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Abstract. In this paper we model discontinuous extended real functions

in pointfree topology following a lattice-theoretic approach, in such a way

that, if L is a subfit frame, arbitrary extended real functions on L are

the elements of the Dedekind-MacNeille completion of the poset of all

extended semicontinuous functions on L. This approach mimicks the sit-

uation one has with a T1-space X, where the lattice FpXq of arbitrary

extended real functions on X is the smallest complete lattice containing

both extended upper and lower semicontinuous functions on X. Then,

we identify real-valued functions by lattice-theoretic means. By construc-

tion, we obtain definitions of discontinuous functions that are conservative

for T1-spaces. We also analyze semicontinuity and introduce definitions

which are conservative for T0-spaces.

Introduction

In pointfree topology frames are viewed as generalized spaces and frame

homomorphism as continuous functions between them. Indeed, if X is a sober

space, continuous functions Y Ñ X are in one-to-one correspondence with

frame homomorphism OX Ñ OY . Motivated by the fact that arbitrary real

functions on a space X are continuous functions when one replaces OX by

the discrete topology, which can be thought of as the system of subspaces of

X, Gutiérrez Garćıa, Kubiak and Picado defined arbitrary real functions on a

frame L as frame homomorphisms from the frame of reals LpRq (the pointfree
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counterpart of the real line) to the dual SpLq “ SpLqop of the system of all

sublocales of L [12]. Certainly this was shown to be successful definition

that provides a very nice setting for the treatment of semicontinuity. It

made possible to extend many classical definitions, constructions and results

to the pointfree setting [10, 11, 9, 13]. Recently, in [23] Picado and Pultr

have replaced SpLq by a smaller class of sublocales (see [24]), mending some

disadvantages that the former definition had. For example, this new approach

yields a “lattice of arbitrary real functions” which is Dedekind complete in

[23], while, in general, it was not so in [12].

Beyond the differences between [12] and [23], the idea behind both defini-

tions is the same: replacing L by some discretization of it which will play the

role of the discrete topology in the classical theory. The main goal of this

paper is to approach this problem from a different point of view. The motiva-

tion comes from the fact the lattice FpXq of arbitrary extended real functions

on a T1-space X is the smallest complete lattice in which the poset of lower

and upper semicontinuous extended real functions embeds, more rigorously,

FpXq is the Dedekind-MacNeille completion of the poset LSCpXq YUSCpXq

of all semicontinuous extended real functions on X. For this purpose, we will

need a proper description of extended semicontinuous functions on frames

and a convenient representation in terms of certain kind of functions of the

Dedekind-MacNeille completion of poset they form. We should note that,

even though in [12] and [23] the authors focused on real-valued functions,

their approach can be immediately applied to arbitrary frames, while ours is

intrinsically linked to the order structure of the reals. However, due to the

importance of the real line and real-valued functions in topology, we believe

that our approach is worth to be investigated.

There are various equivalent ways of introducing the frame of reals LpRq [3].

Here it will be useful to adopt the description used in [4] given by generators

pr,—q and p—, sq, r, s P Q, and defining relations:

(r1) pr,—q ^ p—, sq “ 0 whenever r ě s,

(r2) pr,—q _ p—, sq “ 1 whenever r ă s,

(r3) pr,—q “
Ž

sąrps,—q, for every r P Q,

(r4) p—, sq “
Ž

răsp—, rq, for every r P Q,

(r5)
Ž

rPQpr,—q “ 1,

(r6)
Ž

sPQp—, sq “ 1.

By dropping relations pr5q and pr6q in the description of LpRq above, we

have the corresponding frame of extended reals L
`

R
˘

[4]. For any frame L, a

continuous real function [3] (resp. extended continuous real function [4]) on
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a frame L is a frame homomorphism f : LpRq Ñ L (resp. f : L
`

R
˘

Ñ L). We

denote by CpLq (resp. CpLq) the collection of all (resp. extended) continuous

real functions on L. The correspondences L ÞÑ CpLq and L ÞÑ CpLq are

functorial in the obvious way.

Extended lower semicontinuous functions X Ñ R are in one-to-one corre-

spondence with frame homomorphisms LupRq Ñ OX, where LupRq is a con-

venient subframe of LpRq. One can represent upper semicontinuous functions

similarly by replacing LupRq by another convenient subframe LlpRq of LpRq.
Replacing OX by an arbitrary frame L provides a natural extension of the

notion of semicontinuous functions. As shown in [12], we can represent both

extended semicontinuous functions on a frame L as frame homomorphisms

LpRq Ñ SpLq. We define in this fashion the class LSCpLq resp. USCpLq of

lower resp. upper semicontinuous functions on L (Section 2).

Their non-extended versions are not that simple to define. Semicontinuous

functions were first introduced by Li and Wang in [19], but their definition

did not represent the classical notion. It was mended in [15] and [12] in a

way that made possible to formulate Katĕtov-Tong insertion theorem in the

pointfree setting. However, this definition fails to represent all semicontinuous

functions from the classical theory. This small inaccuracy has already been

pointed out and corrected in [23]. In Section 2, we provide a definition in

the setting that fits in our approach to arbitrary real functions. In addition,

we show that our definition extends faithfully the classical notion for all T0-

spaces, while the one in [23] was shown to do so only for T1-spaces.

In Section 3, we derive a description of the Dedekind-MacNeille comple-

tion of the lattice CpLq from the Dedekind completion of the lattice C˚pLq of

bounded continuous functions on L in terms of continuous partial real func-

tions presented in [21]. The frame LpIRq of extended partial real numbers is

the frame that we obtain after removing (r2) from the definition of LpRq and

ICpLq the class of all frame homomorphisms LpIRq Ñ L, namely, continu-

ous extended partial real functions on L, in which CpLq embeds canonically.

Given a completely regular frame L, we describe the Dedekind-MacNeille

completion of CpLq inside ICpLq by

HpLq “ tf P ICpLq | fpr,—q˚ ď fp—, sq and fp—, sq˚ ď fpr,—q if r ă su.

In Section 4, we show that given a subfit frame L, the poset LSCpLq Y

USCpLq is join- and meet-dense in Cp SpLqq and consequently their Dedekind-

MacNeille completions coincide. This is the motivation to consider the latttice

FpLq “ Hp SpLqq, that is, the Dedekind-MacNeille completion of Cp SpLqq, as

the pointfree counterpart of the FpXq. Accordingly, an arbitrary extended
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real function on a frame L will be a frame homomorphism f : LpIRq Ñ SpLq

such that

fpr,—q˚ ď fp—, sq and fp—, sq˚ ď fpr,—q whenever r ă s.

This condition holds for all f P Cp SpLqq. In comparison with [12], an arbi-

trary extended real function has to satisfy a slightly weaker condition than

preserving (r2).

In order to identify real-valued functions among arbitrary extended real

functions, one might be tempted to simply replace LpIRq by its non-extended

version, the frame LpIRq of partial real numbers [21], and say that an f P FpLq

is real-valued if it preserves (r5) and (r6). However, this is too restrictive and

it does not yield the proper notion. In fact, not even all semicontinuous would

be represented with such a definition. In Section 5, we define the class FpLq

of arbitrary real functions of L as a subset of FpLq by lattice-theoretic means

and characterize them as follows: an f P FpLq is real-valued if and only if
˜

Ž

rPQ
fpr,—q

¸˚

“ 0 “

˜

Ž

sPQ
fp—, sq

¸˚

.

Note that this condition is weaker that requiring that f preserves (r5) and

(r6). Indeed, instead of having
Ž

rPQ fpr,—q “ 1 “
Ž

sPQ fp—, sq, we only

have that those joins are dense elements of the frame SpLq. This approach

provides a faithful extension of the classical notions: given a T1-space X, one

has

FpXq » FpOXq and FpXq » FpOXq.

We also show that FpLq is isomorphic to CpBp SpLqqq, where Bp SpLqq denotes

the Booleanization of SpLq [6]. This has two important consequences. First,

our definition is equivalent to the one presented in [23] for subfit frames.

And second, FpLq can be equipped with a lattice-ordered ring structure that

making possible to consider a theory of rings of real functions.

Finally, in Section 6, we study when our definitions coincides with the one

presented in [12], that is, when one has FpLq “ Cp SpLqq and FpLq “ Cp SpLqq.

1. Preliminaries

1.1. Dedekind completion. For any subset A of a partially ordered set

pP,ďq, we will denote by
ŽPA (resp.

ŹPA) the supremum (resp. infimum)

of A in P in case it exists (we shall omit the superscript if it is clear from the

context).

A Dedekind-MacNeille completion (also called completion by cuts, nor-

mal completion or just MacNeille completion) of a poset P is a join- and
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meet-dense embedding ϕ : P ÑMpP q in a complete lattice (as usual, a map

ϕ : P ÑMpP q is said to be join-dense if and only if so is its image in MpP q;

that is, each element of MpP q is a join of elements from ϕrP s; meet-density

is defined dually). The Dedekind-MacNeille completion is the only complete

lattice in which the given poset is join- and meet-dense.

Sometimes a weaker kind of completion is more userful: a poset pP,ďq

is Dedekind (order) complete (or conditionally complete) if every non-void

subset A of P which is bounded from above has a supremum in P (and

then, in particular, every non-void subset B of P which is bounded from

below will have a infimum in P ). Of course, being complete is equivalent

to Dedekind complete plus the existence of top and bottom elements. A

Dedekind completion (or conditional completion) of P is a join- and meet-

dense embedding ϕ : P Ñ DpP q in a Dedekind complete poset DpP q. The

Dedekind completion is slightly smaller than the MacNeille completion: it

can be obtained from MpP q, in case P is directed, just by removing its top

and bottom elements.

For more information on universal properties of the Dedekind-MacNeille

and the Dedekind completion see [27, 1.3].

1.2. Frames. A frame (or locale) L is a complete lattice such that

a^
Ž

B “
Ž

ta^ b | b P Bu (1.1)

for all a P L and B Ď L; equivalently, it is a complete Heyting algebra with

Heyting operation Ñ satisfying the standard equivalence a^b ď c if and only

if a ď bÑ c. The pseudocomplement of an a P L is the element

a˚ “ aÑ 0 “
Ž

tb P L | a^ b “ 0u.

An element a P L is complemented if a_a˚ “ 1. For completemented elements

a P L the dual distributivity law also holds:

a_
Ź

B “
Ź

ta_ b | b P Bu

for all B Ď L. An element a P L is dense if a˚ “ 0 (equivalently, if a˚˚ “ 1).

A frame homomorphism is a map h : LÑM between frames which preserves

finitary meets (including the top element 1) and arbitrary joins (including

the bottom element 0). Then Frm is the corresponding category of frames

and their homomorphisms.

The most typical example of a frame is the lattice OX of open subsets of

a topological space X. The correspondence X ÞÑ OX is clearly functorial,

and consequently we have a contravariant functor O : TopÑ Frm where Top

denotes the category of topological spaces and continuous maps. There is also
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a functor in the opposite direction, the spectrum functor Σ: FrmÑ Top which

assigns to each frame L its spectrum ΣL, the space of all homomorphisms

ξ : LÑ t0, 1u with open sets Σa “ tξ P ΣL | ξpaq “ 1u for any a P L, and to

each frame homomorphism h : L Ñ M the continuous map Σh : ΣM Ñ ΣL

such that Σhpξq “ ξh. The spectrum functor is right adjoint to O, with

adjunction maps ηL : L Ñ OΣL, ηLpaq “ Σa and εX : X Ñ ΣOX, εXpxq “
x̂, x̂pUq “ 1 if and only if x P U (the former is the spatial reflection of the

frame L). A frame is said to be spatial if it is isomorphic to the frame of

open sets of a space.

For general notions and results concerning frames we refer to Johnstone

[18] or the recent Picado-Pultr [22]. The particular notions we will need are

the following: a frame L is:

- subfit if for each a, b P L such that a ę b there exists c P L such that

a_ c “ 1 ‰ b_ c;

- completely regular if a “
Ž

tb P L | băă au for each a P L, where băă a (b is

completely below a) means that there is tcr | r P QX r0, 1su Ď L such that

b ď c0, c1 ď a and cr ă cs (i.e. c˚r _ cs “ 1) whenever r ă s;

- extremally disconnected if a˚ _ a˚˚ “ 1 for every a P L.

1.3. Sublocales. A sublocale set (briefly, a sublocale) S of a locale L is a

subset S Ď L such that

(S1) for every A Ď S,
Ź

A is in S, and

(S2) for every s P S and every x P L, xÑ s is in S.

The system of all sublocales constitutes a coframe with the order given

by inclusion, meet coinciding with the intersection and the join given by
Ž

Si “ t
Ź

M |M Ď
Ť

Siu; the top is L and the bottom is the set t1u.

1.3.1. Closed and open sublocales. For any a P L, the sets cpaq “ Òa and

opaq “ ta Ñ b | b P Lu are the closed and open sublocales of L, respectively.

The map a ÞÑ cpaq is a coframe embedding Lop ãÑ SpLq providing an iso-

morphism c between Lop and the subcoframe cpLq of SpLq consisting of all

closed sublocales. On the other hand, denoting by opLq the subcoframe of

SpLq generated by all opaq, the correspondence a ÞÑ opaq establishes poset

embedding LÑ opLq. The following holds:

Facts. The following facts hold in SpLq.

(1) opaq and cpaq are complements of each other.

(2) cp0q “ 1, cp1q “ 0, cpaq _ cpbq “ cpa^ bq and
Ź

iPI cpaiq “ c p
Ž

iPI aiq.

(3) op0q “ 0, op1q “ 1, opaq ^ opbq “ opa^ bq and
Ž

iPI opaiq “ o p
Ž

iPI aiq.

(4) Each sublocale S P SpLq can be represented as S “
Ź

ipopaiq _ cpbiqq.



7

Given a sublocale S of L, its closure and interior are defined by

S “
SpLq
Ź

tcpaq | cpaq ě Su “ cp
Ź

Sq and S˝ “
SpLq
Ž

topaq | S ě opaqu.

1.3.2. Subfitness in terms of sublocales. A frame is subfit if and only if each

open sublocale is a join of closed sublocales. This was in fact how subfitness

was originally defined in [17].

1.3.3. Subspaces and induced sublocales. Each subspace A of a T0-space X

induces a sublocale of OX that comprises elements U P OX of the form

U “
Ť

tV P OX | V XA “ U XAu.

We will denote this sublocale by spAq. In particular given an open set U one

has

spUq “ opUq and spXzUq “ cpUq.

In general, given Ai Ď X for i P I, one has

sp
Ť

iPI

Aiq “

SpLq
Ž

iPI

spAiq.

Consequently, suprema of induced sublocales are also induced. Infima of

induced sublocales, in contrast, are not necessarily induced. Indeed, we do

not necessarily have spAXBq “ spAq ^ spBq.

1.3.4. Booleanization. We can associate with each frame L a complete Boolean

algebra BpLq consisting of all elements a “ a˚˚ and a frame homomorphism

β : L Ñ BpLq that maps each element a to its double pseudocomplement

a˚˚. BpLq is a sublocale of L. A sublocale S is said to be dense if S “ 1,

equivalently if 0 P S. Isbell’s density theorem states that each frame L has a

least dense sublocale, namely BpLq.

1.3.5. The frame SpLq. We will make the system of all sublocales of a locale

L into a frame SpLq “ SpLqop by considering the dual ordering: S1 ď S2 iff

S2 Ď S1. Thus, t1u is the top and L is the bottom in SpLq that we simply

denote by 1 and 0, respectively.

Remark. In what follows, we will be interested mainly in the frame SpLq

as it will play an important role in the modeling of discontinuous functions.

In consequence, we will consider sublocales as elements of this formal frame

almost always and, unless specifically stated otherwise, the order and the

lattice operations considered will be always those from SpLq. Accordingly, for

example, we will omit superscripts in joins and meets, except in ambiguous

situations. Also note also that we will be interested in dense elements S of
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the frame SpLq, which should not be confused with dense sublocales as in

described 1.3.4.

1.4. Continuous (extended) real functions. Using the basic homomor-

phism % : L
`

R
˘

Ñ LpRq determined on generators by

pr,—q ÞÑ pr,—q and p—, sq ÞÑ p—, sq (1.2)

for each r, s P Q, the f P CpLq are in a one-to-one correspondence with the

g P CpLq that turn defining relations (r5) and (r6) into identities in L (just

take g “ f%). In what follows we will keep the notation CpLq to denote also

the class inside CpLq of the f ’s that preserve (r5) and (r6).

CpLq and CpLq are partially ordered by

f ď g ðñ fpr,—q ď gpr,—q for all r P Q

ðñ gp—, sq ď fp—, sq for all s P Q.
(1.3)

Examples. For each r P Q, we have the constant function r P CpLq, given

by

rpp,—q “

$

&

%

0 if p ě r

1 if p ă r
and rp—, qq “

$

&

%

1 if q ą r

0 if q ď r

for all p, q P Q. One can similarly has two extended constant functions `8

and ´8 which are defined for each p, q P Q by

`8pp,—q “ 1 “ ´8p—, qq and `8 p—, qq “ 0 “ ´8pp,—q,

and they are precisely the top and bottom elements of CpLq.

An f P CpLq is said to be bounded if there exist p, q P Q such that p ď f ď

q. Equivalently, f is said to be bounded if and only if there is some rational

r such that f pp—,´rq _ pr,—qq “ 0, that is, fp´r, rq “ 1. We shall denote

by C˚pLq the set of all bounded members of CpLq. Obviously, all constant

functions are in C˚pLq.

As it is well known, CpLq and C˚pLq are lattices although in general not

Dedekind complete [5]. In CpLq (also in C˚pLq, since it is sublattice of CpLq)

binary joins are given by

pf _ gqpr,—q “ fpr,—q _ gpr,—q and pf _ gqp—, sq “ fp—, sq ^ gp—, sq

for all r, s P Q and binary meets are given by

pf ^ gqpr,—q “ fpr,—q ^ gpr,—q and pf ^ gqp—, sq “ fp—, sq _ gp—, sq

for all r, s P Q (see [16] for more details).
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1.5. The frame of (extended) partial reals. Dropping the relation (r2)

from the definition of the frame of reals yields the frame LpIRq of partial real

numbers. It was introduced in [21] as a pointfree counterpart of the partial

real line (also interval-domain) which was proposed by Dana Scott in [26] as

a domain-theoretic model for the real numbers. It is a successful idea that

has inspired a number of computational models for real numbers. Frame ho-

momorphisms LpIRq Ñ L are called continuous partial real functions [21] on

L. Similarly, dropping (r2) from the definition of the frame of extended reals

yields the frame LpIRq of extended partial real numbers [20]. Frame homo-

morphisms LpIRq Ñ L are called continuous extended partial real functions

[20] on L.

The sets

ICpLq and ICpLq

of continuous partial real functions on L and continuous extended partial real

functions on L, respectively, are partially ordered by f ď g iff

fpr,—q ď gpr,—q and gp—, sq ď fp—, sq (1.4)

for every r, s P Q.

We will also say that an f P ICpLq is bounded if there exist p, q P Q
such that p ď f ď q and we will denote by IC˚pLq the class of all bounded

functions of ICpLq.

1.5.1. Remarks. (1) The functions h P ICpLq that factor through the canon-

ical homomorphism ι : LpIRq Ñ LpRq, determined by the assignment (1.2),

are just those that turn the defining relation (r2) into an identity in L, that

is, those which satisfy hpr,—q _ hp—, sq “ 1 whenever r ă s. In view of this,

we will keep the notation CpLq to denote also the class inside ICpLq of the

functions h such that hpr,—q _ hp—, sq “ 1 whenever r ă s.

The assignment (1.2) also determines the canonical homomorphisms % : LpIRq Ñ
LpIRq and ι : LpIRq Ñ LpRq. An analogous argument motivates us to keep

ICpLq to denote the class inside ICpLq of the functions h turn the defining

relations (r5) and (r6) into identities in L and CpLq to denote the class inside

ICpLq of the functions h turn the defining relation (r2) into identities in L.

(2) In case f P CpLq, as in (1.3), the second condition on f and g in (1.4) is

needless because it follows from the first one:

gp—, rq “ gp
Ž

săr
p—, sqq “

Ž

săr
gp—, sq

ď
Ž

săr
gps,—q˚ ď

Ž

săr
fps,—q˚ ď fp—, rq,
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the last inequality because f being in CpLq then, by (r2), fps,—q_fp—, rq “ 1

(a similar argument shows that the first condition follows from the second one

whenever g P CpLq and so the two conditions are equivalent if both f, g are

in CpLq, as in (1.3)).

(3) There is a dual isomorphism ´p¨q : ICpLq Ñ ICpLq defined by

p´hqp—, rq “ hp´r,—q and p´hqpr,—q “ hp—,´rq for all r P Q.

When restricted to A “ CpLq,CpLq or ICpLq it yields a dual isomorphism

AÑ A.

1.5.2. Examples. For each a, b P L such that a ^ b “ 0 let χa,b denote the

bounded continuous partial real function given by

χa,bpr,—q “

$

’

’

&

’

’

%

0 if r ě 1,

a if 0 ď r ă 1,

1 if r ă 0,

and χa,bp—, sq “

$

’

’

&

’

’

%

1 if s ą 1,

b if 0 ă s ď 1,

0 if s ď 0,

for each r, s P Q. Similarly, let χa,b denote the continuous extended partial

real function given by

χa,bpr,—q “ a and χa,bp—, sq “ b

for each r, s P Q. Clearly, χa,b P C˚pLq and χa,b P CpLq if and only if a_b “ 1,

i.e. if and only if a is complemented with complement b.

2. Semicontinuous functions on frames

A lower resp. upper semicontinuous function on a space X is a continuous

map X Ñ Ru resp. X Ñ Rl, where Ru resp. Rl denotes the space of real

numbers with the upper topology resp. lower topology. One obtain their ex-

tended versions by replacing the real numbers by the extended real numbers,

that is, an extended lower resp. extended upper semicontinuous on X is a

continuous map X Ñ Ru resp. X Ñ Rl, where Ru resp. Rl denotes the space

of extended real numbers with the upper topology resp. lower topology. We

will denote by LSCpXq, LSCpXq, USCpXq and USCpXq the classes of lower

semicontinuous functions on X, extended lower semicontinuous functions on

X, upper semicontinuous functions on X and extended semicontinuous func-

tions on X, respectively.

In this section we will first analyze the pointfree counterpart of extended

semicontinuous functions and then introduce a conservative definition of semi-

continuous functions.
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2.1. Extended semicontinuous functions. Let LupRq be the subframe of

LpRq generated by elements pr,—q. The frame of open subsets Ru is isomor-

phic to LupRq. Since Ru is sober, one also has that ΣLupRq » Ru. By the

adjoint situation between frames and topological spaces we have the natural

isomorphisms

FrmpL,OXq » ToppX,ΣLq.

For L “ LupRq one obtains

FrmpLupRq,OXq » ToppX,Ruq “ LSCpXq.

Accordingly, regarding frame homomorphisms LupRq Ñ L as extended lower

semicontinuous functions on a general frame L provide a conservative exten-

sion of the classical notion. One can argue dually to show that regarding

frame homomorphisms LlpRq Ñ L, where LlpRq is the subframe of LpRq gen-

erated by elements p—, sq, as extended upper semicontinuous functions on L

extends the classical notion.

The f in FrmpLupRq, Lq resp. FrmpLlpRq, Lq are in one-to-one correspon-

dence with the g P Cp SpLqq such that gpr,—q P cL for all r P Q resp.

gp—, sq P cL for all s P Q [12]. This motivates the following definition.

We will say that g P Cp SpLqq is extended lower semicontinuous functions on

L if gpr,—q is closed for all r P Q and we will say that g is extended upper

semicontinuous functions on L if gp—, sq is closed for all s P Q. We will de-

note by LSCpLq the set of all extended lower semicontinuous functions on L

and by USCpLq the set of all extended upper semicontinuous functions on L.

Furthermore, the f in CpLq are in one-to-one correspondence with the g in

Cp SpLqq such that fpr,—q, fp—, sq P cL for all r, s P Q. Accordingly, we will

keep CpLq to denote the class LSCpLq XUSCpLq.

2.2. Semicontinuous functions. More complicated is to find proper point-

free counterparts of the non-extended versions of this notions. Indeed, as

pointed out in [15], since the space Ru is not sober, lower semicontinuous

functions defined on X are not properly represented by frame homomorphism

LupRq Ñ L, where LupRq is the subframe of LpRq generated by elements

pr,—q. One has that ΣLupRq is homeomorphic to the topological space R`8
with set of points RYt`8u endowed with the upper topology. Consequently,

one has an isomorphism

Ω: ToppX,R`8q Ñ FrmpLupRq,OXq

where Ωpϕq : LupRq Ñ OpRq is determined by

Ωpϕqpr,—q “ ϕ´1pr,`8s
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for each r P Q. Given f P FrmpLupRq,OXq, one has

Ω´1pfqpxq “
Ž

tr P Q | x P fpr,—qu

for each x P X.

In [15, Corollary 4.3] (see also [12]) the authors claimed that LSCpXq

is isomorphic, via the restriction of Ω, with those frame homomorphisms

g : LupRq Ñ OX such that

SpOXq
Ž

rPQ
opgpr,—qq “ 1. (2.1)

(Note that in [15] open frame congruences ∆gpr,—q are used instead of sublo-

cales.) However, as the following examples shows, this condition is too restric-

tive for a faithful representation of all real lower semicontinuous functions:

2.2.1. Example. Let ϕ : QÑ R`8 be a one-to-one map such that ϕpQq Ď N.

Note that ϕ is lower semicontinuous, as, for all r P Q, ϕ´1pr,`8s is cofinite

and, consequently, open. Further, as ϕ´1pr,`8q is also dense, one has that

so is opϕ´1pr,`8sq “ spϕ´1pr,—,`8sq as a sublocale. In consequence, by

Isbell’s density theorem,

Ž

rPQ
opΩpϕqpr,—qq “

Ž

rPQ
opϕ´1pr,`8sq ‰ 1

since, for all r P Q, one has opϕ´1pr,`8sq ď BpOQq ‰ 1 in SpR`8q.

Condition (2.1) seems to be an attempt to reflect the fact that ϕ P ToppX,R`8q
takes values in R if and only if

Ş

rPQ
ϕ´1pr,`8s “ ∅.

As the previous example shows, this is not the case. After all, in SpLq, joins

of induced sublocales are not necessarily induced. On the other hand, again

in SpLq, a meet of sublocales induced by subspaces is the sublocale induced

by the union of those subspace. This suggests an alternative approach, as

ϕ P ToppX,R`8q takes values in R if and only if

Ť

rPQ
ϕ´1p´8, rs “ X.

2.2.2. Proposition. Let X be a T0-space. The restriction of Ω yields an

isomorphism between LSCpXq and

A “

#

f : LupRq Ñ OX P Frm |
SpOXq
Ź

rPQ
cpfpr,—qq “ 0

+

.
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Proof. For each ϕ P LSCpXq, one has

Ź

rPQ
cpΩpϕqpr,—qq “

Ź

rPQ
cpϕ´1pr,`8sq

“
Ź

rPQ
spϕ´1p´8, rsq

“ sp
Ť

rPQ
ϕ´1p´8, rsq

“ spXq “ OX “ 0 SpOXq.

On the other hand, let f : LupRq Ñ OX P Frm such that
Ź

rPQ cpfpr,—qq “

0. Since

s

˜

Ť

rPQ
Xzfpr,—q

¸

“
Ź

rPQ
spXzfpr,—qq

“
Ź

rPQ
cpfpr,—qq

“ 0 SpOXq “ OX,

one has
Ť

rPQ
Xzfpr,—q “ X.

Consequently, for each x P X there exists some r P Q such that x R fpr,—q.

Hence, Ω´1pfqpxq ď r by (r5). Accordingly, Ωpfqpxq P R for all x P X. �

2.2.3. Remark. As considered in [12], having SpLq as common codomain is

a convenient approach that allows us to consider lower and upper semicon-

tinuous functions in a common setting. However, note that while

Ž

rPQ
opgpr,—qq “ 1

implies
Ź

rPQ
cpgpr,—qq “ 0,

as
˜

Ž

rPQ
opgpr,—qq

¸˚

“
Ź

rPQ
cpgpr,—qq,

Example 2.2.1 shows that the converse implication does not hold in gen-

eral. In consequence, this general setting where both lower and upper semi-

continuous functions can be defined has to include extended real functions

LpRq Ñ SpLq. By the isomorphism L » cpLqop, the following definitions

properly generalize the classical notion of semicontinuous functions.
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2.3. Given a frame L, we will say that

(1) a lower semicontinuous function on a L is a frame homomorphism

f : LpRq Ñ SpLq such that

(l1) fpr,—q P cL for all r P Q,

(l2)
Ž

rPQ fpr,—q “ 1

(l3)
Ź

rPQ fpr,—q “ 0.

(2) an upper semicontinuous function on L is a frame homomorphism

f : LpRq Ñ SpLq such that

(u1) fp—, sq P cL for all s P Q,

(u2)
Ž

sPQ fp—, sq “ 1

(u3)
Ź

sPQ fp—, sq “ 0.

We will denote by LSCpLq the class of all lower semicontinuous functions on

L and by USCpLq the class of all upper semicontinuous functions on L.

As in the case of continuous extended real functions, by the isomorphism

between L and cpLqop, the f P CpLq are in one-to-one correspondence with

the g P Cp SpLqq such that gpr,—q, gp—, sq P cpLq for all r, s P Q. Accordingly,

in what follows we will keep CpLq to denote the class of g in Cp SpLqq such

that gpr,—q and gp—, sq are closed for all r, s P Q. Note that

CpLq “ LSCpLq XUSCpLq.

2.3.1. Remark. It is straighforward to check that the restriction of the dual

isomorphism in 1.5.1(3) yields dual isomorphims LSCpLq Ñ USCpLq and

LSCpLq Ñ USCpLq.

3. The Dedekind-MacNeille completion of CpLq

In [13, 14, 21] several representations of the Dedekind completions of the

lattices CpLq and C˚pLq (see also [20]) were presented. For the aim of this

paper we will need a description of Dedekind-MacNeille completion of the

lattice of continuous extended real functions CpLq and we will derive it from

the Dedekind completion of C˚pLq presented in [21].

3.0.2. Proposition. ICpLq is isomorphic to

tg P ICpLq | ´1 ď g ď 1u.

Proof. Let α : QÑ QXp´1, 1q be an order isomorphism with inverse β. Given

f P ICpLq. Let Ψpfq : LpIRq Ñ L be a frame homomorphism determined on
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generators by

Ψpfqpr,—q “

$

’

’

’

’

’

&

’

’

’

’

’

%

0 if 1 ď r

fpβprq,—q if ´ 1 ă r ă 1
Ž

tPQ fpt,—q if r “ ´1

1 if r ă ´1

and

Ψpfqp—, sq “

$

’

’

’

’

’

&

’

’

’

’

’

%

1 if 1 ă s
Ž

tPQ fp—, tq if s “ 1

fp—, βpsqq if ´ 1 ă s ă 1

0 if s ď ´1

for each r, s P Q. One can easily check that this assignment turns the defining

relations (r1), (r3)–(r6) into identities in L, consequently, it actually deter-

mines a frame homomorphism. Obviously, ´1 ď Ψpfq ď 1. Therefore,

f ÞÑ Ψpfq defines a map

Ψ: ICpLq Ñ tg P ICpLq | ´1 ď g ď 1u.

One can easily check that Ψ is monotone.

Dually, given g P ICpLq such that ´1 ď g ď 1, let Φpgq : LpIRq Ñ L be a

frame homomorphism determined on generators by

Φpgqpr,—q “ gpαprq,—q and Φpgqp—, sq “ gp—, αpsqq

for each r, s P Q. Obviously, these assignments turn the defining relation (r1),

(r3) and (r4) into identities in L. Therefore, f ÞÑ Φpgq defines a map

Φ: tg P ICpLq | ´1 ď g ď 1u Ñ ICpLq

which is obvioulsy monotone. Finally, we shall check that Ψ and Φ are inverse

to each other. Let f P ICpLq. Then one has

ΦΨpfqpr,—q “ Ψpfqpαprq,—q “ fpβαprq,—qq “ gpr,—q

for each r P Q. Dually, one can check that ΦΨpfqp—, sq “ fp—, sq for each

s P Q. We conclude that ΦΨpfq “ f . On the other hand, let g P ICpLq such

that ´1 ď g ď 1. Then for each r P Q such that 1 ă r or r ă ´1 one trivially

has ΨΦpgqpr,—q “ fpr,—q. If ´1 ă r ă 1, one has

ΨΦpgqpr,—q “ Φpβprq,—q “ gpαβprq,—q “ gpr,—q,
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Finally, for r “ ´1, one has

ΨΦpgqp´1,—q “
Ž

tPQ
Φpgqpt,—q

“
Ž

tPQ
gpαptq,—q

“
Ž

´1ără1
gpt,—q

“ gp´1,—q

by (r3). Analogously, one can check that ΨΦpgqp—, sq “ gp—, sq for all s P Q.

Consequently, Φ´1 “ Ψ. �

3.1. Hausdorff continuous functions. We will say that f P ICpLq is

Hausdorff continuous if

fpr,—q˚ ď fp—, sq and fp—, sq˚ ď fpr,—q for all r ă s in Q.

We will denote by HpLq the family of all Hausdorff continuous functions in

ICpLq and by HpLq the family ICpLq X HpLq. It was shown in [21] that, for

a complete regular frame L,

H˚pLq “ IC˚pLq XHpLq

is a Dedekind complete lattice and the inclusion of C˚pLq into H˚pLq is its

Dedekind completion.

3.1.1. Remarks. (1) In [21], the family H˚pLq was denoted by C˚pLq_̂. The

motivation for our notation comes from the fact that functions in H˚pLq are

the pointfree counterpart of bounded Hausdorff continuous functions (see

[1, 7]).

(2) Given f P ICpLq, one has that f P H˚pLq if and only if Φpfq P HpLq. In

fact, one has that

Φpfqpr,—q˚ “ fpαprq,—q˚ ď fp—, αpsqq “ Φpfqp—, sq

for all r ă s in Q if and only if gpp,—q˚ ď gpq,—q for all p ă q in Q. One can

check the other condition dually. Consequently, HpLq is isomorphic to

tf P H˚pLq | ´1 ď f ď 1u.

(3) Similarly, f P CpLq if and only if Φpfq P CpLq. Simply note that one has

Φpfqpr,—q _ Φpfqp—, sq “ fpαprq,—q _ fp—, αpsqq “ 1

for all r ă s in Q if and only if fpp,—q _ fp—, qq “ 1 for all p ă q in Q.

Consequently, CpLq is isomorphic to

tg P C˚pLq | ´1 ď f ď 1u.
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(4) It is straightforward to check that the dual isomorphism ´p¨q : ICpLq Ñ

ICpLq in 1.5.1 (3) restricted to HpLq yields a dual isomorphism HpLq Ñ HpLq.

(5) Recall χa,b and χa,b from 1.5.2. One has that χa,b and χa,b are Hausdorff

continuous if and only if a “ b˚ and b “ a˚, that is, if and only if a “ a˚˚

and b “ a˚.

3.1.2. Lemma. For each f P HpLq and r, s P Q, one has

(1) fpr,—q “
Ž

pąr fp—, pq
˚ “

Ž

pąr fpp,—q
˚˚ and

(2) fp—, sq “
Ž

qăs fpq,—q
˚ “

Ž

qăs fp—, qq
˚˚.

Proof. In order to check (1), simply note that for each r ą p in Q, one has

fpp,—q ď fpp,—q˚˚ ď fp—, pq˚ ď fpr,—q,

since fp—, pq ď fpp,—q˚ by (r1). Consequently, by (r3),

fpr,—q “
Ž

pąr
fpp,—q “

Ž

pąr
fp—, pq˚ “

Ž

pąr
fpp,—q˚˚.

One can check (2) dually. �

3.1.3. Remark. By 3.1.2, the argument in 1.5.1 is also valid if f P HpLq and

consequently the second condition on f and g in (1.4) is needless because it

follows from the first one. Dually, also the first condition follows from the

second one whenever g P HpLq.

3.2. The Dedekind-MacNeille completion of CpLq.

3.2.1. Proposition. Let L be a completely regular frame. Then HpLq is the

Dedekind-MacNeille completion of CpLq.

Proof. Just note that since H˚pLq is the Dedekind completion of C˚pLq then

tf P H˚pLq | ´1 ď f ď 1u

is the Dedekind completion of

tf P C˚pLq | ´1 ď f ď 1u.

By the remark above, we conclude that HpLq is the Dedekind completion of

CpLq. As CpLq is bounded, it is its Dedekind-MacNeille completion. �

3.2.2. Remark. Given a completely regular frame L, one can obtain joins

and meets in HpLq from those of H˚pLq (see [21]). Let tfiuiPI Ď HpLq. Then

for
ŽHpLq

iPI “ f_ one has

f_pr,—q “
Ž

pąr

ˆ

Ž

iPI

fipp,—q

˙˚˚

and f_p—, sq “
Ž

qăs

ˆ

Ž

iPI

fipq,—q

˙˚
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Dually, for
ŹHpLq

iPI “ f^, one has

f^pr,—q “
Ž

pąr

ˆ

Ž

iPI

fip—, qq

˙˚

and f^p—, sq “
Ž

qăs

ˆ

Ž

iPI

fip—, qq

˙˚˚

.

3.2.3. Proposition. HpLq is isomorphic to CpBpLqq.

Proof. For each f P HpLq define Γpfq “ βL ¨ f : LpIRq Ñ BpLq. Note that

fpr,—q _ fp—, sq is dense in L whenever r ă s, as

pfpr,—q _ fp—, sqq˚ “ fpr,—q˚ ^ fp—, sq˚ ď fpr,—q˚ ^ fpr,—q “ 0.

Consequently,

fpr,—q˚˚ _BpLq fp—, sq
˚˚ ě pfpr,—q _L fp—, sqq

˚˚
“ 1.

Thus Γpfq P CpBpLqq. Obviously, the map Γ: HpLq Ñ CpBpLqq is order-

preserving.

On the other hand, for each g P CpBpLqq, let ∆pgq : LpIRq Ñ L be the

frame homomorphism determined on generators as follows:

∆pgqpr,—q “
L
Ž

pąr
gpp,—q and ∆pgqp—, sq “

L
Ž

qăs
gp—, qq.

It is straightforward to check that those assignments turn the defining rela-

tions (r1), (r3) and (r4) into identities in L. Let r ă s in Q. For each p, q P Q
such that r ă p ă q ă s, one has

∆pgqpr,—q˚ ď gpp,—q˚ ď gp—, qq ď ∆pgqp—, sq.

Similarly, ∆pgqp—, sq˚ ď ∆pgqpr,—q. Therefore one has a map ∆: CpBpLqq Ñ

HpLq. It is straightforward to check that it is order-preserving.

Finally, for each f P HpLq, by Lemma 3.1.2, one has

∆pΓpfqqpr,—q “
L
Ž

pąr
Γpfqpp,—q “

L
Ž

pąr
fpp,—q˚˚ “ fpr,—q

for each r P Q. Dually, one can check that ∆pΓpfqqp—, sq “ fp—, sq for all

s P Q. For each g P CpBpLqq, one has

Γp∆pgqqpr,—q “ ∆pgqpr,—q˚˚

“

˜

L
Ž

pąr
gpr,—q

¸˚˚

“

BpLq
Ž

pąr
gpr,—q “ gpr,—q.

Thus ∆ ¨ Γ “ 1HpLq and Γ ¨∆ “ 1CpBpLqq. �
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3.2.4. Corollary. For each L completely regular frame, CpBpLqq is isomor-

phic to the Dedekind-MacNeille completion of CpLq.

Finally, we close this section by a corollary that extends [21, Corollary 4.8].

3.2.5. Proposition. For any completely regular frame L, the following are

equivalent:

(1) L is extremally disconnected.

(2) CpLq “ HpLq.

(3) CpLq is complete.

Proof. (1) ùñ (2): Let f P HpLq. If L is extremally disconnected, for each

r ă t ă s in Q, one has, by 3.1.2,

fpr,—q _ fp—, sq “
Ž

pąr
fpp,—q˚˚ _

Ž

qăs
fps,—q˚

ě fpt,—q˚˚ _ fpt,—q˚ “ 1.

Consequently, f P CpLq.

(2) ùñ (1): If HpLq “ CpLq, then χa˚,a˚˚ is a continuous extended real

function on L for each a P L. Consequently,

1 “ χa˚,a˚˚p0,—q _ χa˚,a˚˚p—, 1q “ a˚ _ a˚˚.

Therefore L is extremally disconnected.

(2) ðñ (3): This follows trivially from 3.2.1. �

4. Arbitrary extended real functions

The motivation for our approach to arbitrary real functions is based on

the following fact: for a T1 space X, FpXq is the smallest complete lattice

containing all extended upper and lower semicontinuous functions, in other

words, FpXq the is Dedekind-MacNeille completion of LSCpXq Y USCpXq.

We begin by presenting the definition of arbitrary extended real functions in

this section.

4.1. A space X is T1 if and only if LSCpXq is meet-dense in F pXq if and

only if USCpXq is join-dense in FpXq. Indeed, given X is a T1-space, x P X

and p P R, the map gx,p : X Ñ R defined as follows is lower semicontinuous:

gx,ppyq “

$

&

%

p if y “ x

`8 else
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for each y P X. Given an arbitrary extended real function f : X Ñ R, one

has that

f “
Ź

xPX

gx,gpxq.

Accordingly, LSCpXq is meet-dense in FpXq.

On the other hand, if LSCpXq is meet dense in FpXq, in particular, given

x P X and p P R, gx,p is a meet of extended lower semicontinuous functions. In

consequence, there exists some g P LSCpXq such that g ‰ `8 and gx,q ď g.

Then g´1pq,`8q “ Xztxu P OX. Thus X is T1.

By the dual order-isomorphism ´p¨q : FpXq Ñ FpXq and the fact that

it restricts to a dual order isomorphism between LSCpXq and USCpXq, we

conclude that X is T1 if and only if USCpXq join dense in F pXq.

4.2. The Dedekind-MacNeille completion of LSCpLq Y USCpLq. For

each a P L and q P Q, let us denote by la,q the frame homomorphism LpRq Ñ
SpLq determined on generators by the assignment

pr,—q ÞÑ

$

&

%

cpaq if r ě q

1 if r ă q
and p—, sq ÞÑ

$

&

%

opaq if s ą q

0 if s ď q

for each r, s P Q. Obviously la,q P LSCpLq.

4.2.1. Lemma. A frame L is subfit if and only if each S P Bp SpLqq is a

meet of closed sublocales.

Proof. First let L be a subfit frame. Recall that each S P SpLq can be

represented as
Ž

iPI

cpaiq ^ opbiq

in SpLq. Since opaiq _ cpbiq is complemented for each i P I, one has

S˚ “

ˆ

Ž

iPI

popaiq _ cpbiqq
˚

˙˚

“
Ź

iPI

popaiq _ cpbiqq
˚˚

“
Ź

iPI

opaiq _ cpbiq.

If L is subfit, for each i P I, there exists tdjujPJi Ď L such that

opaiq “
Ź

jPJi

cpdjq.

Since, for each i P I, cpbiq is complemented, one has
˜

Ź

JPJi

cpdjq

¸

_ cpbiq “
Ź

jPJi

pcpdjq _ cpbiqq “
Ź

jPJi

cpdj _ biq
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Therefore

S˚ “
Ź

iPI

Ź

jPJi

cpdj _ biq.

In consequence, all sublocales in Bp SpLqq are meets of closed sublocales.

On the other hand, if each S P SpLq is a meet of closed sublocales, in

particular, so are all open sublocales as they are complemented. �

4.2.2. Proposition. Let L be a subfit frame. Then LSCpLq is meet-dense in

Cp SpLqq and USCpLq is join-dense in Cp SpLqq.

Proof. Let f P Cp SpLqq and

Aq “ ta P L | cpaq ě fpq,—q˚˚u.

for each q P Q. Note that, as L is subfit, one has

fpq,—q˚˚ “
Ź

aPAq

cpaq.

We shall show that

f “
Hp SpLqq
Ź

qPQ,aPAq

la,q.

Recall that Hp SpLqq is the Dedekind-MacNeille completion of Cp SpLqq, there-

fore complete. By 3.2.2, for each r P Q, one has
˜

Hp SpLqq
Ź

qPQ,aPAq

la,q

¸

pr,—q “
Ž

sąr

˜

Ž

qPQ

Ž

aPAq

la,qp—, sq

¸˚

“
Ž

sąr

Ź

qPQ

Ź

aPAq

la,qp—, sq
˚

“
Ž

sąr

Ź

qăs

Ź

aPAq

cpaq.

Since Aq Ď As whenever q ă s, we conclude that
˜

Hp SpLqq
Ź

qPQ,aPAq

la,q

¸

pr,—q “
Ž

sąr

Ź

aPAs

cpaq “
Ž

sąr
fps,—q˚˚ “ fpr,—q

and accordingly

f “
Hp SpLqq
Ź

qPQ,aPAq

la,q.

Therefore LSCpLq in meet-dense in Cp SpLqq. The fact that USCpLq is join-

dense in Cp SpLqq follows easily from the dual isomorphism ´p¨q : Cp SpLqq Ñ

Cp SpLqq. �

4.2.3. Corollary. Let L be a subfit frame. Then the Dedekind-MacNeille

completions of LSCpLq YUSCpLq and Cp SpLqq coincide.
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4.3. Arbitrary extended real function on L. 3.2.1 and 4.2.3, combined

with the fact that SpLq is always completely regular, motivate to define arbi-

trary extended real functions on a frame L as extended Hausdorff continuous

functions on SpLq, that is, an arbitrary extended real function on L is a frame

homomorphism

f : LpIRq Ñ SpLq

such that fpr,—q˚ ď fp—, sq and fp—, sq˚ ď fpr,—q for all r ă s. We will

denote by

FpLq

the family of all arbitrary extended real functions on a subfit frame L

4.3.1. Remark. By 3.2.3, one has that

FpLq » CpBp SpLqqq.

4.4. Joins and meets in FpLq. For the sake of completeness, we provide

formulae for joins and meets in FpLq, even though this is just a particular

case of the lattice operations on the lattice of extended Hausdorff continuous

functions on an arbitrary frame described in 3.2.2. Let tfiuiPI Ď FpLq. Then

for
ŽFpLq

iPI “ f_ one has

f_pr,—q “
Ž

pąr

ˆ

Ž

iPI

fipp,—q

˙˚˚

and f_p—, sq “
Ž

qăs

ˆ

Ž

iPI

fipq,—q

˙˚

for each r P Q. Dually, for
ŹFpLq

iPI “ f^, one has

f^pr,—q “
Ž

pąr

ˆ

Ž

iPI

fip—, pq

˙˚

and f^p—, sq “
Ž

qăs

ˆ

Ž

iPI

fip—, qq

˙˚˚

.

for each s P Q.

5. Arbitrary real functions

In this section we will address the main goal of the paper: defining arbitrary

real functions on a frame L. One might be tempted to simply replace LpIRq by

LpIRq in the definition of FpLq. However, one would want FpLq to contain all

semicontinuous functions but, for instance, a lower semicontinuous function

f P LSCpLq does not necessarily turn the defining relation (r6) into the

identity in SpLq.
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5.1. Identifying real-valued functions. An arbitrary extended real func-

tion f : X Ñ R is real-valued, that is, f P FpXq, if and only if

(1) f _FpXq g “ `8 implies g “ `8,

(2) f ^FpXq g “ ´8 implies h “ ´8.

Accordingly, we will say that f P FpLq is real-valued or an arbitrary real

function on L if

(1) f _FpLq g “ `8 implies g “ `8,

(2) f ^FpLq g “ ´8 implies h “ ´8.

We will denote by FpLq the class of all arbitrary real functions on L.

5.1.1. Remark. It is straightforward to check that the dual isomorphism

´p¨q : FpLq Ñ FpLq from 3.1.1 (4) when restricted to FpLq yields a dual

isomorphism FpLq Ñ FpLq.

5.1.2. Proposition. Let L be a frame and f P FpLq. The following are

equivalent:

(1) f _FpLq g “ `8 implies g “ `8,

(2)
´

Ž

sPQ fp—, sq
¯˚

“ 0,

(3)
Ź

sPQ fpr,—q “ 0.

Proof. (1) ùñ (2): Let f P FpLq such that f _FpLq g “ `8 implies g “ `8.

Let S P SpLq. Recall χS˚˚,S˚ from 1.5.2. Obviously, χS˚˚,S˚ P FpLq and

χS˚˚,S˚ “ `8 if and only if S˚˚ “ 1. Consequently, if S˚˚ ‰ 1, one has

f _FpLq χS˚˚,S˚ ‰ `8. Then one has

0 ‰
Ž

sPQ

´

f _FpLq χS˚˚,S˚

¯

p—, sq

“
Ž

sPQ

Ž

qăs
pfpq,—q _ χS˚˚,S˚pq,—qq˚

“
Ž

sPQ
fps,—q˚ ^ χS˚˚,S˚ps,—q˚

“
Ž

sPQ
fps,—q˚ ^ S˚

“ S˚ ^
Ž

sPQ
fps,—q˚.

Therefore, by 3.1.2,

S˚ ^
Ž

sPQ
fp—, sq ‰ 0

whenever S˚˚ ‰ 1, equivalently, whenever S˚ ‰ 0. We conclude that
˜

Ž

sPQ
fp—, sq

¸˚

“ 0.
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(2) ðñ (3): This follows easily from the fact that

fp—, tq˚ ď fps,—q ď fp—, sq˚

for all s ă t in Q and
˜

Ž

sPQ
fp—, sq

¸˚

“
Ź

sPQ
fp—, sq˚.

(2) ùñ (1): Let g P FpLq such that f _ g “ `8. For each q P Q, one has

0 “ pf _ gqp—, qq “
Ž

săq
pfps,—q _ gps,—qq˚ “

Ž

săq
pfps,—q˚ ^ gps,—q˚q.

Then gps,—q˚ ď fps,—q˚˚ for each s P Q, as fps,—q˚ ^ gps,—q˚ “ 0. More-

over, for each r ă s in Q one has

gpr,—q˚ ď fps,—q˚˚

since gpr,—q ě gps,—q. One also has

gps,—q˚ ď fpr,—q˚˚

as fps,—q ď fpr,—q. In consequence,

gps,—q˚ ď
Ź

rPQ
fpr,—q˚˚

“

˜

Ž

rPQ
fpr,—q˚

¸˚

ď

˜

Ž

rPQ
fp—, rq

¸˚

“ 0.

Then, by (r1), one has

gp—, sq ď gps,—q˚ “ 0

for all s P Q. We conclude that g “ `8. �

By a dual argument, we conclude the folllowing.

5.1.3. Corollary. Let L be a frame and f P FpLq. The following are equiv-

alent:

(1) f is real-valued,

(2)
´

Ž

rPQ fpr,—q
¯˚

“ 0 “
´

Ž

sPQ fp—, sq
¯˚

,

(3)
Ź

sPQ fp—, sq “ 0 “
Ź

rPQ fpr,—q.

5.1.4. Proposition. For any frame L,

LSCpLq “ FpLq X LSCpLq and USCpLq “ FpLq XUSCpLq.
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Proof. Let f P FpLq X LSCpLq. In order to show that f P LSCpLq we only

have to check that condition (l2) in 2.3 holds. For each r P Q, there exists ar

such that fpr,—q “ cparq. Then

0 “

˜

Ž

rPQ
fpr,—q

¸˚

“
Ź

rPQ
oparq “ op

Ž

rPQ
arq.

Accordingly,
Ž

rPQ ar “ 1. We conclude that

Ž

rPQ
fpr,—q “

Ž

rPQ
cparq “ c

˜

Ž

rPQ
ar

¸

“ cp1q “ 1.

Consequently, one has

FpLq X LSCpLq Ď LSCpLq.

The reverse inclusion is straightforward. One can check dually that USCpLq “

FpLq XUSCpLq. �

5.2. Conservativeness. Recall that the poset of extended semicontinuous

functions on a space is isomorphic to the poset of extended semicontinuous

functions on its frame of open sets. Taking into account that for a T1-space

X one has that OX is subfit and that the Dedekind-MacNeille completion of

a poset is unique up to isomorphism, we obtain

FpXq » FpOXq.

Furthermore, as the definition of real-valued functions only relies on the order

structure of FpOXq, one can easily conclude that

FpXq » FpOXq.

5.3. Semicontinuous regularizations. We shall show now how to extend

lower and upper regularizations studied in [10] to our new setting (see also

[12]). The lower regularization f˝ P LSCpLq of f P FpLq is determined on

generators by

f˝pr,—q “
Ž

pąr
fpp,—q and f˝p—, sq “

Ž

qăs

´

fpq,—q
¯˚

for each r, s P Q. It is straightforward to check that this assignment turn the

defining relations (r1)–(r4) into identities in SpLq. Further, if f is real-valued,

then
Ź

rPQ
f˝pr,—q ď

Ź

rPQ
fpr,—q “ 0,
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thus (l3) holds. However (l2) does not hold in general: f˝ P LSCpLq if and

only if
Ž

rPQ
fpr,—q “ 1.

Dually, the upper regularization f´ P USCpLq of f P FpLq is defined by

f´ “ ´p´fq˝.

An easy computation gives

f´pr,—q “
Ž

pąr

´

fp—, pq
¯˚

and f´p—, sq “
Ž

qăs
fp—, qq

for each r, s P Q. Further, one has that f´ P USCpLq if f P FpLq and

Ž

sPQ
fp—, sq “ 1.

One can follow the arguments in [12, Propositions 7.3 and 7.4] to show

that in our new setting p¨q˝ : FpLq Ñ LSCpLq resp. p¨q´ : FpLq Ñ USCpLq is

an interior-like operator resp. a closure-like operator.

5.4. An alternative definition for arbitrary real functions on a frame L is con-

sidered in [23] where, in the particular where L is subfit, arbitrary real func-

tions are homomorphism g : LpRq Ñ BpSpLqq (see also [24]). Even though

in [23] sublocales are ordered by inclusion, we can equivalently keep the

dual order as in the rest of this paper, since BpSpLqq is a Boolean algebra,

thus consequently it is dually isomorphic to itself. Recall the isomorphism

Γ: FpLq Ñ CpBp SpLqqq from 3.2.3. Note that, for f P FpLq, one has

1 “
Bp SpLqq
Ž

rPQ
Γpfqpr,—q “

˜

SpLq
Ž

rPQ
fpr,—q˚˚

¸˚˚

if and only if

0 “

˜

SpLq
Ž

rPQ
fpr,—q˚˚

¸˚

“

SpLq
Ź

rPQ
fpr,—q˚ “

˜

SpLq
Ž

rPQ
fpr,—q

¸˚

.

Analogously, one has
Bp SpLqq
Ž

sPQ
Γpfqp—, sq “ 1

if and only if
˜

SpLq
Ž

sPQ
fp—, sq

¸˚

“ 0.

Consequently, the isomorphism Γ restrists to an isomorphism

FpLq Ñ CpBp SpLqqq,
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showing that both approaches to the notion of arbitrary real functions are

equivalent for subfit frames.

Furthermore, this shows that we can define algebraic operations in such

a way that FpLq becomes a lattice-ordered ring. Consequently, there is no

impediment to develop a theory of rings of real functions in this setting.

6. FpLq vs. Cp SpLqq

We conclude this article by analyzing the relation between our approach to

arbitrary real functions and the one adopted in [12]. The following diagram

summarizes the relations between the classes of functions considered in this

paper (each arrow represents an inclusion, which is strict in the general case):

FpLq

LSCpLq Cp SpLqq USCpLq

FpLq CpLq

LSCpLq Cp SpLqq USCpLq

CpLq

The only inclusion that we have not explicitly considered yet, Cp SpLqq Ď

FpLq, follows from 5.1.3, since

Ž

rPQ
fpr,—q “ 1 “

Ž

sPQ
fp—, sq

trivially implies
˜

Ž

rPQ
fpr,—q

¸˚

“ 0 “

˜

Ž

sPQ
fp—, sq

¸˚

.

The difference between the extended and non-extended cases has already

been analyzed in 2 and 4. By 3.2.5, we know that

FpLq “ Cp SpLqq
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if and only if SpLq is extremally disconnected. More complicated is the case

of real-valued functions. By the chararcterization of Banaschewski-Hong [5,

Proposition 1], one has that Cp SpLqq is Dedekind complete if and only if

SpLq is extremally disconnected. Since SpLq is not extremally disconnected

in general, it follows from the following proposition that

FpLq ‰ Cp SpLqq

in general.

6.0.1. Proposition. For any frame L, FpLq is Dedekind complete.

Proof. Let tfiuiPI Ď FpLq and f P FpLq such that fi ď f for all i P I. As

FpLq is complete, there exists

f_ “
FpLq
Ž

iPI

fi P FpLq.

As f_ ď f , one has f_pr,—q ď fpr,—q for all r P Q and consequently
Ź

rPQ
f_pr,—q ď

Ź

rPQ
fpr,—q “ 0.

As fi ď f for each i P I, one has fp—, sq ď fip—, sq for all s P Q. Therefore
Ź

sPQ
f_p—, sq ď

Ź

sPQ
fip—, sq “ 0.

We conclude that f_ is real-valued. Since FpLq is dually isomorphic to itself,

then FpLq is Dedekind complete. �

6.0.2. Example. Let spQq resp. spIq be the sublocale of OR induce by the

subspace Q of all rational points resp. by the subspace I of all irrational

points. One can check that spQq and spIq are pseudocomplement to each

other in SpORq, that is, spQq˚ “ spIq and spIq˚ “ spQq. Therefore, χspQq,spIq
is a Hausdorff continuous partial real function, that is, χspQq,spIq P FpLq.

Moreover, it is obviously real-valued. However, it is not in Cp SpORqq, as

χspQq,spIqp0,—q _ χspQq,spIqp—, 1q “ spQq _ spIq ď BpORq ‰ 1,

since both spQq and spIq are dense sublocales and consequently

OR ‰ BpORq Ď spQq _ spIq.

For the following proposition, recall that an element a P L is said to be a

cozero if there exists f P CpLq such that a “ fp—, 0q _ fp0,—q. In that case,

there exists g P CpLq such that a “ gp—, 1q (simply take g “ pp´fq^ fq`1).

See [3] for more details. A frame L is said to be a P-frame if each cozero

element is complemented and said to be an almost P-frame if a “ a˚˚ for each
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cozero element. Obvioulsy, if L is an almost P-frame, then 1 is the only dense

cozero. In fact, this is a sufficient condition [8]. Further, under extremal

disconnectedness, L is a P-frame iff and only if it is an almost P-frame.

6.0.3. Proposition. For any frame L, FpLq “ Cp SpLqq if and only if SpLq

is an extremally disconnected P-frame.

Proof. ùñ : For each S P SpLq, one has χS˚,S˚˚ P FpLq. If FpLq “ Cp SpLqq,

one has that

1 “ χS˚,S˚˚p0,—q _ χS˚,S˚˚p—, 1q “ S˚ _ S˚˚.

Consequently, SpLq is extremally disconnected.

On the other hand, let T be a dense cozero element of SpLq. Then there

exists g P Cp SpLqq such that T “ gp—, 1q. Le g1 “ pg _ 0q ^ 1. Obviously,

1 ď g1 ď 1. By the isomorphism Φ in 3.0.2, one has Φpg1q P FpLq. Then one

has
˜

Ž

rPQ
Φpg1qpr,—q

¸˚

“

ˆ

Ž

´1ără1
g1pr,—q

˙˚

ď g1p´1{2,—q˚ “ 1˚ “ 0,

since g1 ě 0, and
˜

Ž

sPQ
Φpg1qp—, sq

¸˚

“

ˆ

Ž

´1ăsă1
g1p—, sq

˙˚

“ g1p—, 1q˚

“ gp—, 1q˚ “ T ˚ “ 0,

since T is dense. Consequently, Φpg1q P FpLq. If FpLq “ Cp SpLqq, one has

1 “
Ž

sPQ
Φpg1qp—, sq

“
Ž

sPQ
g1p—, αpsqq

“
Ž

´1ăsă1
g1p—, sq

“ g1p—, sq “ gp—, 1q “ T.

ðù : Let f P FpLq. We already know that FpLq “ Cp SpLqq if SpLq is

extremally disconnected, consequently f turns (r2) into an identity in SpLq,

thus we only have to check (r5) and (r6). By the isomorphism Ψ from 3.0.2,

one has Ψpfq P Cp SpLqq and

Ψpfqp´1,—q “
Ž

rPQ
fpr,—q.
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Thus
Ž

rPQ fpr,—q is a cozero, which is dense by 5.1.3. In consequence,
Ž

rPQ fpr,—q “ 1, thus f turns the defining relation (r5) into a identity in

SpLq. One can check (r6) dually. �
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