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Abstract The design procedure of a Machine Learning (ML) based yaw control strategy for an Hori-10 
zontal Axis Wind Turbine (HAWT) is presented in the following chapter. The proposed yaw control strat-11 
egy is based on the interaction of three different Artificial Intelligence (AI) techniques to design a ML 12 
system: Reinforcement Learning (RL), Artificial Neural Networks (ANN) and metaheuristic optimization 13 
algorithms. The objective of the designed control strategy is to achieve, after a training stage, a fully auton-14 
omous performance of the wind turbine yaw control system for different input wind scenarios while opti-15 
mizing the electrical power generated by the wind turbine and the mechanical loads due to the yaw rotation. 16 
The RL algorithm is known to be able to learn from experience. The training process could be carried out 17 
online with real-time data of the operation of the wind turbine or offline, with simulation data. The use of 18 
an ANN to store the data of the matrix Q(s,a) related to the RL algorithm eliminates the large scale data 19 
management and simplifies the operation of the proposed control system. Finally, the implementation of a 20 
metaheuristic optimization algorithm, in this case a Particle Swarm Optimization (PSO) algorithm, allows 21 
calculation of the optimal yaw control action that responds to the compromise between the generated power 22 
increment and the mechanical loads increase due to the yaw actuation. 23 
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Abbreviation and Acronyms 55 
 56 
ML  Machine Learning 57 
HAWT Horizontal Axis Wind Turbine 58 
AI  Artificial Intelligence 59 
RL  Reinforcement Learning 60 
ANN  Artificial Neural Network 61 
PSO  Particle Swarm Optimization 62 
LCOE Levelized Cost of Energy 63 
MLP-BP MultiLayer Perceptron with BackPropagation 64 
MDP  Markov Decision Process 65 
DP  Dynamic Programming 66 
MC  Monte Carlo 67 
TD  Temporal Differences 68 
PoF  Pareto optimal Front 69 
GA  Genetic Algorithm 70 
DE  Differential Evolution 71 
PID  Proportional Integral Derivative 72 
FAST Fatigue, Aerodynamics, Structure and Turbulence 73 
NREL National Renewable Energies Laboratory 74 
MSE  Mean Squared Error 75 
DM  Decision Making 76 
 77 

III-16.1. Introduction 78 

The gradual depletion of the fossil fuels and the atmospheric pollution originated by their combustion 79 
have brought an important growth of the renewable energy generation systems. Plus, as a result of the yearly 80 
increasing electrical power consumption, the research work with the objective of enhancing the efficiency 81 
of renewable energy systems and maximize their power production has been placed on the focus of many 82 
research institutes and universities [1]. 83 

The most important renewable energy generation source nowadays is the wind energy. Many studies 84 
showing the positive tendency of the wind energy these days can be found in the literature. For example, 85 
according to some studies presented by Rosales-Asensio et al. [2], the sustainable power production with 86 
wind origin in Denmark achieved a 40% of the power produced in the country in 2015. This same value 87 
was quite smaller in Spain, with a 17% in 2015, but having raised from a 10.4% in 2007. More recent 88 
studies elaborated by WindEurope [3], and summarized in Figure III-16.1, show remarkable increments in 89 
the wind energy installed power in 2018 especially in four countries: a 29% in Germany, a 16% in the 90 
United Kingdom, a 13% in France and a 6% in Sweden. All these data indicate the importance of the wind 91 
energy to lead the change of the electrical power generation structures towards a sustainable generation in 92 
the coming years. 93 

 94 

 95 

Figure III-16.1. Wind energy generation increase during year 2018 in some European countries [3] 96 
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The power generation increase in wind energy systems is tightly related to the investigation work carried 97 
out to reduce the Levelized Cost of Energy (LCOE) of the wind turbines, which encourages capital invest-98 
ment in the sector. An optimization exercise to reduce the LCOE of a 10 MW wind turbine is presented in 99 
the work of Nyanteh et al. [4]. One main topic of this research work is the development of advanced control 100 
strategies to optimize the performance of the wind turbines. In this context, a robust H∞ controller to en-101 
hance the operation and reduce the mechanical loads of a wind turbine is presented by Kim et al. [5]. In the 102 
work of Merabet et al. [6] a Sliding Mode Control strategy is introduced to the control system of a wind 103 
turbine. 104 

In this chapter, the design procedure of a yaw control system of an Horizontal Axis Wind Turbine 105 
(HAWT) based on Machine Learning (ML) is presented. The designed intelligent control system is based 106 
on the interrelation of a Reinforcement Learning (RL) algorithm, detailed in the work of Watkins et al. [7], 107 
an Artificial Neural Network (ANN) in form of a MultiLayerPerceptron with BackPropagation (MLP-BP), 108 
presented by Erdogmus et al. [8], and a Particle Swarm Optimization (PSO) metaheuristic algorithm, intro-109 
duced in the work of Ho et al. [9]. 110 

The objective of the ML based control strategy developed in this chapter is to achieve a fully autonomous 111 
performance of the yaw system of the wind turbine based on its own experience, which could be acquired 112 
via an offline training, i.e., when the wind turbine is paused, or an online training, i.e., during operation of 113 
the wind turbine. An offline training process is proposed in this chapter. However, a continuous online 114 
training process with real data acquired during operation of the wind turbine to continuously learn from 115 
experience could be implemented as well. The MLP-BP is used to store the data of the matrices Q(s,a) 116 
related to the RL algorithm and manage them as continuous functions, Q(s(t),a(t)). This process avoids 117 
quantification and large data management problems. The combination of an RL strategy and an ANN is 118 
widely known as Deep Reinforcement Learning [10,11]. An example of the RL and ANN based yaw control 119 
strategy to autonomously maximize the power generated by a wind turbine is presented in the work of 120 
Saenz-Aguirre et al. [12]. Finally, with the introduction of additional features based on the multivariable 121 
PSO optimization algorithm, an increment of the power generated by the wind turbine with a considerable 122 
reduction of the mechanical loads due to the yaw rotation is expected to be achieved. 123 

This chapter is structured as follows: the objectives and applications of the proposed yaw control strategy 124 
are presented in Section III-16.2. Section III-16.3 details the theoretical basis of the different Artificial 125 
Intelligence (AI) techniques used to design the ML system. The design procedure of the yaw control system 126 
based on ML is exposed in Section III-16.4. Finally, Section III-16.5 presents the conclusions. 127 

 128 
III-16.2. Objectives and Applications 129 

The main factor that determines the power output of a wind turbine is the wind incident to its rotor. 130 
However, the wind is originated as a result of very complex meteorological processes, which, as stated by 131 
Bivona et al. [13], are very complex to model, and can, thus, suffer from unpredictable important variations. 132 
Some wind gusts can even exceed the safe wind speed operation range of the wind turbine and endanger 133 
its correct performance. To avoid this issue, a control system is implemented in the wind turbines. 134 

The control system of a wind turbine is formed by different control strategies designed to regulate the 135 
rotational speed of the rotor in the whole range of operating points of the wind turbine. A scheme of the 136 
different control loops oriented to regulate the rotational speed of the rotor is presented in Figure III-16.2 137 
(a). As a result of these control strategies, the power output of the wind turbine is predefined for the whole 138 
range of wind speed values in which the turbine operates. The curve that relates the power output of the 139 
wind turbine with the wind speed is known as the power curve. The power curve of the NREL 5MW wind 140 
turbine, presented in the work of Jonkman et al. [14], is illustrated in Figure III-16.2 (b). 141 

 142 
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 143 
(a) 144 

 145 
(b) 146 

Figure III-16.2. (a) Scheme of the torque and pitch control strategies of a wind turbine [15] (b) Power curve of 147 
the NREL 5MW wind turbine 148 

There are two main control loops to regulate the rotational speed of the wind turbine: The torque loop 149 
and the pitch loop. Each one of them is active in a different zone of the power curve. The torque loop, 150 
explained in detail in the work of Harris et al. [16], is active in the partial power zone of the power curve, 151 
plotted in blue color in Figure III-16.2 (b). On the other hand, in the rated power zone, plotted in red color 152 
in Figure III-16.2 (b), the objective is to reduce the power received by the wind turbine from the wind by 153 
means of the pitch control, explained in the work of Harris et al. [16]. 154 

The main control objective in the partial power zone is to maximize the power the wind turbine extracts 155 
from the wind, which can be expressed as in Eq. (III-16.1). 156 
 

𝑃௢௣௧ ൌ  
1
2
൉ 𝜌 ൉ 𝐶௉ ൉ 𝐴 ൉ 𝑣ଷ   ሾ𝑊ሿ (III-16.1) 

where 𝜌 [kg/m3] is density of the air, 𝐶௉ [-] is the power coefficient, 𝐴 [m2] is the area covered by the 157 
rotor and 𝑣 is the wind speed. 158 

However, in order to express the real power the wind turbine extracts from the wind, the misalignment 159 
between the incident wind and the rotor must be considered, commonly known as the yaw angle. The ex-160 
pression is shown in Eq. (III-16.2). 161 
 𝑃 ൌ 𝑃௢௣௧ ൉ 𝑐𝑜𝑠ଷ൫𝜃௬௔௪൯  ሾ𝑊ሿ   (III-16.2) 

where 𝜃௬௔௪ is the yaw angle. 162 
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As it can be observed in Eq. (III-16.2), a correct alignment of the wind turbine with the direction of the 163 
incident wind can make the power generated by the wind turbine increase considerably. The control system 164 
that allows a correct alignment of the wind turbine with respect to the incident wind is the yaw control. A 165 
detailed explanation about the yaw control system of a 5 kW wind turbine is introduced in the work of 166 
Yücel et al. [17]. Hence, an adequate design of the yaw control strategy of the wind turbine can be translated 167 
into a considerable increment of the power generated by the system. 168 

On the other hand, as a result of the high inertia values of the mechanical components that participate in 169 
the yaw rotation, remarkable mechanical loads arise in different elements of the wind turbine. The physical 170 
effect that explains these loads is known as the gyroscopic effect. An study of possible control strategies 171 
aimed to attenuate the high mechanical loads resulting from the gyroscopic effect are presented in [18,19]. 172 
Additionally, an analysis of the mechanical loads generated as a consequence of the yaw rotation is pre-173 
sented in the work of Shariatpanah et al. [20]. 174 

As a result, an adequate design of the yaw control strategy allows not only maximization of the power 175 
generated by the wind turbine, but also reduction of the mechanical loads in several elements of the wind 176 
turbine, and, thus, to increment its lifetime.  177 

The objectives of the proposed yaw control strategy are: 178 

- Achieve a fully autonomous and self-tuning yaw control strategy to be implemented in the wind 179 
turbine. 180 

- Design a control strategy based on ML that can continuously learns from its own experience. 181 

- Selection of the optimal yaw control action (maximal power and minimal loads possible) for every 182 
possible scenario of the wind turbine operation. 183 

The main applications of the designed yaw control strategy are: 184 

- Increment of the power produced by the wind turbine, with the consequent enhancement of its effi-185 
ciency, and the reduction of the LCOE. 186 

- Reduction of the mechanical loads originated as a result of the yaw rotation, with the consequent 187 
increment of the lifetime of the mechanical components of the wind turbine, and the reduction of 188 
the LCOE. 189 

 190 
III-16.3. Machine Learning and Artificial Intelligence techniques 191 

The AI is the science that studies the projection of the human intelligence in technological machines. In 192 
other words, the AI is the science that analyses the possibility to develop smart behavior patterns in tech-193 
nological machines. The AI is considered to exist since the time of ancient Greek civilizations. In fact, there 194 
are Greek myths about mechanical systems designed to emulate the human behavior. Later, during 19th 195 
and 20th centuries, the development of the first computers is considered as an attempt to emulate the work-196 
ing principle of the human brain in terms of calculations and memory. Nowadays, with the technological 197 
advances in the field of the informatics and the existence of very large amounts of data to be processed, the 198 
AI is on the focus of the research work. 199 

The field of the AI is composed by numerous different techniques, which, in general, have been devel-200 
oped to emulate the human intelligence or decision making capability, as it is explained in the work of 201 
Wang et al. [21]. The most important AI techniques are the RL, ANNs, Fuzzy Logic, bio-inspired or me-202 
taheuristic optimization algorithms and Bayesian Networks. Each AI techniques serves to a determined 203 
goal and could be used individually or in interrelation with other AI techniques. 204 

Bayesian Networks [22,23] are probability based networks that allow selection of the best action when 205 
a priori probabilities are known. Metaheuristic optimization algorithms [24,25] allow selection of the opti-206 
mal action when the process is defined in a cost function. Bayesian Networks and optimization algorithms 207 
emulate the capability of the human brain to make decisions.  208 

One of the most important features that offers the AI is the capability of the systems to learn automati-209 
cally. This feature of self-learning is commonly known as ML, as it is explained in detail in the work of 210 
Fadlullah et al. [26]. The ML has undergone an important boom after the development of the ANNs, which 211 
are able to continuously learn from very large amounts of data. RL is another type of ML, in which the 212 
systems learns to make the best decisions in a given environment by using its own experience. 213 

With the technological boom and the increasing processing capability of the processors a new learning 214 
method known as Deep Learning [26] has been born, in which new and amplified configurations of ANNs 215 
are used for the ML process. In the same way, the Deep Reinforcement Learning [26] method has also been 216 
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created, which combines the use of the RL algorithm and ANNs to store the matrix Q(s,a) related to the RL 217 
algorithm. 218 

The AI has numerous applications nowadays. Optimization algorithms are widely used in the business 219 
and public sectors due to their good results to reduce costs and increase gain margins [27]. Big companies 220 
like Amazon use predictions based on online searches and ML to carry out market studies and maximize 221 
their profits. The application SIRI of Apple brand mobile phones is a digital personal assistant that uses 222 
ML techniques to continuously self-learn. RL techniques are used in different fields such as the continuous 223 
learning of manufacturing robots, in Fanuc for instance, or to predict optimal trading strategies in the fi-224 
nancial sector. 225 

The self-tuning ML based yaw control strategy presented in this chapter makes use of three different AI 226 
techniques: RL, ANN and metaheuristic optimization algorithms. This section is structured as follows: the 227 
theoretical background of the RL is explained in Subsection III-16.3.1. Subsection III-16.3.2 analyses the 228 
theory behind the ANNs. And, finally, the theoretical basis of the optimization algorithms is introduced in 229 
the Subsection III-16.3.3. 230 

III-16.3.1. Reinforcement Learning 231 

RL [10,28-30] is an AI technique, corresponding to a type of ML, in which a determined system learns 232 
from the experience of its own interaction with the environment in which it is placed. As it is stated in the 233 
work of Sutton et al. [28], the training process of a RL algorithm is achieved by trial and error with the 234 
objective of maximizing a reward function defined numerically and by mapping of situations to actions.  235 

A pipeline with the basic operating principle of a RL algorithm is presented in Figure III-16.3. A defined 236 
agent which is in a determined environment receives information of its state (𝑠 ∈ 𝑆) and decides to take the 237 
action (𝑎 ∈ 𝐴). As a result of this action, the agent receives information of its new state and the immediate 238 
reward of the action (𝑟 ∈ 𝑅). The objective of the RL algorithm is to find a map of states to actions, known 239 
as policy, to maximize the long-term reward in different situations. In other words, the RL controller selects 240 
the future actions with regard to the experiences of a whole range of actions in predefined states. The ex-241 
periences are obtained by trial and error by interaction with a dynamic environment, as exposed in the work 242 
of Kaelbling et al. [31]. 243 

 244 

 245 

Figure III-16.3. Basic pipeline of a RL algorithm [12] 246 

The main elements of a RL algorithm are: 247 

- State (𝑠 ∈ 𝑆ሻ: Defines the state of an agent that is placed in a determined environment. 248 

- Action (𝑎 ∈ 𝐴ሻ: Defines the action taken by an agent that is in a defined state (𝑠 ∈ 𝑆ሻ in a determined 249 
environment.  250 

- Reward (𝑟 ∈ 𝑅ሻ: Defines the immediate reward received by an agent that takes a certain action (𝑎 ∈251 
𝐴ሻ in a given state (𝑠 ∈ 𝑆ሻ. 252 

- Policy ሺ𝜋ሻ: It is a mapping of the actions (𝑎 ∈ 𝐴ሻ to the states (𝑠 ∈ 𝑆ሻ. Thus, it defines the behavior 253 
of the agent. 254 

- Long-term reward ሺ𝑅௧ሻ: Indicates the long term reward received by the agent if a certain action (𝑎 ∈255 
𝐴ሻ in a given state (𝑠 ∈ 𝑆ሻ is taken. The long-term reward is the value to be maximized. 256 

The long-term reward 𝑅௧ of a RL algorithm can be numerically calculated in different ways. The most 257 
widely-used expression is based on the addition of the immediate rewards (𝑟 ∈ 𝑅ሻ received by the agent 258 
during a determined period of time and using a discount factor 𝛾, as it is shown in Eq. (III-16.3). 259 

Agent 

Environment 

Action, a State, s Reward, r 
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𝑅௧ ൌ෍𝛾௞ ൉ 𝑟௧ା௞ାଵ

௧ା்

௞ୀ௧

 (III-16.3) 

where the discount factor 𝛾 is set to 0 ൏ 𝛾 ൏ 1. 260 
From now on, in order to refer to the function that indicates the long-term reward 𝑅௧ expected by the 261 

agent a new expression is shown in Eq. (III-16.4). 262 
 

𝐸 ൭෍𝛾௞ ൉ 𝑟௧ା௞ାଵ

௧ା்

௞ୀ௧

൱ (III-16.4) 

One important aspect related to the RL algorithms is that the environment in which the agent is placed 263 
is defined as a Markov Decision Process (MDP). This means that the environment transitions are independ-264 
ent on past states and exclusively depend on the current state (𝑠 ∈ 𝑆ሻ and the action taken (𝑎 ∈ 𝐴ሻ. There-265 
fore, the expressions of the state and reward transitions are presented in Eq (III-16.5) and Eq. (III-16.6), 266 
respectively. 267 
 𝑝௦௦ᇱ௔ ൌ 𝑝 ሼ𝑠௧ାଵ ൌ 𝑠ᇱ| 𝑠௧ ൌ 𝑠 ,𝑎௧ ൌ 𝑎 ሽ (III-16.5) 

 𝑅௦௦ᇱ௔ ൌ  𝐸 ሼ𝑟௧ାଵ| 𝑠௧ ൌ 𝑠,𝑎௧ ൌ 𝑎,  𝑠௧ାଵ ൌ 𝑠ᇱሽ (III-16.6) 

The policy 𝜋 followed by the agent defines the mapping of actions to states and, thus, dictates the criteria 268 
to take determined actions. Hence, the policy 𝜋 defines the probability to select each action (𝑎 ∈ 𝐴ሻ in each 269 
determined state (𝑠 ∈ 𝑆ሻ. As a result, the expected long-term reward with respect to the current state (𝑠 ∈270 
𝑆ሻ and the policy 𝜋 followed, known as 𝑉గሺ𝑠ሻ, and the expected long-term reward with respect to the 271 
current state (𝑠 ∈ 𝑆ሻ, the current action (𝑎 ∈ 𝐴ሻ and the policy 𝜋 followed, known as 𝑄గሺ𝑠,𝑎ሻ, can be 272 
numerically calculated as shown in Eq. (III-16.7) and Eq. (III-16.8), respectively. 273 
 

𝑉గሺ𝑠ሻ ൌ  𝐸గ ሼ𝑅௧| 𝑠௧ ൌ 𝑠ሽ ൌ  𝐸గ  ൝෍𝛾௞ ൉ 𝑟௧ା௞ାଵ

௧ା்

௞ୀ௧

| 𝑠௧ ൌ 𝑠ൡ (III-16.7) 

 
𝑄గሺ𝑠,𝑎ሻ ൌ  𝐸గ ሼ𝑅௧| 𝑠௧ ൌ 𝑠,𝑎௧ ൌ 𝑎ሽ ൌ  𝐸గ  ൝෍𝛾௞ ൉ 𝑟௧ା௞ାଵ

௧ା்

௞ୀ௧

| 𝑠௧ ൌ 𝑠, ,𝑎௧ ൌ 𝑎ൡ (III-16.8) 

The optimal values of both 𝑉గሺ𝑠ሻ and 𝑄గሺ𝑠,𝑎ሻ can be expressed as in Eq. (III-16.9) and Eq. (III-16.10). 274 
 𝑉ሺ𝑠ሻ ൌ max ሺ𝑉గሺ𝑠ሻሻ (III-16.9) 

 𝑄ሺ𝑠,𝑎ሻ ൌ max ሺ𝑄గሺ𝑠,𝑎ሻሻ (III-16.10) 

The objective of the RL algorithm is to find the optimal mapping of actions to states so that the value of 275 
the Q(s,a) expressed in Eq. (III-16.10) is maximized for each par of state (𝑠 ∈ 𝑆ሻ and action (𝑎 ∈ 𝐴ሻ. To 276 
that end, there are 3 different methods to solve a MDP process: Dynamic Programming (DP), Monte Carlo 277 
(MC) method and Temporal Differences (TD). In the following lines an explanation on each one of them 278 
is introduced. 279 

- Dynamic Programming 280 

The DP method, explained in detail in the works of Bertsk et al. [32-34], is based on the knowledge of 281 
a model of the environment in which the agent is placed. That means that the state transitions 𝑝௦௦ᇱ௔ , see Eq. 282 
(III-16.5), and the reward transitions 𝑅௦௦ᇱ௔ , see Eq. (III-16.6), can be calculated analytically. As a result, the 283 
value of 𝑉గሺ𝑠ሻ and 𝑄గሺ𝑠,𝑎ሻ can also be represented analytically using Bellman equations, as shown in Eq. 284 
(III-16.11) and Eq. (III-16.12). 285 
 𝑉గሺ𝑠ሻ ൌ  𝐸గ ሼ𝑟௧ାଵ ൅ 𝛾 ൉ 𝑉గሺ𝑠௧ାଵሻ| 𝑠௧ ൌ 𝑠ሽ

ൌ෍ 𝜋ሺ𝑠,𝑎ሻ෍ 𝑝௦௦ᇱ௔ ൉ ሾ𝑅௦௦ᇱ௔
௦೟శభ௔

൅ 𝛾 ൉ 𝑉గሺ𝑠௧ାଵሻሿ 
(III-16.11) 
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 𝑄గሺ𝑠,𝑎ሻ ൌ  𝐸గ ሼ𝑟௧ାଵ ൅ 𝛾 ൉ 𝑄గሺ𝑠௧ାଵ ,𝑎௧ାଵ  ሻ| 𝑠௧ ൌ 𝑠 ,𝑎௧ ൌ 𝑎 ሽ

ൌ෍ 𝜋ሺ𝑠,𝑎ሻ෍ 𝑝௦௦ᇱ௔ ൉ ሾ𝑅௦௦ᇱ௔
௦೟శభ௔

൅ 𝛾 ൉ 𝑄గሺ𝑠௧ାଵ ,𝑎௧ାଵ  ሻሿ 
(III-16.12) 

The numerically calculated values of 𝑉గሺ𝑠ሻ and 𝑄గሺ𝑠,𝑎ሻ are used to perform an iterative algorithm in 286 
which every action (𝑎 ∈ 𝐴ሻ of every possible state (𝑠 ∈ 𝑆ሻ is considered and the policies 𝜋 that maximize 287 
the value of Q(s,a) are to be found.  288 

One of the biggest drawbacks of this method is the computational cost, since for the calculation of each 289 
policy 𝜋 calculations related to a great number of states and actions have to be performed. A pseudocode 290 
of the DP algorithm is presented in Algorithm III-16.1. 291 

 292 
Dynamic Programming algorithm 

% Initialize Q(s,a) randomly 

Q(s,a) = Q(s,a)_ini 

% Start the DP algorithm 

while (∆ > β) do 

% Initialize the minimum Q(s,a) improvement 

  ∆ = 0 

% Define the actual state and select an action 

  s  (s ∈ S) 
  a  (a ∈ A) 
% Calculate Q(s,a) 

  Q(s,a)  Eq. (III‐16.12) 
% Calculate the Q(s,a) improvement 

  ∆ = abs(Q_ant(s,a) ‐ Q(s,a)) 

  Q_ant(s,a) = Q(s,a) 

end 
Algorithm III-16.1. Pseudocode of a DP based RL algorithm 293 

- Monte Carlo method 294 

The MC method [35,36] is based on the assumption that a model of the environment is unknown, and 295 
thus, its performance depends on the experimental data. Since the model is unknown, the values of the state 296 
transitions 𝑝௦௦ᇱ௔ , see Eq. (III-16.5), and the reward transitions 𝑅௦௦ᇱ௔ , see Eq. (III-16.6), and as a result, the 297 
values of 𝑉గሺ𝑠ሻ and 𝑄గሺ𝑠,𝑎ሻ cannot be analytically computed, so they are calculated as an average of the 298 
experimentally obtained reward values. 299 

The objective is to try to calculate the value of 𝑄గሺ𝑠,𝑎ሻ for all the state-action pairs and find the policies 300 
𝜋 that maximize the value of Q(s,a). To that end, usually stochastic policies that have probabilities greater 301 
than 0 to consider each state (𝑠 ∈ 𝑆ሻ and action (𝑎 ∈ 𝐴ሻ are implemented. 302 

Different MC based algorithms can be implemented: 303 

o Off-policy algorithms: The calculated policies are simultaneously used for the control 304 
strategy implemented in the system. 305 

o On-policy algorithms: The policies calculated by the ongoing MC algorithm and the pol-306 
icies used by the control strategy implemented in the system are separated. 307 

A pseudocode of the DP algorithm is presented in ¡Error! No se encuentra el origen de la referencia.. 308 
 309 
 310 
 311 
 312 
 313 
 314 
 315 
 316 
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Monte Carlo algorithm 

% Define a policy π and select an episode 

% For each state s select an action a 

s  (s ∈ S) 
a  (a ∈ A) 
% Calculate the long term reward Rt 

Rt  Eq. (III‐16.3) 
Rt_vec = [Rt_vec, Rt] 

% Calculate Q(s,a) as a weighted average 

Q(s,a) = average (Rt_vec) 

% Evaluate the policy π 

Algorithm III-16.2. Pseudocode of a MC method based RL algorithm 317 

- Temporal Differences 318 

The TD method is a combination of DP and MC methods having the advantages associated to each one 319 
of them. It is based on analytical calculation, like the DP method, but, like the MC method, it does not 320 
depend on a model of the environment. In this method, the calculations to continuously learn are performed 321 
between successive predictions instead of between predictions and the final value. Hence, the convergence 322 
is faster and the computational cost is remarkably reduced. The two principal TD based algorithms are Q-323 
Learning, explained in detail in the works of Watkins et al. [7,37], and SARSA, introduced in the work of 324 
Adam et al. [38]. 325 

The principal difference between both methods is the calculation of the values of Q(s,a). In the Q-Learn-326 
ing algorithm the state and actions are quantified and a matrix is obtained as a result of mapping a Q(s,a) 327 
value to each state-action par. However, in SARSA, the function Q(s,a) is considered as an exponential 328 
moving average continuous function. 329 

The calculation of the Q(s,a) in SARSA algorithm can be expressed as shown in Eq. (III-16.13). 330 
 𝑄ሺ𝑠௧ ,𝑎௧ሻ ൌ  𝑄ሺ𝑠௧ ,𝑎௧ሻ ൅ 𝛼 ൉ ሾ𝑟 ൅ 𝛾 ൉ 𝑄ሺ𝑠௧ାଵ,𝑎௧ାଵሻ െ 𝑄ሺ𝑠௧ ,𝑎௧ሻሿ (III-16.13) 

The calculation of the Q(s,a) in Q-Learning algorithm can be expressed as shown in Eq. (III-16.14). 331 
 𝑄ሺ𝑠௧ ,𝑎௧ሻ ൌ  𝑄ሺ𝑠௧ ,𝑎௧ሻ ൅ 𝛼 ൉ ሾ𝑟 ൅ 𝛾 ൉ 𝑚𝑎𝑥௔𝑄ሺ𝑠௧ାଵ,𝑎௧ାଵሻ െ 𝑄ሺ𝑠௧ ,𝑎௧ሻሿ (III-16.14) 

A simplified pseudocode of the SARSA and Q-Learning algorithms is presented in ¡Error! No se en-332 
cuentra el origen de la referencia.. 333 

 334 
SARSA algorithm  Q‐Learning algorithm 

% Initialize Q(s,a) randomly 

Q(s,a) = Q(s,a)_ini 

% Start the SARSA algorithm 

while (s ∈ Episode) do 
% Define the actual state and select an action 

  s  (s ∈ S) 
  a  (a ∈ A) 
% Observe r and st+1 

% Define the next action 

  at+1  (a ∈ A) 
% Calculate Q 

  Q(s,a)  Eq. (III‐16.13) 
  s = st+1 

% Evaluate the policy π 

end 

% Initialize Q(s,a) randomly 

Q(s,a) = Q(s,a)_ini 

    % Start the Q‐Learning algorithm 

while (s ∈ Episode) do 
% Define the actual state and select an action 

  s  (s ∈ S) 
  a  (a ∈ A) 
% Observe r and st+1 

% Define the next action 

  at+1  (a ∈ A) 
% Calculate Q 

  Q(s,a)  Eq. (III‐16.14) 
  s = st+1 

% Evaluate the policy π 

end 

(a)     (b) 335 
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Algorithm III-16.3. (a) Pseudocode of a SARSA based RL algorithm (b) Pseudocode of a Q-Learning based RL 336 
algorithm 337 

III-16.3.2. Artificial Neural Networks 338 

ANNs correspond to a branch of the AI intended to mimic the performance of a biological brain. Bio-339 
logical brains are composed by millions of neurons distributed in layers and widely interconnected between 340 
them. Through these interactions between neurons the information flow from one neuron to another occurs. 341 
Furthermore, the information flow happens always in one direction, which can be either forwards or back-342 
wards. ANNs [39-41], which try to emulate this behavior, are digital systems with a variable number of 343 
neurons distributed in a structure similar to that of biological networks and with a similar functionality. 344 

According to the work of Yang [42], the first standard artificial neuron design was introduced by W. 345 
McCulloch and W. Pitts in 1943 and, after that, they have undergone an important development. Nowadays 346 
they are very precious especially for their good performance in parallel processing, distributed memory 347 
alongside the number of neurons and the adaptability to the environment and the generalization capability.  348 

ANNs are a compound of a variable number of neurons distributed in different ways and with a different 349 
type of interconnections. An individual neuron, shown in Figure III-16.4, is the smallest element of an ANN 350 
and presents the following structure: 351 

 352 

 353 

Figure III-16.4. Neuron of an ANN 354 

The main elements of an artificial neuron are: 355 

- Inputs (𝑥௝ሻ: Define the inputs to the neuron. 356 

- Input weights (𝑤௝ሻ: Define the weights of each input to the neuron. 357 

- Propagation rule (ℎ௜ሻ: It defines the combination of the different inputs of the neuron before the 358 
activation function. The most common propagation rule is the linear combination of the product of 359 
each input and its weight. Moreover, usually another parameter commonly expressed as θ is added. 360 
Therefore, the propagation rule can be mathematically expressed as shown in Eq. (III-16.15). 361 

 
ℎ ሺ𝑥ଵ, … , 𝑥௝ ,𝑤ଵ, … ,𝑤௝ሻ ൌ෍𝑤௝ ൉  𝑥௝ െ  𝜃

௡

௝ୀଵ

 (III-16.15) 

- Activation function (𝑓௜ሻ: The activation function defines the activation state of the neuron. Addi-362 
tionally, it represents the output of the neuron. 363 

If it is an on/off neuron, the activation function of the neuron can be expressed as in Eq. (III-16.16). 364 
The output of this neuron is discrete, and corresponds to the original one introduced by W. McCul-365 
loch and W. Pitts in 1943. 366 

 

𝑦 ൌ

⎩
⎪
⎨

⎪
⎧1         𝑖𝑓 ෍𝑤௝ ൉  𝑥௝  ൒  𝜃

௡

௝ୀଵ

 

0        𝑖𝑓 ෍𝑤௝ ൉  𝑥௝  ൏  𝜃

௡

௝ୀଵ

  (III-16.16) 
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However, when a continuous output of the neuron is desired, usually a sigmoid function [43] is used 367 
as the activation function, as shown in Eq. (III-16.17). 368 

 
𝑓 ሺ𝑥ሻ ൌ

1
1 ൅ 𝑒ିఉ൉௫

 (III-16.17) 

where the value associated to the exponential factor is 𝛽 ൐ 0. 369 
ANNs are formed by compound of a variable number of neurons in different structures and interconnec-370 

tion patterns. The neurons are divided in layers. As it is shown in Figure III-16.5, usually in a standard 371 
ANN there are 3 different neuron layers: The input layer (contains the input neurons, which are in number 372 
the same as the inputs of the ANN), the hidden layer (contains the processing neurons) and the output layer 373 
(contains the output neurons, which are in number the same as the outputs of the ANN). The number of 374 
hidden layers and the number of neurons in each hidden layer is adaptable and can be modified by the 375 
designer of the ANN. 376 

There are different types of ANNs. The classification can be done according to different factors: 377 
According to the number of layers: 378 

- Sinple layer: ANNs with only one neuron layer. 379 

- MultiLayer: ANNs with the neurons distributed in more than one layer. 380 

According to the information flow: 381 

- Feedforward: The information flow occurs exclusively in the direction from the input layer to the 382 
output layer. One example of this architecture is the MultiLayer Perceptron. 383 

- Feedback or recurrent: There is information flow in both directions, i.e., from the input layer to the 384 
output layer and from the output layer to the input layer direction. One example of this architecture 385 
is the NonLinear Autoregressive Neural Network. 386 

 387 

Figure III-16.5. Layer based structure of an ANN [44] 388 

The training algorithms of the ANNs are the responsible for making the ANN learn from its input values. 389 
There are two main ANN training method groups: The supervised learning and the unsupervised learning. 390 
As it is exposed in the work of Chen et al. [39], the supervised learning adjusts the values of the weights 391 
related to the interconnection between neurons with the objective of minimizing the error existent between 392 
the output of the ANN and the reference output. That means that a reference output for the ANN should be 393 
known in the case of a supervised learning. The most important application of the supervised learning is 394 
for regressions or modelling of systems. One of the most used examples of supervised learning is the Back-395 
Propagation algorithm. 396 

The unsupervised learning do not need an output reference and the ANN is trained with numerous input 397 
patterns to explore the relation between them and categorize them. The most important application of the 398 
unsupervised learning is the clustering of data. A combination of supervised and unsupervised learning 399 
methods in an hybrid learning strategy is also possible. 400 

III-16.3.3. Optimization Algorithms 401 

Optimization algorithms are techniques designed and aimed to find the maximum/minimum or optimal 402 
solution of a determined function or problem. First optimization algorithms were introduced in the 20th 403 
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century. Nowadays, optimization algorithms are applied to a grand variety of applications. As it is explained 404 
in the work of Yang et al. [42], one of the biggest application fields of the optimizations algorithms is the 405 
industrial engineering world, where the reduction of costs, the increment of the efficiency and the optimi-406 
zation of the industrial processes have become of capital importance. 407 

Among the advantages of the optimization algorithms is the existence of processors with high capacity 408 
that allow the execution of the optimization algorithms at a considerable speed. The main drawback of the 409 
optimization algorithms is the necessity to have reliable models of the process that is to be optimized. 410 

There are several types of optimization algorithms. In the work of Yang et al. [42], a classification of 411 
the optimization algorithms is proposed: 412 

According to the existence of derivatives in the algorithm: 413 

- Gradient based: They have derivatives in their optimization code. For instance, Gauss-Newton 414 
methods belong to this group. 415 

- Gradient-free: They do not have derivatives in their optimization code. For example, the Nelder-416 
Mead downhill simplex method belongs to this group. 417 

According to the existence of randomness in the algorithm: 418 

- Deterministic: There is no randomness in the optimization code. The result is always the same if the 419 
initial point is the same. An example of a deterministic optimization algorithm is the Hill climbing 420 
algorithm without random start. 421 

- Stochastic: There is randomness in the optimization code. Hence, the result is not always the same 422 
even if the initial point is the same. An example of a stochastic optimization algorithm is the Genetic 423 
Algorithm (GA). 424 

According to the mobility: 425 

- Local: They typically converge to local optima because they do not have the ability to escape from 426 
them as a result of the lack of randomness in the optimization code. They are usually deterministic 427 
algorithms. 428 

- Global: They always try to find the global optima. They have the ability to escape local optima as a 429 
result of the randomness in the optimization code. They are usually stochastic algorithms. 430 

An important group inside the optimization algorithms is the bio-inspired or metaheuristics algorithms, 431 
which are inspired in natural processes to solve optimization problems. The metaheuristic algorithms [45-432 
47] have been widely studied in the literature. There are many metaheuristic algorithms: Ant algorithm 433 
[48], bee algorithm [49], simulated annealing [50], GA, PSO, Differential Evolution (DE), etc. 434 

The most widely used metaheuristic optimization algorithms are introduced in the following lines. 435 
 436 

- Genetic Algorithms 437 

The GAs [51,52] are metaheuristic optimization algorithms inspired in the evolution of biological indi-438 
viduals proposed by Charles Darwin. The GAs were first developed by Holland [53] during the decades of 439 
the 1960s and the 1970s. 440 

As it is explained in detail in the work of Wang et al. [45], a GA is formed by a population of chromo-441 
somes or individuals, each one of them representing a solution to the optimization problem. Additionally, 442 
a fitness/cost function that evaluates each one of the individuals and provide them with a fitness value is 443 
necessary. The fitness function evaluates the specification fulfillment corresponding to each one of the 444 
individuals and, thus, the fitness value is an indicator of the chances of survival and reproduction of each 445 
one of the individuals. As a result, the individuals with the best fitness value tend to survive and the algo-446 
rithm evolves towards the optimal solutions. 447 

The execution of a GA could be summarized in the following 5 steps: 448 

1) Initialization. Traditionally, the population is formed by a group of randomly generated individual 449 
solutions.  450 

2) Evaluation. The fitness of each individual in the population is evaluated.  451 
3) Selection. Individuals are selected based on the fitness value to breed a new generation.  452 
4) Evolution. New individuals are created through crossover and mutation operations. The new popula-453 

tion is composed of the individuals in the new generation and a few individuals from the previous genera-454 
tion.  455 
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5) Termination. Steps 2 to 4 are repeated until a termination condition has been reached. 456 
 457 

- Particle Swarm Optimization 458 

The PSO [54] algorithms are metaheuristic optimization algorithms inspired in the behavior of a group 459 
of particles, referred as swarm, in a search space and evolving towards an optimal solution. As it is ex-460 
plained in the work of Wang et al. [46], this algorithm is widely used due to its high robustness, small 461 
number of tunable parameters and its easy implementation.  462 

As introduced in the work of Khan et al. [46], each particle is a possible solution to the optimization 463 
problem, and is associated with a position vector 𝑥௜,௧ and a velocity vector 𝑣௜,௧. Exactly as in the case of the 464 
GAs, in a PSO algorithm there must be a fitness function that evaluates the specification fulfillment of each 465 
particle and provides them with a fitness values. 466 

The velocity and position update of each particle is calculated with the following expressions presented 467 
in Eq. (III-16.18) and Eq. (III-16.19), respectively. 468 
 𝑣௜,௧ାଵ ൌ  𝐻 ൉ 𝑣௜,௧ ൅ 𝜑ଵ ൉ ൫𝑥_𝑜𝑝𝑡௜,௧ െ 𝑥௜,௧൯ ൅ 𝜑ଶ ൉ ൫𝑥_𝑔𝑙𝑜𝑏𝑎𝑙_𝑜𝑝𝑡௜,௧ െ 𝑥௜,௧൯ (III-16.18) 

 𝑥௜,௧ାଵ ൌ  𝑥௜,௧ ൅  𝑣௜,௧ାଵ ൉ ∆t (III-16.19) 

where H [kgꞏm2] is the inertia constant of the system, 𝜑ଵ [-] is the exploitation factor, 𝜑ଶ [-] is the 469 
exploration factor, 𝑥_𝑜𝑝𝑡௜,௧ [m] is the best solution of the particle and 𝑥_𝑔𝑙𝑜𝑏𝑎𝑙_𝑜𝑝𝑡௜,௧ [m] is the best solu-470 
tion of the whole swarm. 471 

As it can be observed in Eq. (III-16.18), the velocity of each particle is computed with regard to the 472 
personal best fitness obtained by that particle and the global best fitness obtained by the whole swarm. By 473 
modifying factors 𝜑ଵ [-] and 𝜑ଶ [-] the exploration and exploitation capability of the algorithm can be 474 
configured. Furthermore, the inertia constant H [kgꞏm2] defines the movement capacity of the particles. 475 

The execution of a PSO could be summarized in the following 5 steps: 476 

1) Initialization. The swarm population is randomly formed.  477 
2) Evaluation. The fitness of each individual particle is evaluated.  478 
3) Modification. The best position of each particle, the best position of the whole swarm and each par-479 

ticle’s velocity are computed.  480 
4) Update. Move each particle to the new position.  481 
5) Termination. Steps 2 to 4 are repeated until a termination condition has been satisfied. 482 
 483 

- Differential Evolution 484 

The DE algorithm is metaheuristic optimization algorithm inspired in the evolutionary principles and 485 
intended to solve global optimization problems. The original DE algorithm was first introduced in the work 486 
of Storn and Price [55]. The DE algorithm starts with randomly initialized solution vectors, and like the 487 
GA algorithm is based on the principles of mutation, crossover and selection. Nevertheless, in contrast to 488 
GAs, the DE algorithms operate over each dimension of the solution separately.  489 

The mutation is based on the recombination of three randomly chosen vectors, as shown in Eq. (III-490 
16.20). 491 
 𝑣௜,௧ାଵ,ൌ 𝑥௔,௧ ൅ 𝑇 ൉ ሺ𝑥௕,௧ െ 𝑥௖,௧ሻ (III-16.20) 

where 𝑇 ∈ ሾ0,2ሿ is commonly known as the differential weight and is a parameter adjustable by the 492 
designer. 493 

After the mutation a crossover stage based on the crossover probability 𝐶௥ ∈ ሾ0,1ሿ is performed and the 494 
fitness of the individuals is evaluated. The selection stage is based on the fitness value of each individual, 495 
exactly as in the case of the GAs. 496 

The execution of a DE algorithm could be summarized in the following 5 steps: 497 

1) Initialization. Traditionally, the population is formed by a group of randomly generated individual 498 
solutions.  499 

2) Mutation. The mutation shown in Eq. (III-16.20) is performed.  500 
3) Crossover. The individual of the new generation are formed based on the crossover probability.  501 
4) Selection. The individuals are selected based on their fitness value to breed a new generation  502 
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5) Termination. Steps 2 to 4 are repeated until a termination condition has been reached. 503 
 504 

- Multiobjective optimization. Pareto optimal Front 505 

A multiobjective optimization [56-58] problem is that in which more than one objective is to be opti-506 
mized. In contrast to single-objective optimization problems, in multiobjective cases there is not only one 507 
unique optimal solution, but a set of optimal solutions that respond to the trade-off or compromise necessity 508 
between the objectives to be optimized. 509 

The concept of optimization of multiobjective problems was generalized in the work of Vilfredo Pareto 510 
[59] in 1896. In these type of problems a solution is dominated if there is any other solution that has a better 511 
(higher or lower depending on the context of the optimization problem) fitness value for all the objectives 512 
to be optimized. If there is no such a solution, i.e., if the improvement of one objective causes the degrading 513 
of any other objective, then the solution is known as non-dominated. The set of non-dominated solutions is 514 
known as the Pareto optimal Front (PoF). A PoF of a double-objective optimization problem is illustrated 515 
in Figure III-16.6. 516 

 517 

Figure III-16.6. PoF of a double-objective optimization problem [57] 518 

As it can be observed in Figure III-16.6, all the points forming the continuous line marked as the PoF 519 
respond to the same principle of compromise necessity between the objectives. If the value of one of the 520 
objectives is improved, the other one degrades. An algorithm to find the PoF of a multiobjective problem 521 
could be implemented in any of the previously presented metaheuristic optimization algorithms. 522 

 523 
III-16.4. Machine Learning based wind turbine yaw control 524 

An adequate alignment of the wind turbine rotor with respect to the incoming wind by means of the yaw 525 
system of the wind turbine enables increment of the power generation. Nevertheless, as it was exposed in 526 
Section III-16.2 of this chapter, the enhancement of the generated power is achieved at cost of an increase 527 
of the mechanical loads in different elements of the wind turbine, especially the yaw bearings. Hence, an 528 
adequate design and tuning of the yaw control system is of great importance to both optimize the power 529 
generation of the wind turbine and ensure its safe operation. The absence of an adequate control strategy 530 
could result in an excessively aggressive yaw activity, which could endanger the safety of the mechanical 531 
components of the wind turbine and reduce their lifetime. 532 

Usually, classical control structures based on PIDs have been used for the design of the yaw control 533 
strategy of the wind turbine [20,60]. However, these classical control structures show some drawbacks in 534 
form of “wind up” of the integral action and posterior big oscillations, which can result in an undesired 535 
increment of the mechanical loads. As a result, some advanced control strategies for the yaw angle control 536 
of a wind turbine are proposed in the literature. In this context, Song et al. [61] present a control strategy 537 
based on a Model Predictive Control and Bharani et al. [62] introduce a Fuzzy Logic based control strategy 538 
for this purpose. In the work of Saenz-Aguirre et al. [12], an ANN based RL control strategy is proposed 539 
for the yaw control of a wind turbine. 540 

In this chapter, with the objective of achieving an improved performance of the yaw control system of a 541 
wind turbine, a ML based wind turbine yaw control system is exposed. A block diagram of the proposed 542 
ML based yaw control strategy is presented in Figure III-16.7. 543 

 544 
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 545 

Figure III-16.7. Pipeline of the proposed ML based yaw control 546 

The proposed yaw control system is based on the following AI techniques: 547 

- A RL algorithm that learns from its own experience and enables the wind turbine to select the opti-548 
mal decision in each scenario of its operation. 549 

- An ANN to store the data of the matrix Q(s,a) of the RL algorithm. 550 

- A PSO and PoF based optimization algorithm to select the set of optimal actions that respond to the 551 
compromise necessity between the power increment and the mechanical loads associated to the yaw 552 
rotation. 553 

This section is structured as follows: the design procedure of the RL algorithm applied to the ML based 554 
yaw control is explained in Subsection III-16.4.1. Subsection III-16.4.2 presents the structure and design 555 
process of the MLP-BP neural network. The design of the PSO and PoF based algorithm is explained in 556 
Subsection III-16.4.3. Finally, the Decision Making (DM) algorithm is exposed in Subsection III-16.4.4. 557 

III-16.4.1. Yaw Control RL 558 

The RL algorithm developed for the yaw control of a HAWT presents multiple state, action and imme-559 
diate reward variables. The objective of the multivariable structure is an improved characterization of the 560 
system in the most accurate way possible. To that end, 2 state variables, 2 action variables and 2 immediate 561 
reward variables are considered in the proposed RL algorithm. 562 

The states s are: 563 

- StateYawA [deg]: This state defines the orientation difference between the wind incident to the 564 
rotor and the nacelle of the wind turbine. As it can be observed in Eq. (III-16.2), the power output 565 
of the wind turbine is affected by this misalignment angle. The expression to calculate the value of 566 
this state is shown in Eq. (III-16.21). 567 

 𝜃௬௔௪ ൌ   𝜃௪௜௡ௗ െ  𝜃௡௔௖௘௟௟௘ (III-16.21) 

- StateWindS [m/s]: This state defines the wind speed value incident to the rotor. As it has been shwon 568 
stated in Figure III-16.2 (b), the power output of the wind turbine is not directly proportional to the 569 
wind speed value, but it depends on the operation zone of the wind turbine, which depends on the 570 
wind speed value. As a result, it is important to know the wind speed value because it will help 571 
characterize the possible power gain achievable with the yaw rotation of the wind turbine. 572 

The actions a are: 573 

- ActionYawK [deg/s]: This action defines the proportional gain associated to the yaw rotational 574 
speed controller. The expression to calculate the yaw rotational speed is shown in Eq. (III-16.22). 575 

 
𝛺𝑦𝑎𝑤 ൌ  𝐴𝑐𝑡𝑖𝑜𝑛𝑌𝑎𝑤𝐾 ൉  𝜃𝑦𝑎𝑤  (III-16.22) 

As it can be seen in Eq. Eq. (III-16.22), the higher the value of the action ActionYawK [deg/s] is, 576 
the higher the yaw rotational speed will be. 577 
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- ActionYaw [deg]: This action defines the limit associated to the yaw rotation. In some cases, due to 578 
mechanical actuator problem or safety issues, the yaw rotation of the nacelle is limited to a certain 579 
value. The expression to note the rotation range allowed by this action is shown in Eq. (III-16.23). 580 

 ∆𝜃𝑦𝑎𝑤 ∈ ሾെActionYaw , ActionYaw ሿ (III-16.23) 

The immediate rewards r are: 581 

- RewardP [%]: This immediate reward defines the power gain achieved by the wind turbine when a 582 
certain yaw action is performed. The expression to compute this immediate reward is shown in Eq. 583 
(III-16.24). 584 
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As it can be observed in Eq. (III-16.24), in order to calculate the power gain 3 different scenarios 585 
related to the yaw actuation of the wind turbine are considered. The scenario P_control refers to the 586 
scenario in which the yaw control of the wind turbine is active and the nacelle of the wind turbine 587 
rotates to the yaw command provided by the yaw control and at the provided yaw speed value. The 588 
scenario, P_no_control refers to the scenario in which the yaw control of the wind turbine is not 589 
active, and, thus, the orientation of the wind turbine nacelle is fixed. Finally, the scenario P_no_de-590 
viation refers to the scenario in which the nacelle of the wind turbine is perfectly aligned with the 591 
direction of the wind incoming to the rotor. Hence, this value refers to the maximum power that the 592 
wind turbine can generate with a defined value of the wind speed. 593 

- RewardM [Nꞏm]: This immediate reward defines the value of the mechanical moment in the yaw 594 
bearings. The value of this immediate reward has been defined with the mechanical moment in the 595 
yaw bearings because it has been found as the most critical mechanical load when performing a yaw 596 
rotation. Different mechanical load values, or even a weighted average of them, could be considered 597 
as the immediate reward to be considered by the proposed ML based yaw control algorithm. 598 

As it was stated in Subsection III-16.3.1 of this chapter, in a RL algorithm the calculation of the values 599 
Q(s,a) for each state-action par is associated to the long-term reward considering a discount factor 𝛾, see 600 
Eq. (III-16.3). In the RL algorithm proposed in this chapter there are 2 different immediate rewards r. 601 
Therefore, 2 different matrices Q(s,a) will result in the algorithm. The expression to calculate the matrices 602 
Q(s,a) using the immediate rewards r is shown in Eq. (III-16.25). 603 
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The expression in Eq. (III-16.25) is applied to both the immediate rewards r considered in the ML based 604 
yaw control algorithm presented in this paper and the expression of both matrices Q(s,a) are obtained and 605 
presented in Eq. (III-16.26) and Eq. (III-16.27). The discount factor 𝛾 is set to 1 in both cases because it is 606 
considered that all the values in the time horizon are equally important. 607 
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After definition of the states s, actions a, immediate rewards r and the expressions of the matrices 608 
Q_P(s,a) and Q_M(s,a), simulations of the performance of the wind turbine to obtain data for the training 609 
process of the RL algorithm are carried out. The simulations are carried out with the aeroelastic code FAST 610 
[63] and the wind turbine model NREL 5MW, presented in the work of Jonkman et al. [14], both designed 611 
by the National Renewable Energies Laboratory (NREL) in the USA. 612 

The objective of the training process of the RL algorithm is to obtain the data related to all possible 613 
actuation scenarios associated to the yaw control of the wind turbine. Thus, in the design process presented 614 
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in this chapter, an offline training process of the wind turbine with all the possible considered wind speed 615 
values and the yaw control actions is proposed. Thus, simulations with StateWindS=3:1:17 [m/s], Stat-616 
eYawA=-90:10:90 [deg], ActionYawK=0.1:0.1:1 [-] and ActionYaw=-90:10:90 [deg] have been carried 617 
out with the aeroelastic code FAST. The values of the matrices Q_P(s,a) and Q_M(s,a) are calculated with 618 
the data obtained from the simulations, see Eq. (III-16.26) and Eq. (III-16.27). 619 

The fact that the RL training is performed offline indicates that it is independent from the actual operat-620 
ing conditions of the wind turbine. Nevertheless, an online training process of the RL algorithm during 621 
operation of the wind turbine and linked to the actual operating conditions could be possible to keep the 622 
system learning from real field data and its own experience. 623 

III-16.4.2. Yaw Control MLP-BP 624 

A MLP-BP neural network is designed to store the data of the matrices Q_P(s,a) and Q_M(s,a) corre-625 
sponding to the RL algorithm. The objective of storing these matrices as continuous functions Q_P(s(t),a(t)) 626 
and Q_M(s(t),a(t)) is to eliminate the necessity of large amount of data management, which could result 627 
problematic in the implementation of the control strategy in the control system of the wind turbine, due to 628 
memory issues. Additionally, with the use of an ANN to store the data of the RL algorithm, the replacement 629 
policy of the RL algorithm is incorporated, since the ANN learns from the new calculated values. This 630 
aspect is of great importance if an online training of the RL algorithm during operation of the wind turbine 631 
is implemented. In that case, the ANN continuously learns from new calculated values and the accuracy of 632 
the functions Q_P(s(t),a(t)) and Q_M(s(t),a(t)) increase. 633 

The selected topology of the ANN designed to store the data of the matrices Q_P(s,a) and Q_M(s,a) is 634 
a MLP-BP. A MLP-BP is a neural network based on neurons of the type perceptron and with a variable 635 
number of hidden layers. The characteristic of the MLP-BP is that the information flow occurs exclusively 636 
in the direction from input neurons to output neurons and not in reverse. The BP training process is a 637 
supervised training strategy in which the theoretical output of the ANN and the real output of the ANN are 638 
compared and the weights of the neurons are adjusted to minimize this error. 639 

The designed MLP-BP neural network presents 4 inputs and 2 outputs. A pipeline with the input and 640 
outputs of the designed MLP-BP neural network is presented in Figure III-16.8. Internally, the MLP-BP 641 
presents a structure with one input layer with 4 neurons, two hidden layers with 75 neurons and 25 neurons 642 
respectively and one output layer with 2 neurons.  643 

 644 

 645 

Figure III-16.8. Input and outputs of the MLP-BP designed for the ML based yaw control strategy 646 

The learning rate for the training process of the MLP-BP has been set to 1ꞏ10-50. The training ratio, 647 
validation ratio and test ration have been set to 90 %, 5 % and 5 %, respectively. After the training process, 648 
correlation coefficients of 0.9999 and Mean Squared Error (MSE) of 1.62ꞏ10-6 are obtained. The high value 649 
of the correlation coefficient and the low value of the MSE are indicators of a correct training process and 650 
that the MLP-BP is good enough to be used in the ML based yaw control strategy proposed in this chapter. 651 

III-16.4.3. Yaw Control PSO and PoF 652 

As it was stated in Section III-16.2 of this chapter, the yaw actuation of a wind turbine allows alignment 653 
of the rotor of the wind turbine with the direction of the incoming wind and, thus, the power generated by 654 
the wind turbine can be maximized in some scenarios. Nevertheless, this power gain is achieved at cost of 655 
high mechanical loads in several components of the wind turbine, especially the yaw bearings, which could 656 
endanger the safe operation of the wind turbine or reduce its lifetime. 657 
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After carrying out simulations with the aeroelastic code FAST for the training process of the RL algo-658 
rithm, the following tendency of the states s and actions a corresponding to the RL algorithm has been 659 
observed:  660 

- An increased value of the state StateYawA [deg] causes the value of the immediate reward RewardP 661 
[%] to have greater values. As a result of an increased value of the state StateYawA [deg] the yaw 662 
actuation is usually more important and the immediate reward RewardM [Nꞏm] is increased. 663 

- An increased value of the state StateWindS [m/s] makes the value of the immediate reward RewardP 664 
[%] to be smaller. This fact depends on the wind speed value that determines the operating zone of 665 
the wind turbine. In some cases, the StateWindS [m/s] is so high that despite the StateYawA [deg] 666 
the system keeps operating in the rated power zone and no RewardP [%] can be achieved. The 667 
immediate reward RewardM [Nꞏm] get bigger with greater StateWindS [m/s] values. 668 

- An increased value of the ActionYawK [-] makes the immediate reward RewardP [%] to be higher, 669 
since the yaw rotation is performed at a greater rotational speed. The immediate reward RewardM 670 
[Nꞏm] gets bigger as well. 671 

- An increased value of the ActionYaw [deg] makes the immediate reward RewardP [%] to be higher, 672 
since a longer rotation of the wind turbine rotor is allowed. The immediate reward RewardM [Nꞏm] 673 
gets bigger as well. 674 

The objective of the PSO and PoF based optimization algorithm designed in this paper is to obtain a set 675 
of optimal yaw actions, ActionYawK [-] and ActionYaw [deg], that respond to the compromise necessity 676 
between RewardP [%] and RewardM [Nꞏm]. 677 

A pseudocode of the PSO and PoF based optimization algorithm designed for the ML based yaw control 678 
strategy presented in this chapter is shown in Algorithm III-16.4. 679 

 680 
PSO and PoF optimization algorithm 

% Initialization 

𝜑ଵ_𝑚𝑎𝑥 = 𝜑ଵ_𝑚𝑎𝑥 
𝜑ଶ_𝑚𝑎𝑥 = 𝜑ଶ_𝑚𝑎𝑥 
H = H 

P =P                           % Population size 

n=n                            % Number of iterations 

a=a_ini(2,P) 

% Definition of the states (s ∈ S) 
s(1)  StateYawA 

s(2)  StateWindS 

% Start the PSO algorithm 

while (iter<n) do 

  for 1:1:P 

% Evaluate the current particle 

   r=MLP‐BP(s,a) 

% Evaluate its introduction to the PoF 

   if r(1)<r1_global && r(2)<r2_global 

    r_PoF= MLP‐BP (s,a_ant) 

    PoF=[PoF,r_PoF] 

    a_PoF=[a_PoF,a_ant] 

    end 

% Generate the new swarm 

   𝜑ଵ = random(𝜑ଵ_𝑚𝑎𝑥) 
   𝜑ଶ = random(𝜑ଶ_𝑚𝑎𝑥) 
   v  Eq. (III‐16.18) 
   x  Eq. (III‐16.19) 
  end 

end 
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Algorithm III-16.4. Pseudocode of the PSO and PoF based optimization algorithm 681 

As it can be observed in ¡Error! No se encuentra el origen de la referencia., the output of the PSO 682 
and PoF optimization algorithm is a set of optimal solutions, known as PoF, that respond to the compromise 683 
necessity between the power gain and the mechanical loads due to the yaw rotation. To calculate this PoF 684 
the optimization algorithm makes use of the functions Q_P(s(t),a(t)) and Q_M(s(t),a(t)) as the fitness func-685 
tions. The states of the system, StateYawA [deg] and StateWindS [m/s], are defined and the fitness value 686 
of different set of actions, ActionYawK [-] and ActionYaw [deg], is evaluated. The final optimal solutions 687 
are the solutions in which one of the fitness values cannot be increased without degrading the other one. 688 

The implemented PSO and PoF optimization algorithm show correct results in a variety of state scenar-689 
ios, StateYawA [deg] and StateWindS [m/s], of the wind turbine: 690 

- When the wind turbine operates in the partial power zone a more aggressive yaw actuation is trans-691 
lated in a higher power gain but at cost of incremented mechanical loads. 692 

- When the wind turbine operates in the rated power zone and the value of the yaw misalignment is 693 
high enough to move the operation of the wind turbine out of the rated power zone, a more aggres-694 
sive yaw actuation is translated in a higher power gain but at cost of incremented mechanical loads. 695 

- When the wind turbine operates in the rated power zone and the value of the yaw misalignment is 696 
not high enough to move the operation of the system out of the rated power zone, a more aggressive 697 
yaw actuation is translated in zero power gain and incremented mechanical loads, which makes the 698 
yaw actuation useless. 699 

III-16.4.4. Yaw Control DM 700 

The DM algorithm selects one of the optimal actions proposed as the result of the PSO-PoF optimization 701 
algorithm. The DM algorithm proposed in this chapter considers the mechanical loads as the limiting factor 702 
when selecting the yaw actuation and it could be summarized as follows: 703 

- The solutions that suppose a value of the function Q_M(s(t),a(t)) higher than a predefined threshold 704 
are not taken into consideration due to safety issues. 705 

- From the set of solutions that are taken into consideration, the one with the highest value of the 706 
function Q_P(s(t),a(t)) is selected. 707 

Other different approaches for the selection of the yaw optimal actuation based on more complex prin-708 
ciples could also be evaluated and implemented. 709 

 710 
III-16.5. Conclusions 711 

The design procedure of a ML based yaw control algorithm for a HAWT based on AI techniques has 712 
been presented in this chapter. The proposed yaw control strategy is aimed to improve the performance of 713 
classical yaw control strategies by means of the use of AI techniques, which emulate the performance of 714 
natural processes to provide digital systems with intelligence and self-learning capability. The self-learning 715 
capability is the main characteristic of the ML. 716 

The proposed ML based yaw control strategy makes use of three different AI techniques for the devel-717 
opment of the control strategy. The RL algorithm maps actions to states and thus allows the development 718 
of a policy in the wind turbine that selects the best actions in different wind turbine operation scenarios. 719 
The ANN provides a very important learning capability and allows a continuous learning process in the 720 
wind turbine, as well as, a simplified data management by storage of large amounts of data as continuous 721 
functions. Finally, the PSO and PoF based optimization algorithm allows to select the actions that maximize 722 
the power output of the wind turbine and minimize the mechanical loads generated as a result of the yaw 723 
rotation. 724 

The most important capability of the proposed ML based yaw control strategy is the self-tuning. As a 725 
result of the self-learning capability of the ML system, there is no need for tuning a closed loop for the yaw 726 
angle control of the wind turbine. Therefore, the risk associated to a possible inadequate tuning of this 727 
control loop is erased. In fact, an inadequate control tuning could cause considerable power generation 728 
losses or high mechanical loads that could endanger the safe operation of the wind turbine. 729 

Simulations of the proposed ML based yaw control strategy with the aeroelastic code FAST show prom-730 
ising results in comparison to other more simple controllers based on the classical control theory. The most 731 
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visible improvements are increased generated power values and considerable mechanical load reductions 732 
in the yaw bearings of the wind turbine for different wind scenarios. 733 
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