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Reducing the cost of capital to finance the 
energy transition in developing countries

M. Calcaterra    1,2,3 , L. Aleluia Reis    2,3, P. Fragkos    4, T. Briera    5, 
H. S. de Boer6, F. Egli    7,8, J. Emmerling    2,3, G. Iyer    9, S. Mittal    10,11, 
F. H. J. Polzin    12, M. W. J. L. Sanders    13, T. S. Schmidt    8,14, A. Serebriakova13, 
B. Steffen    15, D. J. van de Ven    16, D. P. van Vuuren    6,17, P. Waidelich    15 & 
M. Tavoni    1,2,3

Climate stabilization requires the mobilization of substantial investments in 
low- and zero-carbon technologies, especially in emerging and developing 
economies. However, access to stable and affordable finance varies 
dramatically across countries. Models used to evaluate the energy transition 
do not differentiate regional financing costs and therefore cannot study 
risk-sharing mechanisms for renewable electricity generation. In this study, 
we incorporated the empirically estimated cost of capital differentiated by 
country and technology into an ensemble of five climate–energy–economy 
models. We quantified the additional financing cost of decarbonization 
borne by developing regions and explored policies of risk premium 
convergence across countries. We found that alleviating financial constraints 
benefits both climate and equity as a result of more renewable and affordable 
energy in the developing world. This highlights the importance of fair finance 
for energy availability, affordability and sustainability, as well as the need to 
include financial considerations in model-based assessments.

As highlighted in the Intergovernmental Panel on Climate Change 
(IPCC) Sixth Assessment Report, finance is one of the critical enablers 
for accelerating climate action1. However, access to finance is funda-
mentally unequal across countries2 and, as a result, it can be a barrier 
to mitigation and adaptation investment1. Developing countries and 
renewable energy sources (RES) in particular face high investment risks 
that are reflected in a high cost of capital (CoC) for projects. Managing 
such costs is thus a key challenge in mobilizing (private) funding for 
the energy transition in the developing world3.

This is a critical topic in terms of policy relevance4, financial fair-
ness5 and energy justice6,7. Indeed, a key issue raised by the clean energy 
transition is how to make renewable energy more widely accessible, 
particularly to low-income populations6, as energy is fundamental for 
social and economic development8. Therefore, suitable public sup-
port is required, which can be achieved by ensuring access to capital 
through low-cost finance and financial de-risking9. This problem is 
particularly acute, given the recent global rise in interest rates, which is 
putting developing countries’ finances under pressure10, and the high 
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In particular, we found that the CoC in the high-CoC region is, for a 
given technology, on average 4% higher than that of the low-CoC region. 
Accordingly, for the analysis of our results, we aggregated countries 
into three macro-regions (Extended Data Fig. 1).

Equipped with this improved empirical basis, we recalibrated the 
models. First, we introduced the actual region- and technology-specific 
CoC values. We also added a time dimension through financing experi-
ence curves, which describe the learning process of finance providers 
becoming acquainted with new technologies27,29. This was implemented 
as a learning-by-doing process for the CoC using the rates estimated 
in ref. 29. Therefore, in models with endogenous learning, the CoC 
reduces as technology uptake increases; the median technology–
region pathway is used exogenously by the other models (see ‘Full set 
of scenarios’ in Methods for more details). Financial experience has 
a strong effect on CoC development over time, decreasing the CoC 
for renewables by 1–2% by 2100 in low-CoC countries and by 1–4% 
in high-CoC countries (Fig. 1a). These improvements in the models 
allow a realistic time evolution of the CoC for renewable electricity 
generation technologies (differentiated by country) and can therefore 
be regarded as our ‘CoC-reference’ scenario, against which we compare 
our scenario of interest. This calibration is one of the key results of our 
methodology as it enables a realistic representation of future global 
CoC development.

Our main scenario of interest was the ‘CoC-convergence’ scenario, 
in which the CoC for energy generation in developing countries con-
verges to that of developed countries. Each generation technology’s 
CoC higher than the one in the Global North is assumed to converge 
linearly to the CoC of that technology in the European Union and the 
United States, reaching parity by 2050. We assumed that this reduction 
affects only the country risk component of the CoC. However, we also 
assumed that the technology risk component would still be affected 
by financing experience, that is, the CoC convergence pathway is not 
exactly linear. Convergence reduces the CoC in high-CoC countries by 
around 4 percentage points compared with the starting point, the inter-
action with learning having a small further effect (Fig. 1a; see Extended 
Data Fig. 2 for greater granularity). This scenario therefore depicts a 
future world in which international access to energy financing is equal. 
To achieve such a world in 25 years, policy makers would need to put in 
place, among others, policies that imply international risk pooling and 
global diversification. This is far from trivial, but our exercise is meant 
to illustrate what might be achieved through this ambition.

We evaluated the role of the CoC under two climate policies. In the 
nationally determined contributions (NDC) scenario, countries are 
assumed to fulfil their NDC by 2030 and to apply an equivalent level 
of climate effort thereafter47. This entails continued mild mitigation 
efforts that do not include net-zero pledges and result in a temperature 
warming outcome of approximately 2.6 °C by the end of the century48. 
We compare this with an idealized scenario consistent with keeping 
the global temperature below 1.5 °C of warming (denoted the 1.5D 
scenario). This scenario involves imposing a carbon budget of 500–
600 GtCO2 (depending on the model) for the period of 2020–2100, 
achieving the NDC through 2030 and assuming a cost-minimizing 
uniform carbon tax rising over time thereafter (Extended Data Fig. 3). 
We also included additional scenarios for robustness, including one 
where the financing of risks spills over between countries and is trans-
ferred. In total, we explored five scenarios (see Extended Data Table 1 
for a summary of the scenarios involved in this study).

Results of CoC convergence policies
The effects of the modelled CoC-convergence scenario are multifac-
eted. The direct outcome is the substantial reduction in the CoC in 
the Global South (Fig. 1a). This leads to interesting dynamics in the 
climate–economy and equity domains. More renewable electricity 
is generated in developing countries, which increases mitigation or 
reduces its cost, depending on the climate policy scenario. Moreover, 

capital intensity of clean energy technologies. Despite their evident 
relevance, the CoC and appropriate de-risking policies are currently 
not well represented in the models generating the scenarios reviewed 
by the IPCC. In this paper, we show that they are a key tool for ensuring 
a just climate transition9,11–13.

Thus, in this study, we empirically estimated14 and incorporated 
real-world CoC15 into five integrated assessment models (IAMs), thereby 
improving their representation of investment conditions. The CoC 
(and thus investment risks) were previously assumed to be the same 
across countries and technologies, leading to biases in model-based 
projections16,17. Indeed, RES deployment is not only driven by physi-
cal factors and costs18–22 but, importantly, also by varying investment 
risks across countries23–25, technologies14 and time. Due to their capital 
intensity, the uptake of RES is much more affected by higher financing 
costs than fossil fuel-based plants26 because some of these technologies 
are still perceived as not fully mature and therefore face a higher risk 
premium, which will decrease with greater confidence and deployment 
over time27–29. This methodological improvement allowed us to explore 
the effects of a stylized policy of international convergence to equitable 
finance for the energy transition in a model ensemble.

This paper contributes to the literature on justice in modern 
energy access6,7,9 and in global cost-effective mitigation investment5, 
and to that on the inclusion of realistic financial costs and barriers in 
energy and climate transition models17. It builds on previous articles 
showing the importance of modelling differentiated CoC values30–35 
as well as the benefits of their exogenous reduction21,36–40 on the cost 
of the transition and on climate. Going beyond the existing literature, 
we provide evidence on the energy justice implications of the assumed 
financial transition scenario.

To obtain our results we leveraged an ensemble of coupled  
climate–economy models (GCAM41, IMACLIM42, IMAGE43, TIAM44 and 
WITCH45) under different climate policies. Multi-model exercises offer 
distinct advantages over single-model results. They provide a broader 
spectrum of perspectives and assumptions, reducing the likelihood 
of bias that might be inherent in any single modelling framework. The 
model ensemble includes simulation and optimization frameworks, 
energy systems, general equilibrium and hybrid approaches. This 
diversity captures a range of uncertainties, allowing stakeholders 
to understand the potential outcome variability. Furthermore, by 
comparing and contrasting different models, consistent patterns 
and results can be identified, lending greater confidence to certain 
projections or findings.

We found that financing costs are a key determinant of the effec-
tiveness and fairness of the climate transition. International conver-
gence in the CoC reduces emissions and fosters access to affordable 
energy, especially in developing countries, substantially contributing 
to a just transition.

Empirical work and study design
We started our analysis by deriving empirical values for the CoC for 
electricity generation technologies, measured by the weighted average 
CoC. Two main approaches were distinguished (which were also used 
in ref. 29): for fossil fuel-based power generation and hydro, we derived 
the CoC from the financing costs of a major set of energy utilities per 
country (based on balance sheet finance), while for non-hydro RES, we 
determined the costs of debt and equity as driven by the country and 
sector level and the technology level (project finance)14,46. Furthermore, 
we deconstructed the CoC into different components (for example, 
country risk and technology risk) to impute financing costs for coun-
tries and technologies where no data were available.

We obtained values for many country–technology pairs. The val-
ues are presented in Extended Data Fig. 1 and Supplementary Table 1. 
The developed world shows the lowest CoC values, while, within devel-
oping countries, industrialized Asian countries have a lower CoC than 
the remaining high-CoC countries, which were our focus in this study.  
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these changes clearly improve the energy justice of the green transition 
by decreasing inequality along dimensions such as energy expenditure 
and, by extension, access to modern electricity generation. In short, we 
found that CoC convergence has substantially positive effects in terms 
of mitigation, access to energy and inequality in developing countries.

More specifically, the main effect of a financing cost convergence 
scenario is to make renewable energy cheaper than fossil generation 
technologies. This is because renewable energy sources are more 
capital intensive than fossil fuel-based plants and, therefore, more 
sensitive to financing costs26. Thus, RES are installed more and gener-
ate more electricity, which is critical because electrification is at the 
core of decarbonization scenarios. Figure 1c shows that, when the 
CoC converges, the increase in clean electricity production is located 
in high-CoC countries and rises over time. In particular, in the NDC 
scenario, fossil fuel generation is reduced while renewable generation 
is boosted. In contrast, in the 1.5D scenario, the growth of renewable 
generation is maintained, but fossil fuels are excluded due to high 
carbon pricing. The relative magnitude of the increase in renewables 
is different: demand for renewable electricity in the two scenarios 

increases by 10% and 5%, respectively (Extended Data Fig. 4) when the 
CoC converges. The described change in the energy mix, that is, power 
generation that is more reliant on renewables in developing countries, 
implies lower emissions there (Extended Data Fig. 5). Usually, this has 
been interpreted as a higher ‘mitigation effort’. However, this further 
reduction in emissions for poorer countries derives entirely from the 
higher cost efficiency of renewables49. The size of the effect varies 
across models, with different models displaying different levels of 
sensitivity to the change in the CoC.

The large effect observed in the NDC scenario hints at the enabling 
potential of a policy pooling financing risks in the energy transition. 
Figure 1d shows how much CoC convergence can fill the gap between 
NDC and a 1.5 °C world in countries with a high CoC, both in terms of 
the increase in RES uptake and the reduction in fossil sources. Across 
models, the renewable electricity gap is filled on average by 30%, while 
the fossil fuel phase-out gap is filled by 10% by 2050. Nevertheless, the 
models vary in the size of the change needed to be compliant with a 
warming of 1.5 °C and, as discussed above, in the change in electricity 
generated by various technologies. Thus, renewables fill from 10% 
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Fig. 1 | Energy consequences of CoC convergence. a, Projected CoC for 
technologies and scenarios with learning. b, Percentage difference in the price 
of electricity between the CoC-reference and CoC-convergence scenarios over 
time. Left: the lines report the aggregated median value across models, region 
and policy scenario. The shading represents, for each macro-region, the range 
across regions and models. Regional aggregation: red, high CoC (Africa, Latin 
America, Middle East, non-EU Eastern European and transition countries); yellow, 
mid CoC (China, India, rest of Asia); green, low CoC (Europe, North America, 
countries of the Pacific OECD). Right: the vertical lines express the ranges of 
values for each macro-region and policy scenario in 2100. The points on the lines 
represent the average across regions for each model (the model TIAM is absent 
as it does not report the price of electricity). c, Left: difference in electricity 

generation between the CoC-reference and CoC-convergence scenarios across 
macro-regions and time for both NDC and 1.5D scenarios, expressed as the 
median values across models. Right: breakdown by model for high-CoC countries 
in 2100 under the NDC and 1.5D scenarios. ‘Renewable’ includes solar and wind, 
‘Fossil’ includes coal, oil and gas, and ‘Other’ includes geothermal, hydro and 
ocean. d, Additional electricity generated in an average year by energy source in 
high-CoC countries. The bars show the absolute additional electricity generated 
in the NDC CoC-convergence (dark shading) and 1.5D CoC-reference scenarios 
(light shading) with respect to the CoC-reference NDC scenario with learning. 
The median column compares the median NDC CoC-convergence with the 
median 1.5D CoC-reference. The values indicate the ratio between the two bars.
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to 69% of the positive gap, while fossil fuels fill from 4% to 38% of the 
negative gap. It is important to note that this wide range does not 
undermine the validity of our results. On the contrary, it underscores 
the complexity of the problem at hand and the multitude of factors that 
can influence the outcome. It also highlights the importance of using 
an ensemble approach in such studies as it allows for a more holistic 
understanding of the system under investigation.

There are also substantial co-benefits. Not only is more renew-
able electricity generated but it is also cheaper. As shown in Fig. 1b, 
converging financing costs considerably lower the price that high-CoC 
countries pay for electricity. The decline is gradual following CoC 
convergence, stabilizing at a median price reduction of ~10% relative 
to the CoC-reference scenario. The direction of the effect is consist-
ent across models and scenarios, ranging from a reduction of around 
20% in some regions and models to a small and temporary positive 
increase in others.

Following the above, as with any cost reduction, there are both 
price and quantity effects. Here, a greater amount of renewable elec-
tricity is generated and the price of electricity is reduced. In terms 
of the quantity effect, the combined effect of energy and emissions 
in the NDC scenario is shown in Fig. 2a: the carbon intensity, that is, 
the ratio between the CO2 emitted and the electricity produced, is 
clearly reduced in high-CoC countries by policies towards CoC conver-
gence. This reduction in carbon intensity occurs robustly only in the 
NDC scenario as the carbon budget of the 1.5D scenario itself forces 
extensive decarbonization of electricity production (Extended Data 
Fig. 6). As a consequence, for the 1.5D scenario, the benefits of CoC 
convergence are not the lower emissions, but the lower cost of achiev-
ing stringent climate policies (Fig. 2b and Extended Data Fig. 7). This 
result can be estimated only by considering an ensemble of models 
as individual models are volatile across time and only by contrasting 
them can the signal be robustly identified, ruling out complementary 
scenario-variable combinations. Policy costs are reduced not only in 
developing regions but also in areas where financing costs are currently 
not the main barrier, such as in the Middle East and Russia. Indeed, 
those regions face considerable economic risks from a concerted 
climate mitigation policy as a result of falling revenues from fossil  
fuel exports.

In either scenario, convergence lowers energy spending in devel-
oping countries. On average, Africa and Latin America reduce their 
energy expenditures as a proportion of gross domestic product (GDP) 
by 5%, and India+ by 2.5% (Fig. 3a). This, and all of the results presented 
so far, substantiate the energy justice benefits embedded in a CoC 
convergence scenario. Indeed, we found that policies towards conver-
gence, enacted following the principle of responsibility, have positive 
effects in terms of energy availability, affordability and sustainability, 
as well as intra- and intergenerational equity7. Moreover, they reduce 
inequalities in access to modern energy, which is an integral part of 
a just transition6,9 and sustainable development8. Inequality in per 
capita renewable energy generation is on average 4% lower in the NDC 
scenario and 2% lower in the 1.5D scenario (Fig. 3b), as measured by the 
80:20 ratio. Moreover, the renewable capacity Lorenz curves50 shown 
in Fig. 3c show that, across climate policies, CoC convergence increases 
the equity of renewable capacity by up to 2 points in the Gini index and 
that the changes are spread across the whole distribution.

Discussion
The results of this empirically validated modelling exercise unam-
biguously show that international convergence in the CoC for energy 
financing is an important solution to enable the greening of the energy 
system and increase the justice of the transition.

Our most important contribution has been to explore the effects 
of a generic policy that creates a level playing field in terms of country 
risk premia for energy investments by the middle of the century. Such 
a policy is justified on both justice and efficiency grounds. Efficient 
global renewable energy plans should build capacity where there is 
the highest potential. A just global energy system should fairly dis-
seminate both the benefits and the costs of energy services7. And 
accordingly, fair finance should flow from developed countries to 
developing countries5, even if country-level risks are a barrier1,3. This is 
vital because access to modern energy is necessary to achieve sustain-
able development and is mutually reinforcing with other Sustainable 
Development Goals8. In particular, policies towards a convergence of 
CoC have the potential to yield the triple dividend of increasing energy 
access, enhancing social and economic benefits, and advancing climate 
goals9. The question of fair access to finance is particularly urgent in 

Models agreeing on direction Median reduction Macro-regions
High CoC (Africa, Latin America, Middle East,
non-EU Eastern European and transition countries)
Mid CoC (China, India and rest of Asia)

Low CoC (Europe, North America and countries of the Pacific OECD)

From –5% to 5%

From 5% to 15%

From 15% to 25%

More than 25%

5 out of 5

a    

4 out of 5

3 out of 5

b    

Fig. 2 | Price and quantity effects of CoC convergence. a, Percentage difference 
in the carbon intensity of electricity between the CoC-convergence and CoC-
reference scenarios under the NDC climate policy. The underlying values are 
provided in Extended Data Fig. 6. b, Percentage difference in the policy cost 
between the CoC-convergence and CoC-reference scenarios under the 1.5D 
climate policy. Costs were computed as GDP loss (IMACLIM and WITCH), 
additional total energy system cost (TIAM) and area under the marginal 

abatement cost curve (GCAM and IMAGE). The underlying values are provided 
in Extended Data Fig. 7. In a and b, the colour shading shows the intensity of the 
reduction, with a darker colour indicating a higher reduction; the patterning 
illustrates the confidence of the results. OECD, Organisation for Economic Co-
operation and Development. Data from ref. 86 with administrative boundaries 
from EuroGeographics. Figure created with https://ropengov.github.io/giscoR.
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the context of the climate transition, given the tilted distribution of 
historical responsibilities, physical climate risks and access to energy 
among industrialized and developing economies.

The ambition of reducing the CoC in developing countries towards 
that of today’s developed world should not be underestimated. The 
country risk premium depends on factors such as the quality of institu-
tions, macroeconomic stability and financial sector maturity51, which 
are also desirable from a development perspective but not completely 
under the control of policymakers. Our scenario is agnostic with regard 
to the specific policies that would need to be implemented to bring 
about the assumed convergence. The policy provisions of Article 6 
of the Paris Agreement52 provide a framework for this. Nevertheless, 
besides working towards a generally lower country risk, we highlight 
that there might also be energy sector-specific (or even renewable 
energy-specific) policy levers51. For instance, there is evidence that the 
design of energy system support policies can lower the cost of renew-
able energy deployment by around 30% (ref. 37) and that risk-sensitive 
renewable energy policies have the potential to reduce the levelized 
cost of energy (LCOE) by 10–30% (ref. 53). Policies that improve 
financing conditions can include auctions54 fostered by multilateral 
guarantee mechanisms, which have the potential to reduce the CoC 
by 6–7%55. Numerical simulations in other studies have shown that a 
multilateral sovereign guarantee fund could be compatible with the 
public budgets of developing countries and even impact guarantors’ 
accounts positively56. Multilateral development banks are particularly 
important in this regard as they provide low-interest finance blended 
with guarantees to developing countries and are increasingly aligning 
their portfolios with the Paris goals9,57,58. Nevertheless, they have been 
urged to enhance their performance and contribution to the climate 
cause59, and mechanisms to fund projects without issuing new debt 
have been suggested60.

In this context, a general purpose policy such as the one simu-
lated here is a useful starting point of analysis. However, policies have 
costs and might have effects besides the intended CoC reduction. 

Our analysis must be complemented by a more detailed analysis on a 
case-by-case basis for a tailored set of policies focused on access to and 
deployment of energy finance. In particular, the absence of possible 
risk spillovers to the CoC of the Global North is a limitation of the cur-
rent design. However, we partly explored this in the sensitivity analysis. 
In particular, we assumed the empirical CoC to increase in the European 
Union and the United States, thus also impacting the CoC-convergence 
target for other countries. Given that we have focused only on the 
power sector, we do not expect the spillover to be large and, were it to 
be sizeable, to considerably influence our primary conclusions. Indeed, 
with a risk spillover of 1%, the magnitude of the results is reduced, but 
the direction is robust (Extended Data Fig. 8). However, future research 
could benefit from considering these spillover effects.

Coupled energy–economy–climate models play an important role 
in informing policy design and mitigation strategies at the national and 
international level. These models explore the response of complex 
systems in a consistent framework, necessarily by making simplify-
ing assumptions61, for example, on technology cost development 
constraints62,63, the granular representation of storage technologies64 
and the treatment of variable renewable energy65. In particular, with 
respect to the last two points, this study did not focus explicitly on 
financing enabling infrastructure such as grid transmission, energy 
storage and hydrogen. These technologies will play a critical role in a 
renewable-based transition such as the one depicted here and are con-
sidered to different extents in the participating models. Nevertheless, 
their financing was not the focus of this study, given the prerogative 
of the public sector in infrastructure. Grid development is taken on by 
public utilities, whose CoC and rating are closely linked to the sovereign 
state66 and thus hardly influenced by energy sector-specific policies 
(the cost of borrowing for grid development is still one of the main 
barriers in emerging markets67). Meanwhile, hydrogen and storage 
are at an early stage of development and currently need active public 
support68,69, that is, for the CoC, and the private sector will play a role 
only further into the future. These are fundamental elements that 
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Fig. 3 | Inequality consequences of CoC convergence. a, Percentage change in 
energy expenditure as a proportion of GDP for CoC-convergence with respect 
to CoC-reference in 2100 for the NDC and 1.5D scenarios. The bars indicate the 
median reduction across models and the error bars show the minimum and 
maximum across four models (the model TIAM is absent as it does not report 
the price of energy). b, Percentage difference in the 80:20 ratio of per capita 
renewable electricity generation for CoC-convergence with respect to CoC-
reference across models for the NDC and 1.5D scenarios. The ratio is obtained 
by calculating the electricity per capita generated by the two regions with 

the highest per capita GDP (Europe and Pacific OECD) and dividing it by the 
amount generated by the two poorest regions (India+ and Africa) in 2100. Then 
the percentage difference between the CoC-reference and CoC-convergence 
scenarios is calculated. The bars indicate the median across models and the error 
bars show the minimum and maximum across five models. c, Lorenz curves of 
the renewable capacity in 2100. The differences in the bars and curves show the 
additional RES generation in the CoC convergence scenarios, helping to close 
the gap to an equal distribution of renewable sources (line at 45°). In the NDC 
scenario, the two scenario lines almost overlapping.
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have limited the scope of this study but open up critical avenues for 
future research.

In summary, our research has shown that policies that help the CoC 
of the power sector in developing countries to converge to the levels 
of developed countries play an important role in greening electricity 
generation, lowering the cost of mitigation and improving equity. By 
eliminating spreads in country risk premia in the CoC for energy financ-
ing, such policies create a level playing field, easing access to renewable 
energy technologies in countries that traditionally have a higher CoC. 
Our results are robust across models and the sizeable benefits justify 
investigations by policymakers to develop tools to bring about the 
modelled convergence. Methodologically, the approach shown here 
can be taken up by models that evaluate national and international 
climate policies and thus help to better represent financial dynamics 
in transition models and scenarios.

Methods
Empirical construction of the CoC
Large-scale energy and climate models that optimize pathways usually 
employ uniform discount rates (for example, ref. 70). These rates are 
intended to capture the time value of money, for example, the soci-
etal preference of consuming today compared with in the future. As 
such, these rates can be used to derive theoretically socially optimal 
pathways to achieve set climate targets in a set target year. In the case 
of energy system transitions, these pathways imply substantial invest-
ments in different kinds of energy assets (for example, renewable ver-
sus conventional generation technologies) in different regions of the 
world. In reality, these investments contain different risks and investors 
price these risks by demanding different returns71. As such, investments 
in the same technology face different capital costs and investments in 
different technologies in the same country may do so too. Because the 
purpose of this study was to illustrate the implications of real-world 
investment conditions compared with a social optimum reflected by 
a uniform social discount rate, we developed a method to estimate 
country- and technology-specific weighted average CoC (WACC).

Investments can be financed via equity or debt. Usually, these 
sources of capital are combined and debt is preferred because the 
cost of debt is less than the cost of equity as debt is serviced before 
equity in the case of financial distress72. Hence, any representation 
of the WACC requires a cost of debt (for example, the interest rate to 
be paid on a bank loan) and a cost of equity (for example, the internal 
return expectation, or hurdle rate, of the asset owner). In addition, an 
input of debt share, that is, how much debt a project or a company is 
able to attract, is required.

The methodology used to calculate the WACC is described in the 
literature73. Specifically, the authors show that interest expenses can 
be used as a viable proxy for the cost of debt, and the cost of equity can 
be proxied by dividend payments.

WACCit = Lit × rDit × (1 − TaxRateit) + (1 − Lit) × rEit (1)

For company i in year t, this shows that the cost of debt, rDit, is 
weighted by the leverage ratio, Lit, and (one minus) the country’s tax 
rate. The cost of equity, rEit, is weighted by the complement of the lever-
age ratio, which is defined as:

Lit =
Total Debtit

Total Debtit + Total Equityit
(2)

This approach was used to calculate the CoC for renewable energy 
projects in ref. 16 and to obtain differentiated country-level utility 
WACC values for Europe in ref. 71. These data were used in the model-
ling in this study. In addition, we calculated differentiated country-level 
utility CoC for the period 2009–2018 for a representative set of major 
and emerging economies (United States, Japan, Canada, Brazil, China, 

India, South Korea and Russia). We first describe in detail how WACC for 
project finance was computed, followed by country-level utility WACC.

Renewable energy CoC
Non-hydro renewable energy assets are predominantly realized in pro-
ject finance structures and the described approach to estimate WACC 
in such structures follows the approach proposed by the International 
Renewable Energy Agency using publicly available data sources with 
the intention to allow replicability and provide full transparency74,75. 
The empirical literature shows that the costs of both debt and equity 
are determined by drivers at (1) the country and sector level, (2) the 
technology level and (3) the project or company level17. For this study, 
we abstracted from individual projects or companies. Accordingly, for 
debt, we added three components on top of the global risk-free rate, 
reflecting country risk (that is, the country default spread) and risk 
specific to the technology or the type of asset (that is, the general risk 
of a project finance infrastructure investment and the potential addi-
tional risk of that asset’s technology being relatively new). For equity, 
we again added three components to the global risk-free rate, reflecting 
the additional risk of equity markets (that is, the equity premium), the 
country risk above that of the United States in equity markets (that is, 
the country premium) and a technology risk, as in debt. Equations (3) 
and (4), respectively, show the list of components for the cost of debt 
and the cost of equity used in equation (1).

rDit = (Global Risk Free Rate + Country Default Spread

+ Infrastructure Premium + Technology Premium)
(3)

rEit = (Global Risk Free Rate + Equity Risk Premium

+ Country Equity Premium + Technology Premium)
(4)

The global risk-free rate, equity risk premium, country default 
spread and country equity premium were taken from data publicly 
available at the NYU Stern School of Business76. The global risk-free rate 
is the nominal yield on a 10-year US treasury bond (1.68% as of March 
2021). The equity risk premium reflects the additional risk, measured in 
volatility, of the S&P 500 index above the US treasury bond. The country 
default spread is the spread between a country’s bond yield and the US 
bond yield: depending on data availability, these spreads are calculated 
using country ratings as proxies. For example, for countries that have 
not issued US dollar- or euro-denominated bonds, it is calculated via 
the ratings from Moody’s and S&P, the two largest rating agencies. The 
country equity premium is higher than the country default spread 
because it reflects the additional risk of a country’s equity market com-
pared with US equities (that is, S&P 500), which are inherently riskier 
than government bonds. The country equity premium is based on the 
default spread (see above) multiplied by the volatility of the leading 
equity index of the country in question, more precisely multiplied by 
the ratio of the standard deviation of the leading national index rela-
tive to the standard deviation of the country bond. The infrastructure 
premium for the cost of debt is based on a hedonic approach outlined 
in the literature77, corroborated by industry reports78, because data on 
the cost of private infrastructure debt are not readily available. It varies 
slightly across regions (2–2.2%, post-2015 values).

Debt share (Lit in equation (1)) and technology premium vary by 
technology maturity in the respective country. We defined technology 
maturity using thresholds for the share of wind and solar photovoltaics 
(PV) in the overall generation capacity by country (see ref. 77), whereby 
the threshold is slightly lower for offshore wind to account for the 
fact that the technology is expected to attract low-cost finance faster 
because it arrived at a later stage when market formation had already 
occurred and the financing ecosystem was more established. Thus, we 
defined mature markets with a threshold of 10% of installed generation 
capacity (data taken from the CIA’s The World Factbook 202079) for 
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onshore wind and solar PV and 6% for offshore wind, and we defined 
intermediate markets with a threshold of 5% for onshore wind and solar 
PV and 3% for offshore wind. More mature markets are generally able 
to draw in higher debt shares27 (Supplementary Table 2). Based on the 
report of Blanc-Brude and Yim77, we calibrated the debt share to 80% 
for mature markets and to 60% for immature markets (choosing the 
average of 70% for intermediate markets), which corresponds well with 
academic findings80. Technology premiums were set to 1.5% for mature 
markets, 2.375% for intermediate markets and 3.25% for immature mar-
kets based on a report on offshore wind financing conditions, which 
observed a reduction from 3.25% to 1.5% above the London Inter-Bank 
Offered Rate in North West Europe81. These values correspond well 
with academic findings on onshore wind and solar PV in Germany, Italy 
and the United Kingdom, where risk premia dropped from over 3% to 
an average of 1.7% as renewable capacity shares rose from around 4% 
in 2008 to around 16% in 201680. Because the infrastructure premium 
includes a technology component, we chose whichever was higher 
of the infrastructure and technology premium to calculate the cost 
of debt. Finally, the technology premium includes a technology risk 
wedge that is independent of maturity levels because the literature has 
shown that there can be technology-specific risks14,80, independent of 
maturity (for example, due to different operational risks depending 
on moving parts or differences in the precision of resource estimates). 
Comparing the empirical risk premium across technologies at similar 
maturity levels in the literature14,82, we found a premium for onshore 
wind above solar PV at similar maturity levels, but no such premium 
between onshore wind and offshore wind. Based on the empirical 
values in Germany, the only market with empirical values available for 
all three technologies at high levels of maturity, we set a premium of 
0.1% on the cost of debt and 0.6% on the cost of equity for onshore and 
offshore wind above solar PV.

Country-level utility CoC
Non-renewable and large hydro energy production is usually not 
financed on a project basis but on balance sheet by both publicly owned 
and private utilities. These utilities also finance their balance sheet with 
debt and equity and the WACC for their investments can be computed 
by taking data from their financial statements. Specifically, we used:

rDit =
Interest Expenseit
Total Debtit

(5)

rEit =
Total Cash Dividends Paidit

Total Equityit
(6)

The TRBC Sector Classification database83 was used to extract the 
above variables to compute the firm-level WACCs (for a complete list 
of variables, including descriptions, see Supplementary Table 3). They 
have a respectable methodology for exhaustively classifying compa-
nies into industry groups based on primary sources, local expertise and 
proprietary algorithms83. The firms defined as utilities in the database 
report that between 80% and 100% of their revenue comes from manag-
ing utilities. While this database is extensive and covers the financial 
statements and data of utility companies in each country of interest, 
it is not without inconsistencies, missing observations and strange 
input from smaller firms. Problems emerged from firms with negative 
entries for total equity (that is, companies that are in essence insolvent 
or bankrupt), which led to negative WACC values, or outlandish imbal-
ances between debt and equity, which led to WACC values of over 100%. 
Neither are realistic extremes for the CoC and were excluded.

Another issue was posed by firms with many missing values in 
some, but not in all years. To maintain a balanced panel of data, the cho-
sen solution was to drop such firms from the sample as well (although 
in the Russian data, this led to the deletion of most of Gazprom’s sub-
sidiaries). In both the cases of extremes and missing values, the firms 

responsible made up no more than 1% of the energy market in their 
country. This left us confident that the resulting sample is still repre-
sentative of the utility-level energy production in each country.

Once the firm-level WACC values had been computed, the 
country-level utility CoC could be calculated by weighting each 
firm-level WACC by the share of revenue of that firm in the total rev-
enue of the country’s utilities market. This procedure resulted in 191 
country–year observations based on 428 utilities in 21 countries.

The WACC represents the CoC for utilities, which is the rate of 
return that these utilities offer their investors. Arbitrage in financial 
markets ensures that this rate of return must include the risk-free 
rate of return, rf, a premium for country c's risk (default spread), pc, a 
technology T's risk premium, pT, and other idiosyncratic risk premia 
of utilities εct that we assumed are normally distributed around zero.

WACCct = rft + pT + pc + εct (7)

To estimate the technology-specific risk premia, we first sub-
tracted the risk-free rate and country risk component from the coun-
try utilities’ WACC. As for the project finance WACC, we took the US 
long-term government bond rate as the risk-free rate and used the 
spread between a country’s long-term interest rate and the US long-term 
bond as the country risk premium76. To isolate technology-specific risk 
premia, we ran an ordinary least-squares regression with the pure 
technology component of the country utilities’ WACC as the depend-
ent variable and the share of generation per technology per country 
as independent variables (suppressing the constant because shares 
of technologies add up to 1 and weighting the variables by country 
GDP so that large countries have a larger impact on the estimated 
coefficients β0–8):

WACCct − rft − pc

= β0 × ShareCoalct + β1 × ShareGasct + β2 × ShareOilct
+β3 × ShareNuclearct + β4 × ShareHydroct + β5 × ShareBioct
+β6 × ShareSolarct + β7 × ShareWindct + β8 × ShareOtherct + εct

(8)

The estimated coefficients measure the average increase in the 
CoC (and return on investment in a country’s average utility) for a 1% 
increase in the share of a technology in that country’s (and therefore 
the country’s average utility’s) WACC, where we assumed that the aver-
age utility generation mix equals the country generation mix. With the 
coefficients from the this regression, we constructed the WACC for all 
technologies in all countries (Supplementary Table 4). The resulting 
values can be found in Supplementary Table 1.

Finally, 2018 was chosen as the base year for the multi-model 
analysis for differentiated CoC.

Full set of scenarios
To explore our research questions, we implemented modelling 
improvements in multiple steps, as described below.

First, the DEF (default) scenario, comprising the original CoC 
assumptions for each of the models (before this implementation). 
For some of the models, the CoC was fixed and common to all regions 
and technologies; for others, it was implicit and equal to the marginal 
productivity of capital.

Second, the BASE scenario, in which the original assumptions 
about the CoC were replaced by empirical CoC values. The CoC in this 
scenario does not have a time dimension, which means that the CoC 
values are constant.

Third, the LRN (financial learning) scenario, in which a time 
dimension is introduced, reducing technology risk. Specifically, in 
this scenario, the finance sector becomes more accurate in judging 
RES projects over time, thus lowering the required safety margins27. 
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This scenario models a more realistic development of RES risk premia 
over time (without needing specific enabling policies). We applied the 
learning rates estimated in ref. 29, namely, a 5% reduction in capital cost 
for each doubling of domestic capacity for the technology. Therefore, 
technology risk is endogenously reduced by financing experience. Con-
sistent with a financing experience rate of 5%, the learning by financing 
factor, bT, is obtained from bT = log2(1 − 0.05) ≅ −0.074. The CoC values 
at time t for country n and technology T are obtained by multiplying 
the differentiated CoCs by the ratio of domestic cumulative technology 
deployment, YT, elevated by bT:

CoCt,n,T = CoC0,n,T × (
Yt,n,T
Y0,n,T

)
bT

(9)

This dynamic has been modelled endogenously by three of the five 
models that were used in the study, namely, IMACLIM, IMAGE and 
WITCH. The models that could not technically implement endogenous 
learning, namely, GCAM and TIAM, used an exogenous CoC trajec-
tory equal to the median LRN scenario generated by the other models 
for each technology, region and year. This is the reference scenario, 
referred to as CoC-reference in the main text.

Fourth, the CONV (convergence due to a reduction in the CoC) sce-
nario is the scenario of interest and is referred to as CoC-convergence 
in the main body of the paper. It shows the result of the CoC linearly 
converging to the level of developed countries (namely, to the aver-
age CoC of the European Union and United States) by 2050. The sce-
nario also includes endogenous learning, so the CoC pathways are 
not exactly linear (Extended Data Fig. 2). The two elements can be 
combined because financial learning is assumed to reduce only the 
technology risk component of the CoC, while CoC convergence can be 
safely assumed to implicitly reduce only the country risk component. 
Similarly to the LRN scenario, models that do not include endogenous 
learning (GCAM and TIAM) use an exogenous CoC trajectory equal to 
the median CONV scenario generated by the other models for each 
technology, region and year.

Last, the SPILL (CoC spillover) robustness scenario, in which it is 
assumed that the generic policies necessary for convergence affect the 
risk premia of the policymakers, that is, the risk spills over. Essentially, 
enacting a policy to reduce CoC for developing countries increases the 
empirical CoC values for the European Union and United States by 1% 
from 2020 onwards for each technology. This also implies that all of 
the countries that benefit from convergence are affected as the final 
level of convergence is 1% higher. In other words, the risk is not just 
reduced, it is to some extent transferred. This scenario has been run 
for robustness only for the WITCH model.

The response of the models to including the empirical CoC is 
diverse, depending on the default values and the implemented 
improvement (Supplementary Fig. 1, difference between DEF and BASE 
scenarios). The price of electricity increases or decreases depending 
on the model. In addition, for some models, the reduction is particu-
larly large for both low- and high-income countries characterized 
by a low CoC. This is caused by the greater difference between the 
default CoC value, equal across countries, and the country-specific 
value. Consequently, the CoC was overestimated in some models. 
The effect on emissions is strong for high-CoC countries in the 1.5D 
scenario: in the median, a realistic CoC increases the total emissions 
from 2020 to 2100 by 10%. However, emissions for countries with a 
lower CoC are not meaningfully affected in the aggregate. The median 
changes in the energy mix consist of an increase in the use of bio-
mass in the NDC scenario and a similar decrease in the 1.5D scenario. 
Such ambiguous changes are the result of contrasting mechanisms  
across models.

The inclusion of financial learning has sizeable effects. Electric-
ity price is reduced in every model and region, emissions are gener-
ally reduced and more renewables are installed. Therefore, including 

financing experience in IAMs is necessary to accurately depict the 
transition.

CoC implementation
Using the BASE scenario, we applied region- and technology-specific 
CoCs. The empirical data were translated from country-level to 
regional-level based on a GDP-weighted average. The implementation 
across models was tailored to the model characteristics, as described 
below.

By default, the CoC in GCAM is represented as a fixed change 
rate (FCR) that annualizes the capital cost of power infrastructure. 
We adapted the interpretation of this FCR according to ref. 30, which 
depends on various variables, including the CoC:

FCRi,t,T =
CoCi,t,T

1 − (1 + CoCi,t,T)
Lifetime
i,T

×
1 − (TaxRate × PresentValueDepreciation)

1 − TaxRate
(10)

In this study, we adapted the CoC values according to the model region 
(weighted by GDP for aggregated regions) and technology, as well as 
the technology lifetimes assumed in the model. For the right-hand 
term in equation (10), we assumed a value of 1.1, which is in line with 
the average for the United States84.

In IMACLIM-R’s power sector, electricity generation technologies 
compete according to their LCOE, in which the CoC is used as a proxy for 
the discount factor. Thus, the CoC values replace the usual discount fac-
tor assumption in the LCOE formula. The default value for the discount 
factor of electricity generation technologies was 10%. LCOEs serve as 
arguments for a multinomial logit equation to determine the market 
shares of electricity generation technologies.

In the IMAGE power sector representation, the CoC values are 
used to annualize investment costs. These annualized costs are used to 
determine the LCOE per technology. This LCOE is used when determin-
ing market shares for power sector investments in a multinomial logit 
equation: technologies with lower costs get larger market shares. The 
default CoC value used in the DEF scenario was 10%. Technologies not 
represented in the data have been given a regional average (weighted 
on capacities installed in 2018). In the LRN scenario, no spillover rates 
or floors were applied. For the 1.5D variations, a global carbon tax was 
introduced. This carbon tax was optimized so that the carbon budget 
(600 GtCO2 from 2020 to 2100) was reached at the lowest achievable 
policy costs. For the NDC scenario, we implemented the regional NDC 
emission goals (before the Glasgow levels) by introducing regional 
carbon taxes. The regional carbon taxes differ for the DEF, BASE, LRN 
and CONV variations because the different scenario settings make the 
model respond differently to carbon taxes. To achieve the same emis-
sions goal, different taxes are required.

In the TIAM model, we input a global discount rate, which is used 
to discount all future costs back to the model’s base year. In addition 
to the global discount rate, we input a technology-specific financial 
hurdle rate. The financial hurdle rate can be defined as the WACC. These 
specific hurdle rates are used for uplifting the level of the capital cost 
of generation (or end-use) assets in the model by increasing the total 
capital recovery over the project lifetime. Operation and maintenance 
costs are unaffected by this hurdle rate. This hurdle rate reflects how 
an increased cost of finance would affect capital costs.

The WITCH model uses an implicit interest rate for discounting, 
equal to the marginal product of capital. Therefore, to apply exogenous 
values for the CoC, we adjusted the CoC values using the factor CoCadj, 
calculated by removing the endogenous interest rate values according 
to the following expression:

CoCadjc,t,T =
∑LifetimeT

tt=t (1 + InterestRatec,tt)
−tt×(tt−t)

∑LifetimeT
tt=t (1 + CoCc,tt,T)

−tt×(tt−t) (11)
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The adjusted factor obtained then substitutes the relative discount 
factor and updates the installation cost of plants as an additional  
hurdle rate.

Data availability
The empirical CoC input data and integrated assessment model outputs 
are available at Zenodo via https://doi.org/10.5281/zenodo.11545407 
(ref. 85). Source data are provided with this paper.

Code availability
The code availability for the individual models used in this paper varies 
and contact should be made with the individual modelling groups. The 
models are documented in the common IAM documentation (https://
www.iamcdocumentation.eu/index.php/IAMC_wiki), and some code 
has been published on open source platforms, for example, GCAM 
(https://github.com/JGCRI/gcam-core) and WITCH (https://github.
com/witch-team/witchmodel). The code for processing model output 
is available at Zenodo via https://doi.org/10.5281/zenodo.11545407 
(ref. 85).
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Extended Data Fig. 1 | Empirically calibrated WACC values by technology 
and country. Values have been aggregated in three macro-region with similar 
characteristics. In red, developing countries with a higher CoC on average. In 
yellow, Asian developing countries with a lower CoC on average. In green, the 

developed world, which exhibits on average the lowest CoC. The label in the 
top left of each panel displays the median CoC value for that technology. WACC 
stands for Weighted Average Cost of Capital, while CoC stands for Cost of Capital. 
© EuroGeographics for the administrative boundaries.
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Extended Data Fig. 2 | Range of CoC values’ development across time for models with learning. Small differences arise across models in the starting values due to 
different original regional aggregations and differences in modelling. CoC stands for Cost of Capital, NDC stands for Nationally Determined Contributions, CCS stands 
for Carbon Capture and Storage.
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Extended Data Fig. 3 | Global emissions across models and scenarios. CoC stands for Cost of Capital, NDC stands for Nationally Determined Contributions.
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Extended Data Fig. 4 | Percentage difference between CoC-reference and CoC-convergence in electricity generation. Bars report the 2100 model median for the 
high CoC region. CoC stands for Cost of Capital, NDC stands for Nationally Determined Contributions.
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Extended Data Fig. 5 | Emissions from the energy sector. Changes in 
percentage value (bar height) and absolute value (label) between CoC-reference 
and CoC-convergence, total emissions up to 2100. The marker for TIAM in the 

red macro-region for the 1.5D scenario is hidden because the reduction is below 
-100% (net negative emissions). CoC stands for Cost of Capital, NDC stands for 
Nationally Determined Contributions.
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Extended Data Fig. 6 | In the NDC scenario, CoC-convergence reduces carbon intensity. Linear interpolation across time for the median by model of delta carbon 
intensity CoC stands for Cost of Capital, NDC stands for Nationally Determined Contributions.
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Extended Data Fig. 7 | In the 1.5D scenario, CoC-convergence reduces policy cost. Linear interpolation across time for the median by model of delta policy cost. 
CoC stands for Cost of Capital, NDC stands for Nationally Determined Contributions.
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Extended Data Fig. 8 | Robustness scenario. The WITCH model is run in a 
risk-spillover scenario (more details in Methods). This is compared to a normal 
CoC-convergence run in difference with respect to the CoC-reference scenario. 
The magnitude of the resulting dynamics is reduced with risk spillover, but the 
direction is robust. a, Percentage difference in the price of electricity between 

the CoC-reference and CoC-convergence scenarios over time. b, Difference 
in electricity generation between the CoC-reference and CoC-convergence 
scenarios across macro-regions and time. CoC stands for Cost of Capital, NDC 
stands for Nationally Determined Contributions.
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Extended Data Table 1 | Short description of the scenarios implemented

The analysis in the main part of the paper is done referring to the LRN scenario as CoC-reference and CONV scenario as CoC-convergence. More details on scenario implementation in 
Methods CoC stands for Cost of Capital, NDC stands for Nationally Determined Contributions.
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