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Abstract
Lexicon projects (LPs) are large-scale data resources in different languages that present behavioral results from visual word 
recognition tasks. Analyses using LP data in multiple languages provide evidence regarding cross-linguistic differences as 
well as similarities in visual word recognition. Here we present the first LP in a Semitic language—the Hebrew Lexicon 
Project (HeLP). HeLP assembled lexical decision (LD) responses to 10,000 Hebrew words and nonwords, and naming 
responses to a subset of 5000 Hebrew words. We used the large-scale HeLP data to estimate the impact of general predictors 
(lexicality, frequency, word length, orthographic neighborhood density), and Hebrew-specific predictors (Semitic structure, 
presence of clitics, phonological entropy) of visual word recognition performance. Our results revealed the typical effects of 
lexicality and frequency obtained in many languages, but more complex impact of word length and neighborhood density. 
Considering Hebrew-specific characteristics, HeLP data revealed better recognition of words with a Semitic structure than 
words that do not conform to it, and a drop in performance for words comprising clitics. These effects varied, however, across 
LD and naming tasks. Lastly, a significant inhibitory effect of phonological ambiguity was found in both naming and LD. 
The implications of these findings for understanding reading in a Semitic language are discussed.
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Introduction

The ability to rapidly identify printed sequences of letters as 
individual words and automatically access their phonologi-
cal and semantic representations has intrigued scientists for 
decades, and is still the focus of extensive research in cogni-
tive science. Tasks that measure participants reaction times 
(RTs) and recognition accuracy of printed letter sequences 
have provided important insights regarding the computations 
underlying visual word recognition. Perhaps the most common 
experimental paradigm in such studies is the lexical decision 
(LD) task, where participants are presented with letter strings, 
one at a time, and are required to provide fast responses as to 
whether or not they represent existing words. Another common 
task is the naming task, in which participants are required to 

pronounce, as fast and as accurately as possible, a visually 
presented word. RT and accuracy data using the LD and nam-
ing tasks were taken to reveal the underlying computations 
in recognizing printed words presented in isolation, retriev-
ing their phonological structure, and accessing their semantic 
representation. Across many studies, they demonstrated highly 
replicable effects which today are the landmarks of visual word 
recognition: As a non-exhaustive list, words are recognized 
faster than nonwords (i.e., the lexicality effect, e.g., Forster & 
Chambers, 1973; Monsell et al., 1989); frequent words are rec-
ognized faster than infrequent words (i.e., the word frequency 
effect, e.g., Broadbent, 1967; Brysbaert et al., 2017); shorter 
words are processed faster than longer words (i.e., the word 
length effect, e.g., Fredriksen & Kroll, 1976; Hudson & Berg-
man, 1985); and the number and frequency of orthographic 
neighbors affect decision times (i.e., the neighborhood density 
effect; e.g., Andrews, 1992; Grainger et al., 1989).

Lexicon projects in different languages

In the first decades of visual word recognition studies, 
researchers typically employed experimental designs in 
which verbal stimuli were selected to represent factors of 
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interest (e.g., imageability, concreteness, morphological 
complexity, homography, homophony), measuring per-
formance for these stimuli. Generally, these studies used 
a relatively small set of stimuli, often not representative 
of the variety found across the full lexicon, thus lim-
iting their external validity. One prominent example is 
the focus on monosyllabic words in English in visual 
word recognition studies, despite the fact that in many 
languages they represent a small portion of the words 
in the language (e.g., less than 15% of words, Ferrand 
et al., 2010).

An elegant solution to these limitations was the Eng-
lish Lexicon Project (ELP, Balota et al., 2007), which 
presented an open large-scale data resource that included 
over 40,000 words along with their respective behavioral 
data in both the LD and the naming tasks. The ELP made 
it possible, for the first time, to test a range of hypoth-
eses regarding word recognition computations without the 
need to construct a targeted experiment with its inevitable 
limitations. Instead, researchers could generate hypotheses 
regarding the impact of any variable, and simply extract 
the behavioral data for all relevant stimuli from the data-
base (a process sometimes referred to as “virtual experi-
ments”, see, e.g., Kuperman, 2015). The ELP has been 
used extensively since its publication in order to explore 
the underlying computations of word recognition in Eng-
lish, and to date has been cited over 3000 times. It has been 
useful in validating and testing the impact of a range of 
psycholinguistic factors on reading, such as words’ seman-
tic transparency (Kim et al., 2018), word length (e.g., New 
et al., 2006), imageability (e.g., Dymarska et al., 2023); 
orthographic–phonological regularities (e.g., Chee et al., 
2020; Siegelman et al., 2020), and orthographic–semantic 
consistency (Siegelman et al., 2022).

Importantly, the ELP has also inspired the creation 
of parallel lexicon projects (LPs) in other languages, to 
provide a critical cross-linguistic perspective in reading 
research. These LPs include British English, to be distin-
guished from American English (Keuleers et al., 2012); 
Dutch (Keuleers et  al., 2010); French (Ferrand et  al., 
2010); Spanish (Aguasvivas et al., 2018); Persian (Nemati 
et al., 2022); Malay (Yap et al., 2010); German (Schreuter 
& Schroeder, 2017); Portuguese (Soares et al., 2019); and 
Chinese (Tse et al., 2017). Together, the wide scale of 
cross-linguistic data offered by the different LPs have pro-
vided important insights into how basic word recognition 
processes vary across languages, and how the properties of 
a given writing system shape the cognitive computations 
involved in reading one language compared to another. 
From this perspective, the specific characteristics of a 
writing system can be taken as an “experimental manipu-
lation” to examine their impact on reading performance 
(see Frost, 2012, for discussion).

But note that whereas all LPs have the same aim, meth-
odologically there is substantial variability in how they were 
constructed. For example, while all available LPs provide 
LD data, not all include naming data. Further, although all 
LPs do provide a broader coverage of a language’s words 
than typical experiments, there is still substantial vari-
ability in the number of words they employed (e.g., from 
1800 words and nonwords in Persian, Nemati et al., 2022; 
to 40,481 words and nonwords in English, Balota et al., 
2007). LPs also differ in the number of participants pro-
viding responses to each word in the project (e.g., from 25 
responses per word in the French LP, Ferrand et al., 2010, to 
300 in the Spanish LP, Aguasvivas et al., 2018), and in other 
design characteristics such as the word–nonword ratio in 
the LD task. Table 1 summarizes the methodological prop-
erties of existing LPs, as well as the characteristics of the 
languages studied.

In spite of the substantial methodological variability, 
large-scale LP data have nonetheless largely replicated 
multiple well-established visual word recognition effects 
across languages, demonstrating substantial similarities in 
computations. For example, LPs have consistently revealed 
frequency and lexicality effects, as well as orthographic 
neighborhood density effects. Importantly, however, the 
multilingual comparisons that LPs inspired have also dem-
onstrated significant differences in reading behavior across 
languages, providing illuminating insights into how the 
properties of a language and its writing system shape the 
computations involved in processing printed information. 
For example, LD data from the Persian LP showed no word 
length effect, in contrast to other LPs. This has led authors 
to assume that the specific properties of the Persian orthog-
raphy—specifically, the under-specification of vowels in 
the printed language or the strong correlation between word 
length and orthographic neighborhood size—are the rea-
son for the absence of the word length effect (Nemati et al., 
2022). In stark contrast to Persian, the Malay LP revealed 
that the length of words in Malay is the strongest predictor 
of word recognition time. This again was tied to the structure 
of the writing system: the Malay language has a shallow 
orthography, transparent morphology, and a simple syllabic 
structure, which presumably lead Malay readers to rely pri-
marily on serial conversion of letters to phonemes during 
word recognition. Indeed, further analysis of the Malay LP 
revealed great differences between Malay and English in the 
contribution of predictors such as frequency, orthographic 
neighbors, and word length to word recognition performance 
(Yap et al., 2010).

The cross-linguistic variations revealed by large-scale 
data highlight how the basic properties of a writing system 
impact word recognition behavior across languages, leading 
to a deep understanding of the universal principles involved 
in orthographic processing across the world’s languages. 
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Since languages naturally differ in their scripts and how 
their writing systems represent sound and meaning, a good 
theory of reading should be able to explicate how this varia-
tion impacts the processing of printed words. When a given 
language diverges from others in terms of readers’ perfor-
mance, important evidence is furnished regarding universal 
principles of reading (see Frost, 2012, for discussion). Such 
research enterprise, however, requires large-scale data from 
many diverse writing systems. The main goal of the pre-
sent mega-study is to contribute to this important research 
effort by providing, for the first time, systematic data from a 
Semitic language—Hebrew—a language that has often been 
shown to produce contrastive results relative to European 
languages.

The Hebrew language: An important test case

Hebrew is a Semitic language, as are Arabic, Amharic, and 
Maltese. Many words in Semitic languages are root-derived, 
so that their base is a root morpheme, usually consisting of 
three consonants, which conveys the core meaning of the 
word. Semitic words are constructed by intertwining root 
morphemes with word pattern morphemes—abstract phono-
logical structures, consisting of vowels or of vowels and con-
sonants, in which there are “open slots” for the root’s con-
sonants to fit into. In general, word patterns provide vague 
morphosyntactic information. For example, in Hebrew, the 
root K.Š.R., which conveys the general notion of “tying”, 
and the word pattern /ti–o-et/, which is mostly used to denote 
feminine nouns, form the word /tikšoret/, meaning “com-
munication”. Embedding the root K.Š.R. in the word pattern 
/-i-u-/ produces the word /kišur/, meaning “link”, etc. The 
root consonants can be dispersed within the word in many 
possible positions, and there is little a priori information 
regarding their location. Word patterns have a well-defined 
internal structure. Their onset comprises a restricted number 
of consonants (mainly /h/, /m/, /t/, /n/, /l/), and the order 
and identity of subsequent consonants and vowels is rigid. 
Because there are no a priori constraints regarding the loca-
tion of root consonants in the word, the main clue regarding 
their identity is the well-defined phonological structure of 
the word pattern that allows the root consonants to stand 
out (Deutsch et al., 1998, 2021; Lador-Weizman & Deutsch, 
2022). Overall, there are about 3000 roots in Hebrew, about 
100 nominal word patterns, and seven verbal patterns.

Another major characteristic of the Hebrew writing sys-
tem is its extreme phonological under-specification. Hebrew 
print consists of 22 letters, of which five have a finite letter 
form. The letters represent mostly consonantal information, 
and most vowel information is not conveyed in print (see 
Shimron, 2006; Ravid, 2011, for review). Two letters—one 
for both /o/ and /u/, and one for /i/—may convey the vowel 
information; however, in certain contexts, these letters also 

convey the consonants /v/ and /y/, respectively. This results 
in heavy phonological decoding demands, since a substantial 
part of the phonological information is missing. The missing 
vowels lead to an extensive homography, with many printed 
letter strings having multiple pronunciations and meanings 
(e.g., the printed word “רפס”, “SFR”, most commonly read 
as /sefer/, has seven possible pronunciations, each with a 
different meaning, depending on different vowel configura-
tions). But since the structure of spoken words is highly 
constrained by the relatively small number of Semitic word 
patterns, readers can converge on a given word quite easily 
during text reading, since the printed form typically deter-
mines the appropriate word pattern with relatively high reli-
ability, and once a word pattern has been recognized, the full 
vowel information is available to the reader, even if it is not 
specified by the printed form (Deutsch et al., 2021; Frost, 
2006). Hence, Hebrew print provides a perfect example of 
optimization of information, where substantial morphologi-
cal (and therefore semantic) information is provided along 
with sufficient phonological cues using minimal ortho-
graphic symbols (see Frost, 2012).1

From the perspective of orthographic depth (Frost et al., 
1987; Katz & frost, 1992; Schmalz et al., 2015), Hebrew is 
considered to have a very deep orthography, given multiple 
features related to an underrepresentation of phonology in 
print. The first is the missing vowel information discussed 
above. In contrast to the depth of the English writing system, 
which results mainly from phonological inconsistency of 
vowel letters (e.g., EA is pronounced differently in DEAR, 
HEAD, and STEAK), in Hebrew, the vowel information is 
generally not inconsistent but missing. This poses a challenge 
in measuring and defining the phonological uncertainty of 
Hebrew words (Frost, 1994, 1995). A second source of pho-
nological uncertainty in the Hebrew orthography is a feed-
forward and feed-backward inconsistency of a few consonantal 
letters, where some can be mapped to different phonemes, and 
some phonemes can be represented by different letters. For 
example, the Hebrew letter “כ” can be pronounced as /x/ or 
/k/, ״ב״ can be pronounced as /v/ or /b/, and ‘פ’ can be pro-
nounced as /f/, or /p/. Conversely, /t/ can be written with the 
letters "ת"or "ט", /s/ can be written as “ס” and “ש”, /k/ can be 
written as ‘כ’’ and “ק”, and /x/ can be written as “כ” and “ח”.

Lastly, another important feature of Hebrew is that mor-
pho-syntactic information that is conveyed in European 

1  Hebrew also has a diacritical variant of the writing system, where 
vowels are depicted by points (appearing mostly under printed let-
ters). These vowel marks are typically taught in the first grade, assist-
ing teachers in developing decoding skills during reading acquisition, 
but starting from the end of the second grade, printed and written 
Hebrew does not normally include diacritical marks (see Share & 
Bar-On, 2018, for a detailed discussion). Apart from poetry and reli-
gious texts, adult reading material is always un-pointed.
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languages by function words (e.g., “the”, “from”, “to”, 
“and”) is conveyed in Hebrew as single letters which are 
attached to the word (i.e., clitics; e.g., “the” =  > ה, “from 
-For example, the four .(ו <  = ”and“ ,ל <  = “ to“ ,מ <  = “
word English sequence “and from the house” is printed in 
Hebrew as one word, where the three letters conveying and/
from/the are attached to the base word “house” (“תיבהמו״, 
printed as VMHBYT, read as /vemehabayit/, see Ravid, 
2011). Clitics are abundant in Hebrew printed input, 
although their impact on visual word recognition is currently 
largely unknown. This is due to the tendency of previous 
studies in the word recognition literature (in Hebrew as in 
other languages) to focus on the processing of base words, 
rather than on more naturalistic stimuli which better reflect 
the distribution of printed words in a language.

Visual word recognition in Hebrew: A series 
of divergent findings

Given the unique characteristics of the Hebrew writing 
system, it has been the focus of extensive research investi-
gating how these impact reading. In fact, Hebrew has been 
used as a case study for investigating a variety of relevant 
domains, such as the predictors of eye movements dur-
ing reading (e.g., Deutsch et al., 2003; Velan et al., 2013), 
the study of the developmental trajectory of literacy (e.g., 
Share, 1999; Share & Bar-on, 2018), the impact of different 
scripts on reading in a second language (e.g., Mor & Prior, 
2020, 2021), and how the orthographic structure of Hebrew 
is reflected in various forms of dyslexia (e.g., Friedmann 
& Lukov, 2008; Friedmann & Rahamim, 2007). Given the 
focus on the current study, however, our review centers on 
how the properties of the Hebrew writing system impact 
visual word recognition processes. Generally, and in line 
with earlier studies in English and other languages described 
above, previous work has tended to focus on how specific 
features of the Hebrew orthography (e.g., homography, pho-
nological ambiguity, morphological structure) lead to diver-
gent patterns of visual word processing. Then, the impact 
(or lack thereof) of the studied feature was discussed within 
a broader framework, towards understanding the universal 
principles that drive word recognition processes across lan-
guages. Underlying this research agenda is the theoretical 
supposition that if language A (e.g., English) shows a given 
pattern of behavior, and language B (e.g., Hebrew) does not, 
this points to a higher-order principle that simultaneously 
explains both phenomena.

Within this research enterprise, substantial work has 
focused on Hebrew’s extreme phonological under-specifi-
cation and homography. Some studies suggested that lexical 
decisions in Hebrew are made prior to phonological dis-
ambiguation (Bentin & Frost, 1987), and reflect the com-
putation of a phonological impoverished code (see Frost, 

1998, for discussion). Using the naming task, Frost et al. 
(1987) showed that frequency and semantic priming effects 
are stronger in Hebrew than in languages with shallower 
orthographies, resembling the effects revealed in LD. These 
results were taken to indicate that readers of languages with 
deep orthographies such as Hebrew rely more heavily on 
lexical information than readers of languages with shallow 
orthographies (e.g., Finnish, Spanish, German, Dutch), in 
order to compute phonology from print. This early find-
ing is in line with the claim that readers of different writ-
ing systems rely on different informational cues in light of 
their writing system’s structure (e.g., Hirshorn & Harris, 
2022; Lallier & Carreiras, 2018; Rau et al., 2015; Seiden-
berg, 2011; Seymour et al., 2003). However, all visual word 
recognition studies in Hebrew involved only a few dozen 
words that were selected as stimuli in each of the experi-
ments. Moreover, most of these studies focused on nouns, 
typically disyllabic, without clitics or inflections—a partial 
set of stimuli which do not represent the variety of words in 
the Hebrew language.

In the same vein, extensive work has focused on how 
the morphological structure of Hebrew words affects visual 
word recognition (e.g., Deutsch et al., 1998; Feldman et al., 
1995; Frost et al., 1997, 2000). Overall, these studies sug-
gested that the root consonants are the core target of word 
recognition, and that lexical organization in Hebrew follows 
morphological principles. For example, Frost and colleagues 
(2005) showed that in contrast to English, French, or Span-
ish, full orthographic overlap between primes and targets 
in Hebrew results in very weak masked orthographic prim-
ing, interpreted as evidence that the lexical architecture of 
Hebrew probably does not align, store, or connect words 
by virtue of their full sequence of letters. Indeed, consid-
ering the overall body of research using masked priming 
in Semitic languages, reliable facilitation is consistently 
obtained whenever primes consist of the root letters, irre-
spective of what the other letters are (e.g., Frost et al., 1997, 
2000; Velan et al., 2005; Perea et al., 2010, but see Perea 
et al., 2014, for significant form priming effects in Arabic).

Another important finding concerns letter position flex-
ibility. In Indo-European languages, disrupting the order 
of the letters within a word has little impact on readers’ 
ability to recognize and read it correctly (e.g., Duñabeitia 
et al., 2007; Perea & Carreiras, 2006a, 2006b, 2008; Perea 
& Lupker, 2003, 2004; Schoonbaert & Grainger, 2004). 
In contrast, Hebrew readers reveal extreme letter position 
rigidity, and reading is significantly impaired when words 
involve transposed letters (Velan & Frost, 2007, 2009, 2011; 
and see Friedmann & Gvion, 2001, 2005, for letter position 
dyslexia of Hebrew readers). This cross-linguistic difference 
in letter position flexibility again reflects the morphologi-
cal structure of Hebrew: since many Hebrew roots share a 
subset of letters but differ in their order (e.g., Z.M.R., “to 
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sing”; R.M.Z., “to hint”; Z.R.M., “to flow”), letter posi-
tion in Hebrew must be rigid rather than flexible in order 
to access the correct root (see Lerner et al., 2014, for com-
putational evidence, and the recent PONG model, Snell, in 
press). However, to complicate things ever further, not all 
Hebrew words have a Semitic structure. Many words from 
various origins (e.g., Greek, Persian, English) have perme-
ated Hebrew throughout history, and are not root-derived 
(and see a similar state of affairs for Maltese, e.g., Geary & 
Ussishkin, 2018). Indeed, these words have been shown to 
be processed differently from Semitic Hebrew words (Bitan 
et al., 2020; Haddad et al., 2018; Velan & Frost, 2011; Velan 
et al., 2013). However, the distributional properties of such 
non-Semitic Hebrew words are not yet known, and will be 
examined in this work.

The current study: The Hebrew Lexicon Project

Since the Hebrew writing system represents a stark contrast 
to other alphabetic orthographies, and because word recog-
nition experiments in Hebrew have revealed divergent find-
ings with important cross-linguistic implications, contrasting 
Hebrew reading performance with other languages promises 
to provide important insights for reading research. Hence, a 
database of behavioral data on Hebrew words has far-reach-
ing implications. Here we present an open data source on 
Hebrew visual word recognition, the Hebrew Lexicon Project 
(HeLP), which is the first to examine printed word recog-
nition in a Semitic language on a large scale. The project 
reports data from two tasks: LD and naming. It assembles LD 
responses to 10,000 words and nonwords, with 5000 of the 
words also having additional associated naming data. Impor-
tantly, HeLP employs an ecologically valid set of Hebrew 
words sampled from a natural Hebrew printed corpus (see 
Methods), so that all types of words are included, includ-
ing words with clitics, prefixes, and suffixes, Semitic and 
non-Semitic, inflected and derived—a variety that reflects the 
words Hebrew readers encounter in their daily lives.

In line with previous mega-studies and open-science 
studies more broadly, HeLP is meant to enable research-
ers to tackle a large number of questions regarding word 
recognition in Hebrew and its similarities and differences 
to other languages. The goal of this first paper, of course, 
is not to cover all such potential explorations. Rather, in the 
current paper, we demonstrate the utility of the HeLP data 
by addressing a series of foundational questions related, on 
the one hand, to the structure of the Hebrew writing system, 
and on the other to the predictors of word recognition in 
that language. In particular, as detailed below, our analyses 
examine the prevalence and impact of phonological uncer-
tainty and homography in LD and naming tasks, the dis-
tributions of word lengths and neighborhood densities and 
their impact in a root-based orthography, and the distribution 

and behavioral consequences of Semitic and non-Semitic 
structure, as well as the number of clitics. Together, these 
analyses result in mapping, on a large scale, the behavioral 
impact of general predictors thought to reflect word recog-
nition across languages (lexicality, frequency, word length, 
orthographic neighborhood density), but also predictors 
that are relevant specifically to reading in Hebrew (Semitic 
structure, presence of clitics, and phonological ambiguity).

The structure of the paper is as follows: First, we present 
results confirming the reliability of the HeLP data, using 
split-half estimates (at both the item and participant level), 
meant to ensure that the collected data are of sufficient qual-
ity for subsequent analyses. We then introduce descriptive 
statistics for the data, and present the basic effects revealed 
in the LD and the naming tasks pertaining to both general 
and Hebrew-specific predictors, as reviewed above. Finally, 
the implications of the results are discussed.

Methods

Lexical decision task

Stimuli

The project assembled LD data for 10,000 Hebrew words and 
10,000 nonwords. Words were sampled from the Hebrew por-
tion of the Subs2vec corpus (van Paridon & Thompson, 2021) 
which has 170 million tokens. First, a list of the 50,000 most 
frequent Hebrew words was extracted from the corpus, and all 
proper names and misspelled words were manually removed 
from that list. We then randomly sampled 2500 words from 
the 5000 most frequent words in the list, and 7500 words from 
the remainder of the frequency range of the filtered list, which 
together made the 10,000 targets for the LD task.

Nonwords were generated by shuffling letters of all words 
from the 50,000-word filtered list. Words with four or fewer 
letters had all their letters reshuffled. Words with five or 
more letters had their beginning, middle, or end shuffled 
randomly (first, middle, or last letters of the word). The num-
ber of letters shuffled ranged from 3 to n − 1. Following this 
procedure, 10,000 nonwords were selected randomly and 
then inspected manually to ensure they truly had no meaning 
in Hebrew. The shuffling of different numbers of letters at 
different locations within words avoided manual decisions 
that may introduce bias, and was meant to provide a variety 
of items which could be mined to study the determinants 
of ease or difficulty in rejecting letter strings as potential 
Hebrew words. As such, our “shuffling” approach resulted, 
for example, in items that have a clearer expected pronuncia-
tion (e.g., לגט ,תרלגיב), along with others that are more 
phonologically ambiguous (e.g., שלמר); in nonwords with 
a pseudo-morphological Semitic structure (e.g., הטבחאה, 
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 .and in nonwords that vary in bigram frequency ;(רהגהל
In this first paper we do not analyze predictors of responses 
to nonwords, but the nonword data are made fully available 
with the rest of the dataset for future research.

Twenty sublists, each comprising 500 words and 500 
nonwords (1000 targets overall), were created to serve as 
stimuli for each experimental session in the LD task. To 
ensure that each sublist included words from the full fre-
quency range, the first word was assigned to the first sublist, 
the second word to the second sublist, etc., and the 21st word 
was assigned again to the first sublist and so on. Results from 
the 20 sublists were analyzed to examine the general effects 
such as lexicality (see Supplementary Materials S1). Since 
Hebrew-specific predictors required manual coding, only 
words from the 10 sublists that were also employed in the 
naming task were used in analyses considering these predic-
tors (see details on naming task stimuli, below). Nonwords 
were randomly assigned to the sublists, and Welch t-tests 
ensured that the words and the nonwords in every sublist did 
not differ significantly in terms of length (t(19,970) =  − 0.4, 
p = 0.68; see Fig. 1A). In contrast, words and nonwords did 
differ in their mean orthographic Levenshtein distance 20 
(OLD20), a measure of orthographic neighborhood density 
defined as the mean Levenshtein distance of the 20 closest 
orthographic neighbors of an item (Yarkoni et al., 2008), 
with a mean OLD20 of 1.65 for words and 2.17 for non-
words (t(18,909) =  − 74.5, p < 0.001, see Fig. 1B). This is 
expected because words share more orthographic resem-
blance to other words, whereas nonwords (resulting from 
shuffling letters) have less resemblance to existing words.

Participants

A total of 273 participants completed the experimental ses-
sions. Data for nine participants were excluded from the 
analysis due to technical difficulties and poor performance 

(mean accuracy lower than 75%, or more than 12% of 
responses under 300 ms). Overall, the results for 264 partici-
pants (201 female) had valid LD data. Due to manual coding 
of stimuli from only a partial set of overlapping lists that 
were employed in both the LD and naming tasks, our cen-
tral models which include Hebrew-specific predictors were 
conducted on data from 178 participants. Participants were 
students at the Hebrew University of Jerusalem and were 
recruited using the Psychology Department’s participant 
recruitment platform. The average age of the participants 
was 24.14 years (SD = 3.53 years). All participants declared 
that they had no attention or reading disabilities, that their 
first language was Hebrew, and that they had normal or cor-
rected-to-normal vision. Participants received credit or pay-
ment for their participation after each experimental session. 
Each participant could take part in as many experimental 
sessions as they wished, up to 20 (see below), but they were 
required to take at least a 15-min break between sessions, 
and could not take part in more than two sessions a day.

Procedure

In the LD task, all experimental sessions were performed 
online from home (using laptop or desktop computers only, 
i.e., not via smartphones or tablets). The LD task was built 
using PsychoPy (Peirce et al., 2019), version 2021.2.3, and 
hosted on Pavlovia. After signing a consent form and con-
firming eligibility criteria, participants were instructed that 
in each trial they would be presented with a letter string on 
the computer screen, to which they had to respond as rap-
idly and as accurately as possible as to whether it formed an 
existing Hebrew word (pressing the “L” key) or not (press-
ing the “S” key). The session began with 10 practice tri-
als consisting of five words and five nonwords, followed 
by the experimental stimuli. Each stimulus remained on the 
screen until a response was recorded, with a timeout of two 

Fig. 1   Properties of words and nonwords in the LD task. A Distribution of length (in letters). B Distribution of OLD20
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seconds, and a blank screen for 500 ms between stimuli. 
Targets were presented in the middle of the screen, in white 
font on a dark gray background, with their size set to 10% of 
a participant’s screen (the absolute dimensions varied given 
the online nature of the task). There were three breaks dur-
ing the session, after 250, 500, and 750 trials. Each experi-
mental session typically lasted between 20 and 30 min.

Naming task

Stimuli

From the 20 sublists (i.e., 10,000 words) that were used in 
the LD task, we sampled 10 sublists, with a total of 5000 
words to serve as stimuli in the naming task, maintaining 
the same frequency distribution as in the full set of 10,000 
words. The 5000 words were redivided into six sublists 
for the naming experiment, four of them with 800 words 
and two with 900 words. Each of the six naming sublists 
included words from the full frequency range as described 
above (25% from the 5000 most frequent words, and 75% 
from the entire range of frequencies following the 5000 most 
frequent words).

Participants

A total of additional 151 participants (101 female) com-
pleted the naming experimental sessions, using the same 
recruitment procedure. The mean age of participants was 
24.6 years (SD = 4.4 years). As in the LD task, participants 
could take part in as many experimental sessions as they 
wished (up to six, the number of sublists).

Procedure

In contrast to the web-based LD task, all experimental ses-
sions in the naming task were performed in the laboratory. 
The naming task was built using the NeuroBehavioral Sys-
tems software, Presentation, version 23.010.27.21. Partici-
pants sat in front of a computer screen in a quiet experi-
ment room, wearing a headset. They were told that Hebrew 
words would appear on the screen, one at a time, and they 
should read every word aloud as fast and as accurately as 
they could. Before each word, a fixation cross appeared in 
the middle of the screen for 800 ms. The word disappeared 
from the screen once a participant initiated a voice key with 
a spoken response or after a timeout of 1.5 s. The experi-
ment started with 10 practice trials, to ensure that the voice 
key operated correctly (experimenters adjusted the thresh-
old if needed). There were two breaks during the experi-
ment, after 250 and 500 words in the 800-word sessions, 
and after 300 and 600 words in the 900-word sessions. 

Words were presented in the middle of the screen, in 55-pt. 
white font on a dark gray background, taking about 10% of 
the vertical dimension of the screen. RTs were measured 
from the appearance of a word on the screen to the activa-
tion of the voice key. Similar to the LD task, participants 
who wished to participate in multiple sessions had to take 
a break of at least 15 min between sessions, and could not 
participate in more than two sessions in one day. Each 
experimental session typically lasted around 30 min.

Responses in the naming task were recorded and were 
later coded by a team of five trained research assistants. 
Each response was coded both for its accuracy (correct/
incorrect; and in rare cases, “unclear”—see below) and for 
the validity of the RT data (i.e., whether the first recorded 
auditory signal, which triggered the voice key, should 
be used in RT analysis). A response could be coded as 
correct/incorrect while still not having valid associated 
RT: coding as “invalid RT” was automatically assumed 
in cases where the responses were faster than 200 ms, as 
well as in additional cases where the coder noticed another 
(invalid) response that triggered the voice key (e.g., in 
cases where there was an initial sound such as a cough 
or murmur before the participant read the target). In such 
cases, we used the correctness data but not the RT data in 
the analyses below. A total of 94.5% of responses were 
coded as having a valid RT associated with them, whereas 
99.4% of responses had a correct/incorrect coding (i.e., 
only 0.6% of responses had “unclear” as the coding for 
correctness; in analyses below, we treat these as NA in 
all models).

To ensure the reliability of the coding of naming 
responses, we further randomly sampled six sessions from 
six participants, with 5000 naming trials in total (four 
participants had 800 trials; two participants had 900 tri-
als). The re-coding of these sessions was done by another 
(blinded) research assistant, who used the same coding 
scheme as the original coders. We found an inter-rater reli-
ability estimate of Cohen’s � = 0.62 , a value representing 
“substantial” agreement between raters (Landis & Koch, 
1977), with estimates in the data from the six randomly 
sampled participants separately ranging from � = 0.52 to 
� = 0.85 . These estimates suggest that the reliability of the 
naming response coding was substantial overall and at a 
minimum moderate in individual participants.

Predictors of visual word recognition performance: 
Word‑level variables

Figure 2 summarizes the different psycholinguistic predic-
tors made available for the different sets of stimuli with the 
current release of the HeLP data. In what follows, we pro-
vide more information about these predictors.
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General visual word recognition predictors

The models below use as predictors the following general 
variables, which are known to impact word recognition 
across many languages: (a) lexicality, whether a target is 
a word or a nonword (in the LD task); (b) word frequency 
(string frequency of the surface form, log-transformed), 
based on the Subs2vec corpus (van Paridon & Thompson, 
2021); (c) word length (in number of letters); and (d) 
OLD20, computed using the filtered list of 50,000 words 
from the Subs2vec corpus, examining for each item the 
number of substitution, insertion, or deletion operations 
required to turn that item into any of the other 50,000 words 
in the list. Then, OLD20 was defined as the mean number of 
alterations in the 20 words that required the minimal number 
of alterations (Yarkoni et al., 2008).

Hebrew‑specific predictors

In addition to these general predictors, our models consider 
predictors potentially relevant specifically to word recogni-
tion in Hebrew (and other Semitic languages), given pre-
vious research and considering the properties of the writ-
ing system. As detailed below, obtaining these measures 
required excessive manual coding of responses. Hence, we 
focused on the 5000 words that were used as stimuli in both 
the naming and the LD tasks (rather than on the full set of 
10,000 words in the LD task).

Semitic structure. As reviewed in the Introduction, an 
important feature of Hebrew is that while many words have 
a Semitic structure and comprise root and word pattern 

combinations, there are also many words without Semitic 
structure (see Velan & Frost, 2011), which have been assimi-
lated into Hebrew throughout history. The Semitic tagging 
of words was manually performed such that each word was 
tagged into one of four categories: “clearly Semitic”, “clearly 
non-Semitic”, “undetermined”, or “other”. Words were classi-
fied as “clearly Semitic” if they had an unequivocal root which 
was productive and used in different phonological patterns, 
creating a variety of words with distinct meanings. For exam-
ple, the word "יתבתכ" (KTBTI, meaning I wrote) is con-
structed from the root letters “ב,ת,כ” (K.T.B.), and appears in 
many Hebrew patterns to create distinct words (e.g., "בתכמ", 
MKTB, /mixtav/—a letter; "ביתכמ", MKTIB, /maxtiv/—
dictates; "בתכ", KTB, /katav/—he wrote; see, e.g., Frost 
et al., 1997). Words were tagged as clearly non-Semitic if they 
could not be decomposed into a productive root and a word 
pattern (e.g., the word "ןומיל", LIMWN, /limon/, meaning a 
lemon, which was assimilated into Hebrew and is not derived 
from a productive root or pattern). The “undetermined” cat-
egory was used for words that could be read or analyzed in 
more than one way (e.g., "םוטא", ATWM, can be read as /
atom/, meaning an atom, a non-Semitic word, or as /atum/ 
meaning “sealed”, derived from the root A.T.M.), or words 
that could not be unequivocally classified as having a Semitic 
structure. In the “other” category there were prepositions, 
adverbs, and pronouns, which do not follow either a Semitic 
or non-Semitic structure. Our tagging revealed that 75% of 
the 5000 words were clearly Semitic, 18.9% were defined 
as clearly non-Semitic, and 6.1% were undetermined/other 
(Fig. 3A). Only words with a clear Semitic or non-Semitic 
structure were included in the models below.

Fig. 2   Information about included HeLP stimuli and their available lexical properties
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Coding of Semitic structure was performed by members 
of the same team of trained research assistants mentioned 
above. We further later randomly sampled a subset of 450 
words, and asked another research assistant to code words 
using the same scheme, to estimate inter-rater reliability. 
Cohen’s � was estimated at 0.62, again reflecting “substan-
tial” inter-rater agreement (Landis & Koch, 1977).

Number of clitics. As noted above, another important 
feature of Hebrew printed words is that they often involve 
clitic letters that carry functional information, which are 
attached to the word beginning, forming a single ortho-
graphic sequence. To capture this information, each word 
was manually tagged for its number of clitic letters (from 
0 to 3). For the majority of words, the number of clitics 
was unambiguous (93.66% words had 0, 1, 2, or 3 clitics). 
However, since Hebrew print is phonologically ambiguous 
(i.e., about 25% of the words in an un-pointed written text 
are heterophonic homographs, see Shimron & Sivan, 1994), 
the number of clitics was sometimes not unequivocal (e.g., 
words with the initial letter H could often be interpreted as 
having the clitic “the”, but the same letter could also be an 
initial root/pattern letter; for instance, the word "קלדה", 
HDLK, can be read as \hadelek\, where the \ha-\ is the defi-
niteness-marking form followed by the noun \delek\, “fuel”, 
as well as \hadlek\, where the initial H is part of the impera-
tive form of the root D.L.K., “to light up”). The coding of 
these words is noted as X/Y (e.g., 0/1, meaning a word with 
either zero or one clitic, depending on its reading). Only 
words with a clear number of clitics were included in the 
models below. After removing words due to unclear Semitic 
and clitic tagging, data from 4441 words were analyzed. The 
distribution of clitics is presented in Fig. 3B. This coding 
was again performed by members of the research assistant 
team, and inter-reliability was estimated using the same sam-
ple of 450 words. Cohen’s � was estimated at 0.85, reflecting 
“near perfect” agreement (Landis & Koch, 1977).

Phonological entropy. As noted in the Introduction, 
another crucial feature of Hebrew is its extensive homogra-
phy and ambiguity in terms of the orthographic–phonologi-
cal mapping. That is, whereas some Hebrew words have 
one possible meaningful pronunciation, others can be read 
in multiple ways, and indeed, a substantial portion of words 
in the naming task were read in more than one way across 
participants. To capture this ambiguity, we calculated each 
word’s pronunciation entropy, based on the distribution of 
unique pronunciations across participants in the word-nam-
ing data (entropy is defined as −

∑N

i=1
p(i) ∗ log2p(i) , where 

N  is the number of different pronunciations of a word 
across participants, and p(i) is the proportion of responses 
of a given pronunciation; see also De Simone et al., 2021). 
The more unique pronunciations a written word had in the 
naming data, and the more uniform the distribution was, 
the more pronunciation entropy increased. A total of 76.9% 
of the words in the naming task were pronounced in only 
one way and therefore their pronunciation entropy was zero 
(i.e., at least in the current behavioral data, these words 
were taken to be non-homographic). The remaining words 
had entropy values up to 1.97. The distribution of phono-
logical entropy is shown in Fig. 3C.

Data and code availability

The full HeLP data are available via the Open Science Frame-
work (OSF) website for secondary data analyses. Two main 
data files include the LD and the naming data (“raw_LD_data.
xlsx” and “raw_naming_data.xlsx”, respectively). These files 
include the trial-level behavioral data (accuracy and reaction 
time), as well as the values of general predictors (frequency, 
word length, OLD20). For the 5000 words used in the naming 
task, the files also include the values of the manually coded 
Hebrew-specific predictors (Semitic tagging, clitics, and pro-
nunciation entropy). For items that were pronounced in more 

Fig. 3   Distributions of the Hebrew-specific predictors. A Number of words tagged as 0-clearly non-Semitic, 1-clearly Semitic, 2-undetermined, 
3-other. B Number of words with each number of clitics. C Pronunciation entropy scores
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than one way across participants, we also make available the 
phonological transcription of the pronunciation at each trial. 
A third file (“Hebrew_words_data.xlsx”) lists the 10,000 
words of HeLP along with their characteristics and tagging. 
The repository also includes the R codes used for running 
the analyses reported below. Please see: https://​osf.​io/​nxq8g/.

Results

Data cleaning

Lexical decision task

Overall, there were 748 experimental sessions across partici-
pants. As noted above, participants could contribute data in 
more than one session: Participants took part, on average, in 
2.7 experimental sessions, with 154 participants taking part in 
one session and, on the other extreme, three participants who 
completed all 20 sessions (see Fig. 4A for the distribution of 
the number of sessions by participant). Thirty-two sessions 
were discarded from the analysis, as follows: because of poor 
performance, with less than 75% accuracy (17); because the 

data included many trials with unrealistically fast RTs, defined 
as 12% of trials being faster than 300 ms (14); or due to tech-
nical difficulties (1). From the remaining sessions, all trials 
with RTs faster than 300 ms were also excluded (~ 2% of the 
trials). Therefore, the results of 716 experimental sessions were 
included in the cleaned dataset, with data from 710,507 LD 
trials. Across these sessions, the average number of partici-
pants that provided data for each stimulus was 35, while the 
minimal number of observations per stimulus was 29, and the 
maximum was 79,2 with SD of 2.5 (see Fig. 4B).

Naming task

A total of 220 experimental sessions were carried out. Par-
ticipants took part on average in 1.4 experimental sessions 

Fig. 4   A Distribution of the number of sessions per participant in the 
LD task. B Distribution of the number of responses per word and per 
nonword in the LD task. C Distribution of the number of sessions 

per participant in the naming task. D Distribution of the number of 
responses per word in the naming task

2  Sixteen nonwords were accidently used twice, each of them appear-
ing in two separate sublists of the LD task. Hence, these 16 nonwords 
had data on twice as many participants as other stimuli. The vast 
majority of items, however, including all word stimuli, had between 
29 and 40 observations per item: only 0.2% of datapoints (1204 out 
of 747,595 trials in the full dataset) were from the 16 repeated non-
words.

https://osf.io/nxq8g/
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(see Fig. 4C). RTs faster than 300 ms were removed from 
the analysis (~ 5% of the trials), as well as trials where there 
were no responses to stimuli (mostly due to technical diffi-
culties, also ~ 1% of the trials). All participants had accuracy 
higher than 75%, and therefore, in contrast to the LD data, 
no full participants were discarded. This resulted in a total of 
173,099 naming trials that were analyzed. The average num-
ber of participants that were exposed to each stimulus in the 
“clean” data was 35, while the minimum was 26 participants 
and the maximum was 41, with SD of 2.77 (see Fig. 4D).

Descriptive statistics

In the LD task (see Fig. 5A–C), mean accuracy across par-
ticipants was 91.3% (range: 77.7–98.8%, SD = 4%). Mean 
accuracy was 92.4% for nonwords and 89.4% for words. The 
mean RT to words was 606 ms, and the mean RT to non-
words was 631 ms. In the naming task, mean accuracy was 
94.86% (range: 81.85–99.28%, SD = 3%), with mean latency 
of 489 ms (see Fig. 5D–F).

Reliability estimates

We examined the internal consistency of the data using a 
split-half reliability estimate with Spearman–Brown correc-
tion at both the subject and item levels. The consistency of 
each participant’s responses was examined by splitting tri-
als to even and odd data points for each participant. Mean 
log-transformed RT and accuracy were calculated per partici-
pant for the two halves of the data. The split-half correlation 

between the means was calculated and corrected using the 
Spearman–Brown correction formula. In the LD task, partic-
ipant-level reliability was 0.97 for accuracy and 0.99 for log-
transformed RTs. Reliability at the stimulus (i.e., word/non-
word) level was assessed by splitting participants into evens 
and odds, correlating the mean log-transformed RT and accu-
racy of each stimulus across the two groups of participants. 
The LD item-level split-half correlation was 0.79 for accuracy 
and 0.66 for log-transformed RT. For the naming task, consist-
ency at the participant level was 0.96 for accuracy and 0.99 
for log-transformed RT. Reliability at the stimulus (i.e., word) 
level was 0.85 for accuracy and 0.66 for log-transformed RT. 
Together, these reliability estimates suggest that our LD and 
naming data are highly stable when measuring individual dif-
ferences in log-transformed RT and accuracy (i.e., very high 
split-half reliability at the subject level) and provide moder-
ately to highly reliable estimates at the item level.

Basic effects: Lexicality, word length, 
and neighborhood density

First, we used the full LD data—from both 10,000-word and 
10,000-nonword targets—to estimate the impact of three basic 
predictors that apply to words and nonwords alike: lexicality 
(word vs. nonword), word length, and neighborhood density. 
This analysis was meant to serve as an initial validation of the 
HeLP data, and to examine basic visual word recognition pre-
dictors in Hebrew. We employed a linear mixed-effects model 
to predict log-transformed RT and a logistic mixed-effects 
model to predict accuracy, which included the three variables 

Fig. 5   A Distribution of RT for words and nonwords in the LD task 
(across trials). B Distribution of accuracy rate for words and non-
words in the LD task. C Accuracy rates by participant in the LD task. 

D Distribution of RT for words in the naming task (across trials). E 
Distribution of accuracy rate for words in the naming task. F Accu-
racy rates by participant in the naming task
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as fixed effects as well as all their two-way and three-way inter-
actions, along with a fixed effect for session number (a control 
variable). Here and below, analyses of RTs were conducted only 
on trials with correct responses. In all models here and below, 
we used the buildmer R package (Voeten, 2019) to establish the 
maximal random-effects structure justified by the design that 
converged. In linear mixed-effects models, degrees of freedom 
and p-values were calculated using the lmerTest package in R 
via a Satterthwaite approximation (Kuznetsova et al., 2017).

The results of these models showed a significant effect 
of lexicality in both RT (i.e., faster responses to words 
than nonwords) and accuracy (i.e., more errors for words 
than for nonwords). Across words and nonwords together, 
length effects were also significant, indicating overall faster 
responses, but with more errors, in shorter stimuli. Impor-
tantly, however, the effects of length were modulated by 
lexicality (see Supplementary Materials S1, and subsequent 
analyses of word data, below). A significant effect of OLD20 
was observed, suggesting faster and more accurate responses 
to stimuli with fewer orthographic neighbors, though here as 
well there were strong interactions with length and lexicality. 
The structure and results of the mixed-effects models are 
detailed in Supplementary Materials S1, which also includes 
a discussion of the interactions among the three variables.

What predicts word recognition RT and accuracy 
in Hebrew?

The preliminary models above center on general effects in 
the LD task as preliminary validation of the data. In the 
remainder of the paper, we center on predictors of Hebrew 
word recognition, focusing on both general predictors (i.e., 
frequency, length, neighborhood density) and Hebrew-spe-
cific predictors (Semitic structure, clitics, extent of homog-
raphy). For this purpose, all models in this section included 
data from 4441 Hebrew words—the number of stimuli used 
in both the LD and the naming tasks that had valid coding of 
all Hebrew-specific predictors (see Methods). We again used 
linear mixed-effects models for log-transformed RTs, and 
logistic models for accuracy. As predictors, all models in this 
section include word length, log frequency, OLD20, semitic 
tagging, number of clitics, pronunciation entropy, and ses-
sion number3 as fixed effects. Interactions between word log 

frequency and word length, OLD20 and word length, and 
OLD20 and log frequency were also estimated. All con-
tinuous parameters were scaled, the Semitic/non-Semitic 
contrast was effect-coded and adjusted so that the mean of 
this variable was set to 0 (i.e., centered), and the number of 
clitics was entered into the model as a factor, using a dummy 
coding scheme (0 clitics set as the baseline). The random-
effects structure of the models was again determined using 
the buildmer package (the maximal random-effects structure 
that converged is specified in each of the models below).

Fixed-effect estimates for our four central models (i.e., 
RT and accuracy, for LD and naming) are summarized in 
Table 2. Table 3 further shows the pairwise correlations 
between word-level numeric predictors in these models, 
to gauge collinearity in our models. In particular, note the 
strong collinearity between word length and OLD20 scores 
(r = 0.79). To examine how this collinearity impacts the 
results of our models, further attempts were made to isolate 
the word length and OLD20 effects by running the same 
models without the length predictor and the same models 
without the OLD20 predictor, to ensure that the findings 
below regarding these two predictors were not simply an 
outcome of this high collinearity. This process is detailed 
in Supplementary Materials S2, showing that in most cases 
the effects (or lack thereof) of length and OLD20 reported 
below are replicated qualitatively when these two measures 
are considered separately. However, when reviewing the 
models below, we highlight cases where this was not the 
case. There was also a weaker collinearity between log fre-
quency and OLD20 (r =  − 0.44). Other correlations between 
predictors were not higher than |0.34|.

Evidence from lexical decision

RT model. The maximal mixed-effects model that con-
verged predicting log-transformed RT included by-subject 
random slopes for word length, frequency, pronunciation 
entropy, semitic tagging, and OLD20, as well as by-subject 
and by-item random intercepts.

In terms of general predictors, as expected, there was 
a significant effect of log frequency (t(470.8) =  − 23.85, 
p < 0.001), with more frequent words recognized faster. 
There was a significant word length effect (t(320.9) =  − 6.06, 
p < 0.001), where participants recognized longer words 
faster than shorter ones. This suggests that converging on 
a lexical candidate is easier for longer words in Hebrew, 
potentially because longer words contain vowel letters and 
incur less phonological ambiguity. However, we note that 
when OLD20 was removed from the model, the length effect 
was no longer significant (see Supplementary Materials 
S2). There was a significant OLD20 effect (t(750.8) = 6.35, 
p < 0.001), indicating that participants responded faster to 
words having many orthographic neighbors (i.e., smaller 

3  Session number was included as a covariate to account for the 
repeated testing of some participants across multiple sessions. How-
ever, one may still wonder whether repeated testing interacts with key 
psycholinguistic variables, potentially biasing the results reported 
below. To alleviate this concern, in Supplementary Materials S3 we 
reran the central models on data from the first session of each partici-
pant only. Showcasing the robustness of the reported effects, the find-
ings were highly similar (in terms of both the estimated coefficients 
and their significance) to the data from all sessions reported in the 
main text. See Supplementary Materials S3 for details.
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OLD20). All included interactions were significant. Inspect-
ing the visual depictions of these interactions (Fig.  6) 
revealed that in low-frequency words, participants responded 
faster to longer than to shorter words, but this pattern was 
reversed in high-frequency words, where shorter words were 
recognized faster than longer words (Fig. 6A). As for inter-
actions with the OLD20 effect, participants responded faster 
to low-frequency words with many orthographic neighbors, 
but slower to high-frequency words with many neighbors 
(Fig. 6B). Also, participants showed an OLD20 effect in 
the typical direction (i.e., faster responses in lower OLD20, 
which means more neighbors) only in longer words, whereas 
this effect was absent in short words (Fig. 6C).

We now turn to the central Hebrew-specific predictors. 
There was a main effect of Semitic structure, where partici-
pants responded faster to Semitic words (t(562.1) =  − 4.76, 
p < 0.001). There was also a significant effect of clitics, 
where responses were slower to words with one or two 
clitics than to words without clitics: Fixed effects reflect-
ing the effect of a single clitic (t(4,072) = 4.74, p < 0.001) 
and two clitics (t(4,027) = 3.38, p < 0.001) were significant 
and positive, although no effect was found for three clitics 
(t(4,254) = 0.29, p = 0.77). This suggests that the presence 
of clitics requires a process of decomposition. Pronunciation 
entropy was also significant (t(413.3) = 4.17, p < 0.001), with 
participants responding more slowly to words with greater 
ambiguity. We return to discuss this finding below.

Accuracy model. The logistic mixed-effects model that 
converged included by-subject random slopes for word 
length, frequency, semitic tagging, and OLD20, in addition 
to by-subject and by-item random intercepts.

In terms of general predictors, participants were more 
accurate in identifying frequent words (Z = 21.72, p < 0.001) 
and longer words (Z = 20.31, p < 0.001), and were more 
accurate when a word had many orthographic neighbors 
(Z =  − 3.51, p < 0.001; however, running the model with-
out word length resulted in a “flipped” OLD20 effect, see 
Supplementary Materials S2). All interactions were again 
significant (Fig. 7). Low-frequency shorter words incurred 
more errors than longer words, whereas for high-frequency 
words, word length had no effect (see Fig. 7A). Also, among 
low-frequency words, having many orthographic neighbors 
incurred fewer errors, while for high-frequency words, Ta
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across the 4441 words included in models reported in Table 2

(1) (2) (3) (4)

(1) OLD20 0.44 0.79  − 0.16
(2) Log frequency  − 0.34  − 0.02
(3) Word length  − 0.16
(4) Pronunciation entropy
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OLD20 scores had no impact (Fig. 7B). Lastly, for longer 
words, having many orthographic neighbors incurred fewer 
errors (Fig. 7C).

Considering the Hebrew-specific predictors, there was 
a significant difference between accuracy rates in response 
to Semitic versus non-Semitic words, with better accuracy 
in responses to Semitic words (Z = 5.77, p < 0.001). More 
errors were found for words with a single clitic than for 
those with no clitics (Z =  − 3.59, p < 0.001), with no sig-
nificant effects for two (Z =  − 0.42, p = 0.67) or three clitics 
(Z =  − 1.26, p = 0.21). Lastly, mirroring the RT data, partici-
pants had higher error rates in words with higher pronuncia-
tion entropy (Z =  − 2.31, p = 0.02).

Evidence from the naming task

RT model. The maximal random-effects structure that con-
verged for this model included by-subject random slopes 
for word length, frequency, pronunciation entropy, semitic 
tagging, and OLD20, as well as by-subject and by-item ran-
dom intercepts.

Similar to the LD RT model, participants’ responses were 
faster in naming more frequent words (t(680.8) =  − 11.89, 
p < 0.001) and longer words (t(463.3) =  − 2.3, p = 0.02). The 
direction of the word length effect again suggests that longer 
words in Hebrew incur less uncertainty regarding word recogni-
tion. There was no significant effect of OLD20 (t(1024) = 1.01, 
p = 0.28). Considering interactions, only the interaction between 
word length and OLD20 was significant (t(3,990) = 3.11, 
p = 0.002), showing faster naming of words with more neigh-
bors for longer but not for shorter words (see Fig. 8A).

We turn again to the Hebrew-specific predictors. 
Similar to the LD task, participants named Semitic 
words faster than non-Semitic words (t(554.7) =  − 2.17, 
p = 0.03). There were significant effects of clitics for 
words with a single clitic (t(3,899) =  − 11.95, p < 0.001), 
two clitics (t(3,945) =  − 5.05, p < 0.001), and three clitics 
(t(4,569) = 2.24, p = 0.02). However, in contrast to the LD 
model, participants responded faster to words with one or 
two clitics than to words without clitics. Since RTs in the 
naming task are recorded once the initial sound is uttered, 
this suggests that, potentially given their distributional prop-
erties, clitic letters are decomposed and pronounced initially 
and rapidly. However, an opposite direction was revealed for 
words with three clitics, which incurred slower responses 
(see Fig. 8B), suggesting that clitic decomposition is com-
plex once there is a high number of clitic letters. Finally, 
as predicted, participants were slower to name words with 
greater pronunciation entropy (t(494.7) = 6.08, p < 0. 001).

Accuracy model. The logistic mixed-effects model 
that converged included by-subject random slopes for 
word length in addition to by-subject and by-item random 
intercepts.

Fig. 6   Visual depiction of significant Interactions in the RT model, 
LD data. A Interaction between word length and log frequency. B 
Interaction between OLD20 and log frequency. C Interaction between 
OLD20 and word length
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Participants again showed the expected frequency effect 
(Z = 15.67, p < 0.001). However, in contrast to the LD 
results, they made fewer naming errors in shorter words 
(Z =  − 2.75, p = 0.006; although, when removing OLD20 
from the model, the length effect flipped, see Supplementary 
Materials S2). There was a significant OLD20 effect, indi-
cating that participants were more accurate when a word had 
fewer orthographic neighbors (Z = 7.26, p < 0.001). In terms 
of interactions (Fig. 9), there was a significant interaction 
between word length and OLD20 (Z =  − 6.32, p < 0.001): 
participants made more errors naming short words with 
many orthographic neighbors, and made more errors nam-
ing longer words with few orthographic neighbors. There 
was also a significant interaction between log frequency 
and word length (Z =  − 3.02, p = 0.003), with length effects 
revealed only for words in the mid-frequency range and 
above (but not in low-frequency words).

Fig. 7   Visual depiction of significant Interactions in the accuracy 
model, LD data. A Interaction between word length and word log 
frequency. B Interaction between OLD20 and word log frequency. C 
Interaction between OLD20 and word length

Fig. 8   Visual depiction of effects of interest in the RT model, naming 
data. A Interaction between OLD20 and word length (the only sig-
nificant interaction in this model). B Estimated mean log-transformed 
RT for words as a function of the number of clitics
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As for Hebrew-specific predictors, there was no difference 
in naming accuracy between Semitic and non-Semitic words 
(Z = 0.63, p = 0.53). Participants made more errors reading 
words with one (Z =  − 4.75, p < 0.001), two (Z =  − 2.87, 
p = 0.004), and three clitics (Z =  − 3.29, p < 0.001) than 
words without clitics. Also, as expected, participants made 
more errors reading words with higher pronunciation 
entropy (Z =  − 3.71, p < 0.001).

Discussion

How the basic characteristics of writing systems impact 
visual word recognition behavior has been the focus of 
extensive research (see, e.g., Frost, 2012, for review and 
discussion). In this vein, studies conducted in different 

languages, particularly those including large-scale LPs, 
have provided important insights regarding the different 
computations readers employ during reading in their writ-
ing system, highlighting high-order principles of word rec-
ognition. From this perspective, evidence from Hebrew has 
continuously shaped theories and models of reading, given 
the unique characteristics of its writing system. However, 
word recognition studies in Hebrew to date have employed 
small, targeted experiments, covering only a limited part of 
the language’s lexicon. To address this gap, we present here 
for the first time a large-scale dataset of reading behavior in 
a Semitic language, Hebrew, comprising LD responses to 
10,000 words and nonwords, and naming responses to 5000 
words. In this first paper, we then utilize the data from the 
Hebrew LP (HeLP) to examine the contribution of general 
predictors (lexicality, frequency, length, and orthographic 
neighborhood), and Hebrew-specific predictors (Semitic 
structure, clitic letters, and extent of phonological ambigu-
ity), to visual word recognition performance. As we discuss 
below in detail, our findings offer important insights regard-
ing the computations involved in the processing of printed 
words in a writing system such as Hebrew, suggesting a set 
of universal computations involved in print processing.

General predictors of word recognition

Unsurprisingly, the benchmark effects of frequency and 
lexicality emerged in Hebrew as in any LP, confirming that 
these principles of lexical search are similar across writing 
systems. Of theoretical interest, therefore, are findings in 
which Hebrew seems to diverge from the well-researched 
European languages.

A first finding of interest is the effect (or lack thereof) of 
word length, mainly in LD (the parallel effects in naming 
are somewhat weaker). When interpreting the HeLP findings 
for length, an important factor to consider is the collinear-
ity between word length and OLD20 (r = 0.79). That shorter 
words have more orthographic neighbors is typical of many 
writing systems, as revealed in other LPs (e.g., a correlation 
of 0.77 in French, Ferrand et al., 2010; a correlation of 0.79 
in European Portuguese, Soares et al., 2019). But note that in 
the vast majority of LPs, length effects were significant even 
when this high correlation was partialed out in the analyses. 
For example, in the Malay LP, the several length measures 
that were used showed correlations ranging from 0.47 to 0.77 
with the OLD20 scores, and yet, independently, word length 
was the strongest predictor of performance in both LD and 
naming tasks (Yap et al., 2010). In light of those previous 
results, the consistent lack of word length effect for words 
in Hebrew stands out, and models that also included OLD20 
often revealed a reversed length effect, where longer words 
incurred faster recognition time and greater accuracy. Com-
pared with other existing LPs, these results seem to align 

Fig. 9   Visual depiction of significant Interactions in the accuracy 
model, naming data. A Interaction between word length and word log 
frequency. B Interaction between OLD20 and word length
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with findings in the Persian LP (Nemati et al., 2022). A pos-
sible common factor to Hebrew and Persian is that in both 
languages, most vowels are omitted from orthographic rep-
resentation of words. Since longer words on average include 
more vowel letters, they incur less phonological ambiguity, 
pointing to a lexical candidate more rapidly and resulting in 
faster recognition.4 More broadly, our findings resonate with 
previous claims that word length effects are stronger in more 
transparent writing systems (e.g., Cuetos & Suarez-Coalla, 
2009; Ellis & Hooper, 2001; and see Weiss et al., 2015, for 
related evidence from pointed vs. un-pointed Hebrew). Our 
results go a step further to suggest that in Hebrew, word 
length effects are sometimes reversed, arguably due to lower 
levels of phonological ambiguity in longer words.

A second point of interest is the different impact of ortho-
graphic neighbors in the LD versus the naming task. While 
the typical facilitatory effect of orthographic neighborhood 
was observed in LD, our findings show either that ortho-
graphic neighborhood was not predictive of naming RT and 
accuracy, or that having many orthographic neighbors of a 
word resulted in an inhibitory effect. This contrasts with stud-
ies showing that the presence of many orthographic neigh-
bors has a facilitatory effect on naming English words (e.g., 
Yarkoni et al., 2008). Importantly, there are documented 
cross-linguistic differences in orthographic neighborhood 
effects in naming. For example, similar to our present finding 
in Hebrew, Chang et al. (2016) reported an inhibitory effect 
of neighborhood size in Chinese, and demonstrated through 
computational modeling that the division of labor between 
phonological and semantic pathways in deep orthographies 
is the key to accounting for the inhibitory effect of neighbor-
hood size (and see Peereman & Content, 1997, for differences 
between English and French). The difference between LD and 
naming, then, reflects substantial differences in computations 
in a deep orthography like Hebrew. While the presence of 
many orthographic neighbors could contribute to a fast deci-
sion of whether a letter string is a Hebrew word or not, naming 
requires one to identify, select, and pronounce specific lexical 
candidates that often differ in vowel configurations. Hence, 
for Hebrew, the presence of many competitors seems to slow 
response times, rather than accelerate them.

Hebrew‑specific effects

Given the unique properties of Hebrew, understanding the 
role of the Hebrew-specific predictors provides important 
insights with regard to visual word recognition in that lan-
guage. Hence, in this section we review findings pertain-
ing to the three Hebrew-specific predictors tested: Semitic 
structure, presence of clitics, and phonological ambiguity.

With regard to Semitic structure, even though the Semitic 
tagging we employed was conservative (defining a word as 
“clearly Semitic” only if its root letters were clearly produc-
tive), 75% of the 5000 words were tagged as such. Most of 
our statistical models showed that participants’ performance 
improved when presented with words having a Semitic 
structure. The present findings of HeLP indicate then that 
Hebrew readers become attuned to the statistical properties 
of Hebrew with its non-concatenated morphology, and are 
more efficient in processing Hebrew words when they con-
form to the highly prevalent Semitic form of intertwined 
root and word pattern morphemes. We assume that through 
statistical learning, readers become increasingly efficient in 
detecting the root letters within printed Semitic words, ena-
bling the fast decomposition of printed words into their con-
stituent morphemes (see, e.g., Feldman et al., 1995; Velan 
et al., 2013). This provides readers with the missing vowel 
information, and leads to fast lexical access when words are 
organized by morphological rather than simple orthographic 
principles (see Frost et al., 2005, for discussion).

Regarding the effects of clitics, our findings indicate that 
the number of clitic letters impacted performance, with 
responses to words with clitics generally being less accurate 
and incurring slower RTs. This finding suggests that when 
words appear in isolation without disambiguating context, 
clitic letters add further complexity to the process of decom-
posing the printed word into its morphemic constituents. An 
interesting deviation from this pattern, however, was found 
in the naming task: participants read aloud words with clit-
ics faster (although still with more errors). Given the high 
prevalence of clitics and the relative systematicity of their 
pronunciation (e.g., “and” in most cases is pronounced as \
ve\, “the” as \ha\, etc.), and in light of the time constraints 
in the naming task, we cannot rule out the possibility that 
participants initiated the pronunciation of the initial clitics 
before fully recognizing the word (and the higher error rate 
for words with clitics indeed supports this explanation). As 
naming latencies reflect the time course of the initial utter-
ance, our overall speeded responses in the naming task could 
reflect participants’ high confidence in initiating a vocal 
response to the initial clitic letter.

The third important characteristic of Hebrew is its pho-
nological under-specification. While previous research 
simply counted the number of empty vowel slots to assess 
phonological uncertainty (e.g., Frost, 1995), in the present 

4  Some readers may wonder why the correlation between word 
length and phonological entropy, while negative, is quite small, 
r =  − 0.16 (Table 3 above). In this context, it is important to keep in 
mind that our measure of phonological entropy reflects the number 
of meaningful pronunciations a word has, given the heterophonic 
aspect of Hebrew. As such, it does not fully capture a word’s degree 
of phonological ambiguity (i.e., uncertainty or inconsistency): It does 
not reflect the difficulty in generating unique pronunciations given the 
number of missing vowels in the orthographic sequence. Hence two 
words can have a unique lexical pronunciation (and hence a similar 
score in the measure of phonological entropy), but one with few miss-
ing vowels and one with many.
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work we captured the level of phonological uncertainty 
when pronouncing a word by mathematically quantifying 
phonological entropy across responses in the full sample of 
participants (see also De Simone et al., 2021). Our results 
show that in all models, higher pronunciation entropy hin-
dered performance, for both naming and LD. Whereas the 
impact of phonological entropy in naming is anything but 
surprising, the parallel finding for LD is striking. The ortho-
graphical depth hypothesis (Frost et al., 1987) has argued 
that readers of shallow orthographies rely strongly on pho-
nological cues in visual word recognition, while readers of 
deep orthographies such as English or Hebrew rely more on 
orthographic or semantic cues. It was assumed that in deep 
orthographies, the phonological information of a word is 
mediated by the internal lexicon (Frost et al., 1987; Katz & 
Feldman, 1981). Our present data suggests that phonological 
information is computed not only when pronouncing a word, 
but also when simply identifying it in the LD task. This find-
ing accords with the claim that early and fast phonological 
computations in visual word recognition characterize the 
reading process in any orthography whether shallow or deep 
(for discussion see Frost, 1998; Rastle & Brysbaert, 2006). 
Indeed, Rueckl et al. (2015) have shown that readers of dif-
ferent languages with different orthographic depths demon-
strate similar neuronal processing of printed words, includ-
ing in brain areas associated with phonological processing. 
Our results support this line of research, showing early 
phonological processing in Hebrew, which is considered a 
highly deep orthography. That said, we should caution that 
our measure of phonological entropy also potentially reflects 
uncertainty in the mapping between print and meaning; this 
is because, in Hebrew, multiple pronunciations of the same 
word form also often have multiple distinct meanings, and 
therefore more homographic word forms also typically carry 
more ambiguity in the orthographic–semantic mapping. 
Future work should carefully disentangle the effects of dif-
ferent types of ambiguity by providing and validating word-
level measures of print–speech and print–meaning regulari-
ties in Hebrew. We expect the HeLP data to be crucial in the 
validation of such measures (for parallel work in English 
using the ELP data, see, e.g., Chee et al., 2020; Marelli & 
Amenta, 2018; Siegelman et al., 2020, 2022).

What stands out? What is universal?

As outlined in our Introduction, our theoretical approach to 
LPs is that they go far beyond the descriptive statistics of 
yet another writing system. Divergent findings in LPs point 
to higher-order computational principles that explicate the 
difference in results in one language relative to another. Here 
we argue that to account for the range of findings revealed 
in HeLP, visual word recognition should be considered as a 
process of uncertainty reduction with respect to the identity 

of lexical candidates and their phonological structure, as 
represented by the printed forms. This universal principle 
accounts for cross-linguistic differences by weighting the 
set of constraints that drive uncertainty reduction in a given 
writing system.

The main problem in reading Hebrew is in converging 
on an unequivocal lexical and phonological solution to a 
range of parsing and decoding alternatives. While reading 
in context significantly reduces uncertainty, leading in most 
cases to a single solution, words in isolation incur significant 
uncertainty. Uncertainty in Semitic languages concerns com-
peting parsing possibilities (e.g., whether the initial letter is 
a clitic letter, a word pattern letter, or a root letter, which is 
critical for identifying the correct lemma) and also compet-
ing phonological representations. This perspective accounts, 
for example, for the faster responses to longer words, since 
often they incur lower entropy than shorter words. It offers 
a possible explanation for the faster responses to words with 
Semitic structure, since these words typically contain several 
cues for correct morphological decomposition (and see Bar-
On et al., 2017, 2019, 2021, for discussions of uncertainty 
reduction in Hebrew).

Considering visual word recognition as a process of 
uncertainty reduction also outlines the range of dimensions 
to consider when comparing performance across languages, 
and generates predictions regarding cross-linguistic differ-
ences in reading. It shifts the scope of analysis from uni-
dimensional factors such as print–speech transparency, or 
morphological complexity, to regard performance in visual 
word recognition in terms of constraint satisfaction, where 
multidimensional constraints interact to determine the out-
come of processing.

Future directions

Our present findings offer compelling evidence of how 
the unique morphological and phonological properties of 
Hebrew play an important role during visual word recogni-
tion. However, our present analyses are but a first step which 
involves coarse-grained quantification of words’ properties. 
Following in the steps of previous LPs, the HeLP project 
adheres to the principles of open science, making all data 
available for secondary analyses, which we hope will facili-
tate future investigation into the exact predictors of visual 
word recognition in Hebrew.

As mentioned briefly above, one important avenue for 
future research is the development of more subtle and pre-
cise quantification of orthographic–phonological regularities 
in Hebrew. In the current work, we only used a measure of 
pronunciation entropy, which was calculated given the actual 
pronunciations that participants uttered in the naming task. 
Although this measure has ecological validity as it includes 
all pronunciations that were expressed in practice by our 
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sample of participants, it is limited in two important ways. 
First, there are other phonological expressions for the words 
we employed that were not included in the measure’s calcu-
lation. For example, the printed word "הרומכ" (KMWRH) 
has five different phonological forms that bear meaning in 
Hebrew (/kmura/, /kemore/, /kemora/, /kamore/, /kamora/), 
but only three of them were produced by our participants. 
Perhaps more importantly, considering only actual pronun-
ciations does not capture the full extent to which different 
graphemes predict phonemes in the language. We leave it for 
future work to develop precise corpus-based metrics of the 
links between orthography and phonology in Hebrew. This 
work will most likely involve adapting measures developed 
in English and other European languages (e.g., Chee et al., 
2020; Siegelman et al., 2020) to capture the unique proper-
ties of Hebrew (e.g., the fact that in Hebrew, in contrast to 
English, substantial irregularities also exist in the mapping 
of consonant letters into phonemes, rather than mostly vowel 
letters).

Note that producing precise measures of ortho-
graphic–phonological entropy is but one step in assessing 
uncertainty in an Abjad writing system such as Hebrew. 
Other avenues would include the impact of phonologi-
cal Levenshtein distance, as well as measures of ortho-
graphic–semantic regularities (e.g., Marelli & Amenta, 
2018; Siegelman et al., 2022). Multiple other avenues of 
analyses using the HeLP data can replicate studies using 
the ELP data in a writing system with a divergent struc-
ture, including those in psycholinguistic ratings such as 
word concreteness, (Brysbaert et al., 2014), age of acqui-
sition (Kuperman et al., 2012), and body–object interac-
tion (Pexman et al., 2019), to name a few. Future analyses 
should also consider the possible interactions that may 
exist between Hebrew-specific predictors and general 
psycholinguistic properties (e.g., the fact that Semitic 
structure or extent of phonological ambiguity may impact 
processing differently across word lengths). Merging all 
these dimensions together would enable the alignment of 
writing systems for cross-linguistic comparisons, = while 
simultaneously considering the possible interactions of 
their orthographic, phonological, and semantic properties.
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