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A LATTICE-THEORETIC APPROACH
TO ARBITRARY REAL FUNCTIONS ON FRAMES

IMANOL MOZO CAROLLO

ABSTRACT. In this paper we model discontinuous extended real functions
in pointfree topology following a lattice-theoretic approach, in such a way
that, if L is a subfit frame, arbitrary extended real functions on L are
the elements of the Dedekind-MacNeille completion of the poset of all
extended semicontinuous functions on L. This approach mimicks the sit-
uation one has with a Tj-space X, where the lattice F(X) of arbitrary
extended real functions on X is the smallest complete lattice containing
both extended upper and lower semicontinuous functions on X. Then,
we identify real-valued functions by lattice-theoretic means. By construc-
tion, we obtain definitions of discontinuous functions that are conservative
for Ti-spaces. We also analyze semicontinuity and introduce definitions

which are conservative for Tp-spaces.

INTRODUCTION

In pointfree topology frames are viewed as generalized spaces and frame
homomorphism as continuous functions between them. Indeed, if X is a sober
space, continuous functions ¥ — X are in one-to-one correspondence with
frame homomorphism OX — QY. Motivated by the fact that arbitrary real
functions on a space X are continuous functions when one replaces OX by
the discrete topology, which can be thought of as the system of subspaces of
X, Gutiérrez Garcia, Kubiak and Picado defined arbitrary real functions on a
frame L as frame homomorphisms from the frame of reals £(R) (the pointfree
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counterpart of the real line) to the dual 2(L) = S(L)°P of the system of all
sublocales of L [12]. Certainly this was shown to be successful definition
that provides a very nice setting for the treatment of semicontinuity. It
made possible to extend many classical definitions, constructions and results
to the pointfree setting [10, 11, 9, 13]. Recently, in [23] Picado and Pultr
have replaced 2(L) by a smaller class of sublocales (see [24]), mending some
disadvantages that the former definition had. For example, this new approach
yields a “lattice of arbitrary real functions” which is Dedekind complete in
[23], while, in general, it was not so in [12].

Beyond the differences between [12] and [23], the idea behind both defini-
tions is the same: replacing L by some discretization of it which will play the
role of the discrete topology in the classical theory. The main goal of this
paper is to approach this problem from a different point of view. The motiva-
tion comes from the fact the lattice F(X) of arbitrary extended real functions
on a T7-space X is the smallest complete lattice in which the poset of lower
and upper semicontinuous extended real functions embeds, more rigorously,
F(X) is the Dedekind-MacNeille completion of the poset LSC(X) u USC(X)
of all semicontinuous extended real functions on X. For this purpose, we will
need a proper description of extended semicontinuous functions on frames
and a convenient representation in terms of certain kind of functions of the
Dedekind-MacNeille completion of poset they form. We should note that,
even though in [12] and [23] the authors focused on real-valued functions,
their approach can be immediately applied to arbitrary frames, while ours is
intrinsically linked to the order structure of the reals. However, due to the
importance of the real line and real-valued functions in topology, we believe
that our approach is worth to be investigated.

There are various equivalent ways of introducing the frame of reals £(R) [3].
Here it will be useful to adopt the description used in [4] given by generators

(r,—) and (—, s), r,s € Q, and defining relations:
(r1) (r,—) A (—,s) = 0 whenever r > s,

(r2) (r,—) v (—8) = 1 whenever r < s,

(r3) (r,—) = V4o, (s,—), for every r € Q,

(rd) (—,8) =V, —4(—,1), for every r € Q,

(r5) V,eq(r,—) =1,

(1"6) \/seQ(_a 5) =1L

By dropping relations (r5) and (r6) in the description of £(R) above, we
have the corresponding frame of extended reals 2(@) [4]. For any frame L, a
continuous real function [3] (resp. extended continuous real function [4]) on
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a frame L is a frame homomorphism f: £(R) — L (resp. f: £(R) — L). We
denote by C(L) (resp. C(L)) the collection of all (resp. extended) continuous
real functions on L. The correspondences L + C(L) and L — C(L) are
functorial in the obvious way.

Extended lower semicontinuous functions X — R are in one-to-one corre-
spondence with frame homomorphisms £, (R) — OX, where £,(R) is a con-
venient subframe of £(R). One can represent upper semicontinuous functions
similarly by replacing £, (R) by another convenient subframe £;(R) of £(R).
Replacing OX by an arbitrary frame L provides a natural extension of the
notion of semicontinuous functions. As shown in [12], we can represent both
extended semicontinuous functions on a frame L as frame homomorphisms
£(R) — 2(L). We define in this fashion the class LSC(L) resp. USC(L) of
lower resp. upper semicontinuous functions on L (Section 2).

Their non-extended versions are not that simple to define. Semicontinuous
functions were first introduced by Li and Wang in [19], but their definition
did not represent the classical notion. It was mended in [15] and [12] in a
way that made possible to formulate Katétov-Tong insertion theorem in the
pointfree setting. However, this definition fails to represent all semicontinuous
functions from the classical theory. This small inaccuracy has already been
pointed out and corrected in [23]. In Section 2, we provide a definition in
the setting that fits in our approach to arbitrary real functions. In addition,
we show that our definition extends faithfully the classical notion for all Tp-
spaces, while the one in [23] was shown to do so only for T}-spaces.

In Section 3, we derive a description of the Dedekind-MacNeille comple-
tion of the lattice C(L) from the Dedekind completion of the lattice C*(L) of
bounded continuous functions on L in terms of continuous partial real func-
tions presented in [21]. The frame £(IR) of extended partial real numbers is
the frame that we obtain after removing (r2) from the definition of £(R) and
IC(L) the class of all frame homomorphisms £(IR) — L, namely, continu-
ous extended partial real functions on L, in which C(L) embeds canonically.
Given a completely regular frame L, we describe the Dedekind-MacNeille
completion of C(L) inside IC(L) by

H(L) = {f € IO(L) | f(r,—)* < f(—s) and f(—s)* < f(r,—) if r < s}.

In Section 4, we show that given a subfit frame L, the poset LSC(L) u
USC(L) is join- and meet-dense in C(2(L)) and consequently their Dedekind-
MacNeille completions coincide. This is the motivation to consider the latttice
F(L) = H(2(L)), that is, the Dedekind-MacNeille completion of C(2(L)), as
the pointfree counterpart of the F(X). Accordingly, an arbitrary extended
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real function on a frame L will be a frame homomorphism f: £(IR) — 2(L)
such that

f(r,—)* < f(—s) and f(—, s)* < f(r,—) whenever r <s.

This condition holds for all f € C(2(L)). In comparison with [12], an arbi-
trary extended real function has to satisfy a slightly weaker condition than
preserving (r2).

In order to identify real-valued functions among arbitrary extended real
functions, one might be tempted to simply replace £(IR) by its non-extended
version, the frame £(IR) of partial real numbers [21], and say that an f € F(L)
is real-valued if it preserves (r5) and (r6). However, this is too restrictive and
it does not yield the proper notion. In fact, not even all semicontinuous would
be represented with such a definition. In Section 5, we define the class F(L)
of arbitrary real functions of L as a subset of F(L) by lattice-theoretic means
and characterize them as follows: an f € F(L) is real-valued if and only if

(V f(T‘,—)) :O:<\/ f(_)8)> :
reQ s€Q

Note that this condition is weaker that requiring that f preserves (r5) and
(16). Indeed, instead of having \/,.q f(r,—) = 1 = Vg f(—s), we only
have that those joins are dense elements of the frame 2(L). This approach
provides a faithful extension of the classical notions: given a Tj-space X, one
has
F(X)~F(OX) and F(X)=~F(OX).

We also show that F(L) is isomorphic to C(8(2(L))), where B(2(L)) denotes
the Booleanization of 2(L) [6]. This has two important consequences. First,
our definition is equivalent to the one presented in [23] for subfit frames.
And second, F(L) can be equipped with a lattice-ordered ring structure that
making possible to consider a theory of rings of real functions.

Finally, in Section 6, we study when our definitions coincides with the one

presented in [12], that is, when one has F(L) = C(2(L)) and F(L) = C(2(L)).

1. PRELIMINARIES

1.1. Dedekind completion. For any subset A of a partially ordered set
(P, <), we will denote by \/*'A (resp. A" A) the supremum (resp. infimum)
of Ain P in case it exists (we shall omit the superscript if it is clear from the
context).

A Dedekind-MacNeille completion (also called completion by cuts, nor-
mal completion or just MacNeille completion) of a poset P is a join- and
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meet-dense embedding ¢: P — M(P) in a complete lattice (as usual, a map
p: P — M(P) is said to be join-dense if and only if so is its image in M (P);
that is, each element of M (P) is a join of elements from @[ P]; meet-density
is defined dually). The Dedekind-MacNeille completion is the only complete
lattice in which the given poset is join- and meet-dense.

Sometimes a weaker kind of completion is more userful: a poset (P, <)
is Dedekind (order) complete (or conditionally complete) if every non-void
subset A of P which is bounded from above has a supremum in P (and
then, in particular, every non-void subset B of P which is bounded from
below will have a infimum in P). Of course, being complete is equivalent
to Dedekind complete plus the existence of top and bottom elements. A
Dedekind completion (or conditional completion) of P is a join- and meet-
dense embedding ¢: P — D(P) in a Dedekind complete poset D(P). The
Dedekind completion is slightly smaller than the MacNeille completion: it
can be obtained from M (P), in case P is directed, just by removing its top
and bottom elements.

For more information on universal properties of the Dedekind-MacNeille
and the Dedekind completion see [27, 1.3].

1.2. Frames. A frame (or locale) L is a complete lattice such that
an\/B=\{anrb|be B} (1.1)

for all a € L and B < L; equivalently, it is a complete Heyting algebra with
Heyting operation — satisfying the standard equivalence a A b < ¢ if and only
if a < b — ¢. The pseudocomplement of an a € L is the element

a*=a—->0=\/{beL|anb=0}.

An element a € L is complemented if ava™ = 1. For completemented elements
a € L the dual distributivity law also holds:

av ANB=NA{avb|be B}

for all B < L. An element a € L is dense if a* = 0 (equivalently, if a** = 1).
A frame homomorphism is a map h: L — M between frames which preserves
finitary meets (including the top element 1) and arbitrary joins (including
the bottom element 0). Then Frm is the corresponding category of frames
and their homomorphisms.

The most typical example of a frame is the lattice OX of open subsets of
a topological space X. The correspondence X — OX is clearly functorial,
and consequently we have a contravariant functor O: Top — Frm where Top
denotes the category of topological spaces and continuous maps. There is also
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a functor in the opposite direction, the spectrum functor ¥: Frm — Top which
assigns to each frame L its spectrum XL, the space of all homomorphisms
¢: L — {0,1} with open sets ¥, = {¢ € XL | £(a) = 1} for any a € L, and to
each frame homomorphism h: L — M the continuous map Xh: XM — XL
such that ¥h(§) = &h. The spectrum functor is right adjoint to O, with
adjunction maps np: L — OXL, np(a) = ¥, and ex: X —» YOX, ex(x) =
Z, #(U) = 1if and only if z € U (the former is the spatial reflection of the
frame L). A frame is said to be spatial if it is isomorphic to the frame of
open sets of a space.

For general notions and results concerning frames we refer to Johnstone
[18] or the recent Picado-Pultr [22]. The particular notions we will need are
the following: a frame L is:

- subfit if for each a,b € L such that a € b there exists ¢ € L such that
ave=1#bvc

- completely regular if a = \/{b e L | b<< a} for each a € L, where b<<a (b is
completely below a) means that there is {¢, | r € Q n [0,1]} < L such that
b<cy,c1 <aand ¢ <cs (e ¢ ves =1) whenever r < s;

- extremally disconnected if a* v a** =1 for every a € L.

1.3. Sublocales. A sublocale set (briefly, a sublocale) S of a locale L is a
subset S € L such that

(S1) for every Ac S, A\ Aisin S, and

(S2) for every s€ S and every x € L, z — s isin S.

The system of all sublocales constitutes a coframe with the order given

by inclusion, meet coinciding with the intersection and the join given by
\V Si ={AM|Mc|JS;}; the top is L and the bottom is the set {1}.

1.3.1. Closed and open sublocales. For any a € L, the sets ¢(a) = Ta and
o(a) = {a — b | be L} are the closed and open sublocales of L, respectively.
The map a — c¢(a) is a coframe embedding L°° — S(L) providing an iso-
morphism ¢ between L°P and the subcoframe ¢(L) of S(L) consisting of all
closed sublocales. On the other hand, denoting by o(L) the subcoframe of
S(L) generated by all o(a), the correspondence a — o(a) establishes poset
embedding L — o(L). The following holds:

Facts. The following facts hold in S(L).
(1) o(a) and c(a) are complements of each other.
2) ¢(0) =1, ¢(1) =0, c(a) v ¢(b) = c(a A b) and Ajcje(ai) = ¢ (Veg ai).

(2)
(3) 0(0) =0, 0(1) = 1, 0(a) A 0(b) = 0(a A b) and /.y 0(ai) = 0 (Vies ai)-
(4) Each sublocale S € S(L) can be represented as S = A;(0(a;) v ¢(b;)).



Given a sublocale S of L, its closure and interior are defined by

_ S S(L)

S = Afc(a)|c(a) =St =c(AS) and S°= \/{o(a)|S =o0(a)}.
1.3.2. Subfitness in terms of sublocales. A frame is subfit if and only if each

open sublocale is a join of closed sublocales. This was in fact how subfitness
was originally defined in [17].

1.3.3. Subspaces and induced sublocales. Each subspace A of a Ty-space X
induces a sublocale of OX that comprises elements U € OX of the form

U=U{VeOX |VnA=Un A}

We will denote this sublocale by s(A). In particular given an open set U one
has
s(U)=0oU) and s(X\U)=c(U).

In general, given A; € X for i € I, one has

S(L)
s(UAi) =V s(4).

el el
Consequently, suprema of induced sublocales are also induced. Infima of
induced sublocales, in contrast, are not necessarily induced. Indeed, we do
not necessarily have s(A n B) = s(A) A s(B).

1.3.4. Booleanization. We can associate with each frame L a complete Boolean
algebra B (L) consisting of all elements a = ¢** and a frame homomorphism
B: L — B(L) that maps each element a to its double pseudocomplement
a**. B(L) is a sublocale of L. A sublocale S is said to be dense if S = 1,
equivalently if 0 € S. Isbell’s density theorem states that each frame L has a
least dense sublocale, namely B(L).

1.3.5. The frame 2(L). We will make the system of all sublocales of a locale
L into a frame 2(L) = S(L)°P by considering the dual ordering: S < Sy iff
Sy € S1. Thus, {1} is the top and L is the bottom in 2(L) that we simply
denote by 1 and 0, respectively.

Remark. In what follows, we will be interested mainly in the frame 2(L)
as it will play an important role in the modeling of discontinuous functions.
In consequence, we will consider sublocales as elements of this formal frame
almost always and, unless specifically stated otherwise, the order and the
lattice operations considered will be always those from 2(L). Accordingly, for
example, we will omit superscripts in joins and meets, except in ambiguous
situations. Also note also that we will be interested in dense elements S of
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the frame 2(L), which should not be confused with dense sublocales as in
described 1.3.4.

1.4. Continuous (extended) real functions. Using the basic homomor-
phism p: S(@) — £(R) determined on generators by

(Tv _) = (7", _) and (_7 5) = (_7 5) (1'2)

for each r,s € Q, the f € C(L) are in a one-to-one correspondence with the
g € C(L) that turn defining relations (r5) and (r6) into identities in L (just
take g = fp). In what follows we will keep the notation C(L) to denote also
the class inside C(L) of the f’s that preserve (r5) and (r6).

C(L) and C(L) are partially ordered by

[<g < f(r,—) <g(r,—) forallreQ

(1.3)
> ¢g(—,8) < f(—,s) forall seQ.

Examples. For each r € Q, we have the constant function r» € C(L), given
by
0 ifp=r 1 ifg>r
r(pv_) = . and ’f‘(—, Q) = .
1 ifp<r 0 ifg<r

for all p,q € Q. One can similarly has two extended constant functions +oo
and —oo which are defined for each p,q € Q by

+OO(p, _) =1= _OO(_7 Q) and +0 (_7 Q) =0= —OO(p,—),
and they are precisely the top and bottom elements of C(L).

An f e C(L) is said to be bounded if there exist p,q € Q such that p < f <
q. Equivalently, f is said to be bounded if and only if there is some rational
r such that f ((—,—r) v (r,—)) = 0, that is, f(—r,r) = 1. We shall denote
by C*(L) the set of all bounded members of C(L). Obviously, all constant
functions are in C*(L).

As it is well known, C(L) and C*(L) are lattices although in general not
Dedekind complete [5]. In C(L) (also in C*(L), since it is sublattice of C(L))
binary joins are given by

(f vV g)(T,—) = f(n_) v g(?’,—) and (f Vv g)(_7 S) = f<_7 S) A g<_7 S)

for all r,s € Q and binary meets are given by

(f A g)(r,—) = f(?“,—) A g(?",—) and (f A g)(_v 5) = f(_v 5) 4 g(_v 5)

for all r,s € Q (see [16] for more details).
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1.5. The frame of (extended) partial reals. Dropping the relation (r2)
from the definition of the frame of reals yields the frame £(IR) of partial real
numbers. It was introduced in [21] as a pointfree counterpart of the partial
real line (also interval-domain) which was proposed by Dana Scott in [26] as
a domain-theoretic model for the real numbers. It is a successful idea that
has inspired a number of computational models for real numbers. Frame ho-
momorphisms £(IR) — L are called continuous partial real functions [21] on
L. Similarly, dropping (r2) from the definition of the frame of extended reals
yields the frame £(IR) of extended partial real numbers [20]. Frame homo-
morphisms £(IR) — L are called continuous extended partial real functions
[20] on L.
The sets

IC(L) and IC(L)

of continuous partial real functions on L and continuous extended partial real
functions on L, respectively, are partially ordered by f < g iff

f(?“, _) < g(?“, _) and g(_a 5) < f(_a 5) (1'4)

for every r, s € Q.

We will also say that an f € IC(L) is bounded if there exist p,q € Q
such that p < f < g and we will denote by IC*(L) the class of all bounded
functions of IC(L).

1.5.1. Remarks. (1) The functions h € IC(L) that factor through the canon-
ical homomorphism ¢: £(IR) — £(R), determined by the assignment (1.2),
are just those that turn the defining relation (r2) into an identity in L, that
is, those which satisfy h(r,—) v h(—,s) = 1 whenever r < s. In view of this,
we will keep the notation C(L) to denote also the class inside IC(L) of the
functions h such that h(r,—) v h(—, s) = 1 whenever r < s.

The assignment (1.2) also determines the canonical homomorphisms p: £(IR) —
£(IR) and z: £(IR) — £(R). An analogous argument motivates us to keep
IC(L) to denote the class inside IC(L) of the functions h turn the defining
relations (r5) and (r6) into identities in L and C(L) to denote the class inside
IC(L) of the functions h turn the defining relation (r2) into identities in L.

(2) In case f € C(L), as in (1.3), the second condition on f and g in (1.4) is
needless because it follows from the first one:

9(=r) =9(V(=9) = V 9(—39)

s<r s<r

< \/ 9(37_)* < \/ f<37_)* < f<_7 7“),

s<r s<r
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the last inequality because f being in C(L) then, by (12), f(s,—)v f(—r) =1
(a similar argument shows that the first condition follows from the second one

whenever g € C(L) and so the two conditions are equivalent if both f, g are

in C(L), as in (1.3)).
(3) There is a dual isomorphism —(-): IC(L) — IC(L) defined by

(=h)(— 1) =h(-r,—) and (=h)(r,—) =h(—,—r) forallreQ.

When restricted to A = C(L),C(L) or IC(L) it yields a dual isomorphism
A— A.

1.5.2. Examples. For each a,b € L such that a A b = 0 let x,; denote the
bounded continuous partial real function given by

0 ifr=1, 1 ifs>1,
Xap(r,—) =< a ifO<r<1, and xgp(—s)=<b f0<s<]1,

1 ifr <o, 0 ifs<0,

for each r,s € Q. Similarly, let X, ;, denote the continuous extended partial

real function given by

ya,b(ra _) =a and Ya,b(_a S) =b

for each r, s € Q. Clearly, xq € C*(L) and X, € C(L) ifand only ifavb =1,
i.e. if and only if a is complemented with complement b.

2. SEMICONTINUOUS FUNCTIONS ON FRAMES

A lower resp. upper semicontinuous function on a space X is a continuous
map X — R, resp. X — R;, where R, resp. R; denotes the space of real
numbers with the upper topology resp. lower topology. One obtain their ex-
tended versions by replacing the real numbers by the extended real numbers,
that is, an extended lower resp. extended upper semicontinuous on X is a
continuous map X — R, resp. X — R;, where R,, resp. R; denotes the space
of extended real numbers with the upper topology resp. lower topology. We
will denote by LSC(X), LSC(X), USC(X) and USC(X) the classes of lower
semicontinuous functions on X, extended lower semicontinuous functions on
X, upper semicontinuous functions on X and extended semicontinuous func-
tions on X, respectively.

In this section we will first analyze the pointfree counterpart of extended
semicontinuous functions and then introduce a conservative definition of semi-

continuous functions.
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2.1. Extended semicontinuous functions. Let £,(R) be the subframe of
£(R) generated by elements (r,—). The frame of open subsets R,, is isomor-
phic to £,(R). Since R, is sober, one also has that ¥£.£,(R) ~ R,. By the
adjoint situation between frames and topological spaces we have the natural
isomorphisms
Frm(L,0X) ~ Top(X,XL).
For L = £,(R) one obtains
Frm(£,(R), 0X) ~ Top(X,R,) = LSC(X).

Accordingly, regarding frame homomorphisms £,(R) — L as extended lower
semicontinuous functions on a general frame L provide a conservative exten-
sion of the classical notion. One can argue dually to show that regarding
frame homomorphisms £;(R) — L, where £;(R) is the subframe of £(R) gen-
erated by elements (—, s), as extended upper semicontinuous functions on L
extends the classical notion.

The f in Frm(£,(R), L) resp. Frm(£;(R), L) are in one-to-one correspon-
dence with the g € C(2(L)) such that g(r,—) € c¢L for all 7 € Q resp.
g(—,s) € ¢L for all s € Q [12]. This motivates the following definition.
We will say that g € C(2(L)) is extended lower semicontinuous functions on
L if g(r,—) is closed for all r € Q and we will say that g is extended upper
semicontinuous functions on L if g(—, s) is closed for all s € Q. We will de-
note by LSC(L) the set of all extended lower semicontinuous functions on L
and by USC(L) the set of all extended upper semicontinuous functions on L.
Furthermore, the f in C(L) are in one-to-one correspondence with the g in
C(2(L)) such that f(r,—), f(—,s) € cL for all ,s € Q. Accordingly, we will
keep C(L) to denote the class LSC(L) n USC(L).

2.2. Semicontinuous functions. More complicated is to find proper point-
free counterparts of the non-extended versions of this notions. Indeed, as
pointed out in [15], since the space R, is not sober, lower semicontinuous
functions defined on X are not properly represented by frame homomorphism
Lu(R) — L, where £,(R) is the subframe of £(R) generated by elements
(r,—). One has that ¥£,(R) is homeomorphic to the topological space R
with set of points Ru {+00} endowed with the upper topology. Consequently,

one has an isomorphism
Q: Top(X,Ri) — Frm(£,(R), OX)
where Q(¢): £,(R) — O(R) is determined by

Q((p)(?“, _) = 90_1(717 +OO]
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for each r € Q. Given f € Frm(£,(R),0X), one has

QN (N)@) =V{reQ|ze f(r,—))

for each x € X.

In [15, Corollary 4.3] (see also [12]) the authors claimed that LSC(X)
is isomorphic, via the restriction of {2, with those frame homomorphisms
g: £4,(R) —» OX such that

2(0X)

V o(g(r,—)) =1 (2.1)

reQ

(Note that in [15] open frame congruences A are used instead of sublo-

Q(T',—)
cales.) However, as the following examples shows, this condition is too restric-

tive for a faithful representation of all real lower semicontinuous functions:

2.2.1. Example. Let ¢: Q — R4 be a one-to-one map such that ¢(Q) < N.
Note that ¢ is lower semicontinuous, as, for all 7 € Q, ¢ ~!(r, +00] is cofinite
and, consequently, open. Further, as ¢~ !(r, +o0) is also dense, one has that
so is o(¢ L (r, +0]) = s(p~t(r,—, +00]) as a sublocale. In consequence, by
Isbell’s density theorem,

V o(Qp)(r,—)) = V o™ (r, +0]) # 1
reQ reQ

since, for all r € Q, one has o(p ! (r, +0]) < B(OQ) # 1 in 2(R, o).

Condition (2.1) seems to be an attempt to reflect the fact that ¢ € Top(X, R )
takes values in R if and only if

N ¢ r, +o] = @.
reQ

As the previous example shows, this is not the case. After all, in 2(L), joins
of induced sublocales are not necessarily induced. On the other hand, again
in 2(L), a meet of sublocales induced by subspaces is the sublocale induced
by the union of those subspace. This suggests an alternative approach, as
¢ € Top(X, R, ) takes values in R if and only if

U @71(_00’7‘] = X.
reQ

2.2.2. Proposition. Let X be a Ty-space. The restriction of Q yields an
isomorphism between LSC(X) and

2(0X)

A= {f: Lu(R) - OX € Frm | /}@ c(f(r,—)) —0}.
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Proof. For each ¢ € LSC(X), one has

A «(Q(p)(r, =) = A el (1, +0])
reQ reQ

= A slg™ (~o0,1])

reQ

= 5( LGJstl(—OO#])
= 5(X) = OX = 0zx)-

On the other hand, let f: £,(R) — OX € Frm such that /\ o ¢(f(r,—)) =
0. Since

s (U X\f(r,—)) = A s(X\f(r,—))

reQ reQ
= A «(f(r,—))
reQ
= Oa(OX) = 00X,
one has
U X\f(r,—) = X.

reQ

Consequently, for each x € X there exists some r € Q such that = ¢ f(r,—).
Hence, Q7 (f)(z) < r by (r5). Accordingly, Q(f)(zr) e Rforallz e X. O

2.2.3. Remark. As considered in [12], having 2(L) as common codomain is
a convenient approach that allows us to consider lower and upper semicon-

tinuous functions in a common setting. However, note that while

Voo(g(r,—)) =1

reQ

implies
N e(g(r,—)) =0,
reQ

as

<\/ 0(9(7’7—))> = A\ clg(r,—),

reQ reQ
Example 2.2.1 shows that the converse implication does not hold in gen-
eral. In consequence, this general setting where both lower and upper semi-
continuous functions can be defined has to include extended real functions
£(R) — 2(L). By the isomorphism L =~ ¢(L)°P, the following definitions
properly generalize the classical notion of semicontinuous functions.
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2.3. Given a frame L, we will say that

(1) a lower semicontinuous function on a L is a frame homomorphism
f: £(R) — 2(L) such that
(11) f(r,—) € cL for all r € Q,
(12) Vyeq f(r,—) =1
(13) Aseq f(r,—) = 0.
(2) an upper semicontinuous function on L is a frame homomorphism
f: £(R) — 2(L) such that
(ul) f(—,s)ecL for all s€Q,
(12) Veq f(—5) =1
(u3) Aseq f(—5) =0

We will denote by LSC(L) the class of all lower semicontinuous functions on
L and by USC(L) the class of all upper semicontinuous functions on L.

As in the case of continuous extended real functions, by the isomorphism
between L and ¢(L)°P, the f € C(L) are in one-to-one correspondence with
the g € C(2(L)) such that g(r,—), g(—, s) € ¢(L) for all r, s € Q. Accordingly,
in what follows we will keep C(L) to denote the class of g in C(2(L)) such
that g(r,—) and g(—, s) are closed for all , s € Q. Note that

C(L) = LSC(L) n USC(L).

2.3.1. Remark. It is straighforward to check that the restriction of the dual
isomorphism in 1.5.1(3) yields dual isomorphims LSC(L) — USC(L) and
LSC(L) — USC(L).

3. THE DEDEKIND-MACNEILLE COMPLETION OF C(L)

In [13, 14, 21] several representations of the Dedekind completions of the
lattices C(L) and C*(L) (see also [20]) were presented. For the aim of this
paper we will need a description of Dedekind-MacNeille completion of the
lattice of continuous extended real functions C(L) and we will derive it from
the Dedekind completion of C*(L) presented in [21].

3.0.2. Proposition. IC(L) is isomorphic to
{gelC(L) | -1 <g<1}.

Proof. Let a: Q — Qn(—1,1) be an order isomorphism with inverse 8. Given
feIC(L). Let ¥(f): £(IR) — L be a frame homomorphism determined on
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generators by

-

0 ifl1<gr
f(B(r),—) if —1<r<l1
U(f)(r,—) = 1
\/teQ flt,—) ifr=-1
1 ifr<-1
and
1 ifl<s

\/teQ f(=1) ifs=1
f(—,5(s)) if —1l<s<l1

0 ifs<—1

\

() (= 8) =

for each r, s € Q. One can easily check that this assignment turns the defining
relations (rl), (r3)—(r6) into identities in L, consequently, it actually deter-
mines a frame homomorphism. Obviously, —1 < ¥(f) < 1. Therefore,
f— U(f) defines a map

U:IC(L) > {gelC(L) | -1<g<1}.

One can easily check that ¥ is monotone.
Dually, given g € IC(L) such that —1 < g < 1, let ®(g): £(IR) — L be a

frame homomorphism determined on generators by

®(g)(r,—) = gla(r),—) and  ®&(g)(—s) = g(— a(s))

for each r, s € Q. Obviously, these assignments turn the defining relation (r1),
(r3) and (r4) into identities in L. Therefore, f +— ®(g) defines a map

P: {gelC(L)| -1<g<1}—IC(L)

which is obvioulsy monotone. Finally, we shall check that ¥ and ® are inverse
to each other. Let f € IC(L). Then one has

QU(f)(r,—) = U()(r),—) = f(Ba(r),—)) = g(r;—)

for each r € Q. Dually, one can check that ®¥(f)(—,s) = f(—,s) for each
s € Q. We conclude that ®U(f) = f. On the other hand, let g € IC(L) such
that —1 < g < 1. Then for each r € Q such that 1 < r or r < —1 one trivially
has V®(g)(r,—) = f(r,—). If =1 <r < 1, one has

Ud(g)(r,—) = ®(B(r),—) = g(ab(r),—) = g(r,—),



16 I. MOZO CAROLLO

Finally, for r = —1, one has
Ue(g)(=1,—) = V ®(g)(t,—)
teQ
=V g(a(t),—)
teQ
= \/ g(tv_)
—l<r<1
= g(_l’_)
by (r3). Analogously, one can check that V®(g)(—, s) = g(—, s) for all s € Q.
Consequently, &~ = W, O

3.1. Hausdorff continuous functions. We will say that f € IC(L) is

Hausdorff continuous if

flr,=)* < f(—,s) and f(—,s)* < f(r,—) for all » < sin Q.

We will denote by H(L) the family of all Hausdorff continuous functions in
IC(L) and by H(L) the family IC(L) n H(L). It was shown in [21] that, for
a complete regular frame L,

H*(L) = IC*(L) ~ H(L)

is a Dedekind complete lattice and the inclusion of C*(L) into H*(L) is its
Dedekind completion.

3.1.1. Remarks. (1) In [21], the family H*(L) was denoted by C*(L)*. The
motivation for our notation comes from the fact that functions in H*(L) are
the pointfree counterpart of bounded Hausdorff continuous functions (see
1, 7).

(2) Given f € IC(L), one has that f € H*(L) if and only if ®(f) € H(L). In
fact, one has that

O(f)(r,—)" = flalr),—)* < f(—als)) = 2(f)(—,5)
for all » < s in Q if and only if g(p,—)* < g(¢,—) for all p < ¢ in Q. One can

check the other condition dually. Consequently, H(L) is isomorphic to
{feH"(L)|-1< f<1}
(3) Similarly, f € C(L) if and only if ®(f) € C(L). Simply note that one has
O(f)(r,—) v 2(f)(—s) = flalr),—) v f(—als) =1
for all 7 < s in Q if and only if f(p,—) v f(—,q) = 1 for all p < ¢ in Q.

Consequently, C(L) is isomorphic to
{ge C*(L)| -1 < f <1}
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(4) Tt is straightforward to check that the dual isomorphism —(-): IC(L) —
IC(L) in 1.5.1 (3) restricted to H(L) yields a dual isomorphism H(L) — H(L).

(5) Recall x4 and X, from 1.5.2. One has that x4 and X, are Hausdorff
continuous if and only if a = b* and b = @™, that is, if and only if a = a**
and b = a*.

3.1.2. Lemma. For each f € H(L) and r,s € Q, one has

(1) f(rv _) = \/p>7’ f(_vp)* = \/p>r f(pa _)** and

(2) f(—s) = \/q<s flg,—)* = \/q<s fl=a)*.

Proof. In order to check (1), simply note that for each > p in Q, one has

f(pa_) < f(p>_)** < f(_7p)* < f(ra_)7
since f(—,p) < f(p,—)* by (r1). Consequently, by (r3),

f(’l“,—) = \/ f(p’_> = \/ f(_vp)* = \/ f(pa_)**'

p>r p>r p>r

One can check (2) dually. O

3.1.3. Remark. By 3.1.2, the argument in 1.5.1 is also valid if f € H(L) and
consequently the second condition on f and ¢ in (1.4) is needless because it
follows from the first one. Dually, also the first condition follows from the
second one whenever g € H(L).

3.2. The Dedekind-MacNeille completion of C(L).

3.2.1. Proposition. Let L be a completely regular frame. Then H(L) is the
Dedekind-MacNeille completion of C(L).
Proof. Just note that since H*(L) is the Dedekind completion of C*(L) then
(feH D) -1<f<1)
is the Dedekind completion of
{feC*(L)|-1< f<1}
By the remark above, we conclude that H(L) is the Dedekind completion of
C(L). As C(L) is bounded, it is its Dedekind-MacNeille completion. O

3.2.2. Remark. Given a completely regular frame L, one can obtain joins
and meets in H(L) from those of H*(L) (see [21]). Let {fi}icr < H(L). Then
for \/H(L) = f, one has

el

=V (VEG) ad fes = V (Ve

p>r \iel q<s \iel
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Dually, for /\E(IL) = f,, one has
o=V (Vi) md fe9 =V (Vo)
p>r \iel q<s \iel

3.2.3. Proposition. H(L) is isomorphic to C(B(L)).

Proof. For each f € H(L) define I'(f) = B - f: £(IR) — B(L). Note that
flr,—) v f(—,s) is dense in L whenever r < s, as

(f(?“,—) 4 f(_v 5))* = f(T7_)* A f(_v S)* < f(’l“,—)* A f(’l“,—) = 0.
Consequently,

f(?", _)** V9B(L) f<_7 S)** = (f('f‘, _) VL f(_7 3))** =1
Thus T'(f) € C(B(L)). Obviously, the map I': H(L) — C(B(L)) is order-

preserving.
On the other hand, for each g € C(B(L)), let A(g): £(IR) — L be the
frame homomorphism determined on generators as follows:

L L
Alg)(r,—) = V g(p,—) and  A(g)(—s) = V g(—q).
p>r q<s
It is straightforward to check that those assignments turn the defining rela-

tions (rl), (r3) and (r4) into identities in L. Let r < s in Q. For each p,q € Q
such that r < p < ¢ < s, one has

A(g)(r,—)* < g(p,—)* < g9(— q) < A(g9)(— ).

Similarly, A(g)(—, s)* < A(g)(r,—). Therefore one has amap A: C(B(L)) —
H(L). Tt is straightforward to check that it is order-preserving.
Finally, for each f € H(L), by Lemma 3.1.2, one has

AT =) = V DA =) = V fp.—)™ = £(r—)

p>r p>r

for each r € Q. Dually, one can check that A(I'(f))(—,s) = f(—,s) for all
s € Q. For each g € C(B(L)), one has

I'(A(9)(r,—) = Alg)(r,—)™

I o
= (p\>/r g(T, _)>

B(L)

= \/ g(T,—) zg(T,—).

p>r
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3.2.4. Corollary. For each L completely reqular frame, C(B(L)) is isomor-
phic to the Dedekind-MacNeille completion of C(L).

Finally, we close this section by a corollary that extends [21, Corollary 4.8].

3.2.5. Proposition. For any completely reqular frame L, the following are
equivalent:

(1) L is extremally disconnected.
() T(L) - H(L).
(3) C(L) is complete.

Proof. (1) = (2): Let f € H(L). If L is extremally disconnected, for each
r <t<sin Q, one has, by 3.1.2,

fir=) v f(=s) =V f(p,—)" v V f(s,—)"

p>r q<s

= f(t, =) v f(t,=)" = 1.
Consequently, f € C(L).
(2) = (1): If H(L) = C(L), then Y, 4+« is a continuous extended real

function on L for each a € L. Consequently,
1= Ya*,a**(ov_) Vv Ya*,a** (_7 1) =a* v a™.

Therefore L is extremally disconnected.

(2) < (3): This follows trivially from 3.2.1. O

4. ARBITRARY EXTENDED REAL FUNCTIONS

The motivation for our approach to arbitrary real functions is based on
the following fact: for a Ty space X, F(X) is the smallest complete lattice
containing all extended upper and lower semicontinuous functions, in other
words, F(X) the is Dedekind-MacNeille completion of LSC(X) u USC(X).
We begin by presenting the definition of arbitrary extended real functions in
this section.

4.1. A space X is T if and only if LSC(X) is meet-dense in F(X) if and
only if USC(X) is join-dense in F(X). Indeed, given X is a Ty-space, z € X
and p € R, the map g, ,: X — R defined as follows is lower semicontinuous:

P ify==x

gm,p(y) =
+o00  else
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for each y € X. Given an arbitrary extended real function f: X — R, one
has that

f = /\ 9a,g9(x)-

zeX

Accordingly, LSC(X) is meet-dense in F(X).

On the other hand, if LSC(X) is meet dense in F(X), in particular, given
x e X andpe R, g, is a meet of extended lower semicontinuous functions. In
consequence, there exists some g € LSC(X) such that g # +o0 and g, , < g.
Then g~ !(q, +0) = X\{z} € OX. Thus X is T}.

By the dual order-isomorphism —(-): F(X) — F(X) and the fact that
it restricts to a dual order isomorphism between LSC(X) and USC(X), we
conclude that X is Ty if and only if USC(X) join dense in F(X).

4.2. The Dedekind-MacNeille completion of LSC(L) u USC(L). For
each a € L and ¢ € Q, let us denote by [, , the frame homomorphism £(R) —
2(L) determined on generators by the assignment

c(a) ifr=gq o(a) ifs>gq

(Ta _) nd and (—7 S) —>
1 ifr<gqg 0 if s<gq

for each r, s € Q. Obviously [, , € LSC(L).

4.2.1. Lemma. A frame L is subfit if and only if each S € B(2(L)) is a
meet of closed sublocales.

Proof. First let L be a subfit frame. Recall that each S € 2(L) can be
represented as

\/ c(ai) AN U(bz)
1€l
in 2(L). Since o(a;) v ¢(b;) is complemented for each i € I, one has

5t = (Viota) v 0
é\I(O(ai) v e(b))*

= /\ O(CLz’) \ C(bz)

iel

If L is subfit, for each i € I, there exists {d;};cj, = L such that

o(ai) = N\ e(d;).

JjeJi

Since, for each i € I, ¢(b;) is complemented, one has

Jjedi JjeJi

(/\ C(dj)> voe(bi) = A (c(dj) v e(bi)) = A c(dj v bi)
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Therefore

= A A <dj v b)

el jed;
In consequence, all sublocales in B(2(L)) are meets of closed sublocales.
On the other hand, if each S € 2(L) is a meet of closed sublocales, in
particular, so are all open sublocales as they are complemented. O

4.2.2. Proposition. Let L be a subfit frame. Then LSC(L) is meet-dense in
C(2(L)) and USC(L) is join-dense in C(2(L)).

Proof. Let f e C(2(L)) and

Ag={acL]c(a)> f(g.—)"}
for each ¢ € Q. Note that, as L is subfit, one has

fl@,=)™ = A «a).

acAq

We shall show that
H((L))

f= /\ la7q'
qeQ,acA,

Recall that H(2(L)) is the Dedekind-MacNeille completion of C(2(L)), there-
fore complete. By 3.2.2, for each r € Q, one has

H(2(L)) ¥
< /\ la,q) (Tv_) = \/ (V \/ la#}(_? 8))

qeQ,acAq s>r \ geQ acAy

= VA A lagl—9)"

s>r qeQ acAy

=V A A da)

$>Tg<sacAy

Since A, € Ag whenever ¢ < s, we conclude that

H(2(L)
( A la,q> =)=V A da)=V f(s,=)" = f(r,—)

qeQ,acAy $>1r aeAs s>r

and accordingly
H(2(L))

f= /\ lag-
qeQ,acAq

Therefore LSC(L) in meet-dense in C(2(L)). The fact that USC

(L
dense in C(2(L)) follows easily from the dual isomorphism —(-): C(2(L)) —
CR(L)). 0

) is join-

4.2.3. Corollary. Let L be a subfit frame. Then the Dedekind-MacNeille
completions of LSC(L) u USC(L) and C(2(L)) coincide.
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4.3. Arbitrary extended real function on L. 3.2.1 and 4.2.3, combined
with the fact that 2(L) is always completely regular, motivate to define arbi-
trary extended real functions on a frame L as extended Hausdorff continuous
functions on 2(L), that is, an arbitrary extended real function on L is a frame

homomorphism
f: £(IR) — 2(L)

such that f(r,—)* < f(—,s) and f(—, s)* < f(r,—) for all r < s. We will
denote by

F(L)
the family of all arbitrary extended real functions on a subfit frame L

4.3.1. Remark. By 3.2.3, one has that

F(L) ~ C(B(2(L))).

4.4. Joins and meets in F(L). For the sake of completeness, we provide
formulae for joins and meets in F(L), even though this is just a particular
case of the lattice operations on the lattice of extended Hausdorff continuous
functions on an arbitrary frame described in 3.2.2. Let {f;}ic; € F(L). Then
for \/F(L) = f,, one has

el

P =V (Vo) s =V (Vaao)

p>r \iel q<s \iel

F(L)
iel

for each r € Q. Dually, for A = f., one has

=V (Vi) wd fe9=V (Vo)

p>r \iel q<s \iel

for each s € Q.

5. ARBITRARY REAL FUNCTIONS

In this section we will address the main goal of the paper: defining arbitrary
real functions on a frame L. One might be tempted to simply replace £(IR) by
£(IR) in the definition of F(L). However, one would want F(L) to contain all
semicontinuous functions but, for instance, a lower semicontinuous function
f € LSC(L) does not necessarily turn the defining relation (r6) into the
identity in 2(L).
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5.1. Identifying real-valued functions. An arbitrary extended real func-
tion f: X — R is real-valued, that is, f € F(X), if and only if

(1) f VE(x) 9 = T® implies g = 40,

(2) f AF(x) 9 = —0 implies h = —c0.
Accordingly, we will say that f € F(L) is real-valued or an arbitrary real
function on L if

(1) f VR 9 = +© implies g = 40,

(2) f AF(1)9 = —o0 implies h = —o0.
We will denote by F(L) the class of all arbitrary real functions on L.

5.1.1. Remark. It is straightforward to check that the dual isomorphism
—(-): F(L) — F(L) from 3.1.1 (4) when restricted to F(L) yields a dual
isomorphism F(L) — F(L).

5.1.2. Proposition. Let L be a frame and f € F(L). The following are
equivalent:

(1) f VE(@) g = +00 implies g = +0,

*
(2) <\/56Q f(_v 5)) = O;
(3) Nseg f(r,—) =0.
Proof. (1) => (2): Let f € F(L) such that f vF&) g = 400 implies g = +o0.
Let S € 2(L). Recall Xgx g+ from 1.5.2. Obviously, Ygxx g+ € F(L) and
Xg## g+ = +o0 if and only if S** = 1. Consequently, if S** # 1, one has
fvEm Xg## g+ # +00. Then one has

0+ YV (f VD) Ys**,s*) (=)

seQ
= \/ \/ (f(Q7_) 4 YS**,S*(%_))*
seQ g<s
=V f(5,=)" A Xgws g2 (s,—)"
seQ
= \/ f(57_)* A S*
seQ
=S A \/ f(S,—)*.
seQ

Therefore, by 3.1.2,
S* A \/f(_78>7é0
seQ
whenever S** # 1, equivalently, whenever S* # 0. We conclude that

<\/ f(_78)> = 0.
seQ
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(2) <= (3): This follows easily from the fact that

f(_7 t)* < f(Sa_) < f(_a 5)*
for all s <t in Q and
(\/ f(_78)> = /\ f(_as)*'
seQ ES0)
(2) = (1): Let g € F(L) such that f v g = +c0. For each q € Q, one has

0=0Uval=a=VU(s—)vyls,—)" = V({(s=)" rg(s—)7)

s<q s<q

Then g(s,—)* < f(s,—)** for each s € Q, as f(s,—)* A g(s,—)* = 0. More-
over, for each r < s in Q one has

g(r,—)*" < f(s,—)™"
since g(r,—) = g(s,—). One also has

g(s,—)" < f(r,—)™
as f(s,—) < f(r,—). In consequence,

g(S,—)* < /\ f(’l“,—)**
reQ

= (v f(rv_)*>
reQ
(ysn) -
reQ

g(_v S) < g(s,—)* =0
for all s € Q. We conclude that g = +c0. O

Then, by (rl), one has

By a dual argument, we conclude the folllowing.

5.1.3. Corollary. Let L be a frame and f € F(L). The following are equiv-
alent:

(1) f is real-valued,

@) (Veeg £, ) = 0= (Vaeg f(=9))

3) /\seQ f(=s)=0= /\re@ f(r,—).

5.1.4. Proposition. For any frame L,
LSC(L) = F(L) nLSC(L) and USC(L)=F(L)n USC(L).
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Proof. Let f € F(L) n LSC(L). In order to show that f € LSC(L) we only
have to check that condition (12) in 2.3 holds. For each r € Q, there exists a,
such that f(r,—) = c¢(a,). Then

0= (V f(?“,—)) = A o(ar) =0(V ar).

reQ reQ reQ

Accordingly, \/re(@ ar = 1. We conclude that

Vﬂ#ﬁ=deFW<Vm)=myﬂ.

reQ reQ reQ

Consequently, one has
F(L) n LSC(L) < LSC(L).

The reverse inclusion is straightforward. One can check dually that USC(L) =
F(L) n USC(L). O

5.2. Conservativeness. Recall that the poset of extended semicontinuous
functions on a space is isomorphic to the poset of extended semicontinuous
functions on its frame of open sets. Taking into account that for a Ti-space
X one has that OX is subfit and that the Dedekind-MacNeille completion of
a poset is unique up to isomorphism, we obtain

F(X) ~ F(OX).

Furthermore, as the definition of real-valued functions only relies on the order
structure of F(OX), one can easily conclude that

F(X) ~ F(OX).

5.3. Semicontinuous regularizations. We shall show now how to extend
lower and upper regularizations studied in [10] to our new setting (see also
[12]). The lower regqularization f° € LSC(L) of f € F(L) is determined on
generators by
P —_— O\ ¥
Pr=) =V o) and (=) =V (fla)
p>r q<s

for each r, s € Q. It is straightforward to check that this assignment turn the
defining relations (rl)—(r4) into identities in (L). Further, if f is real-valued,
then

/\ fo(ra_) < /\ f(’l“,—) =0,
reQ reQ
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thus (13) holds. However (12) does not hold in general: f° e LSC(L) if and
only if

V=

reQ
Dually, the upper reqularization f~ € USC(L) of f € F(L) is defined by
fm==0=f

An easy computation gives

F) =V (FE) T and f(—s) =V Fd)
p>r g<s
for each 7, s € Q. Further, one has that f~ € USC(L) if f € F(L) and
\/ f(_7 S) =1

s€Q

One can follow the arguments in [12, Propositions 7.3 and 7.4] to show
that in our new setting (-)°: F(L) — LSC(L) resp. (-)~: F(L) — USC(L) is
an interior-like operator resp. a closure-like operator.

5.4. An alternative definition for arbitrary real functions on a frame L is con-
sidered in [23] where, in the particular where L is subfit, arbitrary real func-
tions are homomorphism g: £(R) — B(S(L)) (see also [24]). Even though
in [23] sublocales are ordered by inclusion, we can equivalently keep the
dual order as in the rest of this paper, since B(S(L)) is a Boolean algebra,
thus consequently it is dually isomorphic to itself. Recall the isomorphism
I': F(L) — C(®B(2(L))) from 3.2.3. Note that, for f € F(L), one has

B(2(L)) 2(L) o
1= \/ F(f)(?", _) = ( \/ f(h _)**>
reQ reQ

if and only if

2(L) * 2L 2(L) *
0= (V f(ﬁ—)”) = A f(r,—)*= <\/ f(7"7—)> :

reQ

Analogously, one has

if and only if

2(L) *
( \/ f(_7 8)) = 0.
seQ

Consequently, the isomorphism I' restrists to an isomorphism

F(L) — C(B(2(L))),
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showing that both approaches to the notion of arbitrary real functions are
equivalent for subfit frames.

Furthermore, this shows that we can define algebraic operations in such
a way that F(L) becomes a lattice-ordered ring. Consequently, there is no
impediment to develop a theory of rings of real functions in this setting.

6. F(L) vs. C(2(L))

We conclude this article by analyzing the relation between our approach to
arbitrary real functions and the one adopted in [12]. The following diagram
summarizes the relations between the classes of functions considered in this

paper (each arrow represents an inclusion, which is strict in the general case):

L) C(L)
LSC(L) c(2(L)) USC(L)

N7

C(L)

The only inclusion that we have not explicitly considered yet, C(2(L)) <
F(L), follows from 5.1.3, since

\/f(T‘,—): 1= \/ f(—,S)
seQ

reQ

(V f(’f',—)) :O:<\/ f(_73)) .
reQ s€Q

The difference between the extended and non-extended cases has already

trivially implies

been analyzed in 2 and 4. By 3.2.5, we know that

F(L) = C(2(L))
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if and only if 2(L) is extremally disconnected. More complicated is the case
of real-valued functions. By the chararcterization of Banaschewski-Hong [5,
Proposition 1], one has that C(2(L)) is Dedekind complete if and only if
2(L) is extremally disconnected. Since 2(L) is not extremally disconnected
in general, it follows from the following proposition that

F(L) # C(2(L))
in general.
6.0.1. Proposition. For any frame L, F(L) is Dedekind complete.

Proof. Let {f;}ier € F(L) and f € F(L) such that f; < f for all i € I. As
F(L) is complete, there exists

F(L)

fv=V fieF(L).

el

As f, < f, one has f,(r,—) < f(r,—) for all r € Q and consequently

A fu(r—=) < A flr,—) =0.

reQ reQ
As f; < f for each i € I, one has f(—,s) < fi(—,s) for all s € Q. Therefore

N fo(=s) < A fi(—s) =0.

seQ seQ
We conclude that f, is real-valued. Since F(L) is dually isomorphic to itself,
then F(L) is Dedekind complete. O

6.0.2. Example. Let s(Q) resp. s(I) be the sublocale of OR induce by the
subspace QQ of all rational points resp. by the subspace I of all irrational
points. One can check that s§(Q) and s(I) are pseudocomplement to each
other in 2(OR), that is, s(Q)* = s(I) and s(I)* = 5(Q). Therefore, x4q),s(1)
is a Hausdorff continuous partial real function, that is, xsqQ)sm) € F(L).
Moreover, it is obviously real-valued. However, it is not in C(2(OR)), as

Xs(@).s(1)(0, =) v Xs(@) s (— 1) = 5(Q) v s(I) < B(OR) # 1,
since both s(Q) and s(I) are dense sublocales and consequently

OR # B(OR) < 5(Q) v s(I).

For the following proposition, recall that an element a € L is said to be a
cozero if there exists f € C(L) such that a = f(—,0) v f(0,—). In that case,
there exists g € C(L) such that a = g(—, 1) (simply take g = ((—f) A f)+1).
See [3] for more details. A frame L is said to be a P-frame if each cozero
element is complemented and said to be an almost P-frame if a = a™* for each
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cozero element. Obvioulsy, if L is an almost P-frame, then 1 is the only dense
cozero. In fact, this is a sufficient condition [8]. Further, under extremal

disconnectedness, L is a P-frame iff and only if it is an almost P-frame.

6.0.3. Proposition. For any frame L, F(L) = C(2(L)) if and only if 2(L)

is an extremally disconnected P-frame.

Proof. = : For each S € 2(L), one has xg* g+« € F(L). If F(L) = C(2(L)),
one has that

1= XS Sx* (O,—) V XSG Gk (—, 1) = 5% v §**,

Consequently, 2(L) is extremally disconnected.

On the other hand, let T" be a dense cozero element of 2(L). Then there
exists g € C(2(L)) such that T' = g(—,1). Le ¢ = (g v 0) A 1. Obviously,
1 < ¢’ < 1. By the isomorphism ® in 3.0.2, one has ®(g') € F(L). Then one

has
(7"\642 <1><g'><r,—>>* (Vs

<g(—1/2,—)* = 1* =0,

since ¢’ > 0, and

(s\e{@ ()~ s>) -(v_ o)
=g(=1"
=g(—1)*=T"=0,
since T is dense. Consequently, ®(¢) € F(L). Tf F(L) = C(2(L)), one has
1=V ()=

seQ

=V ¢ (—als))
seQ

= \/ g/(_7 3)
—1l<s<1

= gl(_v 5) = g(_a 1) =T.
«—=: Let f € F(L). We already know that F(L) = C(2(L)) if 2(L) is
extremally disconnected, consequently f turns (r2) into an identity in 2(L),

thus we only have to check (r5) and (r6). By the isomorphism ¥ from 3.0.2,
one has ¥(f) e C(2(L)) and

U(f)(=1,—) = \E{@f(r, —)-



30

I. MOZO CAROLLO

Thus \/TEQ f(r,—) is a cozero, which is dense by 5.1.3. In consequence,
V,eq f(r;—) = 1, thus f turns the defining relation (r5) into a identity in
2(L). One can check (r6) dually. O
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