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ABSTRACT

Sudden cardiac arrest (SCA) is a critical medical condition that
abruptly interrupts the function of the heart and often leads to
sudden cardiac death (SCD). It is categorized into in-hospital cardiac
arrest (IHCA) and out-of-hospital cardiac arrest (OHCA). The inci-
dence of IHCA ranges from 0.78 to 4.60 per 1000 admissions, with
survival rates around 25 % in the USA and up to 35 % in Europe. In
contrast, the incidence of OHCA varies widely, from 50 to 100 per
100000 person-years, with survival rates below 8 %.

During SCA, pulseless electrical activity (PEA) may occur, in which
organized cardiac electrical activity is present, but there are no effec-
tive mechanical contractions producing a palpable pulse. Studies of
OHCA indicate a prevalence of 20-30 %, whereas studies of IHCA
indicate rates of up to 40-60 % as the first rhythm during SCA. Recent
data reveal a worrying increase in the prevalence of PEA during
IHCA from 36 % in 2000 to 46 % in 2009, reflecting similar trends
during OHCA cases.

Researchers and clinicians are actively investigating PEA, focusing
on parameters such as heart rate and QRS complex width to obtain
prognostic information about the outcome. Despite their efforts,
the results remain inconsistent. Furthermore, there is a notable
absence of an automated method that leverages biomedical signals for
outcome prediction in cases of SCA. This underscores the strong need
for further research to fill this gap and improve patient outcomes in
cases of IHCA and OHCA.

This thesis presents innovative approaches to monitor the progno-
sis of PEA in patients with SCA. Predictive models were developed
using sophisticated signal processing methodologies and machine
learning techniques. The algorithms aimed at distinguishing between
favorable and unfavorable PEA rhythms were devised by harnessing
the electrocardiogram as well as other biomedical signals such as
thoracic impedance and invasive arterial blood pressure. The effec-



tiveness of these algorithms in discriminating the potential outcome
of SCA was validated by a retrospective analysis of complete SCA
episodes.

Patients experiencing SCA may show signals characterized by
higher noise levels and more erratic fluctuations compared to stable
patients. Therefore, in this thesis specific delineators adapted to these
contexts have been developed. On the one hand, a delineator of the
QRS complex based on deep learning architectures was designed. On
the other hand, a IBP signal delineator has been devised employing
adaptive thresholds and advanced signal processing techniques. This
enables the automatic measurement of features derived from these
signals during SCA episodes.

This thesis project demanded authentic real-world SCA datasets.
To formulate solutions using deep and machine learning algorithms,
it was imperative to access carefully annotated datasets with rhythm,
outcome, and QRS complexes, ensuring training efficacy. Through
collaboration with clinical research cohorts, rigorous evaluation of
proposed solutions was made possible, leveraging datasets that en-
compassed both IHCA and OHCA scenarios.
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1 INTRODUCTION

1.1 SUDDEN CARDIAC ARREST

Sudden cardiac arrest (SCA) is defined as the abrupt cessation of
cardiac system which may result in sudden cardiac death (SCD) [1].
It is typically categorized into two distinct classifications: in-hospital
cardiac arrest (IHCA) and out-of-hospital cardiac arrest (OHCA) [2].
The incidence of IHCAs has been noted to vary between 0.78 and 4.60
per 1000 patient admitted in the hospital. Patient survival rates to
hospital discharge or within 30 days post-IHCA have been reported
to be approximately 25 % in the United States of America (USA) and
up to 35 % in European countries [3—6]. The incidence of OHCA is
approximately 55 per 100000 person-years in Europe and between 50
and 100 per 100000 person-years in the USA. Despite wide research
in protocols and interventions during OHCA, survival rates have
exhibited minimal variation, persisting below 8 % [7-9].

Based on the Utstein 2014 categorization of etiology [10], SCAs
can be divided into medical and non-medical causes. The vast
majority (more than 90 %) fall under the medical category, with
approximately 50 to 80 % attributed to cardiac reasons, while the
remainder primarily stem from respiratory, neurological, and cancer-
related causes. Conversely, slightly less than 10% of SCAs are
non-medical, with notable causes including traumatic incidents,
drowning, asphyxiation, electrocution, and drug overdose [11,12].

During a SCA event, as response to resuscitation therapy, the
patient can show different cardiac rhythms, each with distinct
implications for patient prognosis and treatment. SCA rhythms
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Figure 1.1. Examples of 10s segments of electrocardiogram (ECG) showing distinct SCA
rhythms: asystole, PEA, VE, and PR.
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include ventricular fibrillation (VF), occurring in about 20-25 % of
cases, pulseless electrical activity (PEA) seen in approximately 30-
35 %, and asystole, which constitutes around 35-40 % of cases [13-15].
An illustration of each type of rhythm is available in Figure
Rapid recognition and appropriate management of these rhythms are
crucial for guiding resuscitation efforts and improving the likelihood
of successful outcomes in SCA emergencies. The resuscitation
manoeuvres should lead the patient towards return of spontaneous
circulation (ROSC) characterized by pulsed rhythm (PR).

1.2 RESUSCITATION THERAPY

International resuscitation guideline define the framework
to systematize and enhance medical emergency interventions
during SCA. These guidelines, meticulously compiled and revised
approximately every five years, offer evidence-based protocols to
ensure consistency and efficacy in resuscitation efforts. Esteemed
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organizations such as the European Resuscitation Council (ERC)
and the American Heart Association (AHA) are entrusted with the
publication and maintenance of these guidelines, with the 2021 and
2020 guidelines in force [16,17].

Resuscitation therapy aims to revive blood flow and oxygen
supply leading the patient to ROSC. This involves cardiopulmonary
resuscitation (CPR), defibrillation, and advanced life support (ALS)
to maintain essential bodily functions until further medical assistance
is available [18].

Introduced in 1991 by the AHA [19], the chain of survival
(Figure 1.2) outlines critical time-sensitive interventions to maximize
survival from OHCA. Though evolving to include additional links,
the original four remain fundamental, encompassing essential pre-
hospital interventions:

Chain of survival

Figure 1.2. The ERC’s version of the chain of survival including four main steps: early
recognizing, starting CPR quickly, providing defibrillation promptly, and
delivering advanced and post-resuscitation cares.

o Early access: The first link in the Chain of Survival is early
access, which involves rapidly recognizing signs of SCA and
promptly calling the local emergency number to activate the
Emergency Medical System (EMS). Identifying SCA symptoms
before collapse is crucial, as activating EMS prior to the event
leads to higher survival rates [20].

o Early CPR: Prompt administration of CPR, especially focusing
on effective chest compressions (CC), is crucial for patient

3



survival. Research shows that when bystanders perform
CPR, the likelihood of survival rises significantly [21].
This highlights the importance of widespread CPR training
programs to educate the general public. The AHA estimates
that training 20 % of the population in CPR could notably
increase survival rates [22]. Studies indicate that survival rates
can double if bystander CPR begins within 4 min of collapse,
followed by defibrillation within the first 8 min [23].

Early defibrillation: Defibrillation is essential during SCA,
particularly with ventricular arrhythmias like VF or ventricular
tachycardia (VT) [24]. These conditions can be corrected with a
prompt electrical shock, called defibrillation [25]. Rapid action
is crucial as these rhythms deteriorate promptly, leading to SCD
if not treated. Shocks administered within 3 to 5 min of collapse
have high survival rates of 50 to 70 % [26,27]. Public access
defibrillation programs allow bystanders to use automated
external defibrillators (AEDs) before EMS arrival, improving
response times [25].

Early ALS: The use of CPR and defibrillation alone may not
always be sufficient to regain a normal heart rhythm, and ROSC
over an extended period. ALS includes other interventions as
intubation or drug administration, and defibrillation [29].

1.3 MONITOR DEFIBRILLATORS

AEDs are fundamental tools utilized in resuscitation scenarios.
Their main goal is to facilitate quick defibrillation, making them user-
friendly for individuals with minimal training like bystanders [28,30].
Contemporary AEDs offer guidance to the rescuer throughout the
process, with features such as audio instructions for pad placement
and CPR cessation/resumption. Their ability to swiftly administer
essential treatment before professional help arrives can be critical
in saving lives [31]. Crucially, they are equipped with algorithms
to autonomously assess the patient’s heart rhythm and decide if
defibrillation is necessary [32].
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The standard AED collects two distinct biomedical signals via
its defibrillation pads: the electrocardiogram (ECG) and thoracic
impedance (TI). Advance AED models, designed for first response
professionals like policemen or firefighters, may come equipped with
standalone or integrated CPR assist pads (as shown in Figure 1.3).
These devices utilize accelerometers and/or force sensors to measure
CPR parameters such as CC rate and compression depth, enhancing
the effectiveness of resuscitation efforts [33].

Figure 1.3. ZOLL Medical AED 3 BLS defibrillator, which incorporates pads integrated with
accelerometers, manufactured in Chelmsford, MA, USA.

More advanced monitor/defibrillators (shown in Figure ),
utilized by healthcare providers both pre-hospital and in hospital
settings, offer more functionalities than basic AEDs. These
devices not only allow manual control of defibrillation but also
display real-time continuous waveform data of key physiological
parameters. In addition to standard ECG and TI monitoring, these
monitor/defibrillators incorporate extra modules for monitoring
invasive arterial blood pressure (IBP), pulse oximetry, or capnography.
IBP is typically obtained via cannulation of peripheral arteries and
it quantifies the pressure exerted by blood on arterial walls [34].
Pulse oximetry, utilizing sensors positioned on the finger, ear, or
nose, assesses the oxygen saturation of the blood [35]. Capnography,
obtained through sensors placed in the nose or mouth, provides a

5
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measurement of the partial pressure of carbon dioxide in exhaled
gases [306].

Figure 1.4. The Physio-Control Lifepak-15 Monitor/Defibrillator is manufactured in
Redmond, WA, USA.

Commercial software associated to defibrillators typically enables
visualizing and analyzing information and biomedical signals
recorded in an electronic file in a proprietary format. Major
defibrillator brands like Philips Healthcare (Andover, MA, USA),
Stryker /Physio-Control (Redmond, WA, USA), and ZOLL Medical
(Chelmsford, MA, USA) play key roles in providing these
functionalities. However, converting this data for further examination
requires additional tools. Alongside biomedical signal acquisition,
comprehensive information about the SCA event is compiled to
establish registries. Utstein-style templates ensure consistency in
documenting IHCA and OHCA, covering variables such as SCA
context, patient demographics, arrest etiology, initial rhythm, CPR
and medical intervention specifics, and patient outcomes [10,37].

1.4 BIOMEDICAL SIGNALS

ECG provide a non-invasive visual representation of the heart’s
electrical activity recorded in the resuscitation context through
defibrillation pads located in the front-lateral position in the
chest of the patient. Of particular interest is the QRS complex,
denoting ventricular depolarization and following contraction [38].
Fundamental information such as cardiac rhythm or heart rate
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(HR) is obtained from the ECG. Given that the crucial information
about cardiac system in an ECG lies within its characteristic wave
peaks and boundaries, developing precise methods for automatic
ECG delineation is essential [39,40]. Several automatic delineation
methods have shown excellent performance in stable patients [40-48],
but none have been proposed for patients during SCA.

TI pioneered by Kubicek et al. in 1970 [49], measures the body’s
resistance to electrical current. It is calculated through Ohm’s
law using the voltage drop from a high-frequency current passed
through pads. Typically operating within a frequency range of
20-100kHz and a current intensity of 1 — 5, mA, TI has been integral
in cardiopulmonary research for over five decades, facilitating the
measurement of ventilation, respiration, and cardiac output [49-52].

IBP acts as a vital indicator of hemodynamic status, pivotal for
monitoring treatment efficacy during SCA therapy [34]. Usually
acquired through cannulation in peripheral arteries, IBP waveform
analysis holds significance in clinical practice for its ability to
delineate cardiac contraction and relaxation, offering essential
information on HR, cardiac rhythms, and pressure values [53,54]. IBP
waveform reveals distinctive patterns/fiducial-points indispensable
for the calculation of physiological parameters. However, during
SCA, IBP signals may exhibit distorted waveforms, leading to
unreliable fiducial point detection, attributed to factors like patient
movement, catheter placement concerns, hemodynamic instability,
and high-frequency artifacts [54-56].

In Figure 1.5, a segment is depicted exhibiting the three recorded
biomedical signals during an OHCA.

1.5 PurserLEss ELECTRICAL ACTIVITY

PEA is a condition observed during SCA where there is electrical
activity in the heart with organized regular ECG as in PR, but no
effective mechanical contractions generating a palpable pulse. OHCA
studies have recorded a prevalence of 20-30 %, while IHCA studies
have reported prevalence of up to 40-60 % [13,57,58]. Over recent
decades, there has been an increase in PEA prevalence during IHCA,

7
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Figure 1.5. Examples of a segment showing the three signals: ECG in the top panel, TI in the
central panel, and IBP in the bottom panel. Orange shading indicates the intervals
during which CCs are administered.

rising from 36 % in 2000 to 46 % in 2009 [59]. Similar upward trends
have been noted during OHCA settings as well [60-62].

In their observational prospective study, Tayal and Kline [63]
investigated the distinctions between true-PEA and pseudo-PEA.
True-PEA is characterized by the absence of detectable cardiac
movement despite the presence of a normal electrical rhythm [64,65].
Conversely, pseudo-PEA exhibits some degree of cardiac movement,
albeit insufficient for adequate circulation, often stemming from
severe shock states such as hypovolemia or obstruction of cardiac
output. Examples of organized PEA, both true and pseudo-PEA, are
depicted in Figure 1.6.

The early identification of these reversible etiologies during
resuscitation holds significant importance. It enables healthcare
professionals to tailor treatment strategies effectively, thereby
optimizing the chances of patient survival [65]. As these underlying
conditions progress, myocardial contractions may cease entirely,
resulting in true-PEA [64,66].

Recent technological advancements have expanded diagnostic tools
for SCA, enabling rapid identification of causes and informing clinical
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Figure 1.6. Examples of 5s segments with PEA. In the top row, three pseudo-PEA; in the
bottom row, three True-PEA.
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True-PEA

decisions. These tools offer vital insights into prognostic outcomes,
refining treatment strategies and streamlining SCA management
protocols [64, 67, 68]. Numerous studies have investigated the
utility of QRS complex characteristics in ECG to differentiate
between various causal mechanisms of PEA [69,70]. Additionally,
capnography has gained significant traction as a commonly utilized
tool for monitoring OHCA [65].

1.6 PROGNOSIS PREDICTION

Prognosis in medicine entails predicting the likelihood of specific
outcomes over a defined period, considering clinical and non-
clinical aspects. These outcomes can include events like death
or complications, as well as measurable changes such as disease
progression or pain levels [71].

In the context of SCA the cardiac rhythm of the patient evolves as
response to the resuscitation treatment: defibrillation, CPR, drugs,
etc. towards PR in a successful case. Electrical treatment through
defibrillation shocks does not guarantee the restoring of PR. It has
been proven that unsuccessful shocks may contribute to cardiac

9
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damage and reduce the probability or ROSC. To address this issue,
shock prognosis predictors have been proposed [72-77] to optimize
the timing of shocks, decrease the number of failed shocks, and
minimize myocardial damage.

Predicting rearrest, or the likelihood of a patient experiencing
another SCA after regaining a pulse, is essential for improving
patient outcomes. Rearrest events are related to poorer outcomes,
making prognostic prediction fundamental. Several studies have
investigated associated factors [75-50], and automated methods have
been proposed to aid in this prediction process [31].

Predicting the prognosis for SCA patients following CPR is
pivotal for treatment decisions. Evaluating how patients respond to
treatment is vital during SCA to guide resuscitation. Several studies
emphasize the necessity of rapid prognosis models to aid clinicians
in decision-making. A positive prognosis suggests continuing
current efforts unchanged, while a negative prognosis prompts
reconsideration, including CPR quality and identifying reversible
causes [82-85].

Various prediction models utilize demographic data from the pre-
hospital framework to predict survival outcomes or ROSC during
SCA. Some employ machine learning (ML) algorithms [56-90]
like random forest and support vector machines, while others
leverage deep learning (DL) techniques [91-93] such as artificial
neural networks (ANN). These models analyze factors like age,
gender, event witness or bystander CPR to predict ROSC likelihood,
facilitating clinical decision-making. While integration into practice
holds promise for enhancing resuscitation outcomes, further research
is essential to refine these models and assess their real-world
effectiveness [94].

PEA is one of the principal rhythms observed during SCA, which
has attracted the attention of researchers and clinicians equally.
Among the parameters commonly examined by clinicians are HR
and the duration or width of the QRS complex (QRS,,), both of
which have been proposed as possible prognostic indicators of SCA.
Clinical investigations reveal inconsistency and ambiguity. Whereas
some studies have indicated a correlation between initial QRS,,,



HR, and probability of survival [52, 95], others have presented
opposing evidence. For instance, certain research has highlighted
the prognostic significance of HR alone [96], whereas others have
emphasized the importance of QRS,, as an independent predictor
of outcome [97]. Notably, there are also studies that have failed
to establish a clear association between survival rates and HR or
QRS,, [70,98], further complicating the picture.

Despite much attention to understanding the prognostic factors
of PEA, no previous attempts have been made to develop an
automated method that leverages biomedical signals to predict its
outcomes. This represents a major gap in the current knowledge
base, underscoring the need for innovative approaches to unravel
the complexities surrounding the prognosis of PEA and potentially
improve clinical outcomes.

1.7 MOTIVATION

In recent years, there has been a concerning increase in the
incidence of PEA as the initial rhythm in cases of SCA [99]. Despite
considerable advancements in studying the prognosis and treatment
of that rhythm, the primary parameters correlating with outcome are
still calculated manually [82-55]. No automated models have been
proposed based on the biomedical signals monitored by monitor
defibrillators.

An automated model possesses the capacity to assist rescuers in
refining therapeutic approaches, thereby potentially augmenting
survival rates. It must discern between PEAs with favorable
prognosis (high probability of evolving to ROSC) and those with
unfavorable prognosis.

A multimodal approach could include features derived from ECG,
TI or IBP have been explored for making alternative predictions
and could conceivably be applicable in forecasting the prognosis
of PEA [77,81,100]. The presently manually computed features
could be mechanized to facilitate their integration into automated
models [40,42,54,55]. In order to estimate these features, it would
be necessary to have the position of the different ECG waves and
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the fiducial points of the IBP signal. However, the ECG and IBP
delineators have been developed and tested in hemodynamically

stable patients; they have not been tested in unstable patients, so
their reliability is uncertain.



2 BACKGROUND

2.1 PEA PROGNOSIS PREDICTION

In the late nineties, Aufderheide et al. (1989) [95] first analyzed
the evolution of patients in PEA during SCA. In that study they
compared different ECG patterns in 503 patients attending to OHCA.
They observed that successful outcome was linked to fast initial HR,
short QRS,,, short QT intervals and high incidence of P waves.

In 2015, Hauck et al. [101] examined how HR and QRS,, relate to
survival until hospital discharge in 262 OHCA patients. They focused
on patients with a PEA as initial rhythm and analyzed the first 20's
of the episode. Their findings showed no significant difference in
survival rates between patients with “slow” (< 60 beats per minute
(bpm)) and “normal” (60-100 bpm) HR (p = .16), nor in survival
between patients with “narrow” (< 120ms) or “wide” (> 120 ms)
QRSy, (p = .79).

Bergum et al. (2016) [70] conducted a retrospective study examin-
ing ECG patterns in early PEA and their relation to survival. They
analyzed data from 51 IHCA patients, looking at factors like HR,
QRS,,, QT interval and presence of P waves. These measurements
were taken from three consecutive QRS complexes during the first
pause in CC. They classified HR as “slow”, "normal”, or “fast” and
QRS complexes as either “normal” or “narrow” depending on their
width. Them they assessed outcomes like ROSC, 1-hour survival,
and hospital discharge. They found no specific patterns linked to the
causes of SCA or survival rates.

13
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In Weiser et al.’s study (2018) [96] they examined the initial 60s of
ECG without CC in 504 OHCA patients. Patients were grouped by
initial PEA HR (10-24 bpm, 25-39 bpm, 40-59 bpm, > 60bpm). QRS
complexes 120 ms were considered “narrow”, while "wide” are >
120 ms. Outcomes included 30-day mortality and good neurological
outcome (cerebral performance category (CPC) 1 or 2 at day 30).
Higher HR was correlated with increased odds of 30-day survival
(p < .0001 for each frequency category) and good neurological
outcome (p = .001 for each category). But QRS,, during PEA did not
affect outcomes.

Ho et al.’s study (2018) [98] investigated the impact of HR, QRS
and the presence of P waves on predicting ROSC. They conducted
a retrospective analysis of 332 OHCA patients with PEA rhythm.
Survivors showed similar HR (56.8 vs. 52.0 bpm, p = .53) and QRS,,
(128.7 vs. 129.6 ms, p = .95) compared to non-survivors.

Skjeflo et al. (2018) [102] measured the relationship between HR
and QRS,, in 74 patients experiencing IHCA. They discovered that
increased HR and narrowing of the QRS complex were more common
among patients who achieved ROSC. A notable rise in HR was noted
in the final 3-6 min preceding ROSC.

In 2021, Kim et al. [97] conducted multivariable logistic regres-
sion analyses to examine how the HR and QRS,, relate to hospital
discharge. They analyzed data from 3659 patients who experienced
OHCA with an initial rhythm of PEA. They found no significant
relationship between HR and survival outcomes, however, they found
that QRS,, < 120ms increased survival probability (adjusted odds
ratio of 3.37).

Our Norwegian collaborators Norvik et al. (2023) [32] investigated
559 segments from 298 patients. Their study aimed to determine
how these factors relate to the immediate probability of ROSC during
IHCA resuscitation. They found that higher HR and a rising HR were
associated with a higher likelihood of ROSC (p < .0001), whereas HR
was not correlated with the likelihood of transitioning to no-ROSC
(p = .349). Lower QRS,, and decreasing QRS,, were linked to a
higher probability of ROSC (p < .023) and a reduced likelihood of
no-ROSC (p = .0002).
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A summary of the references in PEA prognosis prediction is pre-
sented in Table 2.1. Between predictors, HR and QRS,, stand out
prominently. The conclusions drawn from these studies exhibit some
contradictions. While some found correlations between QRS,,, HR,
and the outcome [82,95, ], others identified correlations only
with HR [96] or QRS,, [97]. In the case of Aufderheide et al., no
correlation was found between the outcome and any of the predic-
tors [70,98,101].

Summary of the studies
, -
Study Population | Number of | 01 criteria Features Outcome Conclusions
’ type patients
HE, QRS., QT Successfully resuscifated PEA pa-
Episodes with PEA as | intervals and the | Successful resus- | Hents showed faster initial HR,
Aufderheide et al. [95] | OHCA 503 pisoces a3 o uceess U571 shorter QRS,, and QT intervals and
the initial rhythm presence of P | citation
more P waves compared to unre-
waves ) ‘
sponsive patients.
The first 20s  of Survival  until S::;g“:;z:;:f;‘;‘;? ;8‘\“‘6%1
Hauck etal. [101] | OHCA 262 episodes with PEA as | HRand QRS, | hospital ~dis- " °
oce 100 bpm, p = .16) or QRS,, (< 120
the initial thythm charge
vs > 120ms, p = .79).
Three consecuhye QRS | HR, QRS,,, QT in- RQSC, 1-hour >:ur- No specific patterns were associated
Bergum etal. [70] | IHCA 51 complexes during the | tervals and pres- | vival and hospital | . ‘
) ) ) with survival.
first pause in CC ence of P waves | discharge
30-day mortality | Higher HR correlated with in-
and good neuro- | creased 30-day survival odds (p <
Weiser etal. [96] | OHCA 504 Initial 60s without CC | HR and QRS,, | logical outcome | .0001) and better neurological out-
(CPC 1 or2atday | comes (p = .001). QRS, had no
30) effect on outcomes.
S e P
Ho etal. [95] OHCA 332 PEA segments the presence of P | ROSC i - " A
o p = .95) were observed in survivors
compared to non-survivors.
Higher HR and narrower QRS
) QRS complexes during Were more prevalent in patients
Skjeflo etal. [102] | THCA & the first pause in CC | 1R and QRSw | ROSC who achieved ROSC compared to
those who did not.
N ., | No significant link found between
Surviving - until | e 4 survival, but a QRS, <
Kim et al. [97] OHCA 3659 PEA segments HRand QRS, | hospital dis- ¢ q
char 120ms greatly boosted survival
charge chances (adjusted odds ratio: 3.37).
Higher and increasing HR were
linked to higher chances of ROSC
. (p < .0001), while lower and de-
Norvik etal, [52] | IHCA 298 gf:sﬁfftmiff‘:fndgg“g HRand QRS, | ROSC creasing QRS widths increased the
st paus likelihood of ROSC (p < .023) and
reduced the likelihood of no-ROSC
(p = .0002).

Table 2.1. Summary of the main references in PEA prognosis prediction.

2.2 CHARACTERIZATION OF ECG, TI AND IBP S1IGNALS

In this section the main waveform characteristics of the ECG, the
TI and the IBP signals will be presented. Some of them are general
features as the QRS metrics of the ECG or the pressure metrics of IBP;
others are more specific of SCA as amplitude spectrum area (AMSA)
or Fuzzy entropy. They are frequently used in multimodal models
for rhythm classification, event detections or predictive purposes in
SCA. Features are grouped into three categories according to their
origin.
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2.2.1 WAVEFORM FEATURES

The following features are computed using automatic algorithms
and reflect the waveform of the signal on which they are computed.

o The AMSA represents the sum of the spectral amplitudes,
A;(fi), of the signal, with each amplitude weighted by its cor-
responding frequency (f;). It is computed following the most
extended definition [103,104] as follows:

AMSA =) A;-f; (1)

It has been highlighted as a shock success predictor, and surro-
gate measure of coronary perfusion pressure and myocardial
energy state [105,106].

¢ The Smoothed Nonlinear Energy Operator (SNEO) quantifies
the local energy content of the signal. The signal x(n) is the
convolution between a Kaiser window, wy (1), and a non-linear
Teager-Kaiser Energy Operator, yy[x(n)], [107]:

Ps,[x(n)] = ilx(n)] @ wi(n) 2)

P [x(n)] is computed using the following equation:

Prlx(n)] = x*(n) — x[n — k]x[n + k] 3)

where k is the lag parameter which is associated with the
window length (L samples) by L = 4k + 1.

It has generally been used for QRS complex detection [105],
identifying circulatory status [100] and predicting shock out-
comes [107].

¢ ARB is the error in estimating the spectral power of the signal
with a 4th-order autoregressive Burg model. The model yields
a lower error in estimating the spectral power for signals whose
spectra are centered around a fundamental frequency and its
harmonics [109,110]. The signal x(n) can be modeled as:
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x(n)=— i ags(n — k) 4+ v(n) (4)
k=1

where v(n) represents an independent white noise sequence
with zero mean and variance Ug, and a; coefficients are the
autoregressive coefficients of the model.

This parameter has found applications in identifying circulatory
status [100] and classifying cardiac rhythm [110].

The cross-power (ECGVSTIcrossPower) Mmeasures the cross power
between the ECG and TI signals in our applications and it is
defined as [111]:

ECGVSTICrOSSPower = min(P cls P CZ) (5)

where P, power of the k-th half of the sequences, which is
calculated as follows:

1 N/2
— 3 L leegelel - ITLln] ®

n=1

Pck

considering ecgi[n] and TIi[n] as the ECG and the TI samples
of the k-th half, respectively.

A high value of ECGvsTIcyosspower is indicative of pulsatile
rhythms, and it has been suggested for automated detection of
circulation [111].

Fuzzy entropy was proposed by Chen et al. [112] as a method
to determine vector matching in a smooth and gradual way,
introducing concepts from fuzzy set theory. The signal sam-
ples, denoted as x(n), are divided into sets of vectors, each
containing m samples. The total number of vectors created
is N —m + 1, where N represents the total number of sam-
ples in the interval. In the resulting vector structure xj" =
{x(i),x(i+1),...,x(i+m—1)}, the baseline is subtracted as
follows:

17
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= {x(i),x(i+1),...,x(i+m—1)} — 317’12196(1'“) )
1=0

The maximum norm (L.-norm) was employed to measure the
Chebyshev distance between two vectors, denoted as x}" and
m

D, ¢
]

dij = _max_ (Jx(i+k)—x(j+k)]) 8)

Matches are computed using a set of functions that decay

exponentially with increasing distance. These functions, de-
L\ 1

noted as Di’?(n,r) = exp (— (@) ), are used with a specific

value of n = 2 and a Gaussian distance formula DZ?(Z, r) =

N2
exp | — (@) , as proposed in previous works in the field of
survival prediction [113,114]. The match counts are calculated

based on these functions as follows:

Ci'(r) = N_m_1 Z Dii(2,7) )

] Lj#

The probability that two vectors of length m match within a
tolerance of r is given by the expression:

ou(r) = g7 L CI'0) (10)

The same procedure is repeated for the vector of m + 1 samples
to obtain ¢,,11(r), and Fuzzy entropy was computed as:

Fuzzy entropy(m,r,N) = In¢,(r) — In¢,,1(r)  (11)

2.2.2 QRS COMPLEX FEATURES

The following features are estimated based on the characteristic
points of the QRS complex. This implies having the QRS onset
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(QRSon), end of QRS (QRS,f) and R wave peak instants. The graph-
ical illustration of the features is shown in Figure 2.1.

e HR and HRy,; represents the average and variance of the HR
value, calculated as the inverse of consecutive R-R intervals.

* QRSy and QRy, denote the durations between QRS,,-QRS,ff
and QRS,,-R peak, respectively.

* QRS;iope and QRgjope are computed as the sum of the ampli-
tude values of QRS and QR complexes in the first difference
signal divided by QRS,y, and QR4 respectively.

* Ramp is the mean value of the amplitude of the R wave peaks
in the segment.

I

I
I
I I

I
¥ L
Q:Rw Q:RSw

Figure 2.1. A 5s example of ECG signal, with HR, QRyjqm, QRSyw and Ramp represented.
QRS,n and QRS,fs are depicted for each QRS complex with green and orange
dashed lines, respectively.

2.2.3 ABP FEATURES

The following features are estimated based on the fiducial points
of the IBP signal. This implies having the diastolic onset (Diaset)
and systolic peak (Sys,eqx) instants. The graphical illustration of the
features is shown in Figure 2.2.
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o Systolic arterial pressure (SAP) refers to the value of the IBP sig-
nal at the instant of the Sysp.q., which represents the maximum
pressure in the arteries during heart contraction.

¢ Diastolic arterial pressure (DAP) represents the lowest pressure
measured at the Dia,,s; of heart contraction.

o Pulse pressure (PP) is the difference between SAP and DAP
readings, reflecting the force exerted on arterial walls during
heart contraction.

e The Mean Arterial Pressure (MAP) is the average arterial pres-
sure over one cardiac cycle and is calculated using the following
formula [115]:

MAP = DAP + %PP (12)

e HR can be estimated as the inverse of the distance in time
between consecutive Syspeak.

5_

60,/H

PP

|

Figure 2.2. A 5s example of IBP signal, with SAP, DAP, PP and HR represented. Diaoyset
and Syspeq are depicted for each heartbeat with green and orange dashed lines,
respectively.

2.3  ARTIFICIAL INTELLIGENCE MODELS IN RESUSCITATION

Artificial intelligence (Al) is everywhere, from self-driving cars
to fraud detection in finance, virtual assistants, improved customer
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service, and optimising manufacturing processes, reshaping mod-
ern society. In cardiac resuscitation, Al is widely used in the field
of resuscitation monitoring. Many proposals have been made in
topics as: shock outcome prediction [107,116], rhythm classifica-
tion [110, , ], outcome prediction [119-121], CPR monitor-
ing [122,123], short term cardiac evolution prediction [124-126],
circulation monitoring [100, , ], etc. In this thesis work Al
potential is used to predict the evolution of PEA rhythms. ML
enables models to improve performance by learning from data with-
out explicit programming, facilitating adaptation and evolution in
response to new information. The classical ML approach consist in
three steps: feature extraction from the signals, design and training
of the ML model, and a final step of evaluation of the model.

2.3.1 ML MoODELS

In ML, input parameters (X) refers to numerical or categorical
feature vector, enabling the model to differentiate patterns. The
output parameter (Y) is the target variable to predict by the ML
model which is known in supervised models. Next three ML models
will be described, as they are the key models in the development of
thesis work.

Logistic regression (LR), a ML technique for binary classification,
predicts outcomes generally labeled as either 0 or 1. This model ap-
plies a logistic function to convert real-valued inputs to probabilities
within the range of 0 to 1.

1

P(Y=1X) = - + e (Bo+PrXi+PaXot . +PuXn)

(13)

Where:

e P(Y = 1|X) denotes the probability of the outcome Y being 1
given the predictor features X

¢ e represents the base of the natural logarithm.

e Bo,P1, ..., PBn are the coefficients of the logistic regression model
of order n.
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X1,Xa, ..., X, represent the individual predictors from X fea-
ture vector.

During training, the coefficients are iteratively adjusted to mini-
mize the disparity between the predicted and the actual outcomes.
This adjustment process employs optimization techniques such as
gradient descent.

LR is particularly effective in scenarios where the relationship
between features and the outcome follows a linear pattern on the
log-odds scale, making it suitable for binary classification tasks.
Its simplicity and interpretability make it valuable for applications
where understanding the impact of individual predictors on the
outcome is crucial.

In the context of SCA, LR models have been employed, for instance,
to predict the probability of survival [128], to predict shock success
[77], or to estimate the likelihood of rearrest [80].

Random Forest (RF) is a ML algorithm that builds various decision
trees during training and outputs the mode (for classification) or
average prediction (for regression) of the individual trees. Each tree
is built using a subset of the training data, sampled with replacement
[129,130]. RF optimization entails adjusting hyperparameters like
tree count and depth. Moreover, it measures feature importance,
identifying influential predictors for accuracy. Optimizing all these
variables, the RF model can be enhanced in terms of accuracy [131].

RF works well for handling large and complex datasets with mixed
types of features. It is robust against overfitting and noise, making
it suitable for classification and regression problems [132,133]. RF
performs well for both linear and nonlinear problems.

In the realm of SCA, RF models have been used to predict outcome
probabilities [91,119], classify cardiac rhythms [134,135], and detect
the pulse presence [104].

Support Vector Machines (SVM) is another typical ML model
used for classification problems. It aims to find the best hyperplane
w - X + b = 0 that separates classes in the feature space, where w is
the weighting vector, X is the input vector, and b is the bias term. The
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margin between classes is maximized by solving the optimization
problem:

1
= 14
Tzl o

subject to:
yilw-x;+b)>1foralli=1,...,N (15)

Here, (X;, Y;) are training samples with their corresponding labels,
and N is the number of samples.

SVM excels with high-dimensional data and small or moderate
datasets. Moreover, it can be easily extended for nonlinear problems.
In cardiology, SVM models trained with diverse features have been
proposed to predict SCA outcomes [91], defibrillation outcomes
[77,136], or rearrest probabilities [137].

2.3.2 DL MoODELS

DL is a subfield of ML that uses ANNs with multiple layers (hence
the term ”deep”) to learn complex patterns from data [138,139].

Warren McCulloch and Walter Pitts [140] introduced the concept of
ANN in 1943, which are computational models inspired by the brain’s
structure. They consist of interconnected nodes that process input
data through layers, adjusting connection weights during training to
minimize errors.

In the last decades, many types of layers have been proposed. The
five main types of layers used during this thesis are the following:

1. Pooling Layer: Reduces the size of feature maps while retain-
ing important information, helping summarize features. Two
prevalent pooling methods are Max Pooling, picking the high-
est value in the kernel, and Average Pooling, calculating the
average of all values in the kernel [141]. Figure illustrates
examples of both pooling techniques.

2. Dropout Layer: The dropout layer randomly deactivates some
neurons during training, preventing overfitting by encouraging
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Output MaxPooling Matrix
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Figure 2.3. The result of pooling process is shown, applying a 3x3 kernel moving across

the input data (purple), and providing the Maximum (up, green) or the Average
(down, green) values.

independence among them [142]. This enhances the model’s
capacity to generalize to new data.

. Convolutional Layer: The convolutional layer detects features

like edges or textures in the input by applying filters and
preserving spatial relationships in the data. Kernels slide over
data, performing mathematical operations to compute features
at each position [143,144]. Figure 2.4 provides an illustration
of this computation. Convolutional Neural Networks (CNN)
consist of multiple layers for feature detection and pattern
recognition.

Input Matrix

"~ ~~-_ Convolution Kernel Output Matrix
B et i T=- ==

LI0] aaff] [a]
EE O HEE

- EEE
DEEEE

Figure 2.4. The result of convolution process is shown, applying a 3x3 kernel (green) moving

across the input data (purple) and computing the output (red).
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4. Long short-term memory (LSTM) layer: An LSTM layer, a type
of recurrent neural network, is adept at capturing long-term de-
pendencies in sequential data like time series or text. Through
memory cells and gating mechanismes, it selectively retains and
processes relevant information over extended sequences, miti-
gating the vanishing gradient problem and making it effective
for tasks requiring modeling of temporal dependencies [43].

5. Fully Connected Layer: Combines features from previous lay-
ers for final classification, similar to hidden layers in standard
ANNs. Because of its extensive connections and features, this
layer requires considerable computational resources [145]. Re-
fer to Figure 2.5 for an illustration of a fully connected classifi-
cation layer.

Figure 2.5. The fully connected layer connects the input layer (x1-x5) to the output layer
(yLy2).

These layers work together to learn complex patterns in data,
making ANN effective for tasks like image recognition and object
detection.

DL enhances medical analysis, specially in image interpretation
and patient data analysis. Through techniques like CNNs and Re-
current Neural Networks, it assists in detecting diseases at an early
stage from medical images [146—148] and predicts personalized treat-
ments [149-151] using patient records. In the realm of SCA, DL
models have been used to predict SCA, predict outcome, classify
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cardiac rhythms [152], prognosticating outcomes [152,153] or cate-
gorizing arrhythmias [154,155].

2.3.3 EVALUATION

Evaluation metrics are crucial to evaluate how effectively classi-
fication models perform. For a binary application, with positive
and negative cases, key metrics include True Positive (TP) and True
Negative (TN) representing instances correctly classified as positive
and negative, respectively; while False Positive (FP), and False Neg-
ative (FN) denotes instances incorrectly classified as positive and
negative, respectively. From these metrics, several additional metrics
are calculated:

¢ Sensitivity (Se) measures the proportion of true positives cor-
rectly identified:
TP

5= TP EN

(16)
e Specificity (Sp) measures the proportion of true negatives cor-
rectly identified:
TN

SP = TN T EP (17)

o Positive Predictive Value (PPV) represents the proportion of
true positive predictions among all positive predictions:

TP

PPV = ——
V= Tpyrp

(18)

* Negative Predictive Value (NPV) represents the proportion of
true negative predictions among all negative predictions:

TN

NV =N

(19)

e Balanced Accuracy (BAC) calculates the average of Sensitivity
and Specificity:
Se+ Sp

BAC =
¢ 2

(20)
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o Accuracy measures the overall correctness of predictions:

TP+ TN

21
TP+FP+FN+TN @)

Accuracy =

e Area Under the Curve (AUC) quantifies the model’s ability to
discriminate between positive and negative outcomes across all
thresholds.

K-fold cross-validation (CV) is a common technique for developing
and evaluating predictive models, especially when limited data sets
are available. It divides the data into k subsets. Then it repeats k
times the training and evaluation process, using a different subset as
the test set in each iteration and the remaining ones as the training
set. This allows for a more robust evaluation of the model and helps
detecting overfitting [156, 157].

2.4 ECG DELINEATORS

Classical ECG analysis is based on the characterization of the
ORS waveform. The main features consist on the detection of QRS
complex and the delineation of the different parts as indicated in
Subsection . Many classical algorithms were proposed to detect
QRS complexes [158-162] and for the delineation of the QRS [40-48].
Most of the algorithms were designed and tested with stable cardiac
rhythms. Next the main algorithms are described.

2.4.1 HamirtoN-TorkiNs ECG DELINEATOR

One of the most common algorithms algorithm for peak detection
is the one proposed by Hamilton-Tompkins in 1986 [159]. This
algorithm is divided into three stages: ECG waveform preprocessing,
QRS peak detection and fiducial mark identification.

PREPROCESSING

The signal is band-pass filtered by cascading a low-pass filter and
a high-pass filter. This step serves to attenuate noise and emphasize
cardiac activity within the 5-11 Hz frequency band. The transfer
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functions of the low-pass and high-pass filters, H(z); and H(z);, can
be expressed as:

(22)

(—1+432z716 4 2732)
(1-z71)

H(Z)h = (23)

Subsequently, a derivative filter is applied to enhance the slope
characteristics of the QRS complex. For a 5-point derivative filter
with a gain of 1/8 and a processing delay of 2 samples, the transfer
function H(z), is given by:

1
H(z); = g(—z’Z — 2771 4221 4 22) (24)
Next, the signal is squared to amplify prominent peaks, typically
corresponding to QRS complexes. Finally, a moving average filter
is applied to compute the QRS complex duration with a average
window size of 150 ms.

PEAK DETECTION

The peak detector identifies peaks in the time-averaged signal.
It tracks the highest amplitudes and detects a new peak when the
signal drops below half the maximum level. The fiducial mark is
positioned at the location of the highest peak observed within the
preprocessed signal, within 225 to 125 ms prior to the peak detected
in the time-averaged signal.

PeEAK LEVEL ESTIMATION

The method applied to estimate position of the local peak, signif-
icantly impacts to QRS detector. The methods are mostly applied,
based in the mean, the median or the iterative estimation.

o The mean estimator calculates the local peak level by averaging
a specified number of past peaks.
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¢ The median estimator determines the local peak level using the
median peak value.

¢ The 1st-order iterative estimator follows a formula where the
current estimate is updated based on a coefficient and the
current peak value:

Estimate(n) = (1 — A) x Estimate(n — 1) + A x Peak(n) (25)
A is a positive coefficient less than one.

PEAK ESTIMATOR PERFORMANCE

Any peak exceeding the detection threshold (computed using
Equation 26) is considered a QRS complex and is used to adapt the
detection threshold as:

Detection threshold = B x Peak level estimate (26)
where the coefficient B € [0, 1].

242 Lier AL. ECG DELINEATOR

Li et al. delineator [41] applies the Wavelet Transforms (WT)
to detect characteristic points in ECG signals. WT is a popular
time-frequency analysis technique, which decomposes signals into
localized building blocks/scales, corresponding to approximation
and detail coefficients of the signal in each of the bands of interest.

R PEAK DETECTION

This algorithm explores different detail coefficients, d1, d», d3 and
d4 (corresponding to 62.5 — 125Hz, 18 — 58.5Hz, 8 — 27 Hz and 4 —
13.5 Hz for a sampling rate of 250 Hz) to identify “maximum modulus
lines” surpassing certain adaptive thresholds (€1, €2, €3 and €y).

To select the maximum modulus thresholds, the following steps
are taken:

1. Identify all maxima points exceeding a threshold e, at detail
coefficient dy.
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2. Find the largest maxima near each identified point at detail
coefficients d3, d> and d;.

3. If there are multiple peaks exceeding thresholds €;, €2, and
€3 in their respective detail coefficients, the highest peak is
selected. If there are no peaks exceeding the thresholds, the
nearest peak to the original point is chosen. If no peak is found,
the location is set to zero.

After the elimination of all isolated and redundant maximum
modulus lines, the zero crossing points in the WT within a detail
coefficient encompassing a positive maximum-negative minimum
pair are identified as a QRS complexes. Additional safeguards are im-
plemented, such as a refractory period or a retrospective search with
adjusted thresholds if no QRS is detected in a given time interval.

QRSon AND QRS,sf DETECTION

The QRS,, and the QRS,f, as shown in Figure (Subsection

) determine the initial instant of Q wave and the end of S wave-

form, respectively. Q and S waves typically exhibit high frequency

and low amplitude characteristics, with their energies primarily
concentrated at smaller detail coefficients.

The algorithm compute the QRS,, and QRS,ss identifying the
initial and final maximum modulus lines surrounding the maximum
pair of the R wave within a defined time frame. Conducting this
detection at detail coefficients d; rather than directly on the original
signal helps mitigate the impact of baseline drift.

2.4.3 MARTINEZ ET AL. ECG DELINEATOR

Martinez et al. [40] introduced a generalization of the algorithm of
Li et al. [41] featuring the delineation of the individual QRS waves
for a wide range of QRS morphologies. It consists on the next steps.

R PEAK DETECTION

The QRS complexes are detected in the R instant, 1, through an

algorithm grounded in the multiscale approach pioneered by Li et
al. [41].
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DETECTION OF QRS,n AND QRS ¢

Starting from the position identified by the detector secondary
waves of the QRS complex are identified based on zero-crossing
and local maxima/minima in the d; and d, detail coefficients of the
ECG signal, respectively. Several duration and amplitude thresholds
are applied, and any possible QRS morphology with three or less
waves is considered. Then, QRS,, and QRS, ff points are selected
at the boundaries of the secondary waves, given by either a low-
amplitude threshold or a reversed signed maxima/minima in the d;
detail coefficient.

2.4.4 PrIMANKAR ET AL. ECG DELINEATOR

Peimankar et al. [43] developed a method called DENS-ECG that
uses a mix of CNN and LSTM models to accurately identify the start,
peak, and end of different heartbeats in the ECG.

PREPROCESSING

First, each record was filtered and segmented. Signals were fil-
tered using a 3rd-order Butterworth band-pass (0.5 — 40 Hz) filter to
remove noise. Records were then divided into smaller segments of
1000 samples (6 s segments, sampling frequency is 250 Hz), roughly
equivalent to five heartbeats. This aids in capturing a sequence of
heartbeats for better model learning.

DELINEATION MODEL

The model comprises eight layers, including an input layer, three
one-dimension CNN, two bidirectional LSTM layers, a dropout layer,
and a dense layer.

The input segments undergo three consecutive CNN to extract
temporal patterns from the ECG signals. Each CNN employs a kernel
size of 3 and 32, 64, and 128 feature filters, respectively. Zero padding
is applied to maintain input dimension.

The output of the final CNN is fed into the first bidirectional
LSTM layer, equipped with 250 hidden units, followed by a second
bidirectional LSTM layer with 125 hidden units. A dropout layer, set
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with a dropout probability of 0.2, is integrated to mitigate overfitting
during training.

2.5 IBP DELINEATORS

Delineating the IBP signal means detecting the Diaoset and Syspeax
instants that refer to the beginning and peak instant of the IBP signal
at each heart contraction. Several algorithms [53-55,163,164] have
been proposed to delineate the IBP signal, with the primary goal of
identifying fiducial points such as the Diduser and Syspeqr, shown in
Figure 2.2 of Subsection . Among the most commonly utilized
algorithms are those proposed by Zong et al. [55] and Li et al. [54].
They have been widely used to analyze cardiovascular dynamics in
hemodinamically stable patients. Nevertheless, they have not been
applied to SCA patients, and no validated algorithms are published
for the context of this thesis.

2.5.1 ZoNG ET AL. IBP DELINEATOR

Zong et al. introduced an algorithm that identifies the start of
arterial pressure pulses [55]. It comprises three main steps: a low-
pass filter, slope sum function (SSF), and a decision rule:

Low-pass filter: To mitigate potential interference from high-
frequency artifacts during Dia,,s.; detection, a 2nd-order recursive
filter with a cutoff frequency of 16 Hz was utilized. Its transfer
functions can be expressed as:

B (1 _ 276)2
H(Z) - <1 — Z_1>2 (27)
SSF: The SSF amplifies the rising slope of the IBP pulse while
reducing other signal components. It is calculated as follows:

(28)

SSF(Z) _ ZAxi { Axl, if Axl >0
i=2

0, ifAx;<0

Where x; is the filtered IBP signal, N is its length of the IBP signal
and Axi = X; — Xj—1.
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Normally, the beginning of the SSF pulse matches the start of the
IBP pulse.

Decision rule: In this step, two criteria are applied. Firstly, an
adaptive threshold is set based on the maximum SSF value for each
detected pulse. Then, a local search strategy identifies the Diaset
point by examining SSF minimum and maximum values within a
150 ms window before and after the threshold crossing. The IBP
Diagpset is determined when the SSF signal surpasses 1% of the
maximum SSF value, and it is adjusted by 20 ms to compensate the
delay caused by the filter. Additionally, a 300 ms refractory period is
implemented to avoid double pulse detection.

2.5.2 LiEeT AL. IBP DELINEATOR

Li et al. [54] proposed a more comprehensive algorithm that, in
addition to detecting the Dia,yse+ like Zong et al. [55], also identifies
the Sys eax-

Noise and artifacts in the raw signals are suppressed using a
3rd-order low-pass Bessel filter with a cutoff frequency of 25 Hz.

The delineator uses 1st-order amplitude differences to estimate the
derivative of filtered IBP waveforms. It looks for the derivative at
pairs of inflection and zero-crossing points. Specifically for Dias
and Syspe, the delineator focuses on the zero-crossing points be-
fore and after the maximal inflection in each beat of the waveform
derivative.

Finally, the delineator assesses these candidate Diagyset and Syspeqk
in the IBP waveforms based on both amplitude and interval thresh-
olds.
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3 HYPOTHESIS AND OBJECTIVES

This thesis work aims to address significant gaps in the automatic
characterization and analysis of PEA during resuscitation therapy.
The main hypothesis of the thesis is that signal processing and Al
techniques designed specifically for PEA rhythms could contribute
to monitor resuscitation efforts and the response of the patient. The
final aim is to enhance treatment and improve outcome in SCA. The
two specific objectives are:

e Objective 1: Development of models to discriminate between
PEAs with favorable and unfavorable prognosis. In the lit-
erature, various automatic models have been designed to dis-
criminate cardiac rhythms with different prognoses during SCA
[74,77,80,81, ]. These algorithms utilize signals recorded by
the defibrillator, along with ML models, for the development of
predictive models. However, none of them were specifically de-
signed for PEA rhythms. A discriminator of favorable/unfavorable
PEA based on features extracted from the defibrillator biosignals
could be integrated into AEDs or defibrillator monitors to aid in
resuscitation therapy. This thesis work focus on the following three
approaches:

— Development of models to predict PEA prognosis using features
automatically extracted from the ECG and the TI recorded by
the defibrillation pads, combined in ML models.

— Development of models to predict PEAs prognosis with ML
models that integrate QRS specific features. Various studies have
analyzed the potential of some features, such as HR or QRS,,
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[62-85]. They used manually annotated QRS features, with no
combination with other ECG/TI features. The hypothesis of this
thesis work is that a multimodal approach in a ML model would
improve accuracy of the predictive models.

— Development of models to predict PEAs prognosis with ML
models that integrate automatic features computed from ECG,
TI, and IBP signals. Features from the IBP signal will be included
in the previously developed model, which already incorporates
ECG and TI features, to provide additional information and
enhance its performance.

Objective 2: Development of delineation algorithms for the ECG
and the IBP of patients in SCA. Most of the classical algorithms
for ECG/IBP delineation were designed for stable patients, and
the haven not been tested with unstable patients such as those ex-
periencing SCA. In this context, two partial objectives are defined:

— ECG delineation algorithm. During SCA, QRS complexes often
differ from those observed in healthy and stable patients, both in
amplitude and QRS waveform shape. Furthermore, during SCA,
the ECG signal may include different artifacts that jeopardize
analysis. Delineators proposed in the literature were designed
for stable patients [40,42-48], and their performance may be
lower patients in SCA. A delineator that works with patients
during SCA could help better characterize the ECG signal and
automatically extract features based on duration/amplitude of
intra QRS segments.

— IBP delineation algorithm. The IBP signal during SCA shows
the effect of unstable circulation and different circulation states.
Even after ROSC the variability and complexity of the IBP signal
differs from those of hemodynamically stable patients. There-
fore, traditional IBP delineators [53-55, , ] may fail in
calculating fiducial-points in every cardiac contraction. An IBP
delineator that works in the context of SCA is necessary to
calculate physiological parameters such as SAP, DAP, or PP.



4 RESULTS

This section presents an overview of the results obtained in this
thesis, in line with the objectives outlined in Section 3. Many of the
research studies included a preliminary analysis, which was initially
presented at different conferences [165-170]. Afterwards, a more
sophisticated approach to the solution was developed, incorporating
enhanced and more advanced methodologies and/or additional
data, which were later submitted and published in Journal Citation
Reports (JCR) journals [171-174]. This section summarizes the main
contributions of the thesis work, two journal publications and a
conference paper for Objective 1 (J1.1, J1.2 and C1.1), and two journal
publications for Objective 2 (J2.1 and J2.2). Original papers are
attached in Appendix A.

4.1 RESULTS RELATED TO OBJECTIVE 1

During the development of this thesis, three different approaches
have been followed to design algorithms that discriminate favor-
able/unfavorable PEA rhythms. At first, previously known auto-
matic features derived from ECG and TI signals were computed
to build support for a ML classifier. Afterwards, ModAMSA and
features derived from manual annotations of QRS complexes were
integrated into the previous model. Finally, a new model using
features extracted from the waveform of ECG, TI and IBP signals
was proposed. The first and second methods were published in JCR
journals [171, I, J1.1 and J1.2, respectively. Further, intermedi-
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ate results and the last method, C1.1, were presented at a national
conference [165] and two international conferences [168,170].

41.1 J1.1: A MACHINE LEARNING MODEL FOR THE PROGNOSIS OF
PuLseLEss ELECTRICAL ACTIVITY DURING OuT-OF-HoOSPITAL
CARDIAC ARREST

J1.1 analyzed a subset of OHCA episodes dataset recorded by the
Dallas-Fortworth Center for Resuscitation Research. Each episode
included ECG and TI signals recorded by a HeartStart MRx defibril-
lator. A total of 260 episodes of PEA were analyzed, from which 107
recovered ROSC. The beginning of PEA was identified as the first
occurrence of an organized rhythm. Segments of PEA of 5s duration
were extracted within the first 10 minute from the start of the first
PEA of the episode, avoiding CC artifacts.

A total of 1921 PEA segments were examined, 703 of which were
labeled as faPEA from episodes with ROSC and 1218 as unPEA from
episodes without ROSC. The faPEA segments showed a more regular
ECG with narrower QRS complexes, larger amplitude and faster HR,
along with ECG correlated with TI components and TI circulation
component (ICC) waveforms.

The ECG signal was denoised using the Stationary Wavelet Trans-
form (SWT) with an 8-level decomposition and Daubechies-4 mother
wavelet, focusing on the 0.5 — 31.25 Hz frequency band. The TI signal
was bandpass filtered 0.8 — 10 Hz to remove baseline fluctuations,
respiratory artifacts and high-frequency noise. Subsequently, ICC
proposed by Elola et al. [100] was extracted. The ICC signal under-
went denoising via 8-level SWT (Daubechies-4) with soft thresholding.
Detail coefficients ds—d7; were used to reconstruct the denoised ICC,
within the 1-8 Hz bandwidth. Figure shows the ECG, TI, ICC
and its ds-dy coefficients for faPEA and unPEA segments.

Given that faPEA evolves to ROSC, whereas unPEA does not,
the hypothesis was that faPEA would be more similar to pulsatile
cardiac rhythms than unPEA. Therefore, features previously used
to discriminate PEA and PR where proposed. A total of 17 features
were computed to characterize the segments:
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Figure 4.1. 5s examples of a faPEA segment (left) and an unPEA segment (right). Top to
bottom: ECG, TI, ICC and the detailed components, d5;c¢, d6jcc and d7;cc.
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e From the ECG:

- AMSA
SNEOgcq
ARBgcg

Fuzzy entropy
IOR values of the ECG d5, dg and d7 detail coefficients.

- Highpower, ECG power in the 17.5 — 40Hz frequency
bands.

e From the ICC:
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SNEOcc
ARBjcc
IQR values of the ICC d5, d¢ and d7 detail coefficients.

ECGvsICCcrosspower Tepresents the cross power between
ECG and ICC. It is similar to ECGvVsTIcyosspower €Xplained
in Subsection , but using the ICC signal instead of TI.

The logarithmic power of the ICC signal (LogPowericc)
refers to the energy of the ICC in the logarithmic scale. It
is computed as follows:

N
LogPowericc = ) _ log(ICC [n]?) (29)

n=1
where N is the length in samples of the ICC signal.

A RF classifier was used for both feature selection and binary
classification of the 5s segments in faPEA /unPEA. Feature selection
was analyzed using a 10-fold CV architecture.

The reduced-feature models with 7 features showed the best
performance, achieving mean AUC/BAC values of 85.7/78.8 %.
Comparisons were made with previous proposals, including a
preliminary version of the proposed method based on an RF classifier
with a single ECG feature (AMSA) and an ICC feature (LogPowericc),
an LR model using ECG-only features proposed by Alonso et al. and
single ECG feature models based on HR and QRS,,. The results
comparison is shown in Table

J1.1 introduces a ML algorithm that effectively distinguishes PEA
rhythms with favorable outcomes from those with unfavorable
evolution. By taking advantage of the characteristics of both ECG
and TI signals it outperforms state of the art (SoA) methods.

4.1.2 J1.2: MACHINE LEARNING MODEL TO PREDICT EVOLUTION OF
PULSELESS ELECTRICAL ACTIVITY DURING IN-HOSPITAL CARDIAC
ARREST

J1.2 analyzed a subset of 197 IHCA episodes from different
hospitals, with 83 from St. Olav University Hospital (Trondheim,



4.1 RESULTS RELATED TO OBJECTIVE 1 \

No. Features AUC (%) BAC (%) Se (%) Sp (%)

J1.1 (ECG+TI) 17 85.7(8.6) 77.8(89) 79.8(11.3) 77.3(12.1)
J1.1 (ECG) 9 82.1(9.7) 735(112) 79.7(141) 69.(15.9)
J1.1 reduced (ECG+TI) 7 85.7(9.8) 78.8(9.8) 80.1(12.6) 76.7(13.6)
J1.1 reduced (ECG) 4 83.2(8.5) 75.7(107) 78.9(15.9) 75.7(11.4)
Urteaga et al. [165] 2 82.0(105) 74.8(11.3) 77.0(13.9) 73.5(14.6)
Alonso et al. [175] 6 81.4(103) 744(89) 732(15.1) 77.8(15.3)
HR [96] 1 67.2(12.9) 62.1(11.8) 80.2(145) 45.1(21.1)
QRS,, [102] 1 69.2(12.9) 67.8(133) 74.8(20.2) 61.5(26.6)

Table 4.1. The performance of the proposed algorithm compared to all prior proposals. The
table displays median (IQR) values for AUC, BAC, Se, and Sp.

Norway), 90 from the Hospital of the University of Pennsylvania
(USA), and 24 from Penn Presbyterian Medical Center (USA). Lifepak-
20 defibrillators were used in episodes from Norway (2018-2021), and
HeartStart MRx defibrillators for those from Pennsylvania (2008-
2010). Sustained ROSC, observed in 120 episodes, was defined as
a PR without CC for at least 20min. Expert clinicians manually
annotated rhythm type, QRS complexes, and CC series. PEA
segments of 5s duration, separated by at least 1s, were extracted for
analysis during CC pauses.

The ECG and TI signals were preprocessed using the same method
as in J1.1 [171], including denoising the ECG with a band-pass filter
(0.5-31.25Hz) and extracting the ICC component from the TI signal,
filtered (1-8 Hz).

The analysis was extended by incorporating seven additional
features derived from QRS complex annotations, along with an
enhanced version of AMSA called ModAMSA. The features
calculated from the QRS complexes are the following:

e HR and HRy,;
e QRy and QRS,,
° QRslope and QRSslope

L Ramp
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ModAMSA calculates spectral content within the frequency range
of 20 — 30Hz. Specifically, ModAMSA values were found to be
higher for faPEA rhythms than for unPEA rhythms. Figure
illustrates a significant overlap in spectral content between 0 — 15Hz
for both rhythm types, but a clearer distinction emerges between
20 — 30 Hz.
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Figure 4.2. ECG signal spectrum for faPEA and unPEA segments. The blue line and shaded
area represent the mean (Standard Deviation - SD) of faPEA segments, while the
red line indicates the same for unPEA segments. On the left, the spectrum covers
frequencies from 0 — 50 Hz, while the right zooms on the 20 — 30 Hz range used
in ModAMSA.

LR binary models were trained and tested using a 10-fold CV
and changing the features and the number of features. In the first
iteration, all features were individually tested. In the second iteration,
the best-performing feature was combined with the remaining
features to calculate the best pair. This process continued iteratively,
adding one feature at a time in each iteration. LR was chosen because
it provides easily interpretable binary classifications.

Table 4.2 shows the results of the first six iterations, training the
model from one feature to six features. The analysis reveals that the
best performance was achieved with a three-feature model based
on: ModAMSA, LogPowerjcc and QRS,,, with AUC/BAC values of
80.3 % and 75.6 %, respectively. No improvement was found when
increasing the number of features. It is worth highlighting that each
of these features belongs to a different feature family (ECG signal
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No. Features AUC (%) BAC(%) Se (%) Sp (%)
ModAMSA 1 79.1(11.3) 71.4(10.4) 62.9(13.4) 79.2(18.5)
Previous feature + LogPowerjcc 2 79.7(9.1) 715(13.2) 64.2(17.1) 78.5(15.2)
Previous features + QRS,, 3 80.3(9.9) 75.6(8.0) 77.4(152) 72.3(16.4)
Previous features + ARBgcg 4 80.2(10.0) 755(8.2) 77.5(15.2) 69.5(18.3)
Previous features + QRy, 5 79.8(10.7) 73.1(9.2) 77.8(11.1) 66.4(18.9)
Previous features + ECGvSICCcrosspower 6 79.6(11.2) 72.6(9.1) 764(9.9) 64.4(21.2)

Table 4.2. Performance of the LR model in terms of median (IQR) AUC, BAC, Se and Sp. For
each number of features only the best one is shown, all possible combinations have
been tested using one to six features.

waveform, ICC signal waveform, and QRS complex), this suggests
that each family contains valuable information for prediction.

To our knowledge, J1.2 represents the first case of a ML predicting
the progression of PEA rhythms that integrates features from both
ECG and TI, along with specific QRS metrics. The QRS metrics have
been computed from clinicians” manual annotations, an automatic
QRS delineator would be necessary for this method to be fully
automatic and integrable in a monitor.

41.3 C1.1: A RANpDOM FOREST MODEL FOR PULSELESS ELECTRICAL
Actrvity PrROGNOSIS PREDICTION DURING OUT-OF-HOSPITAL
CARDIAC ARREST USING INVASIVE BLOOD PRESSURE

This research used data from a clinical trial (NCT02479152) on
patients in SCA, collected between 2015 and 2017 using the Lifepak-
15 monitor/defibrillator. The Air Ambulance Department of the Oslo
Medical Emergency System collected the data. ECG, TI, and IBP
signals were simultaneously recorded with a sampling rate of 250 Hz.

Segments from episodes with at least 5 min of PR after ROSC were
considered faPEA, while those from episodes without ROSC were
labelled as unPEA. During CC pauses, PEA segments with at least 5s
of ECG, TI, and IBP signals were extracted to avoid artifacts. From 49
patients, 238 segments (116 min total) were obtained with 172 unPEA
segments. PEA segments were divided into 1026 (846 unPEA) non-
overlapping 5s windows for processing and classification.

The ECG and TI signals were preprocessed following the same
approach as detailed in references J1.1 and J1.2 [171,172]. This
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involved removing noise from the ECG using SWT and a specific
frequency band filter (0.5-31.25 Hz) and isolating the ICC from the
TI signal within a frequency range (1-8 Hz). For the IBP signal, a
similar filtering was applied, using SWT decomposition into 8-levels
and reconstructing it with specific detail coefficients (1-4 Hz).

In addition to the 17 functions proposed in J1.1, 8 new ones were
included based on the annotations made using the J2.2 delineator:

SAP, DAP, PP, HR, and MAP (detailed in Subsection )
computed from the IBP signal annotation using the method
described in J2.2 (see Figure 2.2).

IBPpower, reflecting the power of the IBP signal and is estimated
as follows:

N
IBPpower = Y, IBP[n]? (30)
n=1
where N is the length in samples of the IBP signal, 250 - 5
samples per window.

Cross-correlation measures, ECGVSIBP crossPower
and TIVSIBPcosspower, Similar to ECGvSICCcrossPower, Put for
ECG vs. IBP and TI vs. IBP signals, respectively.

A RF classifier was used for feature selection and binary
classification of the windows into faPEA and unPEA classes. The
classifiers was subjected to 10-fold CV on a per-patient basis. In
addition, the RF classifier determined feature importance.

Table shows overall performance metrics, including AUC, BAC,
Se, Sp, PPV, and NPV. Various models were evaluated using: ECG
and TI features, IBP features, all three signal features, and two
reduced models (top 4 or 6 features). Results demonstrate superior
performance with all IBP features, 20 points higher AUC than ECG
& TI alone. Combining all signals improves discrimination by three
points, surpassing similar SoA proposals [165,171]. Reduced feature
models outperform full-feature models by 1.5 to 2 AUC points.

This study integrated for first time IBP signals into a ML model
for PEA prognosis prediction, significantly enhancing the classifier
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No. Features AUC (%) BAC(%) Se (%) Sp (%) PPV (%) NPV (%)

ECG & TI 17 622 (17.3) 69.8 (22.9) 61.1 (47.9) 653 (27.4) 49.4 (342) 73.2(35.0

) )
IBP 6 835(19.8) 732(173) 67.1(382) 80.7(29.7) 69.7(29.9) 84.4 (23.1)
ECG & TI & IBP 25 86.7 (19.4) 747 (146) 789 (333) 69.8(255) 635 (307) 87.4(22.7)
C1.1 reduced #1 4 88.9 (14.2) 761 (144) 941 (217) 68.1(30.6) 664 (29.5) 95.0 (19.4)
C1.1 reduced #2 6 88.2(18.0) 78.0(17.5) 849 (22.8) 73.4(287) 665 (27.1) 87.5 (21.6)

Table 4.3. The table reports the performance of the methods with different sets of features. in
terms of median (IQR) value of AUC, Se, Sp, PPV and NPV.

performance. These results emphasize the value of IBP in assessment
of circulation evolution during OHCA and the importance of IBP
features to predict cardiac evolution.

4.2 RESULTS RELATED TO OBJECTIVE 2

Current biosignal delineators have been designed and tested
with hemodynamically stable patients, they have not been tested
in unstable patients such as in SCA. ECG and IBP delineators are
essential to automate the analysis of IHCA and OHCA patients,
because manual annotation is time consuming, cannot be performed
in real time and is impractical for long datasets. During this
thesis work, two delineators that work in hemodynamically unstable
patients have been proposed: an ECG delineator based on DL and
a IBP delineator using signal processing and adaptive thresholding.
Both methods have resulted in JCR papers [173,174], J2.1 and J2.2,
and preliminary results were presented at international conferences

[166,167].

421 ]J2.1: A DEEP LEARNING MODEL FOR QRS DELINEATION IN
ORGANIZED RHYTHMS DURING IN-HOSPITAL CARDIAC ARREST

The design of the QRS delineator was based on a subset of 332
IHCA episodes from a larger dataset, which included ECG and TI
signals. Among these, 124 episodes were from St. Olav’s University
Hospital, Norway, and 163 from the Hospital of the University
of Pennsylvania, USA, along with 45 from the Pennsylvania
Presbyterian Medical Center, USA. ECGs were recorded using
Lifepak-20 defibrillators in Norway (2018-2021) and HeartStart
MRx defibrillators in the USA (2008-2010). Annotation by medical
professionals served as the gold standard, including rhythms, QRS
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complexes, and CC intervals. ECG segments with organized
rhythms (PR/PEA), of at least 6 s, were extracted during CC pauses.
2485 segments were acquired, totaling 30 hours and 151815 QRS
complexes.

Additionally, the method was tested on the public QT dataset
from PhysioNet [176], with recordings from 105 patients, totalling
1575 min with 112497 annotated QRS complexes.

The raw ECG signal, susceptible to motion noise and baseline
drift, was preprocessed using an 8-level SWT with the Daubechies-4
wavelet. Then the signal was reconstructed using only d3 to d7 (0.98 —
31.25Hz) detail coefficients to eliminate undesired components. The
signal was divided in 6 s windows with a overlap of 50 %. The Al
model used in this study requires input lengths divisible by 16, so
padding was applied to achieve the length of 1536 samples.

The used architecture is a modified U-Net engineered for one-
dimensional data. The encoding path consists of four downsampling
blocks, each comprising convolution, ReLU activation, batch
normalization, and dropout layers to avoid overfitting. Maximum
clustering reduces the computational burden while emphasizing
essential features. After the fourth down-sampling block, two
additional convolutional layers are added. The decoding path
includes resampling layers with concatenation to skip connections,
convolution layers with ReLU activation and dropout. A final
convolution with sigmoid activation generates a binary mask
indicating inclusion (1) or exclusion (0) of the QRS complex. An
overall of the architecture can be seen in Figure , which also
provides more details such as the dropout rate, filter size, and
convolution dimensions.

Each processed window is merged to reconstruct the segment
with binary values (1/0). Central 3s (50 % window) of consecutive
windows are concatenated, preventing edge effects near the
beginning or end of segment and ensuring accurate model handling.

The chosen optimizer was Adaptive Moment Estimation (Adam),
widely favored in DL for dynamically adjusting learning rates. The
loss function, 1-Dice, was utilized during model training with the aim
of reduction of the loss value. A 10-fold patient-wise CV structure
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Figure 4.3. Overall architecture of the DL based ECG delineator.

was used to evaluate the model in terms of QRS detection (with a

100 ms tolerance) and time errors in QRS,,/QRS,ss detection (see
Figure 2.1).

The suggested method was contrasted with four SoA algorithms.
Two of them, Martinez et al. [40] and Pilia et al. [42], utilized
advanced signal processing techniques. The other two, Peimankar et
al. [43] and Camps et al. [44], applied DL methods.

Table shows the results of the method for delineation of the
IHCA QRS complex. It is noticeable that the proposed U-Net based
algorithm outperforms other SoA proposals, with F1 and IOU scores

1.0-7.5 and 0.9-28.8 points higher, respectively, and QRS,,/QRS,¢f
errors lower by 0.3 —14.3/0.3 — 13.9 ms.

Performance of the algorithm with regular rhythms (PR and PEA)

is shown in Figure 4.4 where a slightly higher result is observed for
PR.
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Model TP FP FN F1(%) IOU(%)  QRSen/QRS,sf(ms)
U-Net 165302 2305 1250 97.0 (8.3) 79.1(15.8) 8.6(11.6)/25.1 (25.9)
Martinez et al. [40] 106754 556 59798 93.8 (14.3) 50.3 (38.1) 8.9 (15.4)/32.7 (34.9)
Pilia et al. [42] 162835 2678 3717 93.3 (13.5) 61.9 (18.7) 22.9(19.3)/39.0 (35.1)

Peimankar et al. [43] 163906 2883 2646 96.0 (9.4) 782 (16.6) 9.3 (14.4)/254 (26.1)
Campsetal. [44] 156945 10330 9607 89.6 (18.0) 59.3 (28.5) 16.8(22.3)/35.8 (35.7)

Table 4.4. Performance of QRS delineation methods for the IHCA dataset in terms of mean
(SD) values of F1, IOU, and QRS,,/QRS, ff €ITOrS.
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Figure 4.4. Performance of the method for PEA (orange) and PR (blue) segment delineation

in terms of F1, Se, PPV, IOU, QRS,,, and QRS, 7f- The white dot in the center of
the distribution defines the median.

The performance analysis of the algorithm on the QT dataset with
rhythms from stable patients is presented in the Table 4.5. Martinez
et al. shows better performance, surpassing our proposal by 2.2
points in the F1 and IOU metrics, while maintaining comparable
QRSon/QRS, sy error rates. This difference could be attributed to the
use of the QT dataset for training SoA algorithms.

The proposed method can accurately delineate the organized
rhythms of the patients during SCA. This could assist in
automatically computing the features described in Subsection 2.2.2
and greatly facilitate the work of clinicians. In addition, it would be
possible to compute these features in real time and therefore could be
included in methods such as J1.2 and improve resuscitation therapy.
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Model TP FP FN F1(%) I0U(%)  QRSon/QRSy(ms)

U-Net 107094 883 3783 97.4(12.7) 77.1(169) 16.8(11.8)/11.3 (10.5)
Martinez et al. [40] 110323 172 554  99.6(L1) 793 (7.0) 165 (8.7)/11.3 (9.3)
Pilia et al. [42] 110509 850 368  99.4(34) 72.1(8.8) 16.9(9.3)/23.3 (17.1)
Peimankar et al. [43] 90568 1198 20309 92.6 (22.5) 63.0 (32.2) 19.1 (13.2)/14.6 (14.6)
Campsetal. [44] 97912 8608 12965 87.0(25.6) 61.3(25.6) 25.3(18.7)/18.4 (19.7)

Table 4.5. Performance of QRS delineation methods for the QT dataset in terms of mean (SD)
values of F1, IOU, and QRS,, /QRSOff errors.

422 J2.2: INVASIVE ARTERIAL BLOOD PRESSURE DELINEATOR FOR
CARDIOPULMONARY RESUSCITATION PATIENTS DURING PPAUSES
oF CHEST COMPRESSIONS

The designed IBP delineation algorithm applicable to SCA patients,
used a OHCA dataset recorded by EMS for traning and testing, and
other two hemodynamically stable patients public datasets only for
testing. The OHCA dataset, from Oslo (2015-2017), included ECG
and IBP signals recorded using Lifepak-15 monitors/defibrillators.
377 segments (1127 min) without CC artifacts were extracted from
81 patients. The fiducial points of the IBP per beat, Sys,.;x and
Diaypset, were manually annotated to be used as gold standards,
resulting in 75682 beats. The Polysomnographic' and Complex
Systems Laboratory (CSL)”~ datasets are composed of 18 sleeping
patients and 2 patients, respectively. A total of 20 segments (5257 min)
were extracted with SYSpeak and Dia,,s.; annotations for CSL dataset
and only Diays.+ annotations for Polysomnographic dataset.

The raw IBP signal, IBP,,,, contained artifacts such as quantization
noise and baseline drift. To address this, the signal was preprocessed
using the SWT with 8-level decomposition and the Daubechies-4
mother wavelet. Filtered IBP signal, IBPy;;;, was reconstructed from
the sixth and seventh detail coefficients (1 — 4 Hz) as shown in Figure

For beat detection, A; was computed as the first difference of
IBPfj;;, followed by low-pass filtering with a 3rd-order Butterworth
filter (zero-phase) at 5Hz. The rectified version, As,.., was

https://physionet.org/content/slpdb/1.0.0/
https://www.pdx.edu/electrical-computer-engineering/
biomedical-signal-processing-lab
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determined by setting negative values to zero. Syspeq and Didgyset
were identified in A, based on changes from positive to zero and
zero to positive values, respectively. They were aligned in time within
interval of 100 ms before and after the detected points.

Finally, SAP and DAP, as defined in Figure , values were
measured in IBP,,, and potential beats were confirmed by adaptive
thresholding criteria in those variables.

150 —

/\\M,/\Mw/\/“‘/\ww\\/\

IBP,,,(mmHg)

IBPy;;(mm Hg)
o
E

quvngvwﬁvay

t (s)

Aok v w3
T

Figure 4.5. From top to button: IBPyy, I BPﬁ”; and the first difference signal, As (in orange),
and rectified first difference signal, As.. (in blue). The yellow dots in the button
panel indicate maximums of As,... Green and red dots are Syspmk and Didyyset
instants, respectively.

The algorithms by Zong et al. [55] and Li et al. [54], with their
scripts accessible on PhysioNet”’ [177] and Matlab File Exchange”,
respectively, were compared to J2.2 IBP delineator.

Performance metrics attending to heartbeat detection included
Sey,, PPVy, and F1y;,. Correct detections were considered within
50 ms interval of the ground truth annotations. Additional analyses
focused on Ses, Sps, PPVs and NPV; for discriminating pulsatile
segments were limited to OHCA segments because all segments in
the public dataset were pulsatile.

https://physionet.org/content /pest/1.0.0/
https://es.mathworks.com/matlabcentral /fileexchange/
29484-pulse-waveform-delineator?s_tid=F X _rc3_behav


https://physionet.org/content/pcst/1.0.0/
https://es.mathworks.com/matlabcentral/fileexchange/29484-pulse-waveform-delineator?s_tid=FX_rc3_behav
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4.2 RESULTS RELATED TO OBJECTIVE 2 \

A 10-fold CV was used to evaluate the beat delineator. Threshold
optimization was performed on the training set to maximize F1;, by
uniform grid search.

Table compares performance metrics of J2.2 delineator with
SoA algorithms for heartbeat detection. Notably, proposed solution
exhibits superior performance with the OHCA dataset, while
demonstrating comparable performance with the public datasets.

Heartbeat detection

Sehb (0/0) PPVhb (0/0) Flhb (0/0)

5 ] 2.2 96.1(83) 96.1(7.6) 95.7 (6.4)
T S Zong [55]  62.8(36.3) 93.8(10.5) 719 (29.8)
C Li [54] 941 (9.6) 85.4(23.7) 86.7 (19.6)
v g 2.2 98.4 (1.5) 98.8(1.3) 986 (1.3)
S £ Zong [55] 979 (38) 984 (32) 98.1(34)
~ o Li [54] 98.6(1.3) 99.1(1.0) 98.6 (1.0)

Table 4.6. Performance of J2.2 delineator compared to SoA algorithms using the OHCA
dataset and two public datasets for heartbeat detection. The performance metrics
include mean (SD) Sey,;,, PPV}, and F1p,.

Table 4.7 shows the performance of J2.2 and SoA delineators for

pulsed segment discrimination on OHCA dataset (377 segments, 252
of them with pulse).

A IBP delineator that works with both stable and SCA patients has
been developed, which has demonstrated better performance than
SoA methods. A delineator of this kind can help to automatically
calculate the physiologic variables required by predictive models of

Subsection and thereby can be included in predictors of PEA
evolution such as C1.1.
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Pulsatile segment discrimination

Se, (%)  Sps(%)  PPVi(%) NPV, (%)

2.2 98.8 (6.9) 91.6(202) 974(9.7) 987 (6.1)
Zong [55]  81.2(31.0) 75.6(31.5) 92.4(20.5) 87.7 (21.8)
Li [54] 99.7 (2.6) 8.9 (233) 824 (24.4) 889 (33.3)

Table 4.7. Performance of ]J2.2 delineator compared to SoA algorithms using the OHCA
dataset for pulsed segment discrimination. The performance metrics include mean
(SD) Ses, Sps, PPVs and NPV;.



5 CONCLUSIONS

This section provides an overview of the key contributions of
the thesis. It begins by emphasizing the most significant findings,
followed by a recap of all publications in journals and conferences
related to the research. Additionally, it acknowledges the research
projects and funding sources that facilitated the thesis development.
Lastly, a concise exploration of potential avenues for future research
based on the thesis results is presented.

5.1 MAIN CONTRIBUTIONS OF THE THESIS

The main objective of this thesis was to contribute to the develop-
ment of automatic predictors of PEA evolution, as well as ECG and
IBP automated delineators that provide physiological parameters to
be integrated in the previously mentioned predictors. At the end of
the thesis, the main contributions can be synthesized as follows:

e PEA evolution predicting algorithms based on the ECG and the TI
signals: Machine learning models have been fed with features
automatically computed from ECG and TI signals for predicting
the evolution of PEA segments during OHCA.

e PEA evolution predicting algorithms based on models integrating QRS
based features: Features based on QRS complexes have been added
to previous models for predicting the evolution of segments with
PEA, as well as a modified version of the well known AMSA
feature.
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o PEA evolution predicting algorithms based on models integrating IBP
signal: Physiological parameters calculated from the IBP signal
have been added to the PEA evolution prediction models. These
new features have added significant insight to the model that has
improved its performance.

o ECG delineation algorithms for patients in SCA: An ECG delineator
has been designed using a DL model, accurate to both hemody-
namically stable and SCA patients. This delineator has shown
better performance than SoA algorithms and might assist in de-
lineating QRS complexes to give rescuers more information to
take better decisions. Additionally, it may also be employed to
compute automatic features and include them in predictive models
of cardiac rhythm evolution.

o IBP delineation algorithms for patients in SCA: An IBP delineator
accurate with both stable and SCA patients has been developed.
This permits the automatic estimation of physiological parameters
and provides valuable information to predictive models or to
clinicians during the treatment of SCA patients.

5.2 PUBLICATIONS

The thesis has resulted in several significant contributions to the
scientific community, formally detailed in Sections and
These contributions include:

¢ In relation to Objective 1, two long papers have been published
in journals indexed in the JCR Science Edition (A1 and A?2),
along with presentations at a national and an international
conferences (C1 and C4) and one more accepted (C6).

¢ In relation to Objective 2, one long paper has been published
(A3) and another has been submitted (A4) to journals indexed
in the JCR Science Edition, along with presentations at three
national and international conferences (C2, and C5).

5.2.1 JOURNALS INDEXED IN THE JCR SCIENCE EDITION

A machine learning model for the prognosis of pulseless electrical
activity during out-of-hospital cardiac arrest



522

5.2 PUBLICATIONS |

Jon Urteaga, Elisabete Aramendi, Andoni Elola, Unai Irusta, Ahamed
H. Idris
MDPI Entropy 2021 (IF: 2.7, 43/110) [171]

Machine learning model to predict evolution of pulseless electrical
activity during in-hospital cardiac arrest

Jon Urteaga, Andoni Elola, Anders Norvik, Eirik Unneland, Trygve C
Eftestel, Abhishek Bhardwaj, David Buckler, Benjamin S Abella, Eirik
Skogvoll, Elisabete Aramendi

Resuscitation Plus 2024 (IF: 2.4, 28/54) [172]

Invasive Arterial Blood Pressure Delineator for Cardiopulmonary
Resuscitation Patients during Pauses of Chest Compressions

Jon Urteaga, Andoni Elola, Elisabete Aramendi, Per Olav Berve, Lars
Wik

Biomedical Signal Processing and Control 2024 (IF: 5.1, 26/96) [173]
A Deep Learning Model for QRS Delineation in Organized Rhythms
during In-Hospital Cardiac Arrest (Submitted)

Jon Urteaga, Andoni Elola, Daniel Herrdez, Anders Norvik, Eirik
Unneland, Abhishek Bhardwaj, David Buckler, Benjamin S. Abella,
Eirik Skogvoll, Elisabete Aramend

IEEE Transactions on Biomedical Engineering 2024 (IF: 4.6, 34/96)
[174]

NATIONAL AND INTERNATIONAL CONFERENCES

Modelo predictivo del retorno de circulacién espontinea en la parada
cardiorrespiratoria utilizando el ECG y la impedancia tordcica

Jon Urteaga, Elisabete Aramendi, Andoni Elola, Unai Irusta, Ahamed
H. Idris

XXXVIII Congreso Anual de la Sociedad Espafiola de Ingenieria
Biomédica (CASEIB) 2020 [165]

Automated detection of pulse using continuous invasive arterial blood
pressure in patients during cardiopulmonary resuscitation

Jon Urteaga, Andoni Elola, Elisabete Aramendi, Per Olav Berve, Lars
Wik

Computing in Cardiology Conference (CinC) 2021 [166]
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Automated Algorithm for QRS Detection in Cardiac Arrest Patients
with PEA

Jon Urteaga, Andoni Elola, Elisabete Aramendi, Anders Norvik, Eirik
Unneland, Eirik Skogvoll

Computing in Cardiology (CinC) 2022 [167]

The Prediction Of Pulseless Electrical Activity Evolution During
In-hospital Cardiac Arrest Using Machine Learning

Jon Urteaga, Elisabete Aramendi, Andoni Elola, Anders Norvik, Eirik
Unneland, Abhishek Bhardwaj, David Buckler, Benjamin S Abella,
Eirik Skogvoll

Resuscitation Science Symposium (AHA-ReSS) 2022 [168]

Deteccién automitica de complejos QRS en pacientes con actividad
eléctrica sin pulso durante la parada cardiorrespiratoria

Jon Urteaga, Andoni Elola, Elisabete Aramend, Daniel Herrdez, An-
ders Norvik, Eirik Unneland, Eirik Skogvoll

XL Congreso Anual de la Sociedad Espariola de Ingenieria Biomédica
(CASEIB) 2022 [169]

A Random Forest Model for Pulseless Electrical Activity Prognosis
Prediction During Out-of-Hospital Cardiac Arrest Using Invasive
Blood Pressure (Accepted)

Jon Urteaga, Andoni Elola, Per Olav Berve, Lars Wik, Elisabete Ara-
mendi

EMBC (Annual International Conference of the IEEE Engineering in
Medicine and Biology Society) 2024 [170]

5.3 FINANCIAL SUPPORT

This thesis has been primarily supported by a predoctoral grant

) and several national and international grants. All projects and
funding sources that have supported financially the development of
the thesis are acknowledged in the following:

Ayuda para la formacion de personal investigador (PRE_2020-1_0177,
PRE2021_2_0173, PRE_2022_2_0245 and PRE_2023_2_0101). Basque
Government Department of Education, Universities and Re-
search. 2020-2023.
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BioRes (Biomedical Engineering and Resuscitation) (IT1229-19).
Basque Government Department of Education, Universities
and Research. February 2019 — December 2022.

BioRes (Biomedical Engineering and Resuscitation) (1T1717-22).
Basque Government Department of Education, Universities
and Research. January 2022 — December 2025.

Procesado multimodal de sefial y aprendizaje automdtico para la
mejora del tratamiento de la parada cardiorrespiratoria extrahospita-
laria (RTI2018-101475-BI00). Spanish Ministry of Economy and
Competitiveness. February 2019 — September 2022.

Inteligencia artificial y nuevas tecnologias para el guiado de la ter-
apia de resucitacion en la parada cardiorrespiratoria extrahospitalaria
(PID2021-1227270B-100). Spanish Ministry of Science, Research
and Universities. September 2022 — August 2025.

5.4 FUTURE LINES OF RESEARCH

The thesis has advanced the development of Al models for predict-
ing the prognosis of PEA segment and has developed delineators for
characterizing ECG and IBP signals for SCA patients. This work has
already prompted new research interests and revealed opportunities
to improve or enhance existing solutions as the next ones:

o Current ML methods for developing PEA predictors could poten-
tially be replaced by DL based methods, which have demonstrated
significant potential. These methods would require access to a
larger patient datasets, but they could substantially enhance model
performance by capturing details that ML methods may overlook.

o Existing models for PEA evolution prediction using ECG, TI and
even IBP signals could improve their performance with additional
signals or information. Pulse oximetry and capnography signals
are leading candidates to provide relevant information to predic-
tive methods. In addition, demographic information such as the
patient’s initial heart rhythm, the location of sudden cardiac arrest
or bystander response could be incorporated to enrich the model.
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¢ A DL based delineation model like the one proposed in J2.1 could
be tested for delineating IBP signals in SCA patients. These models
have already demonstrated potential delineating and segmenting
biomedical signals. Using them for IBP signals could enhance the
performance of the current delineator and potentially calculate
physiological parameters more accurately.

¢ Despite the access to wide international datasets in the develop-
ment of current thesis work, employing methods to augment the
size and variety of datasets would contribute to more accurate
models. Synthetic data or data augmentation techniques would
contribute to better training processes, reducing the risks of over-
titting and allowing a better generalization. Those aspects are
especially beneficial in DL, where complex models require large
datasets to effectively capture intricate patterns.
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Abstract: Pulseless electrical activity (PEA) is characterized by the disassociation of the mechanical
and electrical activity of the heart and appears as the initial rhythm in 20-30% of out-of-hospital car-
diac arrest (OHCA) cases. Predicting whether a patient in PEA will convert to return of spontaneous
circulation (ROSC) is important because different therapeutic strategies are needed depending on
the type of PEA. The aim of this study was to develop a machine learning model to differentiate
PEA with unfavorable (unPEA) and favorable (faPEA) evolution to ROSC. An OHCA dataset of 1921
5s PEA signal segments from defibrillator files was used, 703 faPEA segments from 107 patients
with ROSC and 1218 unPEA segments from 153 patients with no ROSC. The solution consisted of
a signal-processing stage of the ECG and the thoracic impedance (TI) and the extraction of the TI
circulation component (ICC), which is associated with ventricular wall movement. Then, a set of
17 features was obtained from the ECG and ICC signals, and a random forest classifier was used to
differentiate faPEA from unPEA. All models were trained and tested using patientwise and stratified
10-fold cross-validation partitions. The best model showed a median (interquartile range) area under
the curve (AUC) of 85.7 (9.8)% and a balance accuracy of 78.8 (9.8)%, improving the previously
available solutions at more than four points in the AUC and three points in balanced accuracy. It was
demonstrated that the evolution of PEA can be predicted using the ECG and TI signals, opening the
possibility of targeted PEA treatment in OHCA.

Keywords: out-of-hospital cardiac arrest (OHCA); electrocardiogram (ECG); thoracic impedance
(TI); pulseless electrical activity (PEA); return of spontaneous circulation (ROSC)

1. Introduction

Out-of-hospital cardiac arrest (OHCA) is a major public health problem, with an
estimated incidence between 350,000 and 700,000 cases per year in Europe and survival
rates below 10% [1,2]. A patient in cardiac arrest abruptly looses respiratory and cardiovas-
cular functions and, if untreated, dies within minutes. An early recognition of OHCA and
prompt treatment are therefore key for survival. In the prehospital setting, bystander car-
diopulmonary resuscitation (CPR) contributes to maintaining artificial blood flow through
ventilation and chest compressions until more advanced therapy is available. For instance,
when the presenting heart rhythm is ventricular fibrillation (VF), an electrical defibrillation
shock within the first five minutes from OHCA onset raises survival rates by 50-70% [2,3].

The best course of treatment for OHCA depends on the heart rhythm of the patient,
which can be determined using an electrocardiogram (ECG) [4]. In the preshopital setting,
the heart function is monitored by the emergency medical system (EMS) personnel using

Entropy 2021, 23, 847. https:/ /doi.org/10.3390 /23070847
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monitor defibrillators. Unfortunately, by the time the EMS personnel arrives on scene, VF
is the presenting rhythm in only 11-37% of OHCA cases [5,6]. A frequently presenting
rhythm is pulseless electrical activity (PEA), with recorded incidences of 20-30% out
of hospital [7-9] and up to 40-60% in hospital [10,11], as well as much lower survival
rates [7,12-15]. PEA is characterized by the dissociation of the electrical and mechanical
activities of the heart. Therefore, a patient in PEA presents apparent heartbeats in the ECG
with discernible QRS complexes, but without effective ventricular wall movement. Thus,
there is no palpable pulse and an insufficient blood flow [7]. EMS personnel provide CPR
and pharmacological treatment to revert PEA and achieve return of spontaneous circulation
(ROSC), but treatment depends on the characteristics of PEA. Consequently, directions for
understanding the mechanism and stratification of PEA have been addressed by clinical
consortia and efforts to predict, prevent, and manage PEA encouraged [7,13,15,16].

PEA states can grossly be classified into pseudo-PEA or true-PEA [17]. In pseudo-PEA,
the electrical activity of the heart produces a small mechanical activity, albeit insufficient
for a palpable pulse. In true PEA, there is no mechanical cardiac activity [16,18]. The two
stages of PEA have different prognoses and treatments [7,18-20], and their distinction is of
great clinical interest to predict the hemodynamic evolution of PEA, as well as whether the
patient will recover ROSC.

Several contributions have proposed the use of ECG features to differentiate PEA
with favorable evolution to ROSC (faPEA) from PEA with unfavorable evolution to ROSC
(unPEA). The heart rate (HR) and the width of the QRS complex during PEA have been ex-
tensively investigated in both in- and out-of-hospital cardiac arrest, but with contradictory
conclusions [12-15]. In these studies, ECG data were manually annotated, and no auto-
matic method has been proposed yet to discriminate faPEA from unPEA. Additionally, the
thoracic impedance (TI) measured through the defibrillation pads reflects changes in tissue
density and fluid content in the thoracic region and thus presents a small, but discernible
component associated with blood flow [21]. TT has been successfully used to discriminate
PEA from rhythms associated with ROSC, by extracting the impedance circulation compo-
nent (ICC), which reflects blood flow during ROSC [22,23]. In fact, models combining ECG
and TT have been proposed to predict immediate rhythm transitions during OHCA [24]
and to discriminate rhythms in OHCA [25], and in a preliminary study, a model combining
an ECG and a TI feature showed promising results for the discrimination of faPEA and
unPEA on a limited dataset[26].

This study introduced a new model to discriminate faPEA from unPEA based on
comprehensive automatic feature extraction from the ECG and TI signals using various
signal analysis domains. An advanced random forest (RF) classifier was then used to
efficiently combine those features and improve the accuracy of the diagnosis. A compre-
hensive dataset of OHCA episodes was used for the analysis. The results showed that a
combination of ECG and TI features substantially improved the accuracy of the models,
which could be used to assist EMS personnel in evaluating the hemodynamic state of the
patient and deciding the optimum resuscitation treatment.

2. Data Collection

The dataset used in this study was a subset of a larger dataset of OHCA episodes
recorded by the Dallas-Fortworth Center for Resuscitation Research (Dallas, TX, USA).
Every episode had concurrent ECG (250 Hz, resolution = 1.03mV) and TI signals (200 Hz,
resolution = 0.74 mQ) recorded by the defibrillation pads of a HeartStart MRx defibrillator
(Philips Healthcare, Andover, MA, USA).

The dataset consisted of 260 episodes of patients in PEA, of which 107 recovered ROSC
and 153 did not. ROSC recovery was certified by clinicians on site and further revised
by visual inspection of the episodes. Cases ending in ROSC had confirmed long periods
without CPR after recovery of pulse, while cases without ROSC had CPR until the end of
the episode. PEA onset was identified in the episodes as the first occurrence of an organized
rhythm (QRS complexes) during CPR. PEA segments of 5s in duration, separated by at
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PEA onset

ECG

TI

<>
5s

least 1s, and including the ECG and the TI were identified during the first 10 min after
PEA onset. Segments were extracted in the pauses of chest compressions, identified in the
TI [27,28], with no artifacts due to compressions in the signals. Figure 1 shows an example
of an episode in which PEA evolved to ROSC (in green). Chest compression activity is
visible in the TI signal, and PEA segments (in blue) were only selected during the intervals
without chest compressions to avoid artifacts in the ECG.

ROSC onset

—
AW

—

Figure 1. ECG and TI signals of an episode with favorable evolution to ROSC (in green). The 5s PEA segments extracted
from the ECG and the TI are colored in blue.

A total of 1921 PEAs were extracted, a median (interquartile range, IQR) of 4 (6.5) seg-
ments per episode. The segments in the ROSC episodes were labeled as faPEA and those
in the non-ROSC episodes as unPEA. There were a total of 703 faPEA segments, 4 (5.8)
per episode; and 1218 unPEA segments, 5 (7) per episode. Figure 2 shows examples of
the faPEA and unPEA segments. As shown in the figure, the faPEA segment presents a
more regular ECG with narrower QRS complexes of larger amplitude and a higher heart

rate. Moreover, it also presents TI components and an ICC waveform correlated with
the heartbeats.

N

dgice ds 1o 1C TI ECG
[

drice

VAV NANANA,
Figure 2. Examples of the signals and components for a 5s faPEA segment (left) and unPEA segment

(right). From top to bottom: ECG, TI, ICC, and three detail components from the stationary wavelet
decomposition of the ICC, ds 1cc, dg 1cc, and d7icc
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3. Methods

The algorithm to discriminate faPEA from unPEA consisted of the three stages shown
in Figure 3. The first stage was an ECG and TI signal-processing stage, where the ECG and
TI signals were resampled to a common sampling rate of f; = 250 Hz and then denoised to
obtain $gcg(n) and 811(n). The impedance ICC component, sjcc (1), was then extracted
from $11(n) by applying adaptive filtering and denoised to obtain §jcc (7). In the second
stage, a set of waveform features was computed from the denoised ECG and ICC signals.
Finally, in the third stage, these features were fed to an RF classifier to discriminate faPEA
from unPEA segments.

Stage I Stage 1T Stage IIT

unPEA
faPEA

Feature

extraction

sm(n) 1 orenrocossing 12, [ 1CC extraction R CON P, RS Q)
T preprocessing Kalman smoother | |

Figure 3. Overview of the faPEA /unPEA classification algorithm. The algorithm consists of three
stages: a signal-processing stage, a feature-extraction stage, and a classification stage. The RF classifier
uses features from the denoised ECG, ¢ (1), and impedance circulation component, §;cc (1).

3.1. Processing of ECG and TI Signals
3.1.1. ECG Processing

The ECG signal was denoised using the stationary wavelet transform (SWT) as pro-
posed by Isasi et al. for OHCA rhythms [29,30]. An 8-level SWT decomposition was used
with a Daubechies-4 mother wavelet and soft thresholding. Detail coefficients d3 to dg
were used to reconstruct the denoised ECG, which corresponds to an analysis band of
0.5-31.25Hz, a typical band for ECG analysis in OHCA [23,29].

3.1.2. TI Processing and ICC Extraction

The TI measured through the defibrillation pads may show different components
due to: baseline wandering, chest compressions and ventilation during CPR, the circu-
lation component in the pulsed rhythm, additional noise/artifacts due to movement,
electrode-skin contact, etc. [31]. The segments of the database were extracted during
pauses of chest compressions, so the TI signal was bandpass filtered (0.8-10 Hz) to remove
baseline fluctuations, respiration artifacts, and other high-frequency noise [22,32]. Then,
the ICC component was extracted, that is the TI component correlated with the ECG
heartbeats. Heartbeats were detected in the denoised ECG using the Hamilton-Tompkins
algorithm [33], and the instantaneous HR was computed as:

1
n)=———— VYnéelrr 1
f( ) s(ri+1 _ri) [ i H—l) @
where 7; is the time instant of the i-th QRS complex (R-peak). Using this information, the
ICC can be modeled as a Fourier series of K harmonics [22,31]:

sicc(n) = Y ag(n) cos(k27f (n) n) + by(n) sin(k27f (n) n) )
k=1



Entropy 2021, 23, 847

50f 16

The time-varying Fourier coefficients, a(n) and by (1), were estimated using a Kalman
smoother [23]. The Kalman observation and state vectors are then [23,34]:

xp = [a1(n), ..., a(n),by(n), ..., be(n)]T ©)]
Hy, = [cos(2rtf(n)n),...,cos(K2mf(n)n),sin(2nf(n)n),...,sin(K2rxf(n)n)] (4)

The time-varying Fourier coefficients were assumed to be Gaussian processes with
update equations [23,34]:
ar(n) = Pnar(n —1) + wn ®)

bi(n) = anbk(” —1)+wy (6)

where ¢, = exp(—fis) and w; is a zero-mean Gaussian process with ¢ the standard
deviation. The update equations are thus:

xn = ¥nxp_1+Qp 7)

where ¥, = ¢, - g, Qy = 0 - I and Ik is the identity matrix of dimension 2K.

The Fourier coefficients (state vector), a; and by, were computed applying the Rauch—
Tung-Striebel smoother, with K = 5 harmonics, A = 0.05 and ¢ = 0.01, as suggested by
Elola et al. [23].

Finally, sicc (1) was denoised using an 8-level SWT (Daubechies-4) with soft thresh-
olding. The ds—dy detail coefficients were used to reconstruct the denoised $jcc (), which
corresponds to the bandwidth 1-8 Hz. Figure 2 shows the TI, ICC, and ds—d7 detail coeffi-
cients for faPEA and unPEA.

3.2. Feature Extraction

Since faPEA evolves to ROSC, while unPEA does not, the hypothesis was that faPEA
would be more similar to cardiac rhythms with pulse than unPEA. Therefore, faPEA
should present more regular interbeat intervals and heart rates, larger ECG amplitudes,
wider spectra (narrower QRS complexes), and an ICC with a greater correlation to the
heartbeats than unPEA. Therefore, the features used to detect pulse during cardiac arrest
were added [23,35,36], as well as the features to quantify signal regularity and spectral
dispersion [37,38]. A total of 17 features were computed, 9 from the denoised ECG (8gcg)
and 8 from the denoised ICC ($icc).

3.2.1. ECG Features
The ECG features were (for the detailed calculations, consult [4,29,35,37,38]):

e The AMSA, the amplitude spectrum area, which is the weighted sum of the amplitudes
of the ECG in the spectral domain, and it quantifies the variability and spectral
dispersion of the signal. The AMSA was computed as described in [35];

*  Highpower, the power of the ECG in the higher frequency bands; a 17.5-40 Hz band-
width was used [35,38];

. FuzzEn, fuzzy entropy, which measures the regularity of the signal, computed as
described in [35];

*  The SNEO, the smoothed nonlinear energy operator, as described in [37], which
measures the local energy content of the ECG;

e The IQR values of the denoised ECG and its SWT detail coefficients ds—d7, which are
denoted by dy gcg for k = 5,6,7 [29];

*  Burggcg, the variance of the white noise term of an order-four autoregressive (AR)
model estimation of the ECG power spectral density. It measures the goodness-of-fit
of the power spectral density to that of spectra concentrated around the fundamental
component (HR) and its harmonics [4,39].
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3.2.2. ICC Features
The ICC features were (for the detailed calculations, consult [4,22,29,36,37]):

*  Logpower, the logarithmic energy (time domain) of the denoised ICC, which has been
shown to correlate with ventricular wall movement [22];

* The SNEO, the smoothed nonlinear energy operator, as described in [37], which
measures the local energy content of the ICC;

¢ The IQR values of the denoised ICC and its SWT detail coefficients ds—d7, which are
denoted by dy jcc for k = 5,6,7 [29];

*  Burgicc, the variance of the white noise term of the AR(4) estimation of the power
spectral density of the denoised ICC [4,39];

®  Crosspower, the cross-power between the denoised ECG and ICC signals, as described
in [36].

3.3. Building the Classifier

An RF classifier was used, both for feature selection and binary classification of the
5s segments into faPEA /unPEA. RF classifiers have demonstrated good performance and
robustness with unbalanced datasets and have the advantage of having an embedded
feature ranking/selection through feature importance [40,41].

An RF is an ensemble of B decision trees (weak learners), trained using a different
bootstrap replica of the original training dataset. The trees are grown using recursive
binary splitting, and at each node, D’ features are randomly selected from the available
D features for the split. The splitting process is carried out until the tree’s terminal nodes
are fed with less than Iy;,, observations [40,42]. The final decision of the RF classifier is
obtained through a majority vote of those B trees.

For this study, an RF classifier with B = 500 trees was trained and forced the growth
of uncorrelated trees by using a 10% bootstrap replica (with replacement) of the training
set for each tree. The number of predictors per node was set to the default D’ = /D,
and the minimum number of observations per terminal node was fixed to [, = 5, as
recommended in [23]. To avoid class imbalance, uniform priors were assigned.

For baseline comparisons, other machine learning classifiers were also trained and
evaluated. The RF was compared to a logistic regression (LR) classifier and to two sup-
port vector machine classifiers with polynomial kernels of second (SVM2) and third or-
der (SVM3). In these models, class imbalance was addressed by weighting the least preva-
lent class (faPEA) by a factor of 1.5.

3.4. Evaluation of the Models

All classifiers were trained and tested using 10-fold cross-validation (CV) with patient-
wise and stratified data partitions. In this way, training/test data leakage was avoided, and
the class imbalance in each fold reflected that of the whole dataset. The CV evaluation of the
models was repeated 10 times to statistically characterize the performance of the classifiers.

The classifiers were evaluated using the typical performance metrics for binary classi-
fiers, taking faPEA as the positive class. The following performance metrics were consid-
ered: sensitivity (Se), specificity (Sp), balanced accuracy (BAC, the average of Se and Sp),
and the area under the receiver operating characteristic curve (AUC).

4. Results

Table 1 shows a summary of the statistical distribution of the 17 features for the
faPEA and unPEA segments of the complete dataset. The features are ranked by the AUC
obtained by using a single-feature LR classifier (evaluated in the 10-fold CV partitions). All
features except FuzzyEn showed significant differences for the distributions of the faPEA
and unPEA segments (p < 0.001, Wilcoxon test), and moderate to good AUC values in the
range of 52.9 to 81.6%.
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Table 1. Median (IQR) values of the features for faPEA and unPEA segments grouped by ECG (left) and ICC (right) features.
Features are ranked within each group by the AUC (median, IQR) of a single-feature LR classifier.

ECG Features ICC Features
Feature faPEA unPEA AUC (%) Feature faPEA unPEA AUC (%)
6 7

Burg é:g " }8*6) (if b }8*6) 81.6(5.6)  Crosspower  1310(2151)  425(1083)  71.6(3.4)

AMSA 31.2(22.3) 13.1(14.1) 81.3(4.9) IQR(ds) 21(363) 105302  665(16)

Highpower 743 (166.0) 8.3(24.8) 80.3(8.1) SNEO  2930(10,001)  445(4427)  65.7(7.8)

IQR(dg) 11(1.2) 05(0.6) 726(150)  Logpower ~ 5131(2783)  2822(5259) 644 (7.5)

IQR(ds) 0.31(0.65) 0.17(0.29) 71.0(11.1) IOR(dg)  842(136.1)  325(889)  643(52)

SNEO 0.21(0.82) 0.06 (0.20) 71.0 (14.4) QR 186(269)  72(305)  615(103)

IOR 0.17(0.17) 0.10(0.10) 68.8 (14.4) IQRd;)  150.9(2538) 663(2475)  549(13.0)

IQR(dy) 13(15) 1.0(1.0) 65.2(12.6) Burg 0.21(1.9) 005(0.8) 546 (14.4)
FuzzEn 0.22(0.13) 0.23(0.14) 52.9.(20.4)

4.1. Performance of the RF Classifier

The overall performance of the method is reported in Table 2 in terms of AUC, BAC,
and Se/Sp. Two model types were evaluated, those using ECG-only features and those
combining ECG and ICC features. For each model, the complete feature set and a reduced
optimal feature set based on RF feature importance (see Section 4.2) were used. The models
with reduced feature sets showed the best performance, with median (IQR) values of
85.7(9.8)/78.8 (9.8)% for AUC/BAC for the ECG+ICC model and 83.2 (8.5)/75.7 (10.7)%
for the ECG-only model. Adding information derived from the impedance (ICC signal)
improved the AUC and BAC of the ECG-only models at 2.5 and three points, respectively.

Table 2 also shows the performance of all previous proposals in the literature for the
prognosis of the evolution of PEA. All the methods were implemented in MATLAB and
then evaluated using this study’s dataset and data partitions. The previous proposals
included: (1) a preliminary version of the proposed method based on an RF classifier, but
using only one ECG feature (AMSA) and one ICC feature (Logpower) [26]; (2) an LR model
using ECG-only features proposed by Alonso et al. [24] for the immediate prediction of the
evolution of cardiac arrest rhythms, including PEA; (3) single-ECG feature models based on
the heart rate [12] and the width of the QRS complexes [14]. In the original studies [12,14],
the HR and QRS widths were manually measured, but in an automatic system, these values
have to be automatically computed from the ECG. The wavedec wavelet-based algorithm
was applied both for QRS detection and HR calculations, and for ECG delineation and QRS
width calculations [43], and then, we used these features in a single-feature LR classifier.
The best solution outperformed all previous proposals by 4-19 points in the AUC and
by 3-16 points in BAC. Moreover, the ECG-only solution also outperformed all previous
ECG-only solutions by 2-16 points in the AUC and 1.5-14 points in BAC and used a
reduced feature set compared to the second-best ECG only model by Alonso et al. [24] (four
vs. six).

Table 2. Performance of the methods introduced in this study compared to all previous proposals for
faPEA /unPEA discrimination. The table shows the median (IQR) values for AUC, BAC, Se, and Sp.

No. Features AUC(%) BAC (%) Se (%) Sp (%)

This study (ECG+TI) 17 857(8.6) 77.8(89) 79.8(11.3) 77.3(12.1)
This study (ECG) 9 82.1(9.7) 735(11.2) 79.7(14.1) 69.0(15.9)
This study,
reduced (ECG+TI) 85.7(9.8) 78.8(9.8) 80.1(12.6) 76.7(13.6)
This study, reduced (ECG) 4 83.2(85) 75.7(10.7) 789(15.9) 757(11.4)
Urteaga et al. [26] 2 82.0(105) 74.8(11.3) 77.0(13.9) 73.5(14.6)
Alonso et al. [24] 6 81.4(10.3) 74.4(89) 73.2(151) 77.8(15.3)
HR[12] 1 67.2(129) 62.1(11.8) 80.2(14.5) 45.1(21.1)
QRS width [14] 1 69.2(129) 67.8(13.3) 74.8(20.2) 61.5(26.6)
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4.2. Feature Selection and Feature Analysis

To analyze how features were ranked, the RF feature importance was used, and
the feature selection probability was estimated by adjusting the models of a decreasing
number of features (N f), from N = 17, - - -, 1. The selection probability for each feature
was measured as the percentage of times it was selected. For each 10-fold CV partition,
features were iteratively discarded (in steps of one) by removing the feature with the lowest
importance, and the RF models were retrained to rerank the features for the remaining
Ny features. The process was carried out until a single feature was left. The proportion of
times a feature was included for each value of Ny is shown in Figure 4.

The most frequently selected features included both ECG and ICC features. The
features in the top seven positions were ECG spectral features such as AMSA, Burg,
and Highpower and the ICC amplitude/power features such as SNEOjcc, IQR(dg1cc),
IQR(ICC), and Logpower-

AMSA
SNEOqcc
IQR(ds 1cc)

Burggpce [0.03 0.03

r0 033

Highypower 0.02 0.02

IQR(ICC) (o.01 0.07
Logpower - 0 0.03 0.05 0.07 011 0.21

IQR(dsgcc) F0 0 0o 0 0 ©

IQR(d71cc)

IQR(dggcc)Fo 0 0 0 0 ©

IQR(ECG)

T

0 0 0 0 0 0
0.01 0.18 0.42
r o 0 0 0 0 0 0 0 0.16 0.42
Crosspower - 0 0 0 0 0 0 0 0.01 0.06 0.26

IQR(d7gcc) F0 0 0 0 ©0 O 0 001 001 003

0.07 0.37
SNEOgcc-0 0 0 0 0 0 O0 0O O 0 001 009 037
FuzzEnFo o 0o 0 0 0O O 0 O 0 002003 031

IQR(dspcc)F0 o o 0 0 0O O O O O 0 002006

Burgice - o 0 0 0 0 0 0 0 0 0 0 0.03 0.04
1 1 1 1 1 1

1 2 3 4 5 6 7 & 9 10 11 12 13 14 15 16 17

0.06 0.14 0.37
1 1

Figure 4. The selection probability for the 17 features, as a function of N¢, the number of features
included in the RF classifier.

Another important aspect is the performance of the model as a function of Ny, both to
obtain more accurate models by selecting an optimal feature subset, but also to lower the
complexity, improve the interpretability, and lower the computational cost of the model.
Figure 5 shows the performance of all the classification models (baseline models and the
RF classifier) as a function of Ny, the number of features used in the model. The features
included for each Ny were those with a higher selection probability (see Figure 4). The best
results were obtained for the RF classifier, both in the AUC and BAC, and the RF models
showed a stable performance for N [ > 6. As shown in Table 2, the RF classifier with N = 7
had the same performance as the RF classifier with the complete set of features.
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Figure 5. Performance of the classifiers, AUC and BAC, in terms of the number of features, N [Z
considered in the model.

4.3. Time Interval for a Prediction

The time needed from PEA onset to a reliable prognosis is key for a prompt initiation
of specific therapies. To analyze the time needed for a prognosis, the faPEA/unPEA
classification was performed using only the ECG and TI segments in an interval of t;, (min)
from PEA onset, then changing f;, from 1 min to 10 min in 1 min steps. Figure 6 shows the
AUC and BAC for the different classifiers as a function of t,,. The RF classifier had the best
performance for all time intervals, with AUC and BAC values above 80% and 75%, even for
the first minute after PEA onset. As expected, as t,, grew as the accuracy of the classifiers
improved, since PEA with favorable evolution is closer to conversion to ROSC; however,
the improvement in the AUC and BAC was only five points and four points when the
interval was extended from 1 min to 10 min; that is, a prompt reliable diagnosis can be
obtained, and a specific therapy can be initiated even in the first minute after PEA onset.

Figure 7 shows a combined analysis of the RF performance as a function of Ny and
ty. As shown in the figure, the AUC and BAC increased as the number of features in the
model and the analysis interval increased, with AUC values above 85% and BAC values
above 78% for t;, > 7min and N > 4.
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Figure 7. The AUC and BAC of the RF classifier for different analysis intervals, t;;, and number of features, N r.

4.4. Analysis of the Classification Errors

The classification errors of the best RF model were analyzed to better understand the
limitations and potential future improvements of faPEA /unPEA classification. Figure 8
shows the ECG, TI, and ICC signals for segments with correct classifications and segments
with typical patterns leading to classification errors. The top panels show correctly classified
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segments, despite faPEA having a much lower heart rate than unPEA. In the examples,
the TI/ICC signals showed no evidence of mechanical activity for unPEA and activity
correlated with the heartbeats in faPEA. The bottom panels show examples of misclassified
segments. In the case of faPEA, both the heart rate and the TI/ICC activity were very low,
and they corresponded to an episode in which ROSC occurred 38 min after PEA onset. In
this episode, at the initial stage of PEA, the mechanical activity of the heart was closer to
that of unPEA than faPEA. In the case of unPEA, the ECG had a low amplitude and heart
rate, as expected for unPEA, but there was noise in the ECG and TI signals in the last part of
the segment, which produced a pulse-like ICC signal estimation by the Kalman smoother.

TI(mQ)
500z

(mQ
BT0DT

9]
)
=
a) Correctly classified faPEA b) Correctly classified unPEA
=
E J\ A~ _A A g V"_"V\VM/\"/'\"V‘
0]
)
53]
g
\E, \/——M,\_—\/\W
=
g
E
5 WWM
]

c) Incorrectly classified faPEA d) Incorrectly classified unPEA

Figure 8. ECG, TI, and ICC signals for 5 s segments of correctly (top) and incorrectly (bottom)
classified faPEA and unPEA segments.

5. Discussion

To the best of our knowledge, the proposed method is the first automated method to
discriminate PEA rhythms with favorable evolution to ROSC in OHCA data. The algorithm
consisted of the extraction of the ICC component of the TI (associated with mechanical
wall movement), an ECG and ICC feature extraction phase, and an RF classifier. The
solution outperformed previous solutions both in the AUC (four to nineteen points) and
BAC (three to sixteen points) [12,14,23,24,26]. Several aspects of the solution explained the
better performance. First, the ECG and TI feature set was larger than in previous studies,
and the features were carefully selected to reflect or be associated with ventricular wall
movement or ROSC. Second, the features obtained from QRS complex segmentation were
not used. In nonarrest patients, QRS detection and segmentation are very accurate [43], but
their accuracy substantially decreases for cardiac arrest rhythms [35]. For instance, it was
observed that the methods based on HR and QRS width presented the lowest performance
in part because of the inaccuracies of the automatic algorithms for cardiac arrest data.
Third, features obtained from the ICC were added, and these features revealed information
on the incipient mechanical activity of the heart in PEA rhythms that converted to ROSC.

The models with reduced the feature sets (seven features for ECG and ICC and four
features for ECG-only) had better or comparable performance to those with the complete
feature set. Moreover, adding ICC features improved the ECG-only methods by 2.5 points
in AUC and 3.1 points in BAC, demonstrating the utility of the TI signal as a surrogate
measure of ventricular wall movement [23,26]. A high correlation between the features from
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the detail components of the ECG and ICC (mean p = 0.9) and between the spectral features
of the ECG (mean p = 0.7) was observed. An effective feature selection process improves
the models, particularly when an exhaustive feature extraction process is carried out [23,29].
More importantly, models with fewer features are computationally less expensive and
more explainable. For the RF classifier, using an embedded feature selection based on RF
feature importance is an efficient way to obtain close-to-optimal feature subsets.

The time from PEA onset to an accurate prognosis of its evolution is key for the prompt
implementation of efficient therapies. In the dataset used in this study, the mean time from
PEA onset to outcome (ROSC or no ROSC) was 22 min, and the proposed solution had an
AUC and BAC of 81% and 74% within the first minute from PEA onset. Evidently, as time
evolved, the accuracy of the prognosis improved, and the AUC and BAC rose to 86% and
79% for an analysis interval of 10 min. In cases in which PEA onset was far from ROSC,
errors were more frequent, as shown in Figure 8c for a patient that recovered ROSC 38
min after PEA onset. In any case, there is a clinical tradeoff between the accuracy of the
prognosis and the prompt implementation of specific therapies. An alternative approach
may be to report the probability of conversion to ROSC as a clinical support tool. Such a
probability can be obtained from most machine learning models and in particular in the RF
model by computing the proportion of trees with positive faPEA classification [35,41].

The solutions proposed in this study were based on the ECG only and on combined
features from ECG and TI (the ICC was derived from TI). In both cases, reasonable tradeoffs
between time-to-prognosis and accuracy can be reached. The reason for using these
signals is that they are universally available in defibrillators and monitor defibrillators, the
equipment used by EMS crews to monitor OHCA patients. All these devices have an ECG
channel through the defibrillation pads [35], but not all include a TI signal with sufficient
resolution to implement these algorithms [22,23]. Since the proposed algorithms are fully
automatic, this means they could be integrated into this equipment as decision support
tools for the management of OHCA patients in PEA; that is, they would contribute to a
personalized resuscitation treatment, as proposed in the latest resuscitation guidelines [44].

The availability of signals during resuscitation is key to improve the accuracy of
automatic algorithms. In particular, the prognosis of ROSC during resuscitation (for all
rhythms, not only PEA) is a very active field of research. New and established technologies
such as capnography [23,45], cerebral oximetry [46,47], echocardiography [18,48], or point-
of-care testing (blood gas analysis) [49] have been explored. A complete up-to-date review
is available in[17]. These are, in general, emerging technologies to monitor and guide
treatment during OHCA, and only echocardiography and, more recently, capnography
have been specifically used to stratify PEA during OHCA [18,23]. In the future, combined
algorithms integrating information from all these sources should be explored to improve the
prognosis of the evolution of PEA. However, acquiring multimodal OHCA datasets with
all these sources of information is complex because OHCA is a critical chronodependent
clinical situation treated in a prehospital setting. Therefore, these types of datasets are very
scarce and have a limited amount of patients [23].

This study had some limitations. First, the data came from a single type of device, the
HeartStart MRx defibrillator. Although the ECGs acquired by different commercial devices
have slight differences in bandwidth and resolution, no substantial differences would be
expected in the ECG-based model for other devices. Conversely, the TI is acquired by
proprietary circuitry, with very different amplitude resolutions and sampling rates. The
ICC has a very small amplitude rarely exceeding 100 mQ, so how well the ICC can be
estimated from the TI recorded in other devices needs to be tested. Second, the number
of cases included in the study was substantial, but augmenting the dataset’s size would
allow the development of more accurate models. In particular, advanced solutions based
on deep learning algorithms could also be developed based on features extracted by neural
network architectures [50-52].



Entropy 2021, 23, 847

13 of 16

6. Conclusions

This study introduced the first machine learning algorithm that discriminates PEA
rhythms with favorable evolution to ROSC from those with unfavorable evolution. The
proposed algorithm was based on features automatically extracted from the ECG and the
TI signal after PEA onset. The RF model proposed outperformed previous solutions, and it
demonstrated that both ECG and TI signals contain relevant information for the prognosis
of PEA evolution. The results also encourage the development of improved solutions
tested on larger datasets. This may lead to decision support tools that assist rescuers in the
definition of the best resuscitation treatment during PEA in OHCA, increasing the chances
of survival and good neurological outcome. Current commercial defibrillators could benefit
from advances in signal processing and machine learning techniques, improving their
impact in the course of cardiac arrest resuscitation.
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Abbreviations

The following abbreviations are used in this manuscript.

OHCA  out-of-hospital cardiac arrest
ROSC  return of spontaneous circulation

CPR cardiopulmonary resuscitation
EMS emergency medical services
PEA pulseless electrical activity

faPEA  pulseless electrical activity with favorable evolution
unPEA  pulseless electrical activity with unfavorable evolution

VF ventricular fibrillation

ECG electrocardiogram

TI thoracic impedance

ICC impedance circulation component
RF random forest

LR logistic regression

SVM support vector machine

AUC area under the curve

BAC balanced accuracy

Se sensitivity

Sp specificity
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