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h 15, 2012 Abstra
tIn this paper we introdu
e four s
enario Cluster based Lagrangian De
omposition(CLD) pro
edures for obtaining strong lower bounds to the (optimal) solution valueof two-stage sto
hasti
 mixed 0-1 problems. At ea
h iteration of the Lagrangianbased pro
edures, the traditional aim 
onsists of obtaining the solution value of the
orresponding Lagrangian dual via solving s
enario submodels on
e the nonanti
ipativity
onstraints have been dualized. Instead of 
onsidering a splitting variable representationover the set of s
enarios, we propose to de
ompose the model into a set of s
enario 
lusters.We 
ompare the 
omputational performan
e of the four Lagrange multiplier updatingpro
edures, namely the Subgradient Method, the Volume Algorithm, the ProgressiveHedging Algorithm and the Dynami
 Constrained Cutting Plane s
heme for di�erentnumbers of s
enario 
lusters and di�erent dimensions of the original problem. Our
omputational experien
e shows that the CLD bound and its 
omputational e�ort dependon the number of s
enario 
lusters to 
onsider. In any 
ase, our results show that the CLDpro
edures outperform the traditional LD s
heme for single s
enarios both in the qualityof the bounds and 
omputational e�ort. All the pro
edures have been implemented ina C++ experimental 
ode. A broad 
omputational experien
e is reported on a test ofrandomly generated instan
es by using the MIP solvers COIN-OR [17℄ and CPLEX [16℄for the auxiliary mixed 0-1 
luster submodels, this last solver within the open sour
eengine COIN-OR. We also give 
omputational eviden
e of the model tightening e�e
tthat the prepro
essing te
hniques, 
ut generation and appending and parallel 
omputingtools have in sto
hasti
 integer optimization. Finally, we have observed that the plainuse of both solvers does not provide the optimal solution of the instan
es in
luded in thetestbed with whi
h we have experimented but for two toy instan
es in a�ordable elapsedtime. On the other hand the proposed pro
edures provide strong lower bounds (or thesame solution value) in a 
onsiderably shorter elapsed time for the quasi-optimal solutionobtained by other means for the original sto
hasti
 problem.Keywords: Two-stage sto
hasti
 integer programming, nonanti
ipativity 
onstraints,Cluster Lagrangian de
omposition, s
enario 
luster model, Subgradient Method, VolumeAlgorithm, Progressive Hedging Algorithm, Dynami
 Constrained Cutting Plane s
heme.
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1 Introdu
tionIn this work we 
onsider a general two-stage sto
hasti
 mixed 0-1 problem. The un
ertaintyis modeled via a �nite set of s
enarios ω = 1, ..., |Ω|, ea
h with an asso
iated probability ofo

urren
e wω, ω ∈ Ω. The traditional aim in this type of problems is to solve the so-
alledDeterministi
 Equivalent Model (DEM), whi
h is a mixed 0-1 problem with a spe
ial stru
ture,see e.g., [21℄ for a good survey of some mayor results in this area obtained during the 90s andbeyond. A Bran
h-and-Bound algorithm for solving problems having mixed-integer variablesin both stages is designed in [6℄, among others, by using Lagrangian relaxation for obtaininglower bounds to the optimal solution of the original problem. A Bran
h-and-Fix Coordination(BFC) methodology for solving su
h DEM in produ
tion planning under un
ertainty is givenin [1, 2℄, but the approa
h does not allow 
ontinuous �rst stage variables or 0-1 se
ond stagevariables. We propose in [7, 8℄ a BFC algorithmi
 framework for obtaining the optimalsolution of the two-stage sto
hasti
 mixed 0-1 integer problem, where the un
ertainty appearsanywhere in the 
oe�
ients of the 0-1 and 
ontinuous variables in both stages. Re
ently, ageneral algorithm for two-stage problems has been presented in [22℄.We study in [10℄ several solution methods for solving the dual problem 
orrespondingto the Lagrangian De
omposition (LD) of two-stage sto
hasti
 mixed 0-1 models. At ea
hiteration of these Lagrangian based pro
edures, the traditional aim 
onsists of obtaining thesolution value of the 
orresponding parametri
 mixed 0-1 Lagrangian dual problem via solvingsingle s
enario submodels on
e the nonanti
ipativity 
onstraints (NAC) have been dualized,and the parameters (i.e., the Lagrange multipliers) are updated by using di�erent subgradientand 
utting plane based methodologies.Instead of 
onsidering a splitting variable representation over the set of s
enarios, in thispaper we propose a new approa
h so named Cluster Lagrangian De
omposition (for short,CLD) to de
ompose the model into a set of s
enario 
lusters. So, we 
omputationally 
omparethe performan
e of the Subgradient Method (SM) [15℄, the Volume Algorithm (VA) [4℄, theProgressive Hedging Algorithm (PHA) [20℄ and the Dynami
 Constrained Cutting Plane(DCCP) s
heme [18℄ for Lagrange multipliers updating while solving large-s
ale sto
hasti
mixed 0-1 problems in an algorithmi
 framework based on s
enario 
lusters de
omposition. Asu

essful result may open up the possibility for tightening the lower bounds of the solutionvalue at the 
andidate Twin Node Families in the exa
t BFC s
heme for both two-stage andmultistage types of problems, see e.g., [9℄.For di�erent 
hoi
es of the number of s
enario 
lusters we report the 
omputationalexperien
e by using CPLEX, integrated in the COIN-OR environment, to verify thee�e
tiveness of the proposal. In this sense, we also give 
omputational eviden
e of themodel tightening e�e
t and their 
omputational 
ost that prepro
essing, 
ut generation andappending and parallel 
omputing tools have in sto
hasti
 integer optimization too, see [19℄.We also 
omputationally 
ompare the new with the 
luster singleton approa
h (i.e., the LDfor single s
enarios) outperforming it, as well as outperforming the plain use of the MIPsolver of 
hoi
e, CPLEX. The proposed approa
h provides a tight lower bound su
h thatthe quasi-optimality gap of the upper solution bound obtained by other means on large-s
aleinstan
es is very small and frequently, guarantees its optimality. However, the plain useof CPLEX 
annot guarantee the optimality of the in
umbent solution in a somewhat largeelapsed time limit, its obje
tive fun
tion value being simply an upper bound of the solution2



value of the original sto
hasti
 problem in some 
ases. In other 
ases, we 
an prove in verymu
h smaller elapsed time that the in
umbent CPLEX solution is the optimal one, sin
e ourCLD pro
edures provide lower bounds identi
al to the value of that solution. Additionally,that in
umbent solution is also frequently even worse than that whi
h we have obtained whenboth the quality and the small elapsed time are good enough.The remainder of the paper is organized as follows: Se
tion 2 presents the two-stagesto
hasti
 mixed 0-1 problem in 
ompa
t and splitting variable representations over thes
enarios and s
enario 
lusters. Se
tion 3 summarizes the theoreti
al results on Lagrangiande
omposition and presents the Cluster Lagrangian De
omposition approa
h. Se
tion 4presents the four pro
edures mentioned above for updating the Lagrange multipliers. Se
tion5 reports the results of the 
omputational experiment. Se
tion 6 
on
ludes.2 Two-stage sto
hasti
 mixed 0-1 problemIn many real 
ases a two-stage deterministi
 mixed 0-1 optimization model must be extendedto 
onsider the un
ertainty in some of the main parameters. In our 
ase, these are the obje
tivefun
tion, the right and left hand-side ve
tors and the 
onstraint matrix 
oe�
ients. Thisun
ertainty is introdu
ed by using the s
enario analysis approa
h, su
h that a s
enario 
onsistsof a realization of all random parameters in both stages through a s
enario tree. When a �nitenumber of s
enarios is 
onsidered, a general two-stage program 
an be expressed in terms ofthe �rst stage de
ision variables being equivalent to a large, dual blo
k-angular programmingproblem, introdu
ed in [25℄ and known as Deterministi
 Equivalent Model (DEM).Let us 
onsider the 
ompa
t representation of the DEM of a two-stage sto
hasti
 integerproblem (MIP ),
(MIP )c : zMIP = min c1δ + c2x+

∑

ω∈Ω

wω[qω1 γ
ω + qω2 y

ω]s.t. b1 ≤ A

(

δ

x

)

≤ b2

hω1 ≤ Tω

(

δ

x

)

+W ω

(

γω

yω

)

≤ hω2 , ∀ω ∈ Ω

δ, γω ∈ {0, 1}, x, yω ≥ 0, ∀ω ∈ Ω,

(1)
where the un
ertainty in the parameters is introdu
ed by using a s
enario analysis approa
h.
c1 and c2 are known ve
tors of the obje
tive fun
tion 
oe�
ients for the δ and x variablesin the �rst stage, respe
tively, b1 and b2 are the known left and right hand side ve
tors forthe �rst stage 
onstraints, respe
tively, and A is the known matrix of 
oe�
ients for the �rststage 
onstraints. For ea
h s
enario ω, wω is the likelihood attributed to the s
enario, su
hthat ∑ω∈Ω wω = 1, hω1 and hω2 are the left and right hand side ve
tors for the se
ond stage
onstraints, respe
tively, and qω1 and qω2 are the obje
tive fun
tion 
oe�
ients for the se
ondstage γ and y variables, respe
tively, while Tω and W ω are the te
hnology 
onstraint matri
esunder s
enario ω, for ω ∈ Ω, where Ω is the set of s
enarios to 
onsider. Noti
e that thereare two types of de
ision variables at ea
h stage, namely, the set of δ 0-1 and x 
ontinuousvariables for the �rst stage, and the set of γω 0-1 and yω 
ontinuous variables for the se
ondstage. 3



Noti
e also that for the purpose of simpli�
ation, the obje
tive fun
tion to optimize in themodels dealt with in this paper is the expe
ted value over the set of s
enarios Ω, i.e., the riskneutral strategy. For a survey of 
oherent risk averse measures as opposed to the risk neutralstrategy 
onsidered in this work, see e.g., [3℄.The stru
ture of the un
ertain information 
an be visualized as a tree, where ea
h root-to-leaf path represents one spe
i�
 s
enario, ω, and 
orresponds to one realization of the wholeset of the un
ertain parameters. In the example depi
ted in Figure 1, there are |Ω| = 10root-to-leaf possible paths, i.e., s
enarios. Following the nonanti
ipativity prin
iple, stated in[25℄ and restated in [20℄, see [5℄ among others, all s
enarios should have the same value forthe related �rst stage variables in the two-stage problem.
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Compa
t representation Splitting variable representationFigure 1: S
enario treeThe left se
tion of Figure 1 impli
itly represents the non-anti
ipativity 
onstraints (NAC,for short). This is the 
ompa
t representation shown in model (1). The right se
tion of Figure1 gives the same information as the 
ompa
t representation but using a splitting variables
heme and noti
ing that it expli
itly represents the NAC (i.e., imposing the equality) on the�rst stage variables δω xω and for all the s
enarios ω.Let us 
onsider the splitting variable representation of the DEM of the two-stage sto
hasti
4



mixed 0-1 problem.
(MIP )s : zMIP = min

∑

ω∈Ω

wω[c1δ
ω + c2x

ω + qω1 γ
ω + qω2 y

ω]s.t. b1 ≤ A

(

δω

xω

)

≤ b2 ∀ω ∈ Ω

hω1 ≤ Tω

(

δω

xω

)

+W ω

(

γω

yω

)

≤ hω2 ∀ω ∈ Ω

δω = δω
′

∀ω, ω′ ∈ Ω, ω 6= ω′

xω = xω
′

∀ω, ω′ ∈ Ω, ω 6= ω′

xω, yω ≥ 0 ∀ω ∈ Ω
δω , γω ∈ {0, 1} ∀ω ∈ Ω.

(2)
In addition to these two formulations, we propose a s
enario-
luster partitioning toallow a 
ombination of 
ompa
t and splitting variable representations into and inter thes
enario 
luster submodels. A s
enario 
luster is a set of s
enarios where the NAC areimpli
itly 
onsidered. By slightly abusing the notation from now on, throughout the paperthe upperindex in boldfa
e p will denote the 
luster of s
enarios instead of the single one. Let

p̂ denote the number of s
enario 
luster partitions to 
onsider. As an illustrative example, letus 
onsider again the s
enario tree depi
ted in Figure 1.
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Figure 2 shows the problem de
omposition in p̂ = 5 (left tree) and p̂ = 2 (right tree)s
enario 
lusters into whi
h the set of s
enarios is split. Observe that the NAC for the �rststage ve
tors of variables are given by x1 = · · · = x5 and δ1 = · · · = δ5 for the left side of the�gure, and they are given by x1 = x2 and δ1 = δ2 for the right side of the �gure, where byabusing the notation xp and δp are the x and δ ve
tors of the �rst stage 
ontinuous and 0-1variables for s
enario 
luster p, respe
tively.In general, given a s
enario tree, p̂ 
an be 
hosen as any value between 1 and |Ω|, so thatwe 
an represent the DEM (1) by a mixture of the splitting variable representation where theNAC are expli
itly stated for the p̂ 
luster submodels, and a 
ompa
t representation for theset Ωp of s
enarios into ea
h 
luster model p, where the NAC are impli
itly stated su
h that
p ∈ {1, ..., p̂}, Ωp de�nes the set of s
enarios in 
luster p, and |Ωp| is its size.Without loss of generality (wlog, for short) and for 
omputational purposes, the numberof 
lusters p̂ 
an be 
al
ulated as a divisor of the number of s
enarios, |Ω| and, then, wehave that l = |Ωp| = |Ω|

p̂
de�nes the size of ea
h s
enario 
luster p, for p = 1, ..., p̂.The s
enario 
lusters are de�ned in terms of 
onse
utive s
enarios, Ω1 = {1, ..., |Ω1|},

Ω2 = {|Ω1|+ 1, ..., |Ω1|+ |Ω2|},..., Ωp̂ = {|Ω1|+ ...+ |Ωp̂−1|+ 1, ..., |Ω|}.The mixed 0-1 submodel to 
onsider for ea
h s
enario 
luster p 
an be expressed by the
ompa
t representation,
(MIPp) : zp = min wp(c1δ

p + c2x
p) +

∑

ω∈Ωp

wω(qω1 γ
ω + qω2 y

ω)s.t. b1 ≤ A

(

δp

xp

)

≤ b2

hω1 ≤ Tω

(

δp

xp

)

+W ω

(

γω

yω

)

≤ hω2 ∀ω ∈ Ωp

δp ∈ {0, 1}, xp ≥ 0
γω ∈ {0, 1}, yω ≥ 0 ∀ω ∈ Ωp,

(3)
where wp =

∑

ω∈Ωp wω denotes the likelihood for s
enario 
luster p, and δp and xp are theve
tors of the �rst stage δ and x variables for s
enario 
luster p. Moreover, the p̂ submodels(3) are linked by the NAC,
δp − δp

′

= 0 (4)
xp − xp

′

= 0, (5)for p,p′ = 1, . . . , p̂ : p 6= p′. Observe that the NAC (4)-(5) 
an been represented as a setof inequalities in order to avoid the use of non-signed ve
tors of Lagrange multipliers in thedualization of su
h 
onstraints. They will be expressed as follows,
δp − δp+1 ≤ 0 ∀p = 1, ..., p̂ − 1, δp̂ ≤ δ1, (6)
xp − xp+1 ≤ 0 ∀p = 1, ..., p̂ − 1, xp̂ ≤ x1 (7)So, the mixed 0-1 DEM (1) is equivalent to the splitting-
ompa
t variable representation

6



over the set of s
enario 
lusters.
(MIP ) : zMIP = min

p̂
∑

p=1

[wp(c1δ
p + c2x

p) +
∑

ω∈Ωp

wω(qω1 γ
ω + qω2 y

ω)]s.t. b1 ≤ A

(

δp

xp

)

≤ b2 ∀p = 1, ..., p̂

hω1 ≤ Tω

(

δp

xp

)

+W ω

(

γω

yω

)

≤ hω2 ∀ω ∈ Ωp,p = 1, ..., p̂

δp − δp+1 ≤ 0 ∀p = 1, ..., p̂ − 1

δp̂ ≤ δ1,

xp − xp+1 ≤ 0 ∀p = 1, ..., p̂ − 1,

xp̂ ≤ x1

xp ≥ 0, δp ∈ {0, 1} ∀p = 1, ..., p̂

yω ≥ 0, γω ∈ {0, 1} ∀ω ∈ Ωp,p = 1, ..., p̂.

(8)
Additionally, noti
e that model (8) for p̂ = 1 
oin
ides with the mixed 0-1 DEM in the
ompa
t representation (1), and we obtain the splitting variable representation (2) for p̂ = |Ω|.3 S
enario Cluster Lagrangian De
ompositionThe s
enario Cluster Lagrangian De
omposition (CLD) of the mixed 0-1 DEM (8) fora given number of s
enario 
lusters p̂ and a given nonnegative ve
tor of weights (i.e.,Lagrange multipliers) µp = (µp

δ , µ
p
x), is the µ-parametri
 mixed 0-1 minimization model (9)in (δp, xp, γω, yω), ω ∈ Ωp, p = 1, · · · , p̂, with the obje
tive fun
tion value zLD(µ, p̂), su
hthat it 
an be expressed as follows,

(MIP
p̂

LD(µ)) : zLD(µ, p̂) = min
p̂
∑

p=1

[wp(c1δ
p + c2x

p) +
∑

ω∈Ωp

wω(qω1 γ
ω + qω2 y

ω)]

+
p̂−1
∑

p=1

µ
p

δ (δ
p − δp+1) + µ

p̂

δ (δ
p̂ − δ1)+

+
p̂−1
∑

p=1

µp
x(x

p − xp+1) + µp̂
x(x

p̂ − x1)s.t. b1 ≤ A

(

δp

xp

)

≤ b2 ∀p = 1, ..., p̂

hω1 ≤ Tω

(

δp

xp

)

+W ω

(

γω

yω

)

≤ hω2 ∀ω ∈ Ωp,p = 1, ..., p̂

xp ≥ 0, δp ∈ {0, 1} ∀p = 1, ..., p̂

yω ≥ 0, γω ∈ {0, 1} ∀ω ∈ Ωp,p = 1, ..., p̂.

(9)
It is well known that model (MIP

p̂

LD(µ)) is a relaxation of model (MIP ), sin
e (i) thefeasible set of (MIP
p̂

LD(µ)) 
ontains the feasible set of (MIP ), and (ii) for any (δ, x, γ, y)feasible solution for (MIP ), any µ ≥ 0 and 1 < p̂ ≤ |Ω|, it results that zLD(µ, p̂) ≤ zMIP .Noti
e that if p̂ = 1, for any µ ≥ 0 zLD(µ,1) = zMIP by de�nition of the 
ompa
trepresentation. Then, it follows that the value zLD(µ, p̂), whi
h depends on µ is, a lowerbound on the solution value of (MIP ), zMIP for any 
hoi
e of p̂, with 1 < p̂ ≤ |Ω|.7



De�nition 1 For any 
hoi
e of p̂ su
h that 1 < p̂ ≤ |Ω|, the problem of �nding the tightestLagrangian lower bound on zMIP is
(MIPLD) : zLD = maxµ≥0zLD(µ, p̂).It is 
alled the Lagrangian dual of (MIP ) relative to the NAC.By LP duality, zLD 
an be obtained by using a mixture of linear and mixed 0-1programs. (MIPLD) is a linear problem in the dual spa
e of the Lagrange multipliers, whereas(MIP

p̂

LD(µ)) is a µ-parametri
 mixed 0-1 problem in the ve
tor of variables (δ, x, γ, y). Let
(δ(µp̂), x(µp̂), γ(µp̂), y(µp̂)) denote an optimal solution of (MIP

p̂

LD(µ)) for some µ and p̂, i.e.,a Lagrangian solution.It is also known that, unless (MIPLD) does have the integrality property, the LD 
anyield an equal or stronger bound than the LP relaxation. If it has the integrality propertythen zLP = zLD ≤ zMIP . In the other 
ase, zLP ≤ zLD ≤ zMIP . See the seminal work [12℄,and a good survey in [13℄.Let the following proposition state that the solution values of nonsingleton s
enario 
lusterLagrangian de
omposition (CLD) problems are stronger than the solution values of singletonCLD problems.Proposition 1 For all µ ≥ 0, the following inequalities are satis�ed
zLD(µ, |Ω|) ≤ zLD(µ, |Ω| − 1) ≤ .... ≤ zLD(µ, 2) ≤ zLD(µ, 1) = zMIP .Proof: Noti
e that the 
hain of the related problems only di�er on the relaxation of theNAC in some s
enarios. So the proof follows.Our proposal makes use of the expression of the Lagrangian dual zLD as the maximum ofthe solution values zLD(µ, p̂) in µ. Previously, we must 
hoose a number of s
enario 
lusters

p̂ and the s
enario subsets Ωp, p = 1, ..., p̂ and then, for a given value of µ, say µp̂, we mustsolve the mixed 0-1 problem (9) in (δ(µp̂), x(µp̂), γ(µp̂), y(µp̂)) to obtain the optimal solutionvalue, zLD(µp̂, p̂). It 
onsists of 
omputationally 
omparing the speed of 
onvergen
e withseveral iterative methods for updating the Lagrange multipliers and building the sequen
e
{µ0, µ1, ..., µk, ....}p̂, as well as studying the optimal s
enario 
luster de
omposition.At ea
h iteration k and given the 
urrent multiplier ve
tor µk, the �rst step is to obtain
zLD(µ

k, p̂). The se
ond step is to update the Lagrange multipliers µ in a �nite number ofiterations su
h that the purpose is to obtain µ∗ and zLD(µ
∗, p̂), where

µ∗ ∈ argmaxµ≥0{zLD(µ, p̂)}. (10)Note: The solution (δ(µ∗), x(µ∗), γ(µ∗), y(µ∗)) is the optimal one for DEM (1) providedthat it satis�es the NAC (6)-(7).Noti
e that the model MIP
p̂

LD(µ) (9) 
an be de
omposed in p̂ smaller submodels, and itssolution value 
an be obtained as the sum of the related z
p

LD(µ
p) values, see [10℄,

zLD(µ, p̂) =
p̂
∑

p=1

z
p

LD(µ
p), (11)8



where z
p

LD(µ
p) is the solution value of the pth s
enario 
luster model. For p = 2, ..., p̂, themodel is expressed in 
ompa
t representation as follows,

z
p

LD(µ
p) = min[wpc1 + (µp

δ − µ
p−1

δ )]δp + [wpc2 + (µp
x − µp−1

x )]xp +
∑

ω∈Ωp

wω(qω1 γ
ω + qω2 y

ω)s.t
b1 ≤ A

(

δp

xp

)

≤ b2

hω1 ≤ Tω

(

δp

xp

)

+W ω

(

γω

yω

)

≤ hω2 ∀ω ∈ Ωp

xp ≥ 0, δp ∈ {0, 1}
yω ≥ 0, γω ∈ {0, 1} ∀ω ∈ Ωp.

(12)
For p = 1, the model also in 
ompa
t representation is as follows,
z1LD(µ

1) = min[w1c1 + (µ1
δ − µ

p̂

δ )]δ
1 + [w1c2 + (µ1

x − µp̂
x)]x

1 +
∑

ω∈Ω1

wω(qω1 γ
ω + qω2 y

ω)s.t.
b1 ≤ A

(

δ1

x1

)

≤ b2

hω1 ≤ Tω

(

δ1

x1

)

+W ω

(

γω

yω

)

≤ hω2 ∀ω ∈ Ω1

x1 ≥ 0, δ1 ∈ {0, 1}
yω ≥ 0, γω ∈ {0, 1} ∀ω ∈ Ω1.

(13)
Observe in expression (11) that the bound value and the 
omputational e�ort to 
omputeit depend on how many s
enario 
luster submodels are 
onsidered in the de
omposition, i.e.,

p̂. We 
omputationally study in Se
tion 5 the in�uen
e of the number of s
enario 
lustersinto the bounds tightening and the related 
omputational e�ort to 
ompute the bounds.4 Lagrange multipliers updating pro
edures for CLDIn this se
tion the spe
ialization of di�erent Lagrange multiplier pro
edures for s
enario 
lusterde
omposition is presented.Let us assume in the rest of the work that the s
enario set is broken down into p̂ 
lusters.Let also zLD be an upper bound of the solution value of the original (MIP ). It 
an be obtainede�
iently as a quasioptimal solution, z(ρ) with a given ρ% of quasi-optimality toleran
e, seeSe
tion 5. Let µ0 be the initial multiplier ve
tor and, �nally, let αk be a real parameterrelated to the steplength of the Lagrange multiplier updating pro
edure, where αk ∈ (0, 2),see below.4.1 Subgradient methodThis is one of the most popular approa
hes to solve the Lagrangian dual. The subgradientpro
edure was proposed in [15℄. It is an iterative approa
h method in whi
h at iteration k,9



given the 
urrent multipliers ve
tor µk, a step is taken along a subgradient of zLD(µk, p̂). Thepro
edure for updating the Lagrange multipliers of the NAC (6)-(7) is given in Figure 3.Step 0: We start with a ve
tor µ0, and solve the p̂ submodels (12)-(13) to obtain
(δ(0), x(0), γ(0), y(0)) and zLD(µ

0, p̂) as the sum given in (11). Set k := 0.
Step 1: Compute the step dire
tion sk =

































(δ(k)1 − δ(k)2)...
(δ(k)p̂−1 − δ(k)p̂)

(δ(k)p̂ − δ(k)1)

(x(k)1 − x(k)2)...
(x(k)p̂−1 − x(k)p̂)

(x(k)p̂ − x(k)1)

































,


he
k the stopping 
riteria given in Se
. 4.5 and if they are not satis�ed, set
µk+1 := µk + αk ·

(zLD − zLD(µ
k, p̂))

||sk||2
· sk.Solve the p̂ problems (12)-(13) with µk+1, and let (δ(k+1), x(k+1), γ(k+1), y(k+1))and zLD(µ

k+1, p̂) be the optimal solution and solution value of (9), respe
tively.Set k := k + 1 and go to Step 1.Figure 3: Subgradient Method (SM)4.2 Volume AlgorithmWe present a version of the Volume Algorithm given in [4℄ for updating the Lagrangemultipliers of the NAC (6)-(7). This pro
edure only updates the multipliers when thereis an improvement in the in
umbent solution value zLD(µ, p̂) of the Lagrangian problem.Additionally, the feasible solution is repla
ed by a 
onvex 
ombination of solutions obtainedin previous iterations. Let fk be a real parameter related to the in
umbent solution updating,where fk ∈ (0, 1), see in Se
. 4.6 the pro
edure for obtaining it. The pro
edure for updatingthe Lagrange multipliers of the NAC (6)-(7) is given in Figure 4.

10



Step 0: We start with a multiplier ve
tor µ0, and solve the p̂ problems (12)-(13)to obtain (δ(0), x(0), γ(0), y(0)) and zLD(µ
0, p̂) as the sum given in (11).Set: (δ, x, γ, y) := (δ(0), x(0), γ(0), y(0)), µ := µ0, and z(µ, p̂) := zLD(µ, p̂)where zLD(µ, p̂) =

p̂
∑

p=1

z
p

LD(µ). Set k := 1.
Step 1: Compute sk =

































(δ(k)1 − δ(k)2)...
(δ(k)p̂−1 − δ(k)p̂)

(δ(k)p̂ − δ(k)1)

(x(k)1 − x(k)2)...
(x(k)p̂−1 − x(k)p̂)

(x(k)p̂ − x(k)1)

































and sk =



































(δ
1
− δ

2
)...

(δ
p̂−1

− δ
p̂
)

(δ
p̂
− δ

1
)

(x1 − x2)...
(xp̂−1 − xp̂)
(xp̂ − x1)



































,


he
k the stopping 
riteria given in Se
. 4.5 and if they are not satis�ed, set
µk := µ+ αk ·

(zLD − z(µ, p̂))

||sk||2
· sk.Solve the p̂ problems (12)-(13) with µk, and let (δ(k),x(k), γ(k), y(k)) and

zLD(µ
k, p̂) be the optimal solution and the solution value of (9), respe
tively.Then, update (δ, x, γ, y) : = fk · (δ

(k), x(k), γ(k), y(k)) +(1− fk) · (δ, x, γ, y)Step 2: If zLD(µk, p̂) > z(µ, p̂), update µ := µk and z(µ, p̂) := zLD(µ
k, p̂).Set k := k + 1 and go to Step 1.Figure 4: Volume Algorithm (VA)Note: The step dire
tions sk and sk are used for obtaining the weighting parameter fkand 
hosing the 
onvergen
e parameters.4.3 Progressive Hedging AlgorithmThe Progressive Hedging Algorithm for problems with 
ontinuous variables alone wasintrodu
ed in [20℄, see also [24℄ for a re
ent innovation. Our pro
edure for updating theLagrange multipliers of the NAC (6)-(7) is given in Figure 5. The basi
 features are asfollows: Let (δ(k), x(k),γ(k), y(k)) be an optimal solution of problem (MIP

p̂

LD(µ
k)) (9) atiteration k. A new non-ne
essarily feasible solution 
an be de�ned as δ̂ =

p̂
∑

p=1

wpδ(k)p and
x̂ =

p̂
∑

p=1

wpx(k)p. These expressions represent an estimation of the expe
ted value over theset of s
enario 
lusters of the optimal solution obtained at iteration k.
11



Step 0: Given the Lagrange multipliers ve
tor, µ0, solve the p̂ problems (12)-(13) toobtain (δ(0), x(0), γ(0), y(0)) and zLD(µ
0, p̂) as the sum given in (11). Set k := 0.

Step 1: Compute sk =

































(δ(k)1 − δ(k)2)...
(δ(k)p̂−1 − δ(k)p̂)

(δ(k)p̂ − δ(k)1)

(x(k)1 − x(k)2)...
(x(k)p̂−1 − x(k)p̂)

(x(k)p̂ − x(k)1)

































and ŝk =

































(δ(k)1 − δ̂(k))...
(δ(k)p̂−1 − δ̂(k))

(δ(k)p̂ − δ̂(k))

(x(k)1 − x̂(k))...
(x(k)p̂−1 − x̂(k))

(x(k)p̂ − x̂(k))

































,

he
k the stopping 
riteria given in Se
. 4.5 and if they are not satisfed, set
µk+1 := µk + αk ·

(zLD − zLD(µ
k, p̂))

||ŝk||2
· ŝk.Solve the p̂ problems (12)-(13) with µk+1, and let (δ(k+1), x(k+1), γ(k+1), y(k+1))and zLD(µ

k+1, p̂) be the optimal solution and solution value, respe
tively.Compute δ̂k+1 and x̂k+1.Set k := k + 1 and go to Step 1.Figure 5: Progressive Hedging Algorithm (PHA)Note: The step dire
tion ŝk is used for 
hoosing the 
onvergen
e parameters, see Se
. 4.6.4.4 Dynami
 Constrained Cutting Plane methodThe DCCP is a Cutting Plane Method, see [18℄, in whi
h the Lagrange multiplier at iteration
k are updated by solving the following maximization problem

zLD(µ
k, p̂) = max

µ∈Ck(µ)
z

z ≤ zLD(µ
i, p̂) ∀i ∈ I,where Ck(µ) is the dynami
ally updated Lagrange multipliers feasible region and zLD(µ

i, p̂)is a trun
ation of Taylor series expansion of the fun
tion zLD(µ, p̂) around the point µi, i.e.,
zLD(µ

k) = max
µ∈Ck(µ)

z (14)s.t. z ≤ zLD(µ
i, p̂) +

p̂
∑

p=1

(µp − µi,p)si ∀i ∈ I,where I is the set of 
utting planes, see (16), zLD(µi, p̂) is the Langrangean bound obtainedat iteration i, and si is the subgradient ve
tor of zLD(µ, p̂) at µi, for i ∈ I.Noti
e that the number of 
onstraints in model (14) grows with the number of iterations.To prevent the ex
essive size of the problem, n̂ denotes the maximum number of 
uttingplanes, i.e, the maximum number of 
onstraints in model (14), so |I| = min{k, n̂}. Then, if12



the number of iterations is lower than or equal to the maximum number of 
utting planes,
k ≤ n̂, all the 
utting planes are 
onsidered in the model (14). Whereas, if the iterationnumber is larger than the maximum number of 
onstraints, k > n̂, the di�eren
e, say, dibetween the ith hyperplane zLD(µ

i, p̂) +
∑p̂

p=1(µ
k,p − µi,p)si and the Lagrangian boundobtained at iteration k is 
omputed as follows,

di = zLD(µ
i, p̂) +

p̂
∑

p=1

(µk,p − µi,p)si − zLD(µ
k, p̂). (15)The most distant hyperplanes are deleted from I. It should be noted that the residual diis always positive, sin
e the 
utting plane re
onstru
tion of the dual fun
tion overestimatesthe a
tual dual fun
tion.The feasible region Ck(µ) has the expression

Ck(µ) = {µ, µk ≤ µ ≤ µk}, (16)where µk and µk denote the lower and the upper bound of the Lagrange multipliers ve
tor atiteration k, respe
tively, su
h that they are updated at ea
h iteration and 
an be expressed
µk+1
j

= µk
j − αk · β

k · |skj | and µk+1
j = µk

j + αk · β
k · |skj |, (17)where µk

j is the jth 
omponent of the multipliers ve
tor obtained as optimal solution of model
(14) at iteration k and βk =

(zLD − zLD(µ
k, p̂))

||sk||2
. Therefore, at iteration k + 1 the feasibleregion Ck+1(µ) is de�ned around the optimal multipliers ve
tor obtained in the previousiteration. The pro
edure for updating the Lagrange multipliers of the NAC (6)-(7) is givenin Figure 6.Step 0: Given the Lagrange multipliers ve
tor, µ0, solve the p̂ problems (12)-(13) toobtain (δ(0), x(0), γ(0), y(0)) and zLD(µ
0, p̂) as the sum given in (11). Set k := 0.

Step 1: Compute sk =

































(δ(k)1 − δ(k)2)...
(δ(k)p̂−1 − δ(k)p̂)

(δ(k)p̂ − δ(k)1)

(x(k)1 − x(k)2)...
(x(k)p̂−1 − x(k)p̂)

(x(k)p̂ − x(k)1)
































he
k the stopping 
riteria given in Se
. 4.5 and if they are not satisfed, set
µk+1
j

and µk+1
j as (17) where βk =

(zLD − zLD(µ
k, p̂))

||sk||2
.Solve the model (14) to obtain the new Lagrangian multiplier ve
tor, µk+1.If k > n̂, 
ompute di as (15) and delete ι ∈ argmaxi∈I{di} from I.Step 2: Solve the p̂ problems (12)-(13) with µk+1, and let (δ(k+1), x(k+1), γ(k+1), y(k+1))and zLD(µ

k+1, p̂) be the optimal solution and solution value, respe
tively.Set k := k + 1 and go to Step 1.Figure 6: Dynami
 Constrained Cutting Plane method (DC-CP)13



4.5 Stopping 
riteriaIn this se
tion we present the stopping 
riteria that are 
ommon to the four pro
eduresdes
ribed above. At Step 1 of ea
h pro
edure, and after 
omputing the subgradient ve
tor sk(SM) and (DC-CP), sk (VA), or ŝk (PHA), respe
tively, we 
ompute its norm.The stopping 
riterion 1, requires that the norm of the subgradient ve
tor is near to zero(say, less than ǫs = 0.01). We have used the ℓ2 norm, but it 
ould be possible to 
omputethe ℓ∞, with a little more 
omputational e�ort and the solution would perhaps have beenmore a

urate. If this 
riterion is satis�ed, then the NAC (6)-(7) are satis�ed as well and theoptimal solution to the MIP model has been obtained. So, the Lagrangian bound 
oin
ideswith the optimal solution value of the original sto
hasti
 integer problem.The stopping 
riterion 2 
ommon to the four pro
edures has two parts. The �rst is asfollows,
|
∑p̂

p=1[w
p(c1δ̃

(k)p + c2x̃
(k)p) +

∑

ω∈Ωp
wω[qω1 γ̃

(k)ω + qω2 ỹ
(k)ω]]− zLD(µ

k, p̂)|

|zLD(µk, p̂)|
< ǫz (18)where (δ̃(k)p, x̃(k)p, γ̃(k)ω , ỹ(k)ω) denotes the in
umbent solution, being (δ(k)p, x(k)p, γ(k)ω, y(k)ω)for SM, PHA and DCCP and (δ, x, γ, y) for VA, and ǫz is a given toleran
e. In parti
ular, weuse ǫz = 0.008.The se
ond part is given by

∑p̂
p=1 |s̃pδ|

p̂ · nδ
< ǫδ and ∑p̂

p=1 |s̃px|

p̂ · nx
< ǫx, (19)where p̂ ·nδ and p̂ ·nx are the number of NAC for the δ and x variables, respe
tively, s̃pδ and

|s̃px| for 
luster p denote the absolute deviations for the 
orresponding δ and x rows of ve
tor
sk for SM and DCCP, sk for VA and ŝk for PHA, whereas ǫδ and ǫx are given toleran
es. Inparti
ular, we use ǫδ = 0.01 and ǫx = 0.1.Finally, the stopping 
riterion 3 requires that the in
umbent solution value, zLD(µk, p̂)does not improve (given a toleran
e, say ǫ = 0.0001) after a sequen
e of ten 
onse
utiveiterations.When any of the stopping 
riteria is satis�ed, the possible situations are as follow relatedto the CLD bound zLD(µ

k, p̂):1. Stopping 
riterion 1. The bound is the solution value of the original problem and,additionally, the solution is feasible and then, it is the optimal one. We denote the
orresponding results in green in Tables 3-24.2. Stopping 
riterion 2. The (strong) bound is the obje
tive fun
tion value of a quasi-feasible solution given the optimality toleran
es that have been established. We denotethe 
orresponding results in blue in Tables 3-24.3. Stopping 
riterion 3. The bound is the strongest bound that 
an be obtained giventhe set of toleran
es and parameters that have been established. We denote the
orresponding results in red in Tables 3-24.14



4.6 Choi
e of the 
onvergen
e parametersThe performan
e of the pro
edures given above is very sensitive to the 
hoi
e of the givenparameters: the initial upper bound zLD, the initial step size parameter α0 and moreover thepro
edure for updating this step size parameter at ea
h iteration αk; some implementationdetails are given in [4℄. In this sense, and following the notation given in that paper, we have
onsidered three types of iterations for setting the value of αk. The iteration at whi
h thereis no improvement in the value of fun
tion zLD(µ, p̂), su
h that zLD(µ
k, p̂) ≤ zLD(µ

k−1, p̂)is 
alled red. Otherwise, i.e., zLD(µk, p̂) > zLD(µ
k−1, p̂), let the ve
tor hk be 
omputed asfollows: hk = (sk)t·sk−1 in the Subgradient and Dynami
 Constrained Cutting Plane methods;

hk = (sk)t · sk in the Volume Algorithm, and hk = (sk)t · ŝk in the Progressive HedgingAlgorithm, where sk, sk and ŝk denote, respe
tively, the subgradient ve
tor 
al
ulated in Step1 of the 
orresponding pro
edure. Noti
e that hk < 0 means that a longer step in the dire
tionof sk would produ
e a smaller value for zLD(µk, p̂). In this 
ase, the iteration is 
alled yellow.If hk ≥ 0 then the iteration is 
alled green. At ea
h green iteration we multiply αk by 1.1.After ea
h sequen
e of #red 
onse
utive red iterations we multiply αk by 0.66.Note that there is no relationship between the 
olor of the iterations, yellow, red or green
olor, introdu
ed in [4℄, to des
ribe the pro
edure for updating the value of the step sizeparameter αk, and that shows the di�erent CLD bounds in the Tables 3-24 showing thestopping 
riterion has o

ured.The optimal values for #red and α0 must be adequately tested for ea
h instan
e and are
learly dependent on the initial upper bound zLD 
onsidered, see [10℄. However, we observedin our 
omputational experimentation (see Se
. 5) that, in general, and for any 
hoi
e ofthese parameters, the 
lustering partition provides stronger lower bounds when 
omputingthe Lagrangian bound at iteration zero, i.e., zLD(µ
0, p̂). Note: The initial ve
tor of theLagrange multipliers has been taked as a ve
tor of zeros, µ0 = ~0, given the good results thatwe have reported in [10℄ for singleton s
enario 
lusters by 
omputationally 
omparing this
hoi
e with some other alternative.For ea
h 
lustering partition, we obtain an interval for the solution value of the originalproblem, given by [zLD(µ

0, p̂), zLD]. As we will show, the tightness of the Lagrangian boundat iteration zero, zLD(µ0, p̂), depends upon the 
luster partitioning i.e., p̂ that is 
onsidered;while in the 
ase of the upper bound zLD(ρ), its goodness depends on the quasi-optimalitytoleran
e ρ% 
onsidered when the MIP solver obtains it. When using the prepro
essingand parallel 
omputing tools available by default in CPLEX, stronger bounds are e�
iently
omputed, see Table 2.In order to homogenize the performan
e of the two solvers to be used, namely CPLEXwithin COIN-OR [17℄ and the LP/MIP fun
tions of it as well as the di�erent 
lusterpartitionings, we have 
onsidered #red = 1 in all the instan
es in the testbed. We haveexperimented as well as the same initial steplength value α0, although diminishing it for bothsolvers in some instan
es, depending on the extension of the interval that 
ontains the solutionvalue, see Se
. 5.The parameter fk in the Volume Algorithm is set to a �xed value for a number of iterationsand is de
reased afterwards. Let sk and sk be de�ned as in Step 1 of the pro
edure. Let also
fmax be an upper bound of fk. Then, we 
an 
ompute fopt as the value that minimizes15



||fk · s
k + (1− fk) · s

k||. It is easy to verify that this value is fopt = ∑2p̂
i=1 s

k
i (s

k
i − ski )

∑2p̂
i=1(s

k
i − ski )(s

k
i − ski )

.If fopt < 0, set fk = 1
10 · fmax. Otherwise, set fk = min{fmax, fopt}. In our 
omputationalexperimentation we have used fmax = f0 = 0.1 and we have de
reased its value near to theend.Finally, the maximum number of 
utting planes, n̂, in the Dynami
 Constrained CuttingPlane method has been �xed to n̂ = 30.5 Computational experien
eWe report the results of the 
omputational experien
e obtained while optimizing the two-stage MIP model (1) over some randomly generated instan
es. The �rst two instan
es of thetestbed are small-medium sized, while the other instan
es are larger, signi�
antly bigger thanthose normally reported in the literature, e.g., [23℄.The 
omputational experiments were 
ondu
ted in a Workstation Debian Linux (kernelv2.6.32 with 64 bits), 2 pro
essors Xeon 5355 (Quad Core with 2x4 
ores), 2.664 Ghz and 16Gb of RAM.The four pro
edures given above have been implemented in a C++ experimental 
ode. Ituses alternatively two of the state-of-the-art optimization engines, in parti
ular CPLEX v12.2within the open sour
e engine COIN-OR and the LP/MIP default fun
tions Clp and Cb
 ofthe same COIN-OR system. Both optimizers are used by the CLD algorithm for solving theLP relaxation of the whole model and the related mixed 0-1 
luster submodels.We will 
ompare the results obtained by using both optimizers, COIN-OR and CPLEX.The use of the latter is denoted with the upperindex ppc, sin
e this solver uses (by default)the state-of-the-art prepro
essing and parallel 
omputing (in our 
ase with a parallel s
hemeof eight threads, one per 
ore). The four Lagrange multipliers updating pro
edures presentedabove 
an be enri
hed by providing a variety of spe
ialized prepro
essing, 
ut generationand appending, probing and parallel 
omputation tools, see [19℄, that 
an 
ustomize theexperimental 
ode to a
hieve maximum e�
ien
y.The stru
ture of the DEM in 
ompa
t representation for the instan
es, whi
h is inspiredin model (38) of [23℄, 
an be expressed

min c1δ + c2x+

|Ω|
∑

ω=1

wω(qω1 γ
ω + qω2 y

ω)s.t. b1 ≤ A

(

δ

x

)

≤ b2

hω1 ≤ Tω

(

δ

x

)

+W ω

(

γω

yω

)

≤ hω2 ∀ω ∈ Ω

x, yω ∈ [0, 1] ∀ω ∈ Ω
δ, γω ∈ {0, 1} ∀ω ∈ Ω,

(20)
Note that the variables in both stages are bounded. The ve
tors of variables δ and

γ are integer, moreover they are binary, whereas the ve
tors of 
ontinuous variables, x16



Table 1: Model dimensionsCompa
t representation Splitting variable representationInstan
e mc nc
δ nc

x nγ ny nelc densc ms ns
δ ns

x nels denss |Ω|P1 136 4 4 128 128 2112 5.88 640 128 128 4608 1.41 32P2 148 10 10 128 128 3984 9.75 1408 320 320 17664 1.40 32P3 288 5 10 280 420 70120 3.40 4410 350 700 80500 1.04 70P4 1290 30 15 1280 256 73410 3.59 8320 3840 1920 142080 0.23 128P5 1935 25 10 2560 1920 134925 1.54 8320 3200 1280 210560 0.28 128P6 2010 20 20 2000 2000 120400 1.48 12000 4000 4000 216000 0.15 200P7 2010 20 40 3000 2000 170600 1.68 16000 4000 8000 314000 0.11 200P8 2005 12 15 6000 4000 104135 0.52 14800 4800 6000 179600 0.06 400P9 2005 10 15 3600 3600 86125 0.59 14000 4000 6000 156000 0.06 400P10 2520 30 40 5000 2500 213900 2.76 47500 15000 20000 982500 0.05 500P11 2520 50 50 5000 2500 289500 1.51 62500 25000 25000 1387500 0.04 500and y, are s
aled onto [0,1℄. The likelihood attributed to the s
enarios is equal underea
h s
enario, i.e, wω = 1
|Ω| ∀ω ∈ Ω, being Ω the set of s
enarios. The ve
tors of theobje
tive fun
tion 
oe�
ients, c1, c2, (qω1 ), (qω2 ) are generated using the uniform distributionover [−2.5,−1.5], [−2.5,−1.5], [−30+ ω

|Ω| ,−10+ ω
|Ω| ] and [−30+ ω

|Ω| ,−10+ ω
|Ω| ], respe
tively. Theleft-hand-side ve
tors, b1, (hω1 ) are �xed to 1

2 ·k1 and 1
2 ·k1+

ω
|Ω| , respe
tively. The right-hand-side ve
tors, b2, (hω2 ), are generated using the uniform distribution over [k2, k2+k1 · (nδ +nx)]and [k3 +

ω
|Ω| , k3 +

ω
|Ω| + k1 · (nδ + nx + nγ + ny)], respe
tively, where k1 ∈ [0, 1], k2 ∈ [0, 41.5]and k3 ∈ [0, 30.5]. nδ and nx are the number of 0-1 and 
ontinuous �rst stage variables,and nγ and ny are the 
orresponding number of 0-1 and 
ontinuous se
ond stage variables.

A is the matrix of 
oe�
ients for the �rst stage 
onstraints, and the te
hnology matri
es
Tω and W ω for the se
ond stage variables are generated using the uniform distribution over
[0, 2], [−0.1 · ω

|Ω| ,−0.1 · ω
|Ω| + 0.3] and [1.5 · ω

|Ω| , 1.5 ·
ω
|Ω| + 8.0], respe
tively.Table 1 gives the dimensions of the mixed 0-1 DEM for the 11 instan
es of the testbedthat we have experimented with in 
ompa
t and splitting variable representations. Theheadings are as follows: mc, ms, number of 
onstraints; nc

δ, n
s
δ, number of 0-1 �rst stagevariables; and nc

x, n
s
x number of 
ontinuous �rst stage variables in 
ompa
t and splittingvariable respresentation, respe
tively. nγ , number of 0-1 se
ond stage variables; ny, number of
ontinuous se
ond stage variables. nelc, nels, number of nonzero 
oe�
ients in the 
onstraintmatrix; and densc, denss, 
onstraint matrix density (in %) in 
ompa
t and splitting variablerepresentation, respe
tively. Finally, |Ω| denotes number of s
enarios. Noti
e that the numbersof se
ond stage variables nγ and ny, are the same under both representations. It is worthpointing out that the testbed has 4 types of instan
es from the DEM dimensions point ofview, namely the instan
es P1 and P2 are toy ones, P3 up to P7 are medium sized instan
es,P8 and P9 are large-s
ale instan
es, and P10 and P11 are very large-s
ale instan
es given thestate-of-the art of general MIP solvers.Table 2 shows some of the main results obtained by plain use of the two optimizers COIN-OR and CPLEX for solving the original problem (20). The headings are as follows: zppcLP , LPsolution value; zppcMIP , obje
tive fun
tion value of the CPLEX in
umbent solution (but it isthe solution value for the toy instan
es P1 and P2) of problem (20); T ppc

LP and T
ppc
MIP , elapsedtimes (in se
s.) to obtain the z

ppc
LP and z

ppc
MIP values, respe
tively, by plain use of CPLEX inthe 
ompa
t representation of problem (20). Upper bounds z(ρ) and zppc(ρ) of the solution17



Table 2: LP relaxation lower bound and upper bound for the optimal MIP solution valueCase z
ppc
LP z

ppc
MIP T

ppc
LP T

ppc
MIP z(ρ) Tz(ρ) zppc(ρ) T

ppc

z(ρ)P1 -81.14 -80.4820 0.01 1 -80.1945(1) 0.27 -80.3516(1) 0P2 -100.42 -99.8996 0.01 2 -99.3327(1) 0.25 -99.6225(1) 0P3 -61.40 -59.4645(*) 0.28 � -58.6387(10) 70 -59.46(0.1) 28P4 -76.05 -70.7906(*) 0.09 � -68.5212(10) 24 -70.7906(1) 40P5 -86.70 -84.2161(*) 0.21 � -82.3986(5) 20 -84.1637(0.5) 156P6 -69.30 -66.0478(*) 0.29 � -65.955(5) 125 -66.0315(0.5) 49P7 -83.50 -79.8772(*) 0.41 � -77.326(10) 111 -79.8045(1) 87P8 -116.32 -114.318(*) 0.28 � -113.235(5) 61 -114.044(0.5) 37P9 -95.81 -94.1302(*) 0.26 � -92.9241(5) 37 -94.1227(0.1) 89P10 -301.54 -300.456(*) 0.62 � -300.166(0.5) 114 300.425(0.05) 27P11 -321.29 -320.283(*) 0.80 � -317.724(5) 54 -320.249(0.05) 61�: Time limit ex
eeded (3 hours = 10800 se
s.)(*): In
umbent solution value at the time limitvalue of the original problem that have been obtained as quasi-optimal solution values witha ρ% toleran
e 
omputed by plain use of COIN-OR and CPLEX, respe
tively; and, �nally,
Tz(ρ) and T

ppc
z(ρ), elapsed times (in se
s.) for obtaining the 
orresponding upper bounds.Table 2 shows relevant information 
on
erning the di�
ulty of the instan
es we wereexperimenting with, in parti
ular the larger ones (i.e., from P3 to P11). None of them aresolved up to optimality by plain use of solvers COIN-OR and CPLEX within the three hourselapsed time limit. Therefore, the obje
tive fun
tion value of the in
umbent solution providedby CPLEX, is in some instan
es just an upper bound of the solution value of the originalsto
hasti
 instan
e, i.e., P4. In some other instan
es (i.e., P6, P7, P8, P10 and P11) thein
umbent solution 
oin
ides with the optimal one. However, this fa
t is not known by thesolver, but we 
an guarantee this after having obtained a green solution with our pro
edures,evidently requiring a total elapsed time mu
h less than three hours. Finally, there some otherinstan
es (i.e., P3, P5 and P9) for whi
h the plain use of CPLEX provides an in
umbentsolution with an obje
tive fun
tion value slightly higher than the CLD bound provided byour pro
edures, but with a mu
h greater 
omputational e�ort. Note: In these situationsthe quasi-optimality gap between the CPLEX in
umbent solution and the best CLD bound,de�ned as |
z
ppc
MIP

−zLD

zLD
|, is for instan
e P3, |−59.4645+59.4647

−59.4647 | = 3.36 · 10−6, for instan
e P5,
|−84.2161+84.2243

−84.2243 | = 9.73 ·10−5, and for instan
e P9, |−94.1302+94.1407
−94.1407 | = 1.11 ·10−4. Very smallin both of them. However, the traditional optimality gap de�ned as |

z
ppc
MIP

−z
ppc
LP

z
ppc
LP

|, of value
0.031, 0.028 and 0.017 for instan
es P3, P5 and P9, respe
tively, is substantially greater. Thedetails of this 
on
lusion are shown in the results presented in the rest of the se
tion.Tables 3-4 until 23-24 show in detail the main results of our 
omputational experien
e forea
h of the instan
es P1 until P11, without and with sophisti
ated prepro
essing and parallel
omputation tools (i.e., by using COIN-OR fun
tions and CPLEX, respe
tively). In all ofthem, the heading p̂ denotes the 
luster partition i.e., the number of s
enario 
lusters that are
onsidered. In all the instan
es we have 
onsidered four s
enario 
luster partitions. For ea
h
luster partition (i.e., at ea
h 
olumn in the tables) we present the interval of the solutionvalue (i.e., the obje
tive fun
tion value of the optimal solution of the original sto
hasti
mixed 0-1 instan
e) given by [zLD(µ

0, p̂), z(ρ)]. Additionally, α0 denotes the initial step size18



parameter; zSM [ite], zV A[ite], zPHA[ite] and zDCCP [ite] denote the CLD bounds obtained in
[ite], the 
orresponding number of iterations required by using the pro
edures SM, VA, PHAand DCCP, respe
tively; TS , TV , TP and TD denote the related elapsed times (in se
s.) byusing the COIN-OR fun
tions. Finally, the upperindex ppc in these headings indi
ate the 
aseof using CPLEX.Table 3: CLD bounds without prepro
essing and parallel 
omputation tools (COIN-OR). Instan
e P1

p̂ = 32 
lusters p̂ = 16 
lusters p̂ = 8 
lusters p̂ = 4 
lusters
zMIP ∈ [−81.0529,−80.1945] [−80.7393,−80.1945] [−80.6329,−80.1945] [−80.553,−80.1945]

α0 = 1.9 α0 = 1.9 α0 = 1.9 α0 = 1.9SM zSM [ite] TS zSM [ite] TS zSM [ite] TS zSM [ite] TS

z[63] = −80.5098 6 z[60] = −80.4873 5 z[29] = −80.4834 4 z[34] = −80.4825 6
z[52] = −80.482 10VA zV A[ite] TV zV A[ite] TV zV A[ite] TV zV A[ite] TV

z[104] = −80.494 12 z[58] = −80.4843 5 z[61] = −80.4845 6 z[45] = −80.482 10PHA zPHA[ite] TP zPHA[ite] TP zPHA[ite] TP zPHA[ite] TP

z[213] = −80.4861 21 z[89] = −80.4886 7 z[108] = −80.4827 10 z[60] = −80.482 12DC-CP zDCCP [ite] TD zDCCP [ite] TD zDCCP [ite] TD zDCCP [ite] TD

z[82] = −80.5033 9 z[68] = −80.4857 7 z[32] = −80.4836 3 z[14] = −80.4827 3
z[23] = −80.482 5Table 4: CLD bounds with prepro
essing and parallel 
omputation tools (CPLEX). Instan
e P1

p̂ = 32 
lusters p̂ = 16 
lusters p̂ = 8 
lusters p̂ = 4 
lusters
zMIP ∈ [−81.0529,−80.3516] [−80.7393,−80.3516] [−80.6329,−80.3516] [−80.553,−80.3516]

α0 = 1.9 α0 = 1.9 α0 = 1.9 α0 = 1.9SM z
ppc
SM [ite] T

ppc
S z

ppc
SM [ite] T

ppc
S z

ppc
SM [ite] T

ppc
S z

ppc
SM [ite] T

ppc
S

z[62] = −80.5113 16 z[63] = −80.4917 10 z[29] = −80.4843 4 z[33] = −80.482 3VA z
ppc
V A[ite] T

ppc
V z

ppc
V A[ite] T

ppc
V z

ppc
V A[ite] T

ppc
V z

ppc
V A[ite] T

ppc
V

z[133] = −80.4952 34 z[58] = −80.4847 10 z[69] = −80.4842 6 z[37] = −80.482 4
z[56] = −80.482 11PHA z

ppc
PHA[ite] T

ppc
P z

ppc
PHA[ite] T

ppc
P z

ppc
PHA[ite] T

ppc
P z

ppc
PHA[ite] T

ppc
P

z[180] = −80.4857 48 z[105] = −80.4852 17 z[115] = −80.482 12 z[63] = −80.482 7DC-CP z
ppc
DCCP [ite] T

ppc
D z

ppc
DCCP [ite] T

ppc
D z

ppc
DCCP [ite] T

ppc
D z

ppc
DCCP [ite] T

ppc
D

z[80] = −80.5137 25 z[49] = −80.4863 19 z[21] = −80.4839 6 z[17] = −80.482 2Tables 3-4 show the results reported for instan
e P1. The CLD bounds obtained by usingboth solvers are very similar, but with a higher 
omputational e�ort in 
ase of using CPLEX,perhaps due to the small dimensions of the instan
e. Noti
e that this happens for all thefour pro
edures and the four 
luster partitions that we have experimented with, but for the
olumn 
orresponding to the partition in p̂ = 4 
lusters, where ea
h 
luster submodel has 8s
enarios and the four pro
edures are more e�
ient when using CPLEX. The �rst 
olumn inboth tables 
orresponds to the traditional LD, where the number of 
lusters is the number ofs
enarios. Noti
e that in this 
olumn the 
olor of the solutions is red (i.e., the third stopping
riterion has been satis�ed) or blue (se
ond stopping 
riterion), whi
h indi
ates that the CLDbound is, at least, the strongest bound that 
an be obtained for the given toleran
es. The
olor of the solutions in both tables is green (�rst stopping 
riterion), whi
h means that theCLD bound is the solution value of the original problem. Noti
e also that for some 
ases,although the CLD bound is equal to the solution value of the original problem, the 
olor of19



the results is not green, see VA for p̂ =4 in both tables. This is due to the fa
t that the CLDbound does not satisfy the NAC, i.e., the norm of the 
orresponding subgradient ve
tor sk ishigher than the given toleran
e.Table 5: CLD bounds without prepro
essing and parallel 
omputation tools (COIN-OR). Instan
e P2
p̂ = 32 
lusters p̂ = 16 
lusters p̂ = 8 
lusters p̂ = 4 
lusters

zMIP ∈ [−100.289,−99.3327] [−100.15,−99.3327] [−99.9725,−99.3327] [−99.944,−99.3327]
α0 = 1.9 α0 = 1.9 α0 = 1.5 α0 = 1.5SM zSM [ite] TS zSM [ite] TS zSM [ite] TS zSM [ite] TS

z[51] = −99.9233 3 z[31] = −99.9017 2 z[28] = −99.8997 2 z[8] = −99.9002 1
z[59] = −99.8996 10VA zV A[ite] TV zV A[ite] TV zV A[ite] TV zV A[ite] TV

z[30] = −99.9436 2 z[17] = −99.9578 1 z[7] = −99.9537 0 z[5] = −99.944 1
z[48] = −99.8996 8PHA zPHA[ite] TP zPHA[ite] TP zPHA[ite] TP zPHA[ite] TP

z[39] = −99.9003 7 z[73] = −99.8996 4 z[55] = −99.8996 4 z[27] = −99.9009 5
z[89] = −99.8996 16DC-CP zDCCP [ite] TD zDCCP [ite] TD zDCCP [ite] TD zDCCP [ite] TD

z[24] = −99.9504 2 z[35] = −99.9091 3 z[21] = −99.9002 2 z[8] = −99.9122 2
z[38] = −99.8996 7It 
an be observed in the results for the larger instan
es that sometimes the optimal 
lusterpartitioning is not the smallest. In these situations, it may be more e�
ient to 
onsider agreat number of 
lusters and then, more manageable sized 
luster submodels.Tables 5-6 show the results obtained for instan
e P2. In order to eliminate the os
illatorybehavior of the iterative pro
edures for narrow solution value intervals, we have redu
ed theinitial step size parameter for the 
ases with partitions in p̂ =8 and 4 
lusters. Again theoptimal partition is the one shown in the last 
olumn of both tables where the solution valueis found. The quality of the CLD bounds obtained for the small instan
es P1 and P2 is verysimilar, but the elapsed time is smaller for the pro
edures SM and DCCP, followed by VAand PHA. SM is even more e�
ient than the plain use of CPLEX for instan
e P2.Table 6: CLD bounds with prepro
essing and parallel 
omputation tools (CPLEX). Instan
e P2

p̂ = 32 
lusters p̂ = 16 
lusters p̂ = 8 
lusters p̂ = 4 
lusters
zMIP ∈ [−100.289,−99.6225] [−100.15,−99.6225] [−99.9725,−99.6225] [−99.944,−99.6225]

α0 = 1.9 α0 = 1.9 α0 = 1.5 α0 = 1.5SM z
ppc
SM [ite] T

ppc
S z

ppc
SM [ite] T

ppc
S z

ppc
SM [ite] T

ppc
S z

ppc
SM [ite] T

ppc
S

z[28] = −99.9378 11 z[32] = −99.9023 8 z[21] = −99.8996 10 z[8] = −89.8996 1VA z
ppc
V A[ite] T

ppc
V z

ppc
V A[ite] T

ppc
V z

ppc
V A[ite] T

ppc
V z

ppc
V A[ite] T

ppc
V

z[31] = −99.9397 13 z[18] = −99.9348 3 z[9] = −99.9663 2 z[5] = −99.944 1
z[55] = −99.8996 5PHA z

ppc
PHA[ite] T

ppc
P z

ppc
PHA[ite] T

ppc
P z

ppc
PHA[ite] T

ppc
P z

ppc
PHA[ite] T

ppc
P

z[116] = −99.9014 51 z[101] = −99.8996 23 z[50] = −99.8996 6 z[32] = −99.8996 3DC-CP z
ppc
DCCP [ite] T

ppc
D z

ppc
DCCP [ite] T

ppc
D z

ppc
DCCP [ite] T

ppc
D z

ppc
DCCP [ite] T

ppc
D

z[41] = −99.9346 17 z[30] = −99.9057 7 z[20] = −99.9013 3 z[11] = −99.9010 2
z[29] = −99.8996 3P3 is one of the most di�
ult instan
es in our testbed, in spite of the dimensions of itsmodel. Tables 7-8 report the main results. The COIN-OR fun
tions (see Table 7) requiremore than three hours to obtain the CLD bounds in 
ase of 
onsidering 
luster partitions in20



p̂ =10 or less 
lusters and then, we 
annot provide the interval of the solution value, due toex
eeding the time limit . However, this is obtained at the �rst iteration when using CPLEX(see Table 8). After the blue solution is obtained at the �rst iteration, the pro
edures 
ontinueiterating until obtaining the strongest CLD bound by satisfying the third stopping 
riterion,i.e., a red solution.Table 7: CLD bounds without prepro
essing and parallel 
omputation tools (COIN-OR). Instan
e P3
p̂ = 70 
lusters p̂ = 35 
lusters p̂ = 10 
lusters p̂ = 5 
lusters

zMIP ∈ [−59.5529,−58.6387] [−59.5142,−58.6387] [−,−58.6387] [−,−58.6387]
α0 = 0.5 α0 = 0.5 α0 = − α0 = −SM zSM [ite] TS zSM [ite] TS zSM [ite] TS zSM [ite] TS

z[18] = −59.487 117 z[4] = −59.4902 107 � � � �VA zV A[ite] TV zV A[ite] TV zV A[ite] TV zV A[ite] TV

z[29] = −59.481 180 z[17] = −59.4858 367 � � � �PHA zPHA[ite] TP zPHA[ite] TP zPHA[ite] TP zPHA[ite] TP

z[53] = −59.4955 329 z[60] = −59.4815 1233 � � � �DC-CP zDCCP [ite] TD zDCCP [ite] TD zDCCP [ite] TD zDCCP [ite] TD

z[18] = −59.4863 116 z[20] = −59.4798 423 � � � �Table 8: CLD bounds with prepro
essing and parallel 
omputation tools (CPLEX). Instan
e P3
p̂ = 70 
lusters p̂ = 35 
lusters p̂ = 10 
lusters p̂ = 5 
lusters

zMIP ∈ [−59.5529,−59.46] [−59.5142,−59.46] [−59.4821,−59.46] [−59.4763,−59.46]
α0 = 0.5 α0 = 0.5 α0 = 0.5 α0 = 0.1SM z

ppc
SM [ite] T

ppc
S z

ppc
SM [ite] T

ppc
S z

ppc
SM [ite] T

ppc
S z

ppc
SM [ite] T

ppc
S

z[10] = −59.4925 29 z[11] = −59.4863 34 z[0] = −59.4821 6 z[0] = −59.4763 10
z[54] = −59.4669 457VA z

ppc
V A[ite] T

ppc
V z

ppc
V A[ite] T

ppc
V z

ppc
V A[ite] T

ppc
V z

ppc
V A[ite] T

ppc
V

z[26] = −59.4847 71 z[23] = −59.4828 68 z[0] = −59.4821 6 z[0] = −59.4763 10
z[50] = −59.4649 432PHA z

ppc
PHA[ite] T

ppc
P z

ppc
PHA[ite] T

ppc
P z

ppc
PHA[ite] T

ppc
P z

ppc
PHA[ite] T

ppc
P

z[24] = −59.483 64 z[9] = −59.4888 28 z[0] = −59.4821 6 z[0] = −59.4763 10
z[117] = −59.4647 967DC-CP z

ppc
DCCP [ite] T

ppc
D z

ppc
DCCP [ite] T

ppc
D z

ppc
DCCP [ite] T

ppc
D z

ppc
DCCP [ite] T

ppc
D

z[13] = −59.4934 35 z[12] = −59.4848 37 z[0] = −59.4821 5 z[0] = −59.4763 10
z[62] = −59.4647 489Tables 9-10 and 11-12 show the results for the instan
es P4 and P5, respe
tively, beingvery similar for both instan
es. As in instan
e P3, more than three hours are required toobtain the CLD bounds by using COIN-OR in 
ase of 
onsidering 
luster partitions in p̂ =8 or less 
lusters (see Tables 9 and 11). In both instan
es, the strongest CLD bounds areobtained by using CPLEX in 
ase of 
onsidering a partition in p̂ = 4 
lusters (see Tables 10and 12).
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Table 9: CLD bounds without prepro
essing and parallel 
omputation tools (COIN-OR). Instan
e P4
p̂ = 128 
lusters p̂ = 32 
lusters p̂ = 8 
lusters p̂ = 4 
lusters

zMIP ∈ [−73.9588,−68.5212] [−70.108,−68.5212] [−,−68.5212] [−,−68.5212]
α0 = 1.9 α0 = 1.9 α0 = − α0 = −SM zSM [ite] TS zSM [ite] TS zSM [ite] TS zSM [ite] TS

z[104] = −71.5568 207 z[90] = −71.0946 539 � � � �VA zV A[ite] TV zV A[ite] TV zV A[ite] TV zV A[ite] TV

z[101] = −71.3968 206 z[63] = −71.0582 386 � � � �PHA zPHA[ite] TP zPHA[ite] TP zPHA[ite] TP zPHA[ite] TP

z[213] = −71.3772 438 z[154] = −71.0031 954 � � � �DC-CP zDCCP [ite] TD zDCCP [ite] TD zDCCP [ite] TD zDCCP [ite] TD

z[135] = −71.4846 285 z[108] = −71.1141 669 � � � �Table 10: CLD bounds with prepro
essing and parallel 
omputation tools (CPLEX). Instan
e P4
p̂ = 128 
lusters p̂ = 32 
lusters p̂ = 8 
lusters p̂ = 4 
lusters

zMIP ∈ [−73.9588,−70.7906] [−70.108,−70.7906] [−71.3013,−70.7906] [−71.0679,−70.7906]
α0 = 1.9 α0 = 1.9 α0 = 1.9 α0 = 1.9SM z

ppc
SM [ite] T

ppc
S z

ppc
SM [ite] T

ppc
S z

ppc
SM [ite] T

ppc
S z

ppc
SM [ite] T

ppc
S

z[106] = −71.5566 310 z[75] = −71.1511 204 z[21] = −70.911 345 z[7] = −70.8615 346VA z
ppc
V A[ite] T

ppc
V z

ppc
V A[ite] T

ppc
V z

ppc
V A[ite] T

ppc
V z

ppc
V A[ite] T

ppc
V

z[142] = −71.4157 440 z[57] = −71.0701 161 z[30] = −70.897 483 z[29] = −70.8533 872PHA z
ppc
PHA[ite] T

ppc
P z

ppc
PHA[ite] T

ppc
P z

ppc
PHA[ite] T

ppc
P z

ppc
PHA[ite] T

ppc
P

z[188] = −71.3789 606 z[149] = −71.0235 442 z[16] = −71.0144 218 z[14] = −70.895 484DC-CP z
ppc
DCCP [ite] T

ppc
D z

ppc
DCCP [ite] T

ppc
D z

ppc
DCCP [ite] T

ppc
D z

ppc
DCCP [ite] T

ppc
D

z[150] = −71.584 486 z[97] = −71.1523 268 z[20] = −70.9028 328 z[14] = −70.895 484Table 11: CLD bounds without prepro
essing and parallel 
omputation tools (COIN-OR). Instan
e P5
p̂ = 128 
lusters p̂ = 32 
lusters p̂ = 8 
lusters p̂ = 4 
lusters

zMIP ∈ [−89.1014,−82.3986] [−86.7169,−82.3986] [−,−82.3986] [−,−82.3986]
α0 = 1.9 α0 = 1.9 α0 = 1.9 α0 = −SM zSM [ite] TS zSM [ite] TS zSM [ite] TS zSM [ite] TS

z[99] = −85.4933 170 z[99] = −84.7134 583 � � � �VA zV A[ite] TV zV A[ite] TV zV A[ite] TV zV A[ite] TV

z[228] = −85.2149 512 z[156] = −84.5161 997 � � � �PHA zPHA[ite] TP zPHA[ite] TP zPHA[ite] TP zPHA[ite] TP

z[240] = −84.9909 403 z[193] = −84.4516 1076 � � � �DC-CP zDCCP [ite] TD zDCCP [ite] TD zDCCP [ite] TD zDCCP [ite] TD

z[163] = −85.5784 296 z[107] = −84.785 651 � � � �

22



Table 12: CLD bounds with prepro
essing and parallel 
omputation tools (CPLEX). Instan
e P5
p̂ = 128 
lusters p̂ = 32 
lusters p̂ = 8 
lusters p̂ = 4 
lusters

zMIP ∈ [−89.1014,−84.1637] [−86.7169,−84.1637] [−85.4198,−84.1637] [−85.1652,−84.1637]
α0 = 1.9 α0 = 1.9 α0 = 1.9 α0 = 1.9SM z

ppc
SM [ite] T

ppc
S z

ppc
SM [ite] T

ppc
S z

ppc
SM [ite] T

ppc
S z

ppc
SM [ite] T

ppc
S

z[123] = −85.5389 546 z[88] = −84.7792 247 z[70] = −84.2606 1151 z[21] = −84.2370 1069VA z
ppc
V A[ite] T

ppc
V z

ppc
V A[ite] T

ppc
V z

ppc
V A[ite] T

ppc
V z

ppc
V A[ite] T

ppc
V

z[228] = −85.2448 941 z[189] = −84.5286 593 z[65] = −84.2433 1148 z[47] = −84.2243 1487PHA z
ppc
PHA[ite] T

ppc
P z

ppc
PHA[ite] T

ppc
P z

ppc
PHA[ite] T

ppc
P z

ppc
PHA[ite] T

ppc
P

z[291] = −84.9872 1241 z[220] = −84.4464 949 z[107] = −84.2429 1881 z[46] = −84.2259 1383DC-CP z
ppc
DCCP [ite] T

ppc
D z

ppc
DCCP [ite] T

ppc
D z

ppc
DCCP [ite] T

ppc
D z

ppc
DCCP [ite] T

ppc
D

z[145] = −85.576 578 z[110] = −84.9279 313 z[92] = −84.3066 1511 z[28] = −84.2349 1730P6 and P7 are instan
es with similar dimensions and the results are also similar to thoseobtained for the instan
es P4 and P5 in the sense that the behavior of the four pro
edures isanalogous when using COIN-OR for partitions in p̂ =8 and 4 
lusters (see Tables 13 and 15).However when using CPLEX the optimal partition is p̂ =4 
lusters for P6 and p̂ =8 
lustersfor P7 (see Tables 14 and 16), i.e., the smallest and then, rea
hing the optimal solution ina more e�
ient way for the four pro
edures. Noti
e that for instan
e P7 with p̂ =8 and 4
lusters, a feasible CLD bound is obtained at iteration zero for all the pro
edures by usingCPLEX. The e�
ien
y of the four pro
edures is lower for p̂ =4 
lusters and, in parti
ular,PHA requires more than 15000 se
s. to rea
h the optimal solution.Table 13: CLD bounds without prepro
essing and parallel 
omputation tools (COIN-OR). Instan
e P6
p̂ = 200 
lusters p̂ = 50 
lusters p̂ = 8 
lusters p̂ = 4 
lusters

zMIP ∈ [−68.0453,−65.955] [−66.639,−65.955] [−,−65.955] [−,−65.955]
α0 = 1.9 α0 = 1.9 α0 = − α0 = −SM zSM [ite] TS zSM [ite] TS zSM [ite] TS zSM [ite] TS

z[101] = −66.2772 281 z[30] = −66.1435 176 � � � �VA zV A[ite] TV zV A[ite] TV zV A[ite] TV zV A[ite] TV

z[110] = −66.205 309 z[73] = −66.0966 444 � � � �PHA zPHA[ite] TP zPHA[ite] TP zPHA[ite] TP zPHA[ite] TP

z[189] = −66.1759 498 z[95] = −66.088 543 � � � �DC-CP zDCCP [ite] TD zDCCP [ite] TD zDCCP [ite] TD zDCCP [ite] TD

z[149] = −66.2739 443 z[104] = −66.1349 602 � � � �Table 15: CLD bounds without prepro
essing and parallel 
omputation tools (COIN-OR). Instan
e P7
p̂ = 200 
lusters p̂ = 50 
lusters p̂ = 8 
lusters p̂ = 4 
lusters

zMIP ∈ [−81.934,−77.326] [−80.5159,−77.326] [−,−77.326] [−,−77.326]
α0 = 1.9 α0 = 1.9 α0 = 1.9 α0 = −SM zSM [ite] TS zSM [ite] TS zSM [ite] TS zSM [ite] TS

z[37] = −80.1946 128 z[26] = −79.9765 256 � � � �VA zV A[ite] TV zV A[ite] TV zV A[ite] TV zV A[ite] TV

z[55] = −80.1311 128 z[32] = −79.969 384 � � � �PHA zPHA[ite] TP zPHA[ite] TP zPHA[ite] TP zPHA[ite] TP

z[213] = −80.0999 502 z[198] = −79.9803 1623 � � � �DC-CP zDCCP [ite] TD zDCCP [ite] TD zDCCP [ite] TD zDCCP [ite] TD

z[126] = −80.1823 312 z[34] = −79.9836 328 � � � �23



Table 14: CLD bounds with prepro
essing and parallel 
omputation tools (CPLEX). Instan
e P6
p̂ = 200 
lusters p̂ = 50 
lusters p̂ = 8 
lusters p̂ = 4 
lusters

zMIP ∈ [−68.0453,−66.0315] [−66.639,−66.0315] [−66.1605,−66.0315] [−66.1153,−66.0315]
α0 = 1.9 α0 = 1.9 α0 = 1.9 α0 = 1.9SM z

ppc
SM [ite] T

ppc
S z

ppc
SM [ite] T

ppc
S z

ppc
SM [ite] T

ppc
S z

ppc
SM [ite] T

ppc
S

z[107] = −66.2753 558 z[63] = −66.1358 177 z[18] = −66.0601 302 z[8] = −66.0503 315
z[31] = −66.0478 935VA z

ppc
V A[ite] T

ppc
V z

ppc
V A[ite] T

ppc
V z

ppc
V A[ite] T

ppc
V z

ppc
V A[ite] T

ppc
V

z[88] = −66.2136 461 z[65] = −66.094 178 z[25] = −66.0615 421 z[7] = −66.106 194
z[48] = −66.0478 1282PHA z

ppc
PHA[ite] T

ppc
P z

ppc
PHA[ite] T

ppc
P z

ppc
PHA[ite] T

ppc
P z

ppc
PHA[ite] T

ppc
P

z[181] = −66.1928 963 z[106] = −66.0885 279 z[37] = −66.0582 582 z[16] = −66.0488 437
z[51] = −66.0478 1468DC-CP z

ppc
DCCP [ite] T

ppc
D z

ppc
DCCP [ite] T

ppc
D z

ppc
DCCP [ite] T

ppc
D z

ppc
DCCP [ite] T

ppc
D

z[51] = −66.9962 227 z[46] = −66.5703 111 z[9] = −66.062 160 z[6] = −66.0519 188
z[18] = −66.0478 491Table 16: CLD bounds with prepro
essing and parallel 
omputation tools (CPLEX). Instan
e P7

p̂ = 200 
lusters p̂ = 50 
lusters p̂ = 8 
lusters p̂ = 4 
lusters
zMIP ∈ [−81.934,−79.8045] [−80.5159,−79.8045] [−79.9739,−79.8045] [−79.917,−79.8045]

α0 = 1.9 α0 = 1.9 α0 = 1.9 α0 = 1.9SM z
ppc
SM [ite] T

ppc
S z

ppc
SM [ite] T

ppc
S z

ppc
SM [ite] T

ppc
S z

ppc
SM [ite] T

ppc
S

z[45] = −80.2291 201 z[36] = −79.9984 143 z[0] = −79.9739 33 z[0] = −79.917 130z[62℄=-79.8772 1848 z[40] = −79.8772 6319VA z
ppc
V A[ite] T

ppc
V z

ppc
V A[ite] T

ppc
V z

ppc
V A[ite] T

ppc
V z

ppc
V A[ite] T

ppc
V

z[51] = −80.157 237 z[36] = −79.9837 145 z[0] = −79.9739 33 z[0] = −79.917 130
z[73] = −79.8772 2293 z[45] = −79.8772 6689PHA z

ppc
PHA[ite] T

ppc
P z

ppc
PHA[ite] T

ppc
P z

ppc
PHA[ite] T

ppc
P z

ppc
PHA[ite] T

ppc
P

z[131] = −80.0797 602 z[45] = −79.949 180 z[0] = −79.9739 33 z[0] = −79.917 129
z[150] = −79.8772 4435 � �DC-CP z

ppc
DCCP [ite] T

ppc
D z

ppc
DCCP [ite] T

ppc
D z

ppc
DCCP [ite] T

ppc
D z

ppc
DCCP [ite] T

ppc
D

z[117] = −80.1835 566 z[54] = −80.0096 219 z[0] = −79.9739 33 z[0] = −79.917 129
z[134] = −79.8772 4262 z[45] = −79.8772 8419P8 and P9 are large instan
es both with 400 s
enarios. Again, when the pro
edures areimplemented by using COIN-OR for partitions in a small number of 
lusters, say p̂ =20 and8 in instan
e P8 (see Table 17) and p̂ = 8 in instan
e P9 (see Table 19), no CLD boundshave been obtained within the elapsed time limit, 10800 se
s. However, the optimal partitionis obtained by using CPLEX for partitions in p̂ =8 
lusters in both instan
es (see Tables 18and 20), i.e., the smallest. The optimal CLD bound is obtained by all the four pro
edures ininstan
e P8 for partitions in p̂ =8 
lusters by using CPLEX.
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Table 17: CLD bounds without prepro
essing and parallel 
omputation tools (COIN-OR). Instan
e P8
p̂ = 400 
lusters p̂ = 50 
lusters p̂ = 20 
lusters p̂ = 8 
lusters

zMIP ∈ [−116.043,−113.235] [−114.531,−113.235] [−,−113.235] [−,−113.235]
α0 = 1.9 α0 = 1.9 α0 = − α0 = −SM zSM [ite] TS zSM [ite] TS zSM [ite] TS zSM [ite] TS

z[73] = −114.622 128 z[74] = −114.371 1152 � � � �VA zV A[ite] TV zV A[ite] TV zV A[ite] TV zV A[ite] TV

z[57] = −114.568 68 z[39] = −114.361 538 � � � �PHA zPHA[ite] TP zPHA[ite] TP zPHA[ite] TP zPHA[ite] TP

z[217] = −114.457 296 z[153] = −114.362 2437 � � � �DC-CP zDCCP [ite] TD zDCCP [ite] TD zDCCP [ite] TD zDCCP [ite] TD

z[123] = −114.6 165 z[106] = −114.367 1560 � � � �Table 18: CLD bounds with prepro
essing and parallel 
omputation tools (CPLEX). Instan
e P8
p̂ = 400 
lusters p̂ = 50 
lusters p̂ = 20 
lusters p̂ = 8 
lusters

zMIP ∈ [−116.043,−114.044] [−114.689,−114.044] [−114, 531,−114.044] [−114.427,−114.044]
α0 = 1.9 α0 = 1.9 α0 = 1.9 α0 = 1.9SM z

ppc
SM [ite] T

ppc
S z

ppc
SM [ite] T

ppc
S z

ppc
SM [ite] T

ppc
S z

ppc
SM [ite] T

ppc
S

z[126] = −114.626 795 z[72] = −114.382 340 z[22] = −114.342 303 z[16] = −114.324 362
z[33] = −114.318 910VA z

ppc
V A[ite] T

ppc
V z

ppc
V A[ite] T

ppc
V z

ppc
V A[ite] T

ppc
V z

ppc
V A[ite] T

ppc
V

z[55] = −114.573 346 z[43] = −114.368 198 z[28] = −114.34 406 z[24] = −114.325 560
z[61] = −114.318 1411PHA z

ppc
PHA[ite] T

ppc
P z

ppc
PHA[ite] T

ppc
P z

ppc
PHA[ite] T

ppc
P z

ppc
PHA[ite] T

ppc
P

z[191] = −114.457 1236 z[99] = −114.345 460 z[58] = −114.333 760 z[57] = −114.318 1127DC-CP z
ppc
DCCP [ite] T

ppc
D z

ppc
DCCP [ite] T

ppc
D z

ppc
DCCP [ite] T

ppc
D z

ppc
DCCP [ite] T

ppc
D

z[156] = −114.623 1026 z[91] = −114.387 440 z[24] = −114.486 312 z[15] = −114.318 325
z[37] = −114.318 958Table 19: CLD bounds without prepro
essing and parallel 
omputation tools (COIN-OR). Instan
e P9

p̂ = 400 
lusters p̂ = 50 
lusters p̂ = 20 
lusters p̂ = 8 
lusters
zMIP ∈ [−95.8124,−92.9241] [−94.4468,−92.9241] [−94.2895,−92.9241] [−,−92.9241]

α0 = 1.9 α0 = 1.9 α0 = 1.9 α0 = −SM zSM [ite] TS zSM [ite] TS zSM [ite] TS zSM [ite] TS

z[79] = −94.3658 69 z[32] = −94.1975 176 z[41] = −94.1482 1278 � �VA zV A[ite] TV zV A[ite] TV zV A[ite] TV zV A[ite] TV

z[53] = −94.3311 47 z[31] = −94.2037 175 z[21] = −94.1799 601 � �PHA zPHA[ite] TP zPHA[ite] TP zPHA[ite] TP zPHA[ite] TP

z[247] = −94.2356 238 z[142] = −94.1893 805 z[88] = −94.1646 2546 � �DC-CP zDCCP [ite] TD zDCCP [ite] TD zDCCP [ite] TD zDCCP [ite] TD

z[134] = −94.2895 139 z[60] = −94.1901 351 z[56] = −94.1478 1720 � �
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Table 20: CLD bounds with prepro
essing and parallel 
omputation tools (CPLEX). Instan
e P9
p̂ = 400 
lusters p̂ = 50 
lusters p̂ = 20 
lusters p̂ = 8 
lusters

zMIP ∈ [−95.8124,−94.1227] [−94.4468,−94.1227] [−94.2895,−94.1227] [−94.22,−94.1227]
α0 = 1.9 α0 = 1.9 α0 = 1.9 α0 = 1.9SM z

ppc
SM [ite] T

ppc
S z

ppc
SM [ite] T

ppc
S z

ppc
SM [ite] T

ppc
S z

ppc
SM [ite] T

ppc
S

z[79] = −94.3964 436 z[14] = −94.2129 44 z[52] = −94.1726 176 z[11] = −94.1461 81VA z
ppc
V A[ite] T

ppc
V z

ppc
V A[ite] T

ppc
V z

ppc
V A[ite] T

ppc
V z

ppc
V A[ite] T

ppc
V

z[56] = −94.3434 302 z[33] = −94.2048 100 z[29] = −94.1675 92 z[17] = −94.1634 115PHA z
ppc
PHA[ite] T

ppc
P z

ppc
PHA[ite] T

ppc
P z

ppc
PHA[ite] T

ppc
P z

ppc
PHA[ite] T

ppc
P

z[181] = −94.2522 997 z[107] = −94.1595 474 z[49] = −94.1535 158 z[30] = −94.1407 192DC-CP z
ppc
DCCP [ite] T

ppc
D z

ppc
DCCP [ite] T

ppc
D z

ppc
DCCP [ite] T

ppc
D z

ppc
DCCP [ite] T

ppc
D

z[129] = −94.3973 755 z[30] = −94.209 93 z[73] = −94.1793 226 z[12] = −94.1502 90P10 and P11 are the largest instan
es both with 500 s
enarios. Tables 21-22 and 23-24report the results. As in previous situations, when the pro
edures are implemented by usingCOIN-OR for partitions in a small number of 
lusters, say p̂ =10 for all pro
edures, but p̂ =50for PHA in instan
e P11, no CLD bounds have been obtained within the elapsed time limit,10800 se
s (see Tables 21 and 23). However when using CPLEX (see Tables 22 and 24), theresults are slightly di�erent in both instan
es. By 
onsidering the partition in p̂ =5 
lusters,the four pro
edures obtain the optimal solution in both instan
es, but VA and DCCP requiremore than three hours of elapsed time for instan
e P11. Noti
e that the best results for P11are obtained for partitions in p̂ =10 
lusters (see Table 24).By 
onsidering the partition in p̂ =5 
lusters, the four pro
edures obtain the optimalsolution for instan
e P10 when using CPLEX (see Table 22). The optimal solution is obtainedmore e�
iently in pro
edures SM, PHA and DCCP for partitions in p̂ =10 
lusters, but VAstops in a red solution given just the strongest CLD bound sin
e it 
oin
ides with the solutionvalue of the original problem. Noti
e that the norm of the subgradient ve
tor for this CLDbound is 0.015 whi
h is slightly greater than the given toleran
e ǫs =0.01 for the stopping
riterion 1.Table 21: CLD bounds without prepro
essing and parallel 
omputation tools (COIN-OR). Instan
e P10
p̂ = 500 
lusters p̂ = 50 
lusters p̂ = 10 
lusters p̂ = 5 
lusters

zMIP ∈ [−301.865,−300.166] [−300.546,−300.166] [−,−300.166] [−,−300.166]
α0 = 1.9 α0 = 1.9 α0 = − α0 = −SM zSM [ite] TS zSM [ite] TS zSM [ite] TS zSM [ite] TS

z[50] = −300.506 342 z[18] = −300.462 801 � � � �VA zV A[ite] TV zV A[ite] TV zV A[ite] TV zV A[ite] TV

z[52] = −300.494 290 z[36] = −300.464 1528 � � � �PHA zPHA[ite] TP zPHA[ite] TP zPHA[ite] TP zPHA[ite] TP

z[126] = −300.479 912 z[65] = −300.462 2811 � � � �DC-CP zDCCP [ite] TD zDCCP [ite] TD zDCCP [ite] TD zDCCP [ite] TD

z[89] = −300.535 624 z[20] = −300.468 906 � � � �
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Table 22: CLD bounds with prepro
essing and parallel 
omputation tools (CPLEX). Instan
e P10
p̂ = 500 
lusters p̂ = 50 
lusters p̂ = 10 
lusters p̂ = 5 
lusters

zMIP ∈ [−301.865,−300.425] [−300.546,−300.425] [−300.468,−300.425] [−300.461,−300.425]
α0 = 1.9 α0 = 1.9 α0 = 1.9 α0 = 1.9SM z

ppc
SM [ite] T

ppc
S z

ppc
SM [ite] T

ppc
S z

ppc
SM [ite] T

ppc
S z

ppc
SM [ite] T

ppc
S

z[63] = −300.5 724 z[13] = −300.465 151 z[3] = −300.459 63 z[0] = −300.461 24
z[88] = −300.456 1238 z[61] = −300.456 1249VA z

ppc
V A[ite] T

ppc
V z

ppc
V A[ite] T

ppc
V z

ppc
V A[ite] T

ppc
V z

ppc
V A[ite] T

ppc
V

z[56] = −300.508 669 z[20] = −300.473 238 z[6] = −300.465 107 z[0] = −300.461 24
z[55] = −300.456 804 z[37] = −300.456 780PHA z

ppc
PHA[ite] T

ppc
P z

ppc
PHA[ite] T

ppc
P z

ppc
PHA[ite] T

ppc
P z

ppc
PHA[ite] T

ppc
P

z[117] = −300.48 1358 z[25] = −300.467 292 z[21] = −300.458 295 z[0] = −300.461 24
z[77] = −300.456 1065 z[69] = −300.456 1412DC-CP z

ppc
DCCP [ite] T

ppc
D z

ppc
DCCP [ite] T

ppc
D z

ppc
DCCP [ite] T

ppc
D z

ppc
DCCP [ite] T

ppc
D

z[101] = −300.512 1223 z[10] = −300.474 113 z[3] = −300.463 63 z[0] = −300.461 23
z[42] = −300.456 618 z[38] = −300.456 817Table 23: CLD bounds without prepro
essing and parallel 
omputation tools (COIN-OR). Instan
e P11

p̂ = 500 
lusters p̂ = 50 
lusters p̂ = 10 
lusters p̂ = 5 
lusters
zMIP ∈ [−322.35,−317.724] [−320.479,−317.724] [−,−317.724] [−,−317.724]

α0 = 1.9 α0 = 1.9 α0 = − α0 = −SM zSM [ite] TS zSM [ite] TS zSM [ite] TS zSM [ite] TS

z[84] = −320.416 2324 z[46] = −320.297 3035.31 � � � �VA zV A[ite] TV zV A[ite] TV zV A[ite] TV zV A[ite] TV

z[87] = −320.391 2562 z[26] = −320.309 1644.04 � � � �PHA zPHA[ite] TP zPHA[ite] TP zPHA[ite] TP zPHA[ite] TP

z[186] = −320.383 5302 � � � � � �DC-CP zDCCP [ite] TD zDCCP [ite] TD zDCCP [ite] TD zDCCP [ite] TD

z[107] = −320.453 3043 z[52] = −320.299 3652 � � � �Table 24: CLD bounds with prepro
essing and parallel 
omputation tools (CPLEX). Instan
e P11
p̂ = 500 
lusters p̂ = 50 
lusters p̂ = 10 
lusters p̂ = 5 
lusters

zMIP ∈ [−322.35,−320.249] [−320.479,−320.249] [−320.326,−320.249] [−320.31,−320.249]
α0 = 1.9 α0 = 1.9 α0 = 1.9 α0 = 1.9SM z

ppc
SM [ite] T

ppc
S z

ppc
SM [ite] T

ppc
S z

ppc
SM [ite] T

ppc
S z

ppc
SM [ite] T

ppc
S

z[81] = −320.4 1920 z[38] = −320.301 1100 z[25] = −320.283 702 z[18] = −320.283 2294
z[26] = −320.283 732VA z

ppc
V A[ite] T

ppc
V z

ppc
V A[ite] T

ppc
V z

ppc
V A[ite] T

ppc
V z

ppc
V A[ite] T

ppc
V
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6 Con
lusionsIn this paper we have presented four s
enario Cluster based Lagrangian De
omposition(CLD) pro
edures for obtaining strong lower bounds to the solution value of two-stagesto
hasti
 mixed 0-1 problems, where the un
ertainty appears anywhere in the 
oe�
ientsof the 0-1 and 
ontinuous variables in the obje
tive fun
tion and 
onstraints in bothstages. For obtaining the CLD bounds we have used three popular subgradient basedpro
edures, namely, the traditional Subgradient Method (SM), the Volume Algorithm (VA)and the Progressive Hedging Algorithm (PHA). Additionally, we have also used the pro
edureDynami
 Constrained Cutting Plane (DCCP). We have used the same s
heme in all of them.Two new main ideas have been in
orporated in the implementation of the pro
edures. The�rst 
onsists of the s
enario 
luster partitioning that allows us to 
ompute at iteration zero ofea
h Lagrange multiplier updating pro
edure, a strong lower bound for tightening the intervalof the solution value of the original problem. The se
ond idea 
onsists of obtaining a goodupper bound of this interval that is e�
iently 
omputed by the MIP solver of 
hoi
e as aquasi-optimal solution for a given toleran
e in relation to the best LP relaxation value in itsbran
h-and-
ut phase.Moreover, we have given 
omputational eviden
e of the model tightening e�e
t thatsophisti
ated prepro
essing, 
ut generating and appending and parallel 
omputation toolshave in sto
hasti
 integer programming, by using, in this 
ase, the MIP solver CPLEX versusthe tools implemented in the COIN-OR LP/MIP fun
tions.The extensive 
omputational experien
e reported in the paper has used small, medium,large and very large sized instan
es in the testbed we have experimented with (in total,11 instan
es), by 
onsidering four sizes of 
luster partitions. The instan
es are so di�
ultthat the plain use of CPLEX 
annot guarantee the optimality of the in
umbent solutionwithin the three-hour time limit, but for two toy instan
es. We 
an draw the following
on
lusions: (1) Very frequently the four pro
edures for obtaining the CLD bound give thesolution value of the original sto
hasti
 mixed 0-1 problem and, in the other situations theyprovide a narrow interval of its solution value; (2) The performan
e of the CLD pro
eduresoutperforms the traditional LD s
heme based on single s
enarios in both the quality of thebounds and 
omputational e�ort; (3) The CLD bounds obtained by both solvers (being usedas auxiliary tools for solving LP/MIP submodels) are very similar for small problems, butwith a higher 
omputational e�ort in 
ase of using a more sophisti
ated prepro
essing, 
utgeneration and appending tools, i.e., using CPLEX (where parallel 
omputing tools are alsoused); (4) CPLEX outperforms COIN-OR for medium, large and very large instan
es, bothby plain use for problem solving and as auxiliary solvers of submodels, mainly for partitionsin a small number of 
lusters (and, then, larger MIP submodels); and (5) The e�
ien
y ofthe four pro
edures, as 
ontrasted in the testbed we have experimented with, is very similarin quality (i.e., tightness) to the CLD bound, but the elapsed time for obtaining it is smallerfor the pro
edures SM and DCCP followed by VA and PHA.As a future work, we are studying how to extend these CLD pro
edures to the multistage
ase for tightening the lower bound of the solution value of the submodels atta
hed to a subsetof the set of a
tive Twin Node Families (TNFs) in the Bran
h-and-Fix phase of our Bran
h-and-Fix Coordination algorithm, see [9℄, for solving large-s
ale multi-stage sto
hasti
 mixed0-1 problems. So, the LP relaxation bound (usually, a non very strong one) is to be repla
ed28



by the CLD bound in the subset of a
tive TNFs so-
alled super 
andidate TNFs (á là supernode 
on
ept in Bran
h-and-Bound terminology for solving deterministi
 MIP problems).A
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