs have been used for the design of the yaw control 533
strategy of the wind turbine [20,60]. However, these classical control structures show some drawbacks in 534
form of “wind up” of the integral action and posterior big oscillations, which can result in an undesired 535
increment of the mechanical loads. As a result, some advanced control strategies for the yaw angle control 536
of a wind turbine are proposed in the literature. In this context, Song et al. [61] present a control strategy 537
based on a Model Predictive Control and Bharani et al. [62] introduce a Fuzzy Logic based control strategy 538
for this purpose. In the work of Saenz-Aguirre et al. [12], an ANN based RL control strategy is proposed 539
for the yaw control of a wind turbine. 540

In this chapter, with the objective of achieving an improved performance of the yaw control system of a 541
wind turbine, a ML based wind turbine yaw control system is exposed. A block diagram of the proposed 542
ML based yaw control strategy is presented in Figure III-16.7. 543

 544

III.16 Self-Tuning Yaw Control Strategy of an Horizontal
 Axis Wind Turbine based on Machine Learning 15

 545

Figure III-16.7. Pipeline of the proposed ML based yaw control 546

The proposed yaw control system is based on the following AI techniques: 547

- A RL algorithm that learns from its own experience and enables the wind turbine to select the opti-548
mal decision in each scenario of its operation. 549

- An ANN to store the data of the matrix Q(s,a) of the RL algorithm. 550

- A PSO and PoF based optimization algorithm to select the set of optimal actions that respond to the 551
compromise necessity between the power increment and the mechanical loads associated to the yaw 552
rotation. 553

This section is structured as follows: the design procedure of the RL algorithm applied to the ML based 554
yaw control is explained in Subsection III-16.4.1. Subsection III-16.4.2 presents the structure and design 555
process of the MLP-BP neural network. The design of the PSO and PoF based algorithm is explained in 556
Subsection III-16.4.3. Finally, the Decision Making (DM) algorithm is exposed in Subsection III-16.4.4. 557

III-16.4.1. Yaw Control RL 558

The RL algorithm developed for the yaw control of a HAWT presents multiple state, action and imme-559
diate reward variables. The objective of the multivariable structure is an improved characterization of the 560
system in the most accurate way possible. To that end, 2 state variables, 2 action variables and 2 immediate 561
reward variables are considered in the proposed RL algorithm. 562

The states s are: 563

- StateYawA [deg]: This state defines the orientation difference between the wind incident to the 564
rotor and the nacelle of the wind turbine. As it can be observed in Eq. (III-16.2), the power output 565
of the wind turbine is affected by this misalignment angle. The expression to calculate the value of 566
this state is shown in Eq. (III-16.21). 567

 𝜃௬௔௪ ൌ 𝜃௪௜௡ௗ െ 𝜃௡௔௖௘௟௟௘ (III-16.21)

- StateWindS [m/s]: This state defines the wind speed value incident to the rotor. As it has been shwon 568
stated in Figure III-16.2 (b), the power output of the wind turbine is not directly proportional to the 569
wind speed value, but it depends on the operation zone of the wind turbine, which depends on the 570
wind speed value. As a result, it is important to know the wind speed value because it will help 571
characterize the possible power gain achievable with the yaw rotation of the wind turbine. 572

The actions a are: 573

- ActionYawK [deg/s]: This action defines the proportional gain associated to the yaw rotational 574
speed controller. The expression to calculate the yaw rotational speed is shown in Eq. (III-16.22). 575

𝛺𝑦𝑎𝑤 ൌ 𝐴𝑐𝑡𝑖𝑜𝑛𝑌𝑎𝑤𝐾 ൉ 𝜃𝑦𝑎𝑤 (III-16.22)

As it can be seen in Eq. Eq. (III-16.22), the higher the value of the action ActionYawK [deg/s] is, 576
the higher the yaw rotational speed will be. 577

16 A. Saenz-Aguirre et al.

- ActionYaw [deg]: This action defines the limit associated to the yaw rotation. In some cases, due to 578
mechanical actuator problem or safety issues, the yaw rotation of the nacelle is limited to a certain 579
value. The expression to note the rotation range allowed by this action is shown in Eq. (III-16.23). 580

 ∆𝜃𝑦𝑎𝑤 ∈ ሾെActionYaw , ActionYaw ሿ (III-16.23)

The immediate rewards r are: 581

- RewardP [%]: This immediate reward defines the power gain achieved by the wind turbine when a 582
certain yaw action is performed. The expression to compute this immediate reward is shown in Eq. 583
(III-16.24). 584

𝑅𝑒𝑤𝑎𝑟𝑑𝑃 ൌ

𝑃_𝑐𝑜𝑛𝑡𝑟𝑜𝑙 െ 𝑃_𝑛𝑜_𝑐𝑜𝑛𝑡𝑟𝑜𝑙
𝑃_𝑛𝑜_𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛

൉ 100 (III-16.24)

As it can be observed in Eq. (III-16.24), in order to calculate the power gain 3 different scenarios 585
related to the yaw actuation of the wind turbine are considered. The scenario P_control refers to the 586
scenario in which the yaw control of the wind turbine is active and the nacelle of the wind turbine 587
rotates to the yaw command provided by the yaw control and at the provided yaw speed value. The 588
scenario, P_no_control refers to the scenario in which the yaw control of the wind turbine is not 589
active, and, thus, the orientation of the wind turbine nacelle is fixed. Finally, the scenario P_no_de-590
viation refers to the scenario in which the nacelle of the wind turbine is perfectly aligned with the 591
direction of the wind incoming to the rotor. Hence, this value refers to the maximum power that the 592
wind turbine can generate with a defined value of the wind speed. 593

- RewardM [Nꞏm]: This immediate reward defines the value of the mechanical moment in the yaw 594
bearings. The value of this immediate reward has been defined with the mechanical moment in the 595
yaw bearings because it has been found as the most critical mechanical load when performing a yaw 596
rotation. Different mechanical load values, or even a weighted average of them, could be considered 597
as the immediate reward to be considered by the proposed ML based yaw control algorithm. 598

As it was stated in Subsection III-16.3.1 of this chapter, in a RL algorithm the calculation of the values 599
Q(s,a) for each state-action par is associated to the long-term reward considering a discount factor 𝛾, see 600
Eq. (III-16.3). In the RL algorithm proposed in this chapter there are 2 different immediate rewards r. 601
Therefore, 2 different matrices Q(s,a) will result in the algorithm. The expression to calculate the matrices 602
Q(s,a) using the immediate rewards r is shown in Eq. (III-16.25). 603

𝑄ሺ𝑠,𝑎ሻ ൌ෍𝑟௧ା௜

௜ୀ்

௜ୀ଴

൉ 𝛾௜ (III-16.25)

The expression in Eq. (III-16.25) is applied to both the immediate rewards r considered in the ML based 604
yaw control algorithm presented in this paper and the expression of both matrices Q(s,a) are obtained and 605
presented in Eq. (III-16.26) and Eq. (III-16.27). The discount factor 𝛾 is set to 1 in both cases because it is 606
considered that all the values in the time horizon are equally important. 607

𝑄_𝑃ሺ𝑠,𝑎ሻ ൌ

1
𝑇 ׬ ሺ𝑃_𝑐𝑜𝑛𝑡𝑟𝑜𝑙 െ 𝑃_𝑛𝑜_𝑐𝑜𝑛𝑡𝑟𝑜𝑙ሻ

௧ା்
௧ ൉ 𝑑𝑡

1
𝑇 ׬ 𝑃_𝑛𝑜_𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 ൉ 𝑑𝑡

௧ା்
௧

൉ 100 ሾ%ሿ (III-16.26)

𝑄_𝑀ሺ𝑠,𝑎ሻ ൌ න 𝑅𝑒𝑤𝑎𝑟𝑑𝑀 ሺ𝑡ሻ

௧ା்

௧
൉ 𝑑𝑡 ሾ𝑁 ൉ 𝑚ሿ (III-16.27)

After definition of the states s, actions a, immediate rewards r and the expressions of the matrices 608
Q_P(s,a) and Q_M(s,a), simulations of the performance of the wind turbine to obtain data for the training 609
process of the RL algorithm are carried out. The simulations are carried out with the aeroelastic code FAST 610
[63] and the wind turbine model NREL 5MW, presented in the work of Jonkman et al. [14], both designed 611
by the National Renewable Energies Laboratory (NREL) in the USA. 612

The objective of the training process of the RL algorithm is to obtain the data related to all possible 613
actuation scenarios associated to the yaw control of the wind turbine. Thus, in the design process presented 614

III.16 Self-Tuning Yaw Control Strategy of an Horizontal
 Axis Wind Turbine based on Machine Learning 17

in this chapter, an offline training process of the wind turbine with all the possible considered wind speed 615
values and the yaw control actions is proposed. Thus, simulations with StateWindS=3:1:17 [m/s], Stat-616
eYawA=-90:10:90 [deg], ActionYawK=0.1:0.1:1 [-] and ActionYaw=-90:10:90 [deg] have been carried 617
out with the aeroelastic code FAST. The values of the matrices Q_P(s,a) and Q_M(s,a) are calculated with 618
the data obtained from the simulations, see Eq. (III-16.26) and Eq. (III-16.27). 619

The fact that the RL training is performed offline indicates that it is independent from the actual operat-620
ing conditions of the wind turbine. Nevertheless, an online training process of the RL algorithm during 621
operation of the wind turbine and linked to the actual operating conditions could be possible to keep the 622
system learning from real field data and its own experience. 623

III-16.4.2. Yaw Control MLP-BP 624

A MLP-BP neural network is designed to store the data of the matrices Q_P(s,a) and Q_M(s,a) corre-625
sponding to the RL algorithm. The objective of storing these matrices as continuous functions Q_P(s(t),a(t)) 626
and Q_M(s(t),a(t)) is to eliminate the necessity of large amount of data management, which could result 627
problematic in the implementation of the control strategy in the control system of the wind turbine, due to 628
memory issues. Additionally, with the use of an ANN to store the data of the RL algorithm, the replacement 629
policy of the RL algorithm is incorporated, since the ANN learns from the new calculated values. This 630
aspect is of great importance if an online training of the RL algorithm during operation of the wind turbine 631
is implemented. In that case, the ANN continuously learns from new calculated values and the accuracy of 632
the functions Q_P(s(t),a(t)) and Q_M(s(t),a(t)) increase. 633

The selected topology of the ANN designed to store the data of the matrices Q_P(s,a) and Q_M(s,a) is 634
a MLP-BP. A MLP-BP is a neural network based on neurons of the type perceptron and with a variable 635
number of hidden layers. The characteristic of the MLP-BP is that the information flow occurs exclusively 636
in the direction from input neurons to output neurons and not in reverse. The BP training process is a 637
supervised training strategy in which the theoretical output of the ANN and the real output of the ANN are 638
compared and the weights of the neurons are adjusted to minimize this error. 639

The designed MLP-BP neural network presents 4 inputs and 2 outputs. A pipeline with the input and 640
outputs of the designed MLP-BP neural network is presented in Figure III-16.8. Internally, the MLP-BP 641
presents a structure with one input layer with 4 neurons, two hidden layers with 75 neurons and 25 neurons 642
respectively and one output layer with 2 neurons. 643

 644

 645

Figure III-16.8. Input and outputs of the MLP-BP designed for the ML based yaw control strategy 646

The learning rate for the training process of the MLP-BP has been set to 1ꞏ10-50. The training ratio, 647
validation ratio and test ration have been set to 90 %, 5 % and 5 %, respectively. After the training process, 648
correlation coefficients of 0.9999 and Mean Squared Error (MSE) of 1.62ꞏ10-6 are obtained. The high value 649
of the correlation coefficient and the low value of the MSE are indicators of a correct training process and 650
that the MLP-BP is good enough to be used in the ML based yaw control strategy proposed in this chapter. 651

III-16.4.3. Yaw Control PSO and PoF 652

As it was stated in Section III-16.2 of this chapter, the yaw actuation of a wind turbine allows alignment 653
of the rotor of the wind turbine with the direction of the incoming wind and, thus, the power generated by 654
the wind turbine can be maximized in some scenarios. Nevertheless, this power gain is achieved at cost of 655
high mechanical loads in several components of the wind turbine, especially the yaw bearings, which could 656
endanger the safe operation of the wind turbine or reduce its lifetime. 657

18 A. Saenz-Aguirre et al.

After carrying out simulations with the aeroelastic code FAST for the training process of the RL algo-658
rithm, the following tendency of the states s and actions a corresponding to the RL algorithm has been 659
observed: 660

- An increased value of the state StateYawA [deg] causes the value of the immediate reward RewardP 661
[%] to have greater values. As a result of an increased value of the state StateYawA [deg] the yaw 662
actuation is usually more important and the immediate reward RewardM [Nꞏm] is increased. 663

- An increased value of the state StateWindS [m/s] makes the value of the immediate reward RewardP 664
[%] to be smaller. This fact depends on the wind speed value that determines the operating zone of 665
the wind turbine. In some cases, the StateWindS [m/s] is so high that despite the StateYawA [deg] 666
the system keeps operating in the rated power zone and no RewardP [%] can be achieved. The 667
immediate reward RewardM [Nꞏm] get bigger with greater StateWindS [m/s] values. 668

- An increased value of the ActionYawK [-] makes the immediate reward RewardP [%] to be higher, 669
since the yaw rotation is performed at a greater rotational speed. The immediate reward RewardM 670
[Nꞏm] gets bigger as well. 671

- An increased value of the ActionYaw [deg] makes the immediate reward RewardP [%] to be higher, 672
since a longer rotation of the wind turbine rotor is allowed. The immediate reward RewardM [Nꞏm] 673
gets bigger as well. 674

The objective of the PSO and PoF based optimization algorithm designed in this paper is to obtain a set 675
of optimal yaw actions, ActionYawK [-] and ActionYaw [deg], that respond to the compromise necessity 676
between RewardP [%] and RewardM [Nꞏm]. 677

A pseudocode of the PSO and PoF based optimization algorithm designed for the ML based yaw control 678
strategy presented in this chapter is shown in Algorithm III-16.4. 679

 680
PSO and PoF optimization algorithm

% Initialization

𝜑ଵ_𝑚𝑎𝑥 = 𝜑ଵ_𝑚𝑎𝑥
𝜑ଶ_𝑚𝑎𝑥 = 𝜑ଶ_𝑚𝑎𝑥
H = H

P =P % Population size

n=n % Number of iterations

a=a_ini(2,P)

% Definition of the states (s ∈ S)
s(1)  StateYawA

s(2)  StateWindS

% Start the PSO algorithm

while (iter<n) do

 for 1:1:P

% Evaluate the current particle

 r=MLP‐BP(s,a)

% Evaluate its introduction to the PoF

 if r(1)<r1_global && r(2)<r2_global

 r_PoF= MLP‐BP (s,a_ant)

 PoF=[PoF,r_PoF]

 a_PoF=[a_PoF,a_ant]

 end

% Generate the new swarm

 𝜑ଵ = random(𝜑ଵ_𝑚𝑎𝑥)
 𝜑ଶ = random(𝜑ଶ_𝑚𝑎𝑥)
 v  Eq. (III‐16.18)
 x  Eq. (III‐16.19)
 end

end

III.16 Self-Tuning Yaw Control Strategy of an Horizontal
 Axis Wind Turbine based on Machine Learning 19

Algorithm III-16.4. Pseudocode of the PSO and PoF based optimization algorithm 681

As it can be observed in ¡Error! No se encuentra el origen de la referencia., the output of the PSO 682
and PoF optimization algorithm is a set of optimal solutions, known as PoF, that respond to the compromise 683
necessity between the power gain and the mechanical loads due to the yaw rotation. To calculate this PoF 684
the optimization algorithm makes use of the functions Q_P(s(t),a(t)) and Q_M(s(t),a(t)) as the fitness func-685
tions. The states of the system, StateYawA [deg] and StateWindS [m/s], are defined and the fitness value 686
of different set of actions, ActionYawK [-] and ActionYaw [deg], is evaluated. The final optimal solutions 687
are the solutions in which one of the fitness values cannot be increased without degrading the other one. 688

The implemented PSO and PoF optimization algorithm show correct results in a variety of state scenar-689
ios, StateYawA [deg] and StateWindS [m/s], of the wind turbine: 690

- When the wind turbine operates in the partial power zone a more aggressive yaw actuation is trans-691
lated in a higher power gain but at cost of incremented mechanical loads. 692

- When the wind turbine operates in the rated power zone and the value of the yaw misalignment is 693
high enough to move the operation of the wind turbine out of the rated power zone, a more aggres-694
sive yaw actuation is translated in a higher power gain but at cost of incremented mechanical loads. 695

- When the wind turbine operates in the rated power zone and the value of the yaw misalignment is 696
not high enough to move the operation of the system out of the rated power zone, a more aggressive 697
yaw actuation is translated in zero power gain and incremented mechanical loads, which makes the 698
yaw actuation useless. 699

III-16.4.4. Yaw Control DM 700

The DM algorithm selects one of the optimal actions proposed as the result of the PSO-PoF optimization 701
algorithm. The DM algorithm proposed in this chapter considers the mechanical loads as the limiting factor 702
when selecting the yaw actuation and it could be summarized as follows: 703

- The solutions that suppose a value of the function Q_M(s(t),a(t)) higher than a predefined threshold 704
are not taken into consideration due to safety issues. 705

- From the set of solutions that are taken into consideration, the one with the highest value of the 706
function Q_P(s(t),a(t)) is selected. 707

Other different approaches for the selection of the yaw optimal actuation based on more complex prin-708
ciples could also be evaluated and implemented. 709

 710
III-16.5. Conclusions 711

The design procedure of a ML based yaw control algorithm for a HAWT based on AI techniques has 712
been presented in this chapter. The proposed yaw control strategy is aimed to improve the performance of 713
classical yaw control strategies by means of the use of AI techniques, which emulate the performance of 714
natural processes to provide digital systems with intelligence and self-learning capability. The self-learning 715
capability is the main characteristic of the ML. 716

The proposed ML based yaw control strategy makes use of three different AI techniques for the devel-717
opment of the control strategy. The RL algorithm maps actions to states and thus allows the development 718
of a policy in the wind turbine that selects the best actions in different wind turbine operation scenarios. 719
The ANN provides a very important learning capability and allows a continuous learning process in the 720
wind turbine, as well as, a simplified data management by storage of large amounts of data as continuous 721
functions. Finally, the PSO and PoF based optimization algorithm allows to select the actions that maximize 722
the power output of the wind turbine and minimize the mechanical loads generated as a result of the yaw 723
rotation. 724

The most important capability of the proposed ML based yaw control strategy is the self-tuning. As a 725
result of the self-learning capability of the ML system, there is no need for tuning a closed loop for the yaw 726
angle control of the wind turbine. Therefore, the risk associated to a possible inadequate tuning of this 727
control loop is erased. In fact, an inadequate control tuning could cause considerable power generation 728
losses or high mechanical loads that could endanger the safe operation of the wind turbine. 729

Simulations of the proposed ML based yaw control strategy with the aeroelastic code FAST show prom-730
ising results in comparison to other more simple controllers based on the classical control theory. The most 731

20 A. Saenz-Aguirre et al.

visible improvements are increased generated power values and considerable mechanical load reductions 732
in the yaw bearings of the wind turbine for different wind scenarios. 733

 734
 735

Funding: This research was partially funded by Fundation VITAL Fundazioa. 736

Acknowledgments: The authors are grateful to the Government of the Basque Country and the University 737
of the Basque Country UPV/EHU through the SAIOTEK (S-PE11UN112) and EHU12/26 research pro-738
grams, respectively. 739

Conflicts of Interest: The authors declare no conflict of interest. 740
 741

References 742

1. Zhao X., Yan Z., Xue Y., Zhang X.: Wind Power Smoothing by Controlling the Inertial Energy of 743
Turbines With Optimized Energy Yield, IEEE Access, 2017, 5, pp. 23374-23382. 744

2. Rosales-Asensio E., Borge-Diez D., Blanes-Peiro J., Perez-Hoyos A., Comenar-Santos A.: Review of 745
wind energy technology and associated market and economic conditions in Spain, Renewable & Sus-746
tainable Energy Reviews, 2019, 101, pp. 415-427. 747

3. WindEurope.: Wind energy in Europe in 2018. Trends and Statistics, 2019. 748
4. Nyanteh Y., Schneider N., Netter D., Wei B., Masson P.J.: Optimization of a 10 MW Direct Drive 749

HTS Generator for Minimum Levelized Cost of Energy, IEEE Trans.Appl.Supercond., 2015, 25, (3), 750
pp. 1-4. 751

5. Kim Y.-.: Robust data driven H-infinity control for wind turbine, Journal of the Franklin Institute, 752
2016, 353, (13), pp. 3104-3117. 753

6. Merabet A., Ahmed K.T., Ibrahim H., Beguenane R.: Implementation of Sliding Mode Control Sys-754
tem for Generator and Grid Sides Control of Wind Energy Conversion System, IEEE Transactions on 755
Sustainable Energy, 2016, 7, (3), pp. 1327-1335. 756

7. Watkins C.J.C.H., Dayan P.: Q-learning, Mach.Learning, 1992, 8, (3), pp. 279-292. 757
8. Erdogmus D., Fontenla-Romero O., Principe J.C., Alonso-Betanzos A., Castillo E.: Linear-least-758

squares initialization of multilayer perceptrons through backpropagation of the desired response, IEEE 759
Trans.Neural Networks, 2005, 16, (2), pp. 325-337. 760

9. Ho S.L., Lo E.W.C., Wong H.C.: A particle swarm optimization-based method for multiobjective 761
design optimizations, IEEE Trans.Magn., 2005, 41, (5), pp. 1756-1759. 762

10. Zhang D., Han X., Deng C.: Review on the research and practice of deep learning and reinforcement 763
learning in smart grids, CSEE Journal of Power and Energy Systems, 2018, 4, (3), pp. 362-370. 764

11. Yang Z., Merrick K., Jin L., Abbass H.A.: Hierarchical Deep Reinforcement Learning for Continuous 765
Action Control, IEEE Transactions on Neural Networks and Learning Systems, 2018, 29, (11), pp. 766
5174-5184. 767

12. Saenz-Aguirre A., Zulueta E., Fernandez-Gamiz U., Lozano J., Lopez-Guede J.M.: Artificial Neural 768
Network Based Reinforcement Learning for Wind Turbine Yaw Control, Energies, Jan 2019. 769

13. Bivona S., Bonanno G., Burlon R., Gurrera D., Leone C.: Stochastic models for wind speed forecast-770
ing, Stochastic models for wind speed forecasting, 2010, 52, (2), pp. 1157-1165. 771

14. Jonkman J.M., Butterfield S., Musial W., Scott G.: Definition of a 5MW Reference Wind Turbine for 772
Offshore System Development, National Renewable Energy Laboratory (NREL), 2009. 773

15. J.H. L., L.Y. P., A. W.: Control of Wind Turbines: Past, Present, and Future, American Control Con-774
ference 2009, June 2009 St. Louis (USA). 775

16. Harris M., Hand M., Wright A.: LIDAR for Turbine Control, NREL Technical Report NREL/TP-500-776
39154., 2005. 777

17. M. Y., S. Ö.: Design and Efficiency of 5 kW Wind Turbine Without Gearbox, Controlled by Yaw and 778
Pitch Drivers, Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 4, (1), pp. 74-779
87. 780

18. Ahrens M., Kucera L., Larsonneur R.: Performance of a magnetically suspended flywheel energy 781
storage device, IEEE Transactions on Control System Technology, 1996, 4, (5), pp. 495-502. 782

III.16 Self-Tuning Yaw Control Strategy of an Horizontal
 Axis Wind Turbine based on Machine Learning 21

19. Zheng S., Yang J., Song X., Ma C.: Tracking Compensation Control for Nutation Mode of High-783
Speed Rotors With Strong Gyroscopic Effects, IEEE Trans.Ind.Electron., 2018, 65, (5), pp. 4156-784
4165. 785

20. Shariatpanah H., Fadaeinedjad R., Rashidinejad M.: A New Model for PMSG-Based Wind Turbine 786
With Yaw Control, IEEE Trans.Energy Convers., 2013, 28, (4), pp. 929-937. 787

21. Wang X., Li X., Leung V.C.M.: Artificial Intelligence-Based Techniques for Emerging Heterogene-788
ous Network: State of the Arts, Opportunities, and Challenges, IEEE Access, 2015, 3, pp. 1379-1391. 789

22. Castro P.A.D., Zuben F.J.V.: Learning Ensembles of Neural Networks by Means of a Bayesian Arti-790
ficial Immune System, IEEE Trans.Neural Networks, 2011, 22, (2), pp. 304-316. 791

23. Khanafer R.M., Solana B., Triola J., et al.: Automated Diagnosis for UMTS Networks Using Bayesian 792
Network Approach, IEEE Transactions on Vehicular Technology, 2008, 57, (4), pp. 2451-2461. 793

24. Ma H., Simon D., Siarry P., Yang Z., Fei M.: Biogeography-Based Optimization: A 10-Year Review, 794
IEEE Transactions on Emerging Topics in Computational Intelligence, 2017, 1, (5), pp. 391-407. 795

25. León-Aldaco S.E.D., Calleja H., Alquicira J.A.: Metaheuristic Optimization Methods Applied to 796
Power Converters: A Review, IEEE Transactions on Power Electronics, 2015, 30, (12), pp. 6791-797
6803. 798

26. Fadlullah Z.M., Tang F., Mao B., et al.: State-of-the-Art Deep Learning: Evolving Machine Intelli-799
gence Toward Tomorrow’s Intelligent Network Traffic Control Systems, IEEE Communications Sur-800
veys Tutorials, 2017, 19, (4), pp. 2432-2455. 801

27. Dostál P.: The Use of Optimization Methods in Business and Public Services, Zelinka I., Snášel V., 802
Abraham A. (eds) Handbook of Optimization. Intelligent Systems Reference Library, 2013, 38, 803
(Springer, Berlin, Heidelberg). 804

28. Jagodnik K.M., Thomas P.S., Bogert A.J.v.d., Branicky M.S., Kirsch R.F.: Training an Actor-Critic 805
Reinforcement Learning Controller for Arm Movement Using Human-Generated Rewards, IEEE 806
Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25, (10), pp. 1892-1905. 807

29. Mongillo G., Shteingart H., Loewenstein Y.: The Misbehavior of Reinforcement Learning, Proc IEEE, 808
2014, 102, (4), pp. 528-541. 809

30. Sutton R.S., Barto A.G.: Reinforcement Learning: An Introduction, MIT Press, 1998, (Cambridge, 810
MA, USA). 811

31. Kaelbling L.P., Littman M.L., Moore A.W.: Reinforcement learning: A survey, J. Artif. Intell. Res., 812
1996, 4, (1), pp. 237-285. 813

32. Bertsekas D.P.: Abstract Dynamic Programming, Belmont, MA, USA:Athena Scientific, 2013. 814
33. Bertsekas D.P.: Dynamic Programming and Optimal Control: Approximate Dynamic Programming, 815

Belmont, MA, USA:Athena Scientific, 2012, 2. 816
34. Bertsekas D.P.: Value and Policy Iterations in Optimal Control and Adaptive Dynamic Programming, 817

IEEE Transactions on Neural Networks and Learning Systems, 2017, 28, (3), pp. 500-509. 818
35. Kao K., Wu I., Yen S., Shan Y.: Incentive Learning in Monte Carlo Tree Search, IEEE Transactions 819

on Computational Intelligence and AI in Games, 2013, 5, (4), pp. 346-352. 820
36. Coulom R.: Efficient selectivity and backup operators in Monte-Carlo tree search, Proc. 5th Int. Conf. 821

Comput. Games, 2006, pp. 72-83. 822
37. Watkins C.J.C.H.: Learning from Delayed Rewards, PhD thesis, King’s College, Cambridge, UK, 823

May 1989. 824
38. Adam S., Busoniu L., Babuska R.: Experience Replay for Real-Time Reinforcement Learning Con-825

trol, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 2012, 826
42, (2), pp. 201-212. 827

39. Chen S.H., Jakeman A.J., Norton J.P.: Artificial Intelligence techniques: An introduction to their use 828
for modelling environmental systems, Mathematics and Computers in Simulation, 2008, 78, pp. 379-829
400. 830

40. Yao X.: Evolving artificial neural networks, Proc. IEEE, 1999, 87, (9), pp. 1423-1447. 831
41. Oong T.H., Isa N.A.M.: Adaptive Evolutionary Artificial Neural Networks for Pattern Classification, 832

IEEE Trans.Neural Networks, 2011, 22, (11), pp. 1823-1836. 833

22 A. Saenz-Aguirre et al.

42. Yang X.S.: Optimization and Metaheuristic Algorithms in Engineering, in: Metaheursitics in Water, 834
Geotechnical and Transport Engineering (Eds. X. S. Yang, A. H. Gandomi, S. Talatahari, A. H. Alavi), 835
Elsevier, 2013, pp. 1-23. 836

43. Jain A.K., Mao J., Mohiuddin K.M.: Artificial neural networks: a tutorial, Computer, 1996, 29, (3), 837
pp. 31-44. 838

44. Rounds S.A.: Development of a neural network model for dissolved oxygen in the Tualatin River, 839
Oregon, Proceedings of the Second Federal Interagency Hydrologic Modeling Conference, Las Ve-840
gas, NV, 2002. 841

45. Wang L., Shen J.: A Systematic Review of Bio-Inspired Service Concretization, IEEE Transactions 842
on Services Computing, 2017, 10, (4), pp. 493-505. 843

46. Khan B., Singh P.: Selecting a Meta-Heuristic Technique for Smart Micro-Grid Optimization Prob-844
lem: A Comprehensive Analysis, IEEE Access, 2017, 5, pp. 13951-13977. 845

47. Bala A., Ismail I., Ibrahim R., Sait S.M.: Applications of Metaheuristics in Reservoir Computing 846
Techniques: A Review, IEEE Access, 2018, 6, pp. 58012-58029. 847

48. Liao T., Socha K., Oca M.A.M.d., Stützle T., Dorigo M.: Ant Colony Optimization for Mixed-Varia-848
ble Optimization Problems, IEEE Transactions on Evolutionary Computation, 2014, 18, (4), pp. 503-849
518. 850

49. Xiang Y., Zhou Y., Tang L., Chen Z.: A Decomposition-Based Many-Objective Artificial Bee Colony 851
Algorithm, IEEE Transactions on Cybernetics, 2019, 49, (1), pp. 287-300. 852

50. Bandyopadhyay S., Saha S., Maulik U., Deb K.: A Simulated Annealing-Based Multiobjective Opti-853
mization Algorithm: AMOSA, IEEE Transactions on Evolutionary Computation, 2008, 12, (3), pp. 854
269-283. 855

51. Srinivas M., Patnaik L.M.: Genetic algorithms: A survey, Computer, 1994, 27, (6), pp. 17-26. 856
52. Anderson-Cook C.M.: Practical Genetic Algorithms, Oxfordshire, U.K.: Taylor & Francis, 2005. 857
53. Holland J.H.: Adaptation in Natural and Artificial Systems, Ann Arbor, MI, USA: Univ. Michigan 858

Press, 1975. 859
54. Kennedy J., Eberhar R.C.: Particle swarm optimization, Proc. IEEE Int. Conf. Neural Netw., Perth, 860

WA, Australia, Jul 1995, pp. 1942-1948. 861
55. Storn R., Price K.: Differential evolution—A simple and efficient heuristic for global optimization 862

over continuous spaces, J. Global Optim, 1997, 11, (4), pp. 341-359. 863
56. Ehrgott M., Gandibleux X.: A survey and annotated bibliography of multiobjective combinatorial op-864

timization, OR-Spektrum, 2000, 22, (4), pp. 425-460. 865
57. Durillo J.J., Nebro A.J., Garc\'ia-Nieto J., Alba E.: On the Velocity Update in Multi-Objective Particle 866

Swarm Optimizers, in Coello Coello C.A., Dhaenens C., Jourdan L. (Eds.): Advances in Multi-Ob-867
jective Nature Inspired Computing (Springer Berlin Heidelberg, Berlin, Heidelberg, 2010, pp. 45-62. 868

58. Coello Coello C.A., Dhaenens C., Jourdan L.: Multi-Objective Combinatorial Optimization: Problem-869
atic and Context, in Coello Coello C.A., Dhaenens C., Jourdan L. (Eds.): Advances in Multi-Objective 870
Nature Inspired Computing (Springer Berlin Heidelberg, Berlin, Heidelberg, 2010, pp. 1-21. 871

59. Pareto V.: Cours D’Economie Politique, F. Rouge, Lausanne, 1896, I, (II). 872
60. Karakasis N., Mesemanolis A., Nalmpantis T., Mademlis C.: Active yaw control in a horizontal axis 873

wind system without requiring wind direction measurement, IET Renewable Power Generation, 2016, 874
10, (9), pp. 1441-1449. 875

61. Song D., Yang J., Fan X., et al.: Maximum power extraction for wind turbines through a novel yaw 876
control solution using predicted wind directions, Energy Conversion and Management, 2018, 157, pp. 877
587-599. 878

62. Bharani R., Jayasankar K.C.: Yaw Control of Wind Turbine Using Fuzzy Logic Controller, Power 879
Electronics and Renewable Energy Systems, 2015, 326, pp. 997-1006. 880

63. NREL NWTC FAST Version 7. Available online: https://nwtc.nrel.gov/FAST7/ (accessed on 21 Oct 881
2018). 882

