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Abstract

In this paper we introduce four scenario Cluster based Lagrangian Decomposition
(CLD) procedures for obtaining strong lower bounds to the (optimal) solution value
of two-stage stochastic mixed 0-1 problems. At each iteration of the Lagrangian
based procedures, the traditional aim consists of obtaining the solution value of the
corresponding Lagrangian dual via solving scenario submodels once the nonanticipativity
constraints have been dualized. Instead of considering a splitting variable representation
over the set of scenarios, we propose to decompose the model into a set of scenario clusters.
We compare the computational performance of the four Lagrange multiplier updating
procedures, namely the Subgradient Method, the Volume Algorithm, the Progressive
Hedging Algorithm and the Dynamic Constrained Cutting Plane scheme for different
numbers of scenario clusters and different dimensions of the original problem. Our
computational experience shows that the CLD bound and its computational effort depend
on the number of scenario clusters to consider. In any case, our results show that the CLD
procedures outperform the traditional LD scheme for single scenarios both in the quality
of the bounds and computational effort. All the procedures have been implemented in
a C++ experimental code. A broad computational experience is reported on a test of
randomly generated instances by using the MIP solvers COIN-OR [17] and CPLEX [16]
for the auxiliary mixed 0-1 cluster submodels, this last solver within the open source
engine COIN-OR. We also give computational evidence of the model tightening effect
that the preprocessing techniques, cut generation and appending and parallel computing
tools have in stochastic integer optimization. Finally, we have observed that the plain
use of both solvers does not provide the optimal solution of the instances included in the
testbed with which we have experimented but for two toy instances in affordable elapsed
time. On the other hand the proposed procedures provide strong lower bounds (or the
same solution value) in a considerably shorter elapsed time for the quasi-optimal solution
obtained by other means for the original stochastic problem.

Keywords: Two-stage stochastic integer programming, nonanticipativity constraints,
Cluster Lagrangian decomposition, scenario cluster model, Subgradient Method, Volume
Algorithm, Progressive Hedging Algorithm, Dynamic Constrained Cutting Plane scheme.



1 Introduction

In this work we consider a general two-stage stochastic mixed 0-1 problem. The uncertainty
is modeled via a finite set of scenarios w = 1,...,|€2|, each with an associated probability of
occurrence w*, w € 2. The traditional aim in this type of problems is to solve the so-called
Deterministic Equivalent Model (DEM), which is a mixed 0-1 problem with a special structure,
see e.g., [21] for a good survey of some mayor results in this area obtained during the 90s and
beyond. A Branch-and-Bound algorithm for solving problems having mixed-integer variables
in both stages is designed in [6], among others, by using Lagrangian relaxation for obtaining
lower bounds to the optimal solution of the original problem. A Branch-and-Fix Coordination
(BFC) methodology for solving such DEM in production planning under uncertainty is given
in [1, 2], but the approach does not allow continuous first stage variables or 0-1 second stage
variables. We propose in [7, 8] a BFC algorithmic framework for obtaining the optimal
solution of the two-stage stochastic mixed 0-1 integer problem, where the uncertainty appears
anywhere in the coefficients of the 0-1 and continuous variables in both stages. Recently, a
general algorithm for two-stage problems has been presented in [22].

We study in [10] several solution methods for solving the dual problem corresponding
to the Lagrangian Decomposition (LD) of two-stage stochastic mixed 0-1 models. At each
iteration of these Lagrangian based procedures, the traditional aim consists of obtaining the
solution value of the corresponding parametric mixed 0-1 Lagrangian dual problem via solving
single scenario submodels once the nonanticipativity constraints (NAC) have been dualized,
and the parameters (i.e., the Lagrange multipliers) are updated by using different subgradient
and cutting plane based methodologies.

Instead of considering a splitting variable representation over the set of scenarios, in this
paper we propose a new approach so named Cluster Lagrangian Decomposition (for short,
CLD) to decompose the model into a set of scenario clusters. So, we computationally compare
the performance of the Subgradient Method (SM) [15], the Volume Algorithm (VA) [4], the
Progressive Hedging Algorithm (PHA) [20] and the Dynamic Constrained Cutting Plane
(DCCP) scheme [18] for Lagrange multipliers updating while solving large-scale stochastic
mixed 0-1 problems in an algorithmic framework based on scenario clusters decomposition. A
successful result may open up the possibility for tightening the lower bounds of the solution
value at the candidate Twin Node Families in the exact BFC scheme for both two-stage and
multistage types of problems, see e.g., [9].

For different choices of the number of scenario clusters we report the computational
experience by using CPLEX, integrated in the COIN-OR environment, to verify the
effectiveness of the proposal. In this sense, we also give computational evidence of the
model tightening effect and their computational cost that preprocessing, cut generation and
appending and parallel computing tools have in stochastic integer optimization too, see [19].
We also computationally compare the new with the cluster singleton approach (i.e., the LD
for single scenarios) outperforming it, as well as outperforming the plain use of the MIP
solver of choice, CPLEX. The proposed approach provides a tight lower bound such that
the quasi-optimality gap of the upper solution bound obtained by other means on large-scale
instances is very small and frequently, guarantees its optimality. However, the plain use
of CPLEX cannot guarantee the optimality of the incumbent solution in a somewhat large
elapsed time limit, its objective function value being simply an upper bound of the solution



value of the original stochastic problem in some cases. In other cases, we can prove in very
much smaller elapsed time that the incumbent CPLEX solution is the optimal one, since our
CLD procedures provide lower bounds identical to the value of that solution. Additionally,
that incumbent solution is also frequently even worse than that which we have obtained when
both the quality and the small elapsed time are good enough.

The remainder of the paper is organized as follows: Section 2 presents the two-stage
stochastic mixed 0-1 problem in compact and splitting variable representations over the
scenarios and scenario clusters. Section 3 summarizes the theoretical results on Lagrangian
decomposition and presents the Cluster Lagrangian Decomposition approach. Section 4
presents the four procedures mentioned above for updating the Lagrange multipliers. Section
5 reports the results of the computational experiment. Section 6 concludes.

2 Two-stage stochastic mixed 0-1 problem

In many real cases a two-stage deterministic mixed 0-1 optimization model must be extended
to consider the uncertainty in some of the main parameters. In our case, these are the objective
function, the right and left hand-side vectors and the constraint matrix coefficients. This
uncertainty is introduced by using the scenario analysis approach, such that a scenario consists
of a realization of all random parameters in both stages through a scenario tree. When a finite
number of scenarios is considered, a general two-stage program can be expressed in terms of
the first stage decision variables being equivalent to a large, dual block-angular programming
problem, introduced in [25] and known as Deterministic Equivalent Model (DEM).

Let us consider the compact representation of the DEM of a two-stage stochastic integer
problem (MIP),

(MIP)¢: zyrp = min C15+02$+wa[q0107w+q020yw]
weN

s.t. b <A i < by

(1)
0 v

np<te| 0 Jewe ) <hg vweo

5,7 € {0,1},z,y¥ >0, Ywe Q,

where the uncertainty in the parameters is introduced by using a scenario analysis approach.
c1 and co are known vectors of the objective function coefficients for the § and = variables
in the first stage, respectively, b; and by are the known left and right hand side vectors for
the first stage constraints, respectively, and A is the known matrix of coefficients for the first
stage constraints. For each scenario w, w* is the likelihood attributed to the scenario, such
that >, cqw” =1, h{ and h§ are the left and right hand side vectors for the second stage
constraints, respectively, and ¢ and ¢4 are the objective function coefficients for the second
stage v and y variables, respectively, while 7% and W* are the technology constraint matrices
under scenario w, for w € 2, where € is the set of scenarios to consider. Notice that there
are two types of decision variables at each stage, namely, the set of § 0-1 and = continuous
variables for the first stage, and the set of v 0-1 and y“ continuous variables for the second
stage.



Notice also that for the purpose of simplification, the objective function to optimize in the
models dealt with in this paper is the expected value over the set of scenarios 2, i.e., the risk
neutral strategy. For a survey of coherent risk averse measures as opposed to the risk neutral
strategy considered in this work, see e.g., [3].

The structure of the uncertain information can be visualized as a tree, where each root-to-
leaf path represents one specific scenario, w, and corresponds to one realization of the whole
set of the uncertain parameters. In the example depicted in Figure 1, there are |Q = 10
root-to-leaf possible paths, i.e., scenarios. Following the nonanticipativity principle, stated in
[25] and restated in [20], see [5] among others, all scenarios should have the same value for
the related first stage variables in the two-stage problem.
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Figure 1: Scenario tree

The left section of Figure 1 implicitly represents the non-anticipativity constraints (NAC,
for short). This is the compact representation shown in model (1). The right section of Figure
1 gives the same information as the compact representation but using a splitting variable
scheme and noticing that it explicitly represents the NAC (i.e., imposing the equality) on the
first stage variables §* z“ and for all the scenarios w.

Let us consider the splitting variable representation of the DEM of the two-stage stochastic



mixed 0-1 problem.

(MIP)S T ZyIp = min Z ww[Cléw + ez + qtlu'yw + quw]

weN
s.t. blgA(iw>§b2 Yw € Q)
5&) ,yw
hy <1T% -~ + W o < h§y Ywel (2)

M =0 VY, e wHd
=2¢ Vu,w e, w#uw
2y >0 Ywe

0,7 €{0,1} Vwe Q.

In addition to these two formulations, we propose a scenario-cluster partitioning to
allow a combination of compact and splitting variable representations into and inter the
scenario cluster submodels. A scenario cluster is a set of scenarios where the NAC are
implicitly considered. By slightly abusing the notation from now on, throughout the paper
the upperindex in boldface p will denote the cluster of scenarios instead of the single one. Let
P denote the number of scenario cluster partitions to consider. As an illustrative example, let
us consider again the scenario tree depicted in Figure 1.

t=1 t=2 t=1 t=2
B0 -1
\ e w=2
1
I
I'I‘ O w=3 @ w=3
I
10 R
: l O w=14 ,'| 6 w=4
51::52::...:5 ll ‘I
| : O w=5 1 5|: @ w=5H
|
:: | i
L O w=6 | at* (7) w=6
xlzlxzz:...—m || |'
| O w=T

O

€
I
o0

@ O w=38

BB E @@ G
O
€
I
\]

w=9 @ w=9
w=10 (11) w=10
P = 5 scenario clusters P = 2 scenario clusters

Figure 2: Scenario cluster partitioning



Figure 2 shows the problem decomposition in p =5 (left tree) and p = 2 (right tree)
scenario clusters into which the set of scenarios is split. Observe that the NAC for the first
stage vectors of variables are given by ! = ... = 2% and §! = ... = §° for the left side of the
figure, and they are given by z! = 22 and §' = §2 for the right side of the figure, where by
abusing the notation P and 6P are the x and § vectors of the first stage continuous and 0-1
variables for scenario cluster p, respectively.

In general, given a scenario tree, p can be chosen as any value between 1 and ||, so that
we can represent the DEM (1) by a mixture of the splitting variable representation where the
NAC are explicitly stated for the p cluster submodels, and a compact representation for the
set QP of scenarios into each cluster model p, where the NAC are implicitly stated such that
p € {1,...,p}, QP defines the set of scenarios in cluster p, and |QP| is its size.

Without loss of generality (wlog, for short) and for computational purposes, the number
of clusters p can be calculated as a divisor of the number of scenarios, |2| and, then, we
have that [ = |QP| = % defines the size of each scenario cluster p, for p = 1,...,p.
The scenario clusters are defined in terms of consecutive scenarios, Q1 = {1,...,|Q!},
Q2 = {|QY +1,...,|Q +|Q%|},..., QP = {|QY + ... + |QP 1 +1,..., |Q}.

The mixed 0-1 submodel to consider for each scenario cluster p can be expressed by the
compact representation,

(MIPP): 2P =min wP(c10P + cozP) + E w? (¢ + ¢5'y*)
wenp
5P
s.t. b1 < A p < b2
x

oP o
hy <T¥ + W w | <hY YweQP
zP Yy

5P € {0,1},2P >0
e {0,1},y* >0 VYwe QP,

where wP = 3 —op w® denotes the likelihood for scenario cluster p, and 6P and xP are the

vectors of the first stage 0 and x variables for scenario cluster p. Moreover, the p submodels
(3) are linked by the NAC,

P —oP = 0 (4)
0, (5)
for p,p’ =1,...,p: p # p’. Observe that the NAC (4)-(5) can been represented as a set

of inequalities in order to avoid the use of non-signed vectors of Lagrange multipliers in the
dualization of such constraints. They will be expressed as follows,

’
xp_xp

P — Pl <0 vp=1,.,p—-1, 4

at, (6)
2P — Pt <0 Vp=1,...p—1, 1

P <
P<u (7)

So, the mixed 0-1 DEM (1) is equivalent to the splitting-compact variable representation



over the set of scenario clusters.

b
(MIP): zyrp=min Yy [WP(c10P +coaP) + D w”(g{7” + q5y*)]
p=1 wENP

oP B
s.t. by <A P <b, Vp=1,..,p

w oP v A
hy <1T% P +W“<yw>§h§” YVwe QP p=1,...p
P —PHL <0 Vp=1,..p—1

6P < 81,

2P —gPT1 <0 Vp=1,..,p—1,

xf’gxl

aP >0,6° € {0,1} Vp=1,...p

Y’ > 0,7 €{0,1} YweQP p=1,..,p.

Additionally, notice that model (8) for p =1 coincides with the mixed 0-1 DEM in the
compact representation (1), and we obtain the splitting variable representation (2) for p = |€2|.

3 Scenario Cluster Lagrangian Decomposition

The scenario Cluster Lagrangian Decomposition (CLD) of the mixed 0-1 DEM (8) for
a given number of scenario clusters p and a given nonnegative vector of weights (i.e.,
Lagrange multipliers) P = (uf, uP), is the p-parametric mixed 0-1 minimization model (9)
in (6P, 2P ¥, y¥), w € QP, p = 1,---,p, with the objective function value zyp(u,p), such
that it can be expressed as follows,

. P
(MIPPp(p)) s zip(p,p) = min ) _[wP(c1d® +coxP) + Y w(q¥7” + ¢5'y”)]
p=1 wEeNP

+ 3 pP(OP — 6PHL) 4 R (6P — 1)+

>
I
=

o T
[

b RGP - 2Pt + (e — )
1
oP .
st. b < A P <by Vp=1,..,p

w w oP w ,}/w w o) N
hy < T P + W o <h§ VweQP p=1,..p

2P >0,6° € {0,1} Vp=1,...p
Y’ >0, €{0,1} YVweQP p=1,..,p.

It is well known that model (MIP}E’D(M)) is a relaxation of model (MIP), since (i) the
feasible set of (MIP{’D(M)) contains the feasible set of (MIP), and (ii) for any (0,x,7,y)
feasible solution for (MIP), any u > 0 and 1 < p < |Q], it results that zrp(u, p) < zumrp.
Notice that if p = 1, for any u > 0 zrp(p,1) = zpyrp by definition of the compact
representation. Then, it follows that the value z;p(u,p), which depends on p is, a lower
bound on the solution value of (MIP), zprp for any choice of p, with 1 < p < |Q].



Definition 1 For any choice of p such that 1 < p < |§2|, the problem of finding the tightest
Lagrangian lower bound on zprrp 48

(MIPLp): znp = mazu>ozLp(1, D).

It is called the Lagrangian dual of (MIP) relative to the NAC.

By LP duality, zrp can be obtained by using a mixture of linear and mixed 0-1
programs. (MIPpp) is a linear problem in the dual space of the Lagrange multipliers, whereas
(MIPED(,u)) is a p-parametric mixed 0-1 problem in the vector of variables (d,z,v,y). Let
(5(uP), 2(uP), v(uP), y(uP)) denote an optimal solution of (MIPED(M)) for some p and p, i.e.,
a Lagrangian solution.

It is also known that, unless (MIPrp) does have the integrality property, the LD can
yield an equal or stronger bound than the LP relaxation. If it has the integrality property
then zpp = zpp < zprp. In the other case, zpp < zpp < zprp. See the seminal work [12],
and a good survey in [13].

Let the following proposition state that the solution values of nonsingleton scenario cluster
Lagrangian decomposition (CLD) problems are stronger than the solution values of singleton
CLD problems.

Proposition 1 For all u > 0, the following inequalities are satisfied
zep(p, [Q) < zop(p, 9 = 1) < ... < zpp(p,2) < zp(p, 1) = 2m1p.

Proof: Notice that the chain of the related problems only differ on the relaxation of the
NAC in some scenarios. So the proof follows.

Our proposal makes use of the expression of the Lagrangian dual z;p as the maximum of
the solution values zpp(u, p) in u. Previously, we must choose a number of scenario clusters
p and the scenario subsets QP, p = 1,...,p and then, for a given value of u, say uP, we must
solve the mixed 0-1 problem (9) in (6(uP), z(uP), v(uP), y(1P)) to obtain the optimal solution
value, zLD(,uf’,f)). It consists of computationally comparing the speed of convergence with
several iterative methods for updating the Lagrange multipliers and building the sequence
{ul, pt, ..., ¥, ... }P, as well as studying the optimal scenario cluster decomposition.

At each iteration k and given the current multiplier vector u*, the first step is to obtain
zp(pF,p). The second step is to update the Lagrange multipliers x4 in a finite number of
iterations such that the purpose is to obtain p* and zrp(u*, p), where

p* € argmax;>o{zLp (1, P)}- (10)

Note: The solution (6(u*),x(p*),v(1*),y(1*)) is the optimal one for DEM (1) provided
that it satisfies the NAC (6)-(7).

Notice that the model MIP{’D(M) (9) can be decomposed in p smaller submodels, and its
solution value can be obtained as the sum of the related 2P, (uP) values, see [10],

p
ZLD(,U, f’) = Z ZED(IU’p)a (11)
p=1

8



where zF ,(uP) is the solution value of the pth scenario cluster model. For p = 2,...,p, the
model is expressed in compact representation as follows,

Lp(WP) = min[wPe; + (uf — ©B 1)]OP + [WPey + (1B — pRH]2P + D w (g7 + ¢5y”)

wenNP
s.t

5P
b <A 5 | <b
X

oP A
hy <T¢ + W < h§ Ywe QP
zP y¥

P >0,6P € {0,1}
y“ > 0,7 €{0,1} Yw € QP.

For p = 1, the model also in compact representation is as follows,

AAppt) = minfwler + (u} — 2" + [whes + (ul — iB))zt + 3 w?(g87 + a5y*)
weNt
S.t.

51

<Al %) ) <b
z (13)

w w 51 w Vw w 1

hlgT ajl +W yw Sh2 VWGQ

xt > 0,6 € {0,1}
Y > 0,7 € {0,1} Vwe QL

Observe in expression (11) that the bound value and the computational effort to compute
it depend on how many scenario cluster submodels are considered in the decomposition, i.e.,
p. We computationally study in Section 5 the influence of the number of scenario clusters
into the bounds tightening and the related computational effort to compute the bounds.

4 Lagrange multipliers updating procedures for CLD

In this section the specialization of different Lagrange multiplier procedures for scenario cluster
decomposition is presented.

Let us assume in the rest of the work that the scenario set is broken down into p clusters.
Let also Z;,p be an upper bound of the solution value of the original (M IP). It can be obtained
efficiently as a quasioptimal solution, Z(p) with a given p% of quasi-optimality tolerance, see
Section 5. Let u° be the initial multiplier vector and, finally, let oy, be a real parameter
related to the steplength of the Lagrange multiplier updating procedure, where oy € (0,2),
see below.

4.1 Subgradient method

This is one of the most popular approaches to solve the Lagrangian dual. The subgradient
procedure was proposed in [15]. It is an iterative approach method in which at iteration k,

(12)



given the current multipliers vector ¥, a step is taken along a subgradient of z, D(uk, p). The
procedure for updating the Lagrange multipliers of the NAC (6)-(7) is given in Figure 3.

Step 0:

Step 1:

We start with a vector %, and solve the p submodels (12)-(13) to obtain
((5(0),513(0),7(0),14(0)) and z7p(u,P) as the sum given in (11). Set k := 0.
(5(k)1 —5k)2)

sRBp-1 _ 5P
( )

(k)p _ 5(k)1
Compute the step direction s* = ((:(Z(k)l _ i(k)z)) ,

(:L-(k)f’_l — x(k)f’)
(zB)P — g (K1)
check the stopping criteria given in Sec. 4.5 and if they are not satisfied, set

(ZLp — zLp (1", b))
s T g
Solve the p problems (12)-(13) with p*Ft1, and let (§*+1) g(B+1) 4
and zzp(p**1, p) be the optimal solution and solution value of (9), respectively.
Set k:=k + 1 and go to Step 1.

(k1) g (k1))

Figure 3: Subgradient Method (SM)

4.2 Volume Algorithm

We present a version of the Volume Algorithm given in [4| for updating the Lagrange
multipliers of the NAC (6)-(7). This procedure only updates the multipliers when there
is an improvement in the incumbent solution value zpp(u,p) of the Lagrangian problem.
Additionally, the feasible solution is replaced by a convex combination of solutions obtained
in previous iterations. Let fj be a real parameter related to the incumbent solution updating,
where fi € (0,1), see in Sec. 4.6 the procedure for obtaining it. The procedure for updating
the Lagrange multipliers of the NAC (6)-(7) is given in Figure 4.

10



Step 0: We start with a multiplier vector 1%, and solve the p problems (12)-(13)
to obtain (60, 2 ~©) 4O and z;p(u0, p) as the sum given in (11).
Set: (6,7,7,9) := (5(‘” 20,7, yO), 1 =, and =(, ) == 20 (5, B)

where ZLD /La Z ZLD . Set k :=1.
( (k)l _ 6(k7) ) (31 _ 32)
(5(k)p 1 _ sk )f)) (515—1 _ Sf))
Step 1: Compute s* = (3P — g(0) and 3F = (Sﬁ - 31)
p L: p = (z01 — l,(k)2) = (@ —72) )
zkp=1 _ g (K)p (xf» 1_ xf))
(2P — z1) = )

check the stopping criteria given in Sec. 4.5 and if they are not satisfied, set

‘u,k ;:ﬁ+ak. (zLDll_gszéj”p)) ,gk

Solve the p problems (12)-(13) with ¥, and let (6(), x*) ~(®) 4(*)) and

zp(p*, p) be the optimal solution and the solution value of (9), respectively.

Thena update (3757 7, y) = fk ( k) l‘ (k) ’Y( ) ) +(1 - fk) ' (37 z,7, y)
Step 2: If zzp(p¥, p) > (T, p), update 7 := p* and Z(u,p) = z1p(UF, p).

Set k:=k + 1 and go to Step 1.

Figure 4: Volume Algorithm (VA)

Note: The step directions s* and 5* are used for obtaining the weighting parameter fj,
and chosing the convergence parameters.
4.3 Progressive Hedging Algorithm

The Progressive Hedging Algorithm for problems with continuous variables alone was
introduced in [20], see also [24] for a recent innovation. Our procedure for updating the
Lagrange multipliers of the NAC (6)-(7) is given in Figure 5. The basic features are as
follows: Let (6% () 4(*) 4(*)) be an optimal solution of problem (MIPED(uk)) (9) at

p
iteration k. A new non-necessarily feasible solution can be defined as 6 = Z wP§FIP and
p=1

p
Z z*)P_ These expressions represent an estimation of the expected value over the

set of scenario clusters of the optimal solution obtained at iteration k.

11



Step 0: Given the Lagrange multipliers vector, u°, solve the p problems (12)-(13) to
obtain (5, 20 ~©) 4 and 27 p(u°,p) as the sum given in (11). Set k := 0.

(61 _ 5(k)2) (61 _ 5(k))
(5p-1 5(k)r?>) (61 _ 5K
(5(k)p (k)1 ) §ED _ §(k)
Step 1: Compute s* = (21 I’(k ) and §* = ((m(k)l _ @(k))) )
(s(P=1 _ (0P (zMD-1 _ 50
(x(F)p — g(k)1) (P — 3(k))

check the stopping criteria given in Sec. 4.5 and if they are not satisfed, set

— k ~

ZLp — 2Lp(W",P)) .
PR TR 1 T
Solve the p problems (12)-(13) with *+1, and let (§*+1D) gk+1) A (k+1) g (k+1)y
and zrp (11, p) be the optimal solution and solution value, respectively.
Compute 651 and F+1,
Set k:=k + 1 and go to Step 1.

Figure 5: Progressive Hedging Algorithm (PHA)

k

Note: The step direction §% is used for choosing the convergence parameters, see Sec. 4.6.

4.4 Dynamic Constrained Cutting Plane method

The DCCP is a Cutting Plane Method, see [18], in which the Lagrange multiplier at iteration
k are updated by solving the following maximization problem

Zrp(ph,p) = P

z < gI,D(:u'laf)) Vi € Ia

where C*(p) is the dynamically updated Lagrange multipliers feasible region and Zyp(u?, p)
is a truncation of Taylor series expansion of the function zyp(u, p) around the point yf, i.e

- k
Z = max =z 14
() = max (14)
p
st. 2z < zrp(p ,p Z — ,p Viel,

where [ is the set of cutting planes, see (16), zrp(u’, p) is the Langrangean bound obtained
at iteration i, and s’ is the subgradient vector of zrp(u, p) at u’, for i € I.

Notice that the number of constraints in model (14) grows with the number of iterations.
To prevent the excessive size of the problem, n denotes the maximum number of cutting
planes, i.e, the maximum number of constraints in model (14), so |I| = min{k,n}. Then, if
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the number of iterations is lower than or equal to the maximum number of cutting planes,
k < n, all the cutting planes are considered in the model (14). Whereas, if the iteration
number is larger than the maximum number of constraints, k& > 7, the difference, say, d;
between the ith hyperplane z7p(u’, p) + Zgzl(,uk’p — p¥P)s® and the Lagrangian bound
obtained at iteration k is computed as follows,

p
di = zrp(p Z )s' — zLp (¥, B). (15)

The most distant hyperplanes are deleted from I. It should be noted that the residual d;
is always positive, since the cutting plane reconstruction of the dual function overestimates
the actual dual function.

The feasible region C* (1) has the expression
C*(u) = {p, " < p <7}, (16)

where Hk and 7% denote the lower and the upper bound of the Lagrange multipliers vector at
iteration k, respectively, such that they are updated at each iteration and can be expressed

P = — g B |s5] and mT = g o B0 sl (17)
where ,uf is the jth component of the multipliers vector obtained as optimal solution of model
(ZLp — zLpo(1*, )

EE

region C*T1(y) is defined around the optimal multipliers vector obtained in the previous
iteration. The procedure for updating the Lagrange multipliers of the NAC (6)-(7) is given
in Figure 6.

(14) at iteration k and S* =

. Therefore, at iteration k + 1 the feasible

Step 0: Given the Lagrange multipliers vector, u°, solve the p problems (12)-(13) to
obtain (5, 2 ~©) 4 and 27 p(u°,p) as the sum given in (11). Set k := 0.
(6L — 5(k)2)

(6(R)P— 1_ 5(k)P)
(6 (k)p _ k 1)

Step 1: Compute s* = (x( x(k 2)

(z*K)P=1 _ 5(k)D
(z (k)p _ (K 1)
check the stopping criteria given in Sec. 4.5 and if they are not satisfed, set
— . k
as (17) where g% = L2 ||Zi1|3|2(ﬂ .P))
s

Solve the model (14) to obtain the new Lagrangian multiplier vector, p*+1

If &k > 7, compute d; as (15) and delete ¢ € argmaz;c;{d;} from I.
Step 2: Solve the p problems (12)-(13) with *+1, and let (§*+1D) g(k+1) A (k+1) g (kt1)y

and zpp(u**1, p) be the optimal solution and solution value, respectively.
Set k£ :=k + 1 and go to Step 1.

E;?H and ﬁf“

Figure 6: Dynamic Constrained Cutting Plane method (DC-CP)
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4.5 Stopping criteria

In this section we present the stopping criteria that are common to the four procedures
described above. At Step 1 of each procedure, and after computing the subgradient vector s*
(SM) and (DC-CP), 5% (VA), or §* (PHA), respectively, we compute its norm.

The stopping criterion 1, requires that the norm of the subgradient vector is near to zero
(say, less than €5 = 0.01). We have used the ¢5 norm, but it could be possible to compute
the £, with a little more computational effort and the solution would perhaps have been
more accurate. If this criterion is satisfied, then the NAC (6)-(7) are satisfied as well and the
optimal solution to the MIP model has been obtained. So, the Lagrangian bound coincides
with the optimal solution value of the original stochastic integer problem.

The stopping criterion 2 common to the four procedures has two parts. The first is as
follows,

| SR WP (0P 4 3 P) 1 55 o w gp AR 4 g5 T — 2 p (i, B)]
‘ZLD (/’Lka ﬁ)‘

<e, (18)

where (6P _z(0)p 3 (k)w g7(k)wy denotes the incumbent solution, being (§*)P g (*)p ~(K)w o (k)w)
for SM, PHA and DCCP and (9,7,7%,7) for VA, and ¢, is a given tolerance. In particular, we
use €, = 0.008.

The second part is given by

Pz Pz
—11S _1 1S
Zp_]_ | p6| < e and Zp’\_l | pz|

X < €g, (19)
| SRRIT) PNy

where p-ns and p - n, are the number of NAC for the 0 and x variables, respectively, 555 and
|5pe| for cluster p denote the absolute deviations for the corresponding ¢ and x rows of vector
sk for SM and DCCP, 5* for VA and §* for PHA, whereas €5 and €, are given tolerances. In
particular, we use ¢5 = 0.01 and ¢, = 0.1.

Finally, the stopping criterion 3 requires that the incumbent solution value, zzp(u*, p)
does not improve (given a tolerance, say ¢ = 0.0001) after a sequence of ten consecutive
iterations.

When any of the stopping criteria is satisfied, the possible situations are as follow related
to the CLD bound z1,p (1%, p):

1. Stopping criterion 1. The bound is the solution value of the original problem and,
additionally, the solution is feasible and then, it is the optimal one. We denote the
corresponding results in green in Tables 3-24.

2. Stopping criterion 2. The (strong) bound is the objective function value of a quasi-
feasible solution given the optimality tolerances that have been established. We denote
the corresponding results in blue in Tables 3-24.

3. Stopping criterion 3. The bound is the strongest bound that can be obtained given
the set of tolerances and parameters that have been established. We denote the
corresponding results in red in Tables 3-24.

14



4.6 Choice of the convergence parameters

The performance of the procedures given above is very sensitive to the choice of the given
parameters: the initial upper bound Zy p, the initial step size parameter oy and moreover the
procedure for updating this step size parameter at each iteration «y; some implementation
details are given in [4]. In this sense, and following the notation given in that paper, we have
considered three types of iterations for setting the value of a. The iteration at which there
is no improvement in the value of function zzp(u, p), such that zrp(u*,p) < zrp(*~1,p)
is called red. Otherwise, i.e., zrp(u¥, p) > zrp(1*~1, ), let the vector h*¥ be computed as
follows: h* = (s*)t.sk~1in the Subgradient and Dynamic Constrained Cutting Plane methods;
h¥ = (s¥)t - " in the Volume Algorithm, and h¥ = (s¥)* . 5¥ in the Progressive Hedging
Algorithm, where s*, 3% and §* denote, respectively, the subgradient vector calculated in Step
1 of the corresponding procedure. Notice that h* < 0 means that a longer step in the direction
of s* would produce a smaller value for zzp (¥, p). In this case, the iteration is called yellow.
If h¥ > 0 then the iteration is called green. At each green iteration we multiply oy by 1.1.
After each sequence of #red consecutive red iterations we multiply o by 0.66.

Note that there is no relationship between the color of the iterations, yellow, red or green
color, introduced in [4], to describe the procedure for updating the value of the step size
parameter oy, and that shows the different CLD bounds in the Tables 3-24 showing the
stopping criterion has occured.

The optimal values for #red and ag must be adequately tested for each instance and are
clearly dependent on the initial upper bound Zyp considered, see [10]. However, we observed
in our computational experimentation (see Sec. 5) that, in general, and for any choice of
these parameters, the clustering partition provides stronger lower bounds when computing
the Lagrangian bound at iteration zero, i.e., zpp(u°, p). Note: The initial vector of the
Lagrange multipliers has been taked as a vector of zeros, u° = 0, given the good results that
we have reported in [10] for singleton scenario clusters by computationally comparing this
choice with some other alternative.

For each clustering partition, we obtain an interval for the solution value of the original
problem, given by [zp (1%, P),ZLp]. As we will show, the tightness of the Lagrangian bound
at iteration zero, z7,p(u’, p), depends upon the cluster partitioning i.e., p that is considered;
while in the case of the upper bound Zyp(p), its goodness depends on the quasi-optimality
tolerance p% considered when the MIP solver obtains it. When using the preprocessing
and parallel computing tools available by default in CPLEX, stronger bounds are efficiently
computed, see Table 2.

In order to homogenize the performance of the two solvers to be used, namely CPLEX
within COIN-OR [17] and the LP/MIP functions of it as well as the different cluster
partitionings, we have considered #red = 1 in all the instances in the testbed. We have
experimented as well as the same initial steplength value «q, although diminishing it for both
solvers in some instances, depending on the extension of the interval that contains the solution
value, see Sec. 5.

The parameter fi in the Volume Algorithm is set to a fixed value for a number of iterations
and is decreased afterwards. Let s* and 3* be defined as in Step 1 of the procedure. Let also
fmaz be an upper bound of fi. Then, we can compute f,,; as the value that minimizes
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20 —k( k _ <k
> ity 5E (8 —37)
T —.
Zigl(si‘c - Sf)(sf - Sf)
If fopr <O, set fr, = %0 - fmaz. Otherwise, set fi = min{ fyaz, fopt}. In our computational
experimentation we have used fp.. = fo = 0.1 and we have decreased its value near to the
end.

[ fx - 8% 4+ (1 — fi) - 3]|. It is easy to verify that this value is f,p =

Finally, the maximum number of cutting planes, 7, in the Dynamic Constrained Cutting
Plane method has been fixed to n = 30.

5 Computational experience

We report the results of the computational experience obtained while optimizing the two-
stage MIP model (1) over some randomly generated instances. The first two instances of the
testbed are small-medium sized, while the other instances are larger, significantly bigger than
those normally reported in the literature, e.g., [23].

The computational experiments were conducted in a Workstation Debian Linux (kernel
v2.6.32 with 64 bits), 2 processors Xeon 5355 (Quad Core with 2x4 cores), 2.664 Ghz and 16
Gb of RAM.

The four procedures given above have been implemented in a C+-+ experimental code. It
uses alternatively two of the state-of-the-art optimization engines, in particular CPLEX v12.2
within the open source engine COIN-OR and the LP/MIP default functions Clp and Cbc of
the same COIN-OR system. Both optimizers are used by the CLD algorithm for solving the
LP relaxation of the whole model and the related mixed 0-1 cluster submodels.

We will compare the results obtained by using both optimizers, COIN-OR and CPLEX.
The use of the latter is denoted with the upperindex PP¢| since this solver uses (by default)
the state-of-the-art preprocessing and parallel computing (in our case with a parallel scheme
of eight threads, one per core). The four Lagrange multipliers updating procedures presented
above can be enriched by providing a variety of specialized preprocessing, cut generation
and appending, probing and parallel computation tools, see [19], that can customize the
experimental code to achieve maximum efficiency.

The structure of the DEM in compact representation for the instances, which is inspired
in model (38) of [23], can be expressed

12
min ¢10 + cox + Z w* (g7 v + ¢5y”)

w=1

s.t. b1§A<5)§b2

X
h‘fST”<Z>+W”<;w>§h‘5 Vw € Q

z,y” €10,1] YweQ
5,7 €{0,1} Vw € Q,

Note that the variables in both stages are bounded. The vectors of variables § and
v are integer, moreover they are binary, whereas the vectors of continuous variables, x
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Table 1: Model dimensions

Compact representation Splitting variable representation
Instance m¢ n§ ng Ny Ny nel® dens® m?® ny n, nel® dens® | |Q]
P1 136 4 4 128 128 2112 5.88 640 128 128 4608 141 | 32
P2 148 10 10 128 128 3984 9.75 1408 320 320 17664 1.40 | 32
P3 288 5 10 280 420 70120 3.40 4410 350 700 80500 1.04 | 70
P4 1290 30 15 1280 256 73410 3.59 8320 3840 1920 142080 0.23 | 128
P5 1935 25 10 2560 1920 134925 1.54 8320 3200 1280 210560 0.28 | 128
P6 2010 20 20 2000 2000 120400 1.48 | 12000 4000 4000 216000 0.15 | 200
P7 2010 20 40 3000 2000 170600 1.68 | 16000 4000 8000 314000 0.11 | 200
P8 2005 12 15 6000 4000 104135 0.52 | 14800 4800 6000 179600 0.06 | 400
P9 20056 10 15 3600 3600 86125 0.59 | 14000 4000 6000 156000 0.06 | 400
P10 2520 30 40 5000 2500 213900 2.76 | 47500 15000 20000 982500 0.05 | 500
P11 2520 50 50 5000 2500 289500 1.51 | 62500 25000 25000 1387500 0.04 | 500

and y, are scaled onto [0,1].
each scenario, i.e, w*

The likelihood attributed to the scenarios is equal under
= ﬁ Yw € Q, being  the set of scenarios. The vectors of the

objective function coefficients, c1, ¢, (¢7), (¢5') are generated using the uniform distribution
over [—2.5,—1.5],[-2.5, —1.5], [—30+ﬁ, —10+ﬁ] and [—30+ﬁ, —10—|—ﬁ], respectively. The
left-hand-side vectors, by, (hY) are fixed to %-kl and %-kl + ﬁ, respectively. The right-hand-
side vectors, be, (h§), are generated using the uniform distribution over [ko, ko + k1 - (ns + ny)]
and [ks + o ks + g Tk (s e + 0y £ ny)], respectively, where ki € [0, 1], k2 € [0,41.5]
and k3 € [0,30.5]. ng and n, are the number of 0-1 and continuous first stage variables,
and n. and n, are the corresponding number of 0-1 and continuous second stage variables.
A is the matrix of coefficients for the first stage constraints, and the technology matrices
T and W¥ for the second stage variables are generated using the uniform distribution over
[0,2],[—0.1 - o 01 -+ 0.3] and [1.5- ap Lo+ 8.0], respectively.

Table 1 gives the dimensions of the mixed 0-1 DEM for the 11 instances of the testbed
that we have experimented with in compact and splitting variable representations. The
headings are as follows: m¢, m?®, number of constraints; n§,n§, number of 0-1 first stage
variables; and nf,n number of continuous first stage variables in compact and splitting
variable respresentation, respectively. n., number of 0-1 second stage variables; n,,, number of
continuous second stage variables. nel®, nel®, number of nonzero coefficients in the constraint
matrix; and dens®, dens®, constraint matrix density (in %) in compact and splitting variable
representation, respectively. Finally, |Q2] denotes number of scenarios. Notice that the numbers
of second stage variables n, and n,, are the same under both representations. It is worth
pointing out that the testbed has 4 types of instances from the DEM dimensions point of
view, namely the instances P1 and P2 are toy ones, P3 up to P7 are medium sized instances,
P8 and P9 are large-scale instances, and P10 and P11 are very large-scale instances given the
state-of-the art of general MIP solvers.

Table 2 shows some of the main results obtained by plain use of the two optimizers COIN-
OR and CPLEX for solving the original problem (20). The headings are as follows: 27’5, LP
solution value; 28775, objective function value of the CPLEX incumbent solution (but it is
the solution value for the toy instances P1 and P2) of problem (20); TP and T4F; 5, elapsed
times (in secs.) to obtain the 2025 and 2077, values, respectively, by plain use of CPLEX in

the compact representation of problem (20). Upper bounds Z(p) and zPP¢(p) of the solution
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Table 2: LP relaxation lower bound and upper bound for the optimal MIP solution value

Case Zip e Tip  Tiire Z(p) Tz ZP(p)  TEG
P1 -81.14 -80.4820  0.01 1| -80.1945(1) 0.27 -80.3516(1) 0
P2 | -100.42 -99.8996  0.01 2 | -99.3327(1)  0.25 -99.6225(1) 0
P3 61.40 -59.4645(*)  0.28 — | -58.6387(10) 70 -59.46(0.1) 28
P4 -76.05 -70.7906(*)  0.09 — | -68.5212(10) 24 -70.7906(1) 40
P5 -86.70 -84.2161(*)  0.21 — | -82.3986(5) 20  -84.1637(0.5) 156
P6 69.30  -66.0478(*)  0.29 - 65.955(5) 125  -66.0315(0.5) 49
P7 -83.50 -79.8772(*)  0.41 — | -77.326(10) 111 -79.8045(1) 87
PS | -116.32 -114.318(%) 0.28 — [ -113.235(5) 61 -114.044(0.5) 37
P9 -95.81  -94.1302(*)  0.26 — | -92.9241(5) 37 -94.1227(0.1) 89
P10 | -301.54 -300.456(*)  0.62 — [ -300.166(0.5) 114  300.425(0.05) 27
P11 | -321.29 -320.283(*)  0.80 — | -317.724(5) 54 -320.249(0.05) 61

—: Time limit exceeded (3 hours = 10800 secs.)
(*): Incumbent solution value at the time limit

value of the original problem that have been obtained as quasi-optimal solution values with
a p% tolerance computed by plain use of COIN-OR and CPLEX, respectively; and, finally,
T5(,) and Tg& c), elapsed times (in secs.) for obtaining the corresponding upper bounds.

Table 2 shows relevant information concerning the difficulty of the instances we were
experimenting with, in particular the larger ones (i.e., from P3 to P11). None of them are
solved up to optimality by plain use of solvers COIN-OR and CPLEX within the three hours
elapsed time limit. Therefore, the objective function value of the incumbent solution provided
by CPLEX, is in some instances just an upper bound of the solution value of the original
stochastic instance, i.e., P4. In some other instances (i.e., P6, P7, P8, P10 and P11) the
incumbent solution coincides with the optimal one. However, this fact is not known by the
solver, but we can guarantee this after having obtained a green solution with our procedures,
evidently requiring a total elapsed time much less than three hours. Finally, there some other
instances (i.e., P3, P5 and P9) for which the plain use of CPLEX provides an incumbent
solution with an objective function value slightly higher than the CLD bound provided by
our procedures, but with a much greater computational effort. Note: In these situations
the quasi-optimality gap between the CPLEX incumbent solution and the best CLD bound,

ppc - . . — — .
defined as ]%\, is for instance P3, \W\ = 3.36 - 1079, for instance P5,
]W! =9.73.107°, and for instance P9, \W! =1.11-10"%. Very small

ppc __ppc
in both of them. However, the traditional optimality gap defined as ]21‘4@#], of value

LP
0.031,0.028 and 0.017 for instances P3, P5 and P9, respectively, is substantially greater. The
details of this conclusion are shown in the results presented in the rest of the section.

Tables 3-4 until 23-24 show in detail the main results of our computational experience for
each of the instances P1 until P11, without and with sophisticated preprocessing and parallel
computation tools (i.e., by using COIN-OR functions and CPLEX, respectively). In all of
them, the heading p denotes the cluster partition i.e., the number of scenario clusters that are
considered. In all the instances we have considered four scenario cluster partitions. For each
cluster partition (i.e., at each column in the tables) we present the interval of the solution
value (i.e., the objective function value of the optimal solution of the original stochastic
mixed 0-1 instance) given by [zr.p(u°, P),Z(p)]. Additionally, a denotes the initial step size
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parameter; zgas|ite], zy alite], zpmalite] and zpcooplite] denote the CLD bounds obtained in
[ite], the corresponding number of iterations required by using the procedures SM, VA, PHA
and DCCP, respectively; Ts, Ty, Tp and Tp denote the related elapsed times (in secs.) by
using the COIN-OR functions. Finally, the upperindex PP¢ in these headings indicate the case
of using CPLEX.

Table 3: CLD bounds without preprocessing and parallel computation tools (COIN-OR). Instance P1

P = 32 clusters P = 16 clusters P = 8 clusters P = 4 clusters
ZMIP € [—81.0529, —80.1945] [—80.7393, —80.1945] [—80.6329, —80.1945] [—80.553, —80.1945]
Qo = 1.9 oo = 1.9 Qg = 1.9 Qg = 1.9
SM ZSM[ite] Ts ZSM[ite] Ts ZSM[ite] Ts ZSM[ite] Ts
z[63] = —80.5098 6 z[60] = —80.4873 5 z[29] = —80.4834 4 z[34] = —80.4825 6
10
VA 2V A [ite] Ty 2V A [ite] Ty 2V A [ite] Ty 2V A [ite] Ty
z[104] = —80.494 12 z[58] = —80.4843 5 z[61] = —80.4845 6 z[45] = —80.482 10
PHA ZPHA [ite] Tp ZPHA [ite] Tp ZPHA [ite] Tp ZPHA [ite] Tp
z[213] = —80.4861 21 z[89] = —80.4886 7 z[108] = —80.4827 10 12
DC-CP ZDccp[ite] Tp ZDccp[ite] Tp ZDccp[ite] Tp ZDccp[ite] Tp
2[82] = —80.5033 9 z[68] = —80.4857 7 2[32] = —80.4836 3 z[14] = —80.4827 3
5

Table 4: CLD bounds with preprocessing and parallel computation tools (CPLEX). Instance P1

p = 32 clusters P = 16 clusters P = 8 clusters P = 4 clusters
ZMIP € [—81.0529, —80.3516] [—80.7393, —80.3516] [—80.6329, —80.3516] [—80.553, —80.3516]
Qg = 1.9 oo = 1.9 ap = 1.9 Qo = 1.9
SM Z2hlite]  TEPS z2h lite]  TEPC zehlite]  TEPC zeh lite]  TEPC
z[62] = —80.5113 16 z[63] = —80.4917 10 z[29] = —80.4843 4 3
VA Arilite]  THFC Arilite]  THPC Arilite]  THPC Arilite]  THPC
2[133] = —80.4952 34 z[58] = —80.4847 10 z[69] = —80.4842 6 z[37) = —80.482 4
11
PHA ] TP it TP e T it TP
z[180] = —80.4857 48 z[105] = —80.4852 17 z[115] = —80.482 12 7
BC-CP T oplitd] TD ool TY Tt TF | aoplitd TR
2[80] = —80.5137 25 2[49] = —80.4863 19 z[21] = —80.4839 6 2

Tables 3-4 show the results reported for instance P1. The CLD bounds obtained by using
both solvers are very similar, but with a higher computational effort in case of using CPLEX,
perhaps due to the small dimensions of the instance. Notice that this happens for all the
four procedures and the four cluster partitions that we have experimented with, but for the
column corresponding to the partition in p = 4 clusters, where each cluster submodel has 8
scenarios and the four procedures are more efficient when using CPLEX. The first column in
both tables corresponds to the traditional LD, where the number of clusters is the number of
scenarios. Notice that in this column the color of the solutions is red (i.e., the third stopping
criterion has been satisfied) or blue (second stopping criterion), which indicates that the CLD
bound is, at least, the strongest bound that can be obtained for the given tolerances. The
color of the solutions in both tables is green (first stopping criterion), which means that the
CLD bound is the solution value of the original problem. Notice also that for some cases,
although the CLD bound is equal to the solution value of the original problem, the color of
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the results is not green, see VA for p =4 in both tables. This is due to the fact that the CLD
bound does not satisfy the NAC, i.e., the norm of the corresponding subgradient vector 3" is
higher than the given tolerance.

Table 5: CLD bounds without preprocessing and parallel computation tools (COIN-OR). Instance P2

P = 32 clusters p = 16 clusters P = 8 clusters p = 4 clusters
ZMIP € [—100.289, —99.3327] [—100.15, —99.3327] [—99.9725, —99.3327] [—99.944, —99.3327]
oo = 1.9 Qg = 1.9 Qo = 1.5 oo = 1.5

SM zsmlite] Ts zsmlite] Ts zsmlite] Ts zsmlite] Ts
z[51] = —99.9233 3 z[31] = —99.9017 2 z[28] = —99.8997 2 z[8] = —99.9002 1

10

VA 2V A [ite] Ty 2V A [ite] Ty 2V A [ite] Ty 2V A [ite] Ty
z[30] = —99.9436 2 z[17] = —99.9578 1 z[7) = —99.9537 0 z[5] = —99.944 1
8

PHA zpraalite] Tp zpralite] Tp zpaalite] Tp zpaalite] Tp
z[39] = —99.9003 7 4 4 z[27] = —99.9009 5

16

DC-CP 2ZDCCP [ite] Tp ZDCCP [ite] Tp 2ZDCCP [ite] ) ZDCCP [ite] )
z[24] = —99.9504 2 z[35] = —99.9091 3 z[21] = —99.9002 2 z[8] = —99.9122 2
7

It can be observed in the results for the larger instances that sometimes the optimal cluster

partitioning is not the smallest. In these situations, it may be more efficient to consider a
great number of clusters and then, more manageable sized cluster submodels.

Tables 5-6 show the results obtained for instance P2. In order to eliminate the oscillatory

behavior of the iterative procedures for narrow solution value intervals, we have reduced the
initial step size parameter for the cases with partitions in p =8 and 4 clusters. Again the
optimal partition is the one shown in the last column of both tables where the solution value
is found. The quality of the CLD bounds obtained for the small instances P1 and P2 is very
similar, but the elapsed time is smaller for the procedures SM and DCCP, followed by VA
and PHA. SM is even more efficient than the plain use of CPLEX for instance P2.

Table 6: CLD bounds with preprocessing and parallel computation tools (CPLEX). Instance P2

P = 32 clusters P = 16 clusters P = 8 clusters P = 4 clusters
ZMIP € [—100.289, —99.6225] [—100.15, —99.6225] [—99.9725, —99.6225] [—99.944, —99.6225]
oy = 1.9 oo = 1.9 oy = 1.5 oo = 1.5

SM zehlite]  TEPS zohlite]  TEPC zohlite]  TEPC zehlite]  TEPC
z[28] = —99.9378 11 z[32] = —99.9023 8 10 1

VA Plite] T lite]  TE° lite]  TE° lite] T
z[31] = —99.9397 13 z[18] = —99.9348 3 z[9] = —99.9663 2 z[5] = —99.944 1
5

PHA BN T e it TP it TP T lite] TP
z[116] = —99.9014 51 23 z[50] = —99.8996 6 3

BC-CP oot TR ool IO ool D Tl D
z[41] = —99.9346 17 z[30] = —99.9057 7 z[20] = —99.9013 3 z[11] = —99.9010 2
3

P3 is one of the most difficult instances in our testbed, in spite of the dimensions of its

model. Tables 7-8 report the main results. The COIN-OR functions (see Table 7) require
more than three hours to obtain the CLD bounds in case of considering cluster partitions in
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p =10 or less clusters and then, we cannot provide the interval of the solution value, due to
exceeding the time limit . However, this is obtained at the first iteration when using CPLEX
(see Table 8). After the blue solution is obtained at the first iteration, the procedures continue
iterating until obtaining the strongest CLD bound by satisfying the third stopping criterion,

i.e.

, a red solution.

Table 7: CLD bounds without preprocessing and parallel computation tools (COIN-OR). Instance P3

p = 70 clusters p = 35 clusters p = 10 clusters P = 5 clusters
ZMIP € [-59.5529, —58.6387] [-59.5142, —58.6387] [—, —58.6387] [—, —58.6387]
a():().5 a0:0.5 Qg = — Qg = —

SM 2SM [ite] Ts 2ZSM [ite] Ts 2SM [ite] Ts 28 M [ite] Ts
z[18] = —59.487 117 z[4] = —59.4902 107 - - - =

VA 2V A [ite] Ty 2V A [ite] Ty 2V A [ite] Ty 2V A [ite] Tv
z[29] = —59.481 180 | z[17] = —59.4858 367 - - - -

PHA ZPHA[ite] Tp ZPHA[ite] Tp szA[ite] Tp szA[ite] Tp
z[53] = —59.4955 329 | z[60] = —59.4815 1233 - - - -

DC-CP ZDccp[ite] Tp ZDccp[ite] Tp 2ZDCCP [ite] T ZDccp[ite] T
z[18] = —59.4863 116 | z[20] = —59.4798 423 - - - -

Table 8: CLD bounds with preprocessing and parallel computation tools (CPLEX). Instance P3

p = 70 clusters

p = 35 clusters

p = 10 clusters

p = 5 clusters

Zmip € [—59.5529, —59.46] [—59.5142, —59.46) [—59.4821, —59.46] [—59.4763, —59.46]
oo = 0.5 Qg = 0.5 Qo = 0.5 Qo = 0.1
SM lite] 1 Tlite] T2 lite]  TD" lite] 17
2[10] = —59.4925 29 2[11] = —59.4863 34 z[0] = —59.4821 6 2[0] = —59.4763 10
2[54] = —59.4669 457
VA APlite]  TTP° APlite]  TTP° APlite]  TTP° APlite]  TTP°
2[26] = —59.4847 71 2[23] = —59.4828 68 z[0] = —59.4821 6 2[0] = —59.4763 10
2[50] = —59.4649 432
PHA T alite] TP e alite] TP e alite] TP e alite] TP
z[24] = —59.483 64 z[9] = —59.4888 28 z[0] = —59.4821 6 z[0] = —59.4763 10
2[117] = —59.4647 967
DC-CP Deoplit] T ot TR ot 1D ot Th"
2[13] = —59.4934 35 2[12] = —59.4848 37 2[0] = —59.4821 5 2[0] = —59.4763 10
2[62] = —59.4647 489

Tables 9-10 and 11-12 show the results for the instances P4 and P5, respectively, being
very similar for both instances. As in instance P3, more than three hours are required to
obtain the CLD bounds by using COIN-OR in case of considering cluster partitions in p =
8 or less clusters (see Tables 9 and 11). In both instances, the strongest CLD bounds are
obtained by using CPLEX in case of considering a partition in p = 4 clusters (see Tables 10
and 12).
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Table 9:

CLD bounds without preprocessing and parallel computation tools (COIN-OR). Instance P4

P = 128 clusters P = 32 clusters p = 8 clusters P = 4 clusters
ZMIP € [—73.9588, —68.5212] [-70.108, —68.5212] [—, —68.5212] [—, —68.5212]
a0:149 0602149 apg = — Qg = —

SM 28 M [ite] Ts 28 M [ite] Ts ZSM [ite] Ts 28 M [ite] Ts
z[104] = —71.5568 207 2[90] = —71.0946 539 - - - -

VA 2V A [ite] Tv 2V A [ite] Ty 2V A [ite] Ty 2V A [ite] Ty
z[101] = —71.3968 206 z[63] = —71.0582 386 - - - -

PHA szA[ite] Tp szA[ite] Tp ZPHA [ite] Tp szA[ite] Tp
z[213] = =71.3772 438 | z[154] = —71.0031 954 - - - -

DC-CP 2ZDCCP [ite] Tp 2ZDCCP [ite] Tp 2ZDCCP [ite] To | zpccp [ite] )
z[135] = —71.4846 285 | z[108] = —71.1141 669 - - - -

Table 10: CLD bounds with preprocessing and parallel computation tools (CPLEX). Instance P4

P = 128 clusters P = 32 clusters P = 8 clusters P = 4 clusters
zMmIP € [—73.9588, —70.7906] [—70.108, —70.7906] [—71.3013, —70.7906] [-71.0679, —70.7906]
oo = 1.9 Qo = 1.9 oo = 1.9 Qo = 1.9

SV Tl 17 Tl 17 Tl 17 TTite] T
z[106] = —71.5566 310 z[75] = =71.1511 204 z[21] = —70.911 345 z[7) = —70.8615 346

VA ZArilite]  THPC 2Arilite]  THC A lite]  THC A lite]  THC
z[142] = —71.4157 440 z[57] = =71.0701 161 z[30] = —70.897 483 z[29] = —70.8533 872

PHA T fite] TP T fite] TD T fite] TP T fite] TP
z[188] = —71.3789 606 z[149] = —71.0235 442 z[16] = —71.0144 218 z[14] = —70.895 484

DC-CP Tecrlite] TR et TR E T ot TR
z[150] = —71.584 486 z[97] = —71.1523 268 z[20] = —70.9028 328 z[14] = —70.895 484

Table 11: CLD bounds without preprocessing and parallel computation tools (COIN-OR). Instance P5

P = 128 clusters P = 32 clusters P = 8 clusters P = 4 clusters
ZMIP € [—89.1014, —82.3986] [—86.7169, —82.3986] [—, —82.3986] [—, —82.3986]
Qo = 1.9 Qo = 1.9 Qg = 1.9 Qg = —

SM ZSM [ite] Ts 2ZSM [ite] Ts ZSM [ite] Ts ZSM [ite] Ts
z[99] = —85.4933 170 2[99] = —84.7134 583 - - - -

VA 2V A [ite] Ty 2V A [ite] Ty 2V A [ite] Ty 2V A [zte Ty
z[228] = —85.2149 512 | z[156] = —84.5161 997 - - - -

PHA zpralite] Tp zpralite] Tp zpralite] Tp zpHAlite Tp
2[240] = —84.9909 403 | z[193] = —84.4516 1076 - - - -

DC-CP ZDccp[ite] Tp ZDccp[ite] Tp ZDccp[ite] Tp ZDCCP[’Lte Tp
z[163] = —85.5784 296 z[107] = —84.785 651 - - - -
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Table 12: CLD bounds with preprocessing and parallel computation tools (CPLEX). Instance P5

P = 128 clusters P = 32 clusters P = 8 clusters P = 4 clusters
ZMIP € [—89.1014, —84.1637] [—86.7169, —84.1637] [—85.4198, —84.1637] [—85.1652, —84.1637]
Qo = 1.9 Qo = 1.9 Qo = 1.9 oo = 1.9

SM zehlite]  TEPC zohrlite]  TEPC zehlite]  TEPS zehlite]  TEPS
z[123] = —85.5389 546 z[88] = —84.7792 247 z[70] = —84.2606 1151 | z[21] = —84.2370 1069
VA A lite]  TH ZArilite]  THPC Arilite]  THC Arilite]  THC
z[228] = —85.2448 941 z[189] = —84.5286 593 z[65] = —84.2433 1148 | 2[47] = —84.2243 1487
PHA T it TP T it TP T fite] TP T fite] TP
2[291] = —84.9872 1241 | z[220] = —84.4464 949 z[107] = —84.2429 1881 | z[46] = —84.2259 1383
DC-CP e oplite] TE o plite] TE e oplite] T e oplite] TE
z[145] = —85.576 578 z[110] = —84.9279 313 2[92] = —84.3066 1511 | z[28] = —84.2349 1730

P6 and P7 are instances with similar dimensions and the results are also similar to those
obtained for the instances P4 and P5 in the sense that the behavior of the four procedures is
analogous when using COIN-OR for partitions in p =8 and 4 clusters (see Tables 13 and 15).
However when using CPLEX the optimal partition is p =4 clusters for P6 and p =8 clusters
for P7 (see Tables 14 and 16), i.e., the smallest and then, reaching the optimal solution in
a more efficient way for the four procedures. Notice that for instance P7 with p =8 and 4
clusters, a feasible CLD bound is obtained at iteration zero for all the procedures by using
CPLEX. The efficiency of the four procedures is lower for p =4 clusters and, in particular,
PHA requires more than 15000 secs. to reach the optimal solution.

Table 13: CLD bounds without preprocessing and parallel computation tools (COIN-OR). Instance P6

P = 200 clusters P = 50 clusters p = 8 clusters P = 4 clusters
ZMIP € [—68.0453, —65.955] [—66.639, —65.955] [—, —65.955] [—, —65.955]
a0:149 0402149 Qg = — Qg = —
SM ZSM[ite] Ts ZSM[’ite] Ts 2ZSM [ite] Ts ZSM[ite] Ts
z[101] = —66.2772 281 z[30] = —66.1435 176 - - - -
VA ZVA[ite] Ty ZVA[ite] Ty ZVA[ite] Ty ZVA[ite] Ty
z[110] = —66.205 309 z[73] = —66.0966 444 - - - -
PHA zpaalite] Tp zpaalite] Tp zpualite] Tp zpaalite] Tp
z[189] = —66.1759 498 z[95] = —66.088 543 - - - -
DC-CP ZDccp[ite] Tp ZDccp[ite] Tp ZDccp[ite] Tp ZDccp[ite] Tp
z[149] = —66.2739 443 | 2[104] = —66.1349 602 - - - -
Table 15: CLD bounds without preprocessing and parallel computation tools (COIN-OR). Instance P7
P = 200 clusters P = 50 clusters p = 8 clusters p = 4 clusters
ZMIP € [—81.934, —77.326] [—80.5159, —77.326] [—, —77.326] [—, —77.326]
Qo = 1.9 Qo = 1.9 oo = 1.9 g = —
SM 28 M [ite] Ts ZSM [ite] Ts 28 M [ite] Ts ZSM [ite] Ts
z[37] = —80.1946 128 z[26] = —79.9765 256 - - - -
VA zvalite] Ty zvalite] Ty zvalite] Ty zvalite] Ty
z[55] = —80.1311 128 z[32] = —79.969 384 - - - =
PHA ZPHA[ite] Tp ZPHA[ite] Tp ZPHA[ite] Tp zPHA[zte Tp
z[213] = —80.0999 502 | z[198] = —79.9803 1623 - - - -
DC-CP ZDccp[ite] Tp ZDccp[ite] Tp ZDccp[ite] T ZDCCP[Zte T
z[126] = —80.1823 312 z[34] = —79.9836 328 - - - -
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Table 14: CLD bounds with preprocessing and parallel computation tools (CPLEX). Instance P6

P = 200 clusters

P = 50 clusters

p = 8 clusters

P = 4 clusters

saip € | [—68.0453, —66.0315] [—66.639, —66.0315] [—66.1605, —66.0315] [66.1153, —66.0315]
Qo = 1.9 oo = 1.9 Qg = 1.9 Qo = 1.9
SM zehlite]  TEPS zehlite]  TEPS zhlite]  TEPC zehlite]  TEPC
2[107) = —66.2753 558 | 2[63] = —66.1358 177 | 2[18] = —66.0601 302 | z[8] = —66.0503 315
935
VA 2P lite]  TOFC 2AFlite]  TOFC 2AFslite]  TEFC 2 lite]  TEFC
2[88] = —66.2136 461 2[65] = —66.094 178 | 2[25] = —66.0615 421 2[7] = —66.106 194
1282
PHA ] T A T A T e T
z[181] = —66.1928 963 z[106] = —66.0885 279 z[37] = —66.0582 582 z[16] = —66.0488 437
1468
BC-CP B i B i o T v Tecplie] T
2[51) = —66.9962 227 | 2[46] = —66.5703 111 2[9] = —66.062 160 | z[6] = —66.0519 188
491
Table 16: CLD bounds with preprocessing and parallel computation tools (CPLEX). Instance P7
P = 200 clusters P = 50 clusters P = 8 clusters P = 4 clusters
Zmip € [—81.934, —79.8045] [—80.5159, —79.8045] [—79.9739, —79.8045] [-79.917, —79.8045]
oo = 1.9 oo = 1.9 oo = 1.9 oo = 1.9
SM zbhslite]  TEP® Zehslite]  TEPS Zehslite]  TEPC zbhslite]  TEPC
2[45] = —80.2291 201 | 2[36] = —79.9984 143 2[0] = —79.9739 33 2[0] = —79.917 130
1848 6319
VA AP lite]  THPC AP lite]  THPC A lite]  THPC A lite]  THPC
z[51] = —80.157 237 2[36] = —79.9837 145 z[0] = =79.9739 33 z[0] = =79.917 130
2293 6689
PHA T T T T T T B e
2[131] = —80.0797 602 | 2[45] = —79.949 180 2[0] = —79.9730 33 2[0] = —79.917 129
4435 - -
BeCP N S R P I E N I N
2[117) = —80.1835 566 | z[54] = —80.0096 219 20] = —79.9739 33 2[0] = —79.917 129
4262 8419

instance P8 for partitions in p =8 clusters by using CPLEX.
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P8 and P9 are large instances both with 400 scenarios. Again, when the procedures are
implemented by using COIN-OR for partitions in a small number of clusters, say p =20 and
8 in instance P8 (see Table 17) and p = 8 in instance P9 (see Table 19), no CLD bounds
have been obtained within the elapsed time limit, 10800 secs. However, the optimal partition
is obtained by using CPLEX for partitions in p =8 clusters in both instances (see Tables 18
and 20), i.e., the smallest. The optimal CLD bound is obtained by all the four procedures in




Table 17:

CLD bounds without preprocessing and parallel computation tools (COIN-OR). Instance P8

p = 400 clusters P = 50 clusters P = 20 clusters P = 8 clusters
ZMIP € [—116.043, —113.235] [-114.531, —113.235] [—,—113.235] [—,—113.235]
0402149 0602149 apg = — Qg = —

SM 28 M [ite] Ts ZSM [ite] Ts 28 M [ite] Ts ZSM [ite] Ts
z[73] = —114.622 128 z[74] = —114.371 1152 - = - =

VA zvalite] Ty zvalite] Ty zvalite] Ty zvalite] Ty
z[57] = —114.568 68 z[39] = —114.361 538 - - - =

PHA ZPHA[ite] Tp ZPHA[ite] Tp zPHA[ite Tp zPHA[zte Tp
z[217] = —114.457 296 | z[153] = —114.362 2437 - - - -

DC-CP ZDccp[ite] Tp ZDccp[ite] Tp chcp[ite T ZDCCP[Zte T
z[123] = —114.6 165 | z[106] = —114.367 1560 - - - -

Table 18: CLD bounds with preprocessing and parallel computation tools (CPLEX). Instance P8

P = 400 clusters p = 50 clusters P = 20 clusters P = 8 clusters
zZmIp € [—116.043, —114.044] [—114.689, —114.044] [—114, 531, —114.044] [—114.427, —114.044]
Qo = 1.9 Qo = 1.9 Qo = 1.9 Qo = 1.9
SM zehlite]  TEPS zehlite]  TEPS zehlite]  TEPC zehlite]  TEPC
z[126] = —114.626 795 z[72] = —114.382 340 z[22] = —114.342 303 z[16] = —114.324 362
910
VA Tlite] T Tlite]  TE° TClite] T TPite] IO
z[65] = —114.573 346 2[43] = —114.368 198 z[28] = —114.34 406 z[24] = —114.325 560
1411
PHA T e T it TP it T e TP
z[191] = —114.457 1236 | 2[99] = —114.345 460 z[58] = —114.333 760 1127
DC-CP ool D T oplitd] TD oot TR et TR
z[156] = —114.623 1026 | z[91] = —114.387 440 z[24] = —114.486 312 z[15] = —114.318 325
958

Table 19: CLD bounds without preprocessing and parallel computation tools (COIN-OR). Instance P9

P = 400 clusters P = 50 clusters P = 20 clusters P = 8 clusters
ZMIP € [—95.8124, —92.9241] [—94.4468, —92.9241] [—94.2895, —92.9241] [—,—92.9241]
Qo = 1.9 Qo = 1.9 Qo = 1.9 Qg = —

SM ZSM [ite] Ts ZSM [ite] Ts ZSM [ite] Ts ZSM [ite] Ts
z[79] = —94.3658 69 z[32] = —94.1975 176 | z[41] = —94.1482 1278 - -

VA ZVA[ite] Ty ZVA[ite] Ty ZVA[ite] Ty ZVA[ite] Ty
z[53] = —94.3311 47 z[31] = —94.2037 175 | z[21] = —94.1799 601 - -

PHA zpraalite] Tp zpraalite] Tp zpaalite] Tp zpraalite] Tp
z[247] = —94.2356 238 | z[142] = —94.1893 805 | z[88] = —94.1646 2546 - -

DC-CP ZDccp[ite] Tp ZDccp[ite] Tp ZDccp[ite] Tp ZDccp[ite] Tp
z[134] = —94.2895 139 z[60] = —94.1901 351 | z[56] = —94.1478 1720 - -
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Table 20: CLD bounds with preprocessing and parallel computation tools (CPLEX). Instance P9

P = 400 clusters

p = 50 clusters

P = 20 clusters

P = 8 clusters

Zvip € | [~95.8124, —94.1227] [—94.4468, —94.1227] [—94.2895, —94.1227] [94.22, —94.1227]
oo = 1.9 Qo = 1.9 Qo = 1.9 Qo = 1.9
SM zhlite]  TEPC zehlite]  TEPS zehlite]  TEPS zehlite]  TEPS
2[79] = —04.3064 436 | 2[14] = —94.2129 44 | 2[52] = —94.1726 176 | 2[11] = —94.1461 81
VA ZArilite]  THPC ZArilite]  THC Arilite]  THC Arilite]  THC
256 = —94.3434 302 | 2[33] = —94.2048 100 | 2[29] = —94.1675 92 | 2[17] = —94.1634 115
PHA e T ] T ] T Tt T
z[181] = —94.2522 997 z[107] = —94.1595 474 z[49] = —94.1535 158 2[30] = —94.1407 192
BO-CP P s s Tt TE I 7 R I 7 R
2[129] = —94.3973 755 2[30] = —94.209 93 | 2[73] = —94.1793 226 | 2[12] = —94.1502 90

P10 and P11 are the largest instances both with 500 scenarios. Tables 21-22 and 23-24
report the results. As in previous situations, when the procedures are implemented by using
COIN-OR for partitions in a small number of clusters, say p =10 for all procedures, but p =50
for PHA in instance P11, no CLD bounds have been obtained within the elapsed time limit,
10800 secs (see Tables 21 and 23). However when using CPLEX (see Tables 22 and 24), the
results are slightly different in both instances. By considering the partition in p =5 clusters,
the four procedures obtain the optimal solution in both instances, but VA and DCCP require
more than three hours of elapsed time for instance P11. Notice that the best results for P11
are obtained for partitions in p =10 clusters (see Table 24).

By considering the partition in p =5 clusters, the four procedures obtain the optimal
solution for instance P10 when using CPLEX (see Table 22). The optimal solution is obtained
more efficiently in procedures SM, PHA and DCCP for partitions in p =10 clusters, but VA
stops in a red solution given just the strongest CLLD bound since it coincides with the solution
value of the original problem. Notice that the norm of the subgradient vector for this CLD
bound is 0.015 which is slightly greater than the given tolerance e; =0.01 for the stopping
criterion 1.

Table 21: CLD bounds without preprocessing and parallel computation tools (COIN-OR). Instance P10
P = 500 clusters P = 50 clusters P = 10 clusters P = 5 clusters
ZMIP € [—301.865, —300.166] [—300.546, —300.166] [—, —300.166] [—, —300.166]
a0:149 0402149 Qg = — Qg = —

SM ZSM[ite] Ts ZSM[ite] Ts ZSM[ite] Ts ZSM[ite] Ts
z[50] = —300.506 342 | z[18] = —300.462 801 - - - -

VA 2V A [ite] Tv 2V A [ite] Tv 2V A [ite] Ty 2V A [ite] Ty
z[52] = —300.494 290 | z[36] = —300.464 1528 - - - -

PHA szA[ite] Tp szA[ite] Tp ZPHA [ite] Tp szA[ite] Tp
z[126] = —300.479 912 | z[65] = —300.462 2811 - - - -

DC-CP 2ZDCCP [ite] Tp 2ZDCCP [ite] Tp 2ZDCCP [ite] To | zpccp [ite] T
z[89] = —300.535 624 | z[20] = —300.468 906 - - - -
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Table 22: CLD bounds with preprocessing and parallel computation tools (CPLEX). Instance P10

P = 500 clusters P = 50 clusters p = 10 clusters P = 5 clusters
zmIp € [—301.865, —300.425] [—300.546, —300.425] [—300.468, —300.425] [—300.461, —300.425]
Qo = 1.9 oo = 1.9 Qo = 1.9 oo = 1.9
SN Tl 17 it 17 Tl 17 TTite] T
z[63] = —300.5 724 z[13] = —300.465 151 z[3] = —300.459 63 z[0] = —300.461 24
1238 1249
VA Arilite]  THPC Arilite]  THPC Arilite]  THC Arilite]  THC
z[56] = —300.508 669 z[20] = —300.473 238 z[6] = —300.465 107 z[0] = —300.461 24
z[65] = —300.456 804 780
PHA BN i it T T lite] TP P lite] TP
z[117] = —300.48 1358 | z[25] = —300.467 292 z[21] = —300.458 295 z[0] = —300.461 24
1065 1412
DC-CP e oplitd]  TH e oplitd] TR e oplitd TR e oplitd TR
z[101] = —300.512 1223 | z[10] = —300.474 113 z[3] = —300.463 63 z[0] = —300.461 23
618 817

Table 23: CLD bounds without preprocessing and parallel computation tools (COIN-OR). Instance P11

P = 500 clusters P = 50 clusters p = 10 clusters P = 5 clusters
ZMIP € [—322.35, —317.724] [—320.479, —317.724] [—, —317.724] [—, —317.724]
a0:1.9 a0:1.9 oy = — oy = —

SM ZSM [ite] Ts ZSM [ite] Ts 2ZSM [ite] Ts ZSM [ite] Ts
z[84] = —320.416 2324 | z[46] = —320.297  3035.31 - - - -

VA ZVA[ite] Ty ZVA[ite] Ty ZVA[ite] Ty ZVA[ite] Ty
z[87] = —320.391 2562 | z[26] = —320.309 1644.04 - - - -

PHA zpaalite] Tp zpaalite] Tp zpaalite] Tp zpaalite] Tp
z[186] = —320.383 5302 - - - - - -

DC-CP ZDccp[ite] Tp ZDccp[ite] Tp ZDccp[ite] Tp ZDccp[ite] Tp
z[107] = —320.453 3043 | z[52] = —320.299 3652 - - - -

Table 24: CLD bounds with preprocessing and parallel computation tools (CPLEX). Instance P11

P = 500 clusters P = 50 clusters p = 10 clusters P = 5 clusters
ZMIP € [—322.35, —320.249] [—320.479, —320.249] [—320.326, —320.249] [—320.31, —320.249]
oo = 1.9 oy = 1.9 oo = 1.9 oy = 1.9
SM Trlite] T2 Tt 1T T lite] T T lite] T
z[81] = —320.4 1920 z[38] = —320.301 1100 | z[25] = —320.283 702 2294
732

VA AP lite]  THPC AP lite]  THPC AP lite]  THPC AP lite]  THPC
z[137] = —320.393 3528 z[33] = —320.305 983 z[11] = —320.32 307 z[12] = —320.297 2159

2375 - -
PHA T lite] TP T lite] TP T lite] TP T lite] TP
z[170] = —320.361 4519 | z[168] = —320.284 5115 1520 5032
DC-CP e plite] TE et TE o plite] TE o plite] TR
z[42] = —320.313 773 z[58] = —320.301 1783 | z[27] = —320.283 752 z[8] = —320.283 1343

2806 - -
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6 Conclusions

In this paper we have presented four scenario Cluster based Lagrangian Decomposition
(CLD) procedures for obtaining strong lower bounds to the solution value of two-stage
stochastic mixed 0-1 problems, where the uncertainty appears anywhere in the coefficients
of the 0-1 and continuous variables in the objective function and constraints in both
stages. For obtaining the CLD bounds we have used three popular subgradient based
procedures, namely, the traditional Subgradient Method (SM), the Volume Algorithm (VA)
and the Progressive Hedging Algorithm (PHA). Additionally, we have also used the procedure
Dynamic Constrained Cutting Plane (DCCP). We have used the same scheme in all of them.
Two new main ideas have been incorporated in the implementation of the procedures. The
first consists of the scenario cluster partitioning that allows us to compute at iteration zero of
each Lagrange multiplier updating procedure, a strong lower bound for tightening the interval
of the solution value of the original problem. The second idea consists of obtaining a good
upper bound of this interval that is efficiently computed by the MIP solver of choice as a
quasi-optimal solution for a given tolerance in relation to the best LP relaxation value in its
branch-and-cut phase.

Moreover, we have given computational evidence of the model tightening effect that
sophisticated preprocessing, cut generating and appending and parallel computation tools
have in stochastic integer programming, by using, in this case, the MIP solver CPLEX versus
the tools implemented in the COIN-OR LP/MIP functions.

The extensive computational experience reported in the paper has used small, medium,
large and very large sized instances in the testbed we have experimented with (in total,
11 instances), by considering four sizes of cluster partitions. The instances are so difficult
that the plain use of CPLEX cannot guarantee the optimality of the incumbent solution
within the three-hour time limit, but for two toy instances. We can draw the following
conclusions: (1) Very frequently the four procedures for obtaining the CLD bound give the
solution value of the original stochastic mixed 0-1 problem and, in the other situations they
provide a narrow interval of its solution value; (2) The performance of the CLD procedures
outperforms the traditional LD scheme based on single scenarios in both the quality of the
bounds and computational effort; (3) The CLD bounds obtained by both solvers (being used
as auxiliary tools for solving LP/MIP submodels) are very similar for small problems, but
with a higher computational effort in case of using a more sophisticated preprocessing, cut
generation and appending tools, i.e., using CPLEX (where parallel computing tools are also
used); (4) CPLEX outperforms COIN-OR for medium, large and very large instances, both
by plain use for problem solving and as auxiliary solvers of submodels, mainly for partitions
in a small number of clusters (and, then, larger MIP submodels); and (5) The efficiency of
the four procedures, as contrasted in the testbed we have experimented with, is very similar
in quality (i.e., tightness) to the CLD bound, but the elapsed time for obtaining it is smaller
for the procedures SM and DCCP followed by VA and PHA.

As a future work, we are studying how to extend these CLD procedures to the multistage
case for tightening the lower bound of the solution value of the submodels attached to a subset
of the set of active Twin Node Families (TNFs) in the Branch-and-Fix phase of our Branch-
and-Fix Coordination algorithm, see [9], for solving large-scale multi-stage stochastic mixed
0-1 problems. So, the LP relaxation bound (usually, a non very strong one) is to be replaced
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by the CLD bound in the subset of active TNFs so-called super candidate TNFs (4 1a super
node concept in Branch-and-Bound terminology for solving deterministic MIP problems).
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