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1. Introduction. A hypersurface in the unit round sphere Sn+1 is called

isoparametric if it has constant principal curvatures. It is known from [1] that

an isoparametric hypersurface in S4 is either an open portion of a 3-sphere

or an open portion of the product of a circle and a 2-sphere, or an open por-

tion of a tube of constant radius over the Veronese embedding. Because every

isoparametric hypersurface in S4 has constant mean curvature (CMC) and con-

stant scalar curvature, it is interesting to determine all hypersurfaces with CMC

and constant scalar curvature. In [2], it was proved that a closed hypersurface

with CMC and constant scalar curvature in S4 is isoparametric. Furthermore,

complete hypersurfaces with CMC and constant scalar curvature in S4 or in E4

have been completely classified in [9].

For each Riemannian n-manifold Mn with n≥ 3, the first author defined in

[3, 4] the Riemannian invariant δ on M by

δ(p)= τ(p)− infK(p), (1.1)

where τ =∑i<j K(ei∧ej) is the scalar curvature and infK is the function as-

signing to each p ∈ Mn the infimum of K(π), π running over all planes in

TpM . Although the invariant δ and the scalar curvature are both Riemannian

scalar invariants, they are very much different in nature.

It is known that the invariant δ plays some important roles in recent study of

Riemannian manifolds and Riemannian submanifolds (see, e.g., [4, 5, 6, 7, 8, 10,

11, 12, 14, 15, 16]). In particular, it was proved in [3] that for any submanifold

of a real space form Rm(ε) of constant curvature ε, one has the following

general sharp inequality:

δ≤ n
2(n−2)

2(n−1)
H2+ 1

2
(n+1)(n−2)ε, (1.2)

http://dx.doi.org/10.1155/S0161171203304260
http://dx.doi.org/10.1155/S0161171203304260
http://dx.doi.org/10.1155/ijmms
http://www.hindawi.com


4206 B.-Y. CHEN AND O. J. GARAY

where H2 is the squared mean curvature function and n is the dimension of

the submanifold.

Clearly, every isoparametric hypersurface in S4 or in E4 has constant mean

curvature and constant δ-invariant. So, it is a natural problem to study hyper-

surfaces in S4 and E4 with CMC and constant δ-invariant. The purpose of this

paper is thus to classify such hypersurfaces.

Our main results are the following theorems.

Theorem 1.1. A CMC hypersurface in the Euclidean 4-space E4 has constant

δ-invariant if and only if it is one of the following:

(1) an isoparametric hypersurface;

(2) a minimal hypersurface with relative nullity greater than or equal to 1;

(3) an open portion of a hypercylinder N ×R over a surface N in E3 with

CMC and nonpositive Gauss curvature.

Theorem 1.2. A CMC hypersurface M in the unit 4-sphere S4 has constant

δ-invariant if and only if one of the following two statements holds:

(1) M is an isoparametric hypersurface;

(2) there is an open dense subset U ofM and a nontotally geodesic isometric

minimal immersion φ : B2 → S4 from a surface B2 into S4 such that U is

an open subset of NB2 ⊂ S4, where NB2 is defined by

NpB2 =
{
ξ ∈ Tφ(p)S4 :

〈
ξ,ξ

〉= 1,
〈
ξ,φ∗

(
TpB2)〉= 0

}
. (1.3)

In contrast to [2, 9], we do not make any global assumption on the hyper-

surfaces in Theorems 1.1 and 1.2.

As an immediate application of Theorem 1.1, we have the following corol-

lary.

Corollary 1.3. Let M be a complete hypersurface of Euclidean 4-space E4.

Then M has constant δ-invariant and nonzero CMC if and only if M is one of

the following hypersurfaces:

(1) an ordinary hypersphere;

(2) a spherical hypercylinder: R×S2;

(3) a hypercylinder over a circle: E2×S1.

2. Preliminaries. Let Rm(4) denote the complete simply connected space

form R4(ε) of constant curvature ε. Let M be a hypersurface of an R4(ε). De-

note by ∇ and ∇̃ the Levi-Civita connections of Mn and R4(ε), respectively.

Then the Gauss and Weingarten formulas of Mn in R4(ε) are given, respec-

tively, by

∇̃XY =∇XY +h(X,Y), ∇̃Xξ =−AX (2.1)
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for tangent vector fields X, Y , and unit normal vector field ξ, where h denotes

the second fundamental form and A the shape operator. The second funda-

mental form and the shape operator are related by

〈
AX,Y

〉= 〈h(X,Y),ξ〉. (2.2)

The mean curvature H of M in R4(ε) is defined by H = (1/3)traceA. A

hypersurface is called a CMC hypersurface if it has CMC.

Denote by R the Riemann curvature tensor ofM . Then the equation of Gauss

is given by

R(X,Y ;Z,W)= (〈X,W〉〈Y ,Z〉−〈X,Z〉〈Y ,W〉)ε+〈h(X,W),h(Y ,Z)〉
−〈h(X,Z),h(Y ,W)〉 (2.3)

for vectors X, Y , Z , and W tangent to M . The Codazzi equation is given by

(∇XA)Y = (∇YA)(X). (2.4)

Since A is a symmetric endomorphism of TpM , p ∈M , we have three eigen-

values a, b, and c with three independent unit eigenvectors e1, e2, and e3 so

that

Ae1 = ae1, Ae2 = be2, Ae3 = ce3, (2.5)

where A = Ae4 . The functions a, b, and c are called the principal curvatures

and e1, e2, and e3 the principal directions.

With respect to the frame fields e1, e2, and e3 ofM chosen above, letω1,ω2,

andω3 be the field of dual frames and letωA
B ,A,b = 1,2,3,4, be the connection

forms associated with e1, e2, e3, and e4. Then the structure equations of M in

R4(ε) are given by

dωi =−
3∑
j=1

ωi
j∧ωj, ωi

j+ωj
i = 0, (2.6)

dωi
j =

3∑
k=1

ωi
k∧ωj

k+ω4
i ∧ω4

j +εωi∧ωj, (2.7)

dω4
i =

3∑
j=1

ω4
j ∧ωi

j, i,j = 1,2,3. (2.8)

Moreover, from (2.5), we have

ω4
1 = aω1, ω4

2 = bω2, ω4
3 = cω3. (2.9)

Without loss of generality, we may choose e1, e2, and e3 such that a≥ b ≥ c.

It is well known that a, b, and c are continuous onM and differentiable on the
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open subset U = {p ∈M : a(p) > b(p) > c(p)}. The principal directions e1, e2,

and e3 can be chosen to be differentiable on U .

Let p be any given point in M . If 0 > b ≥ c at p, then, after replacing ξ by

−ξ and interchanging a and c, we obtain a≥ b > 0 and b ≥ c.

3. Lemmas. We follow the notations given in Section 2. Throughout this

paper, we will choose e1, e2, e3, and e4 so that a≥ b ≥ 0 and b ≥ c.

Lemma 3.1. For each point p ∈M , either

(a) infK = bc+ε with c ≥ 0 at p, or

(b) infK = ac+ε with c ≤ 0 at p.

Proof. Recall that we have assumed that a ≥ b ≥ 0 and b ≥ c at p. Let P
be any 2-plane in TpM . Then P must intersects the 2-plane Span{e1,e2}. Thus,

there exists an orthonormal basis {X,Y} of P such that X ∈ P ∩Span{e1,e2}
and

X = cosθe1+sinθe2,

Y =±sinθcosφe1∓cosθcosφe2+sinφe3
(3.1)

for some θ andφ with θ ∈ [0,π),φ∈ [0,π]. It is easy to see that the sectional

curvature K(P) of P is given by

K(P)= abcos2φ+c(acos2θ+bsin2θ
)
sin2φ+ε. (3.2)

We regard the sectional curvature at p as a function K(θ,φ) of θ and φ.

If c ≥ 0, (3.2) can be expressed as

K(θ,φ)= ac+a(b−c)cos2φ−c(a−b)sin2θ sin2φ+ε, (3.3)

which implies that K(θ,φ) ≥ bc + ε with the equality holding at (θ,φ) =
(π/2,π/2).

If c ≤ 0, we can express (3.2) as

K(θ,φ)= bc+b(a−c)cos2φ+c(a−b)cos2θ sin2φ+ε, (3.4)

which implies that K(θ,φ) ≥ ac + ε with the equality holding at (θ,φ) =
(0,π/2).

Lemma 3.2. On the open subset U on which M has three distinct principal

curvatures, the following equations hold:
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e2a= (a−b)ω2
1

(
e1
)
, (3.5)

e3a= (a−c)ω3
1

(
e1
)
, (3.6)

e3b = (b−c)ω3
2

(
e2
)
, (3.7)

e1b = (b−a)ω1
2

(
e2
)
, (3.8)

e1c = (c−a)ω1
3

(
e3
)
, (3.9)

e2c = (c−b)ω2
3

(
e3
)
, (3.10)

(c−b)ω2
3

(
e1
)= (c−a)ω1

3

(
e2
)
, (3.11)

(b−c)ω3
2

(
e1
)= (b−a)ω1

2

(
e3
)
, (3.12)

(a−b)ω2
1

(
e3
)= (a−c)ω3

1

(
e2
)
. (3.13)

Proof. The proof follows from Codazzi’s equation and is a straightforward

computation.

4. Proofs of Theorems 1.1 and 1.2. We use the same notations as before.

Let M be a (connected) CMC hypersurface with constant δ-invariant in R4(ε).
Then the scalar curvature τ of M is given by

τ = ab+bc+ac+3ε. (4.1)

From the constancy of the mean curvature, we have

a+b+c = r1 (4.2)

for some constant r1. By combining Lemma 3.1 with (1.1) and (4.1), we obtain

(i) δ= a(b+c)+2ε with c ≥ 0, or

(ii) δ= b(a+c)+2ε with c ≤ 0.

When U = {p ∈ M : a(p) > b(p) > c(p)} is empty, M is an isoparametric

hypersurface since the mean curvature and the δ-invariant are both constant.

Thus, from now on, we may assume that U is nonempty and work on U .

We will treat Cases (i) and (ii) on U separately.

Case (i) (δ = a(b+ c)+2ε, c ≥ 0). Since δ is constant, we get a(b+ c) =
r2−2ε for some constant r2. Combining this with (4.2) yields

a= c1, b+c = c2 (4.3)

for some constants c1 and c2. For simplicity, let

ω2
3

(
e1
)= µ, ω2

1

(
e2
)= f , ω3

2

(
e2
)= g, ω3

2

(
e3
)= h. (4.4)

If b and c are constant, then M is isoparametric. So, we assume that b
and c are nonconstant on U . Using (4.3), we get ejb = −ejc, j = 1,2,3. Thus,
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Lemma 3.2 gives

ω3
1

(
e1
)=ω2

1

(
e1
)= 0, (4.5)

e1b = (a−b)f = (c−a)ω3
1

(
e3
)
, (4.6)

e2b = (b−c)h, (4.7)

e3b = (b−c)g. (4.8)

From (4.5), we know that the integral curves of e1 are geodesics in U . Apply-

ing (3.12), (3.13), (4.6), (4.7), and (4.8), we find

e1b = (a−b)f , e2b = (c−b)h,
e3b = (b−c)g, eja= 0, ejc =−ejb, (4.9)

ω2
1 = fω2+ b−c

b−aµω
3, (4.10)

ω3
1 =

b−c
c−aµω

2+ a−b
c−afω

3, (4.11)

ω3
2 =−µω1+gω2+hω3, (4.12)

for j = 1,2,3. By applying (2.6), (4.9), (4.10), (4.11), and (4.12), we find

dω1 =
(
b−c
a−b +

b−c
c−a

)
µω2∧ω3,

dω2 = fω1∧ω2+ a−c
b−aµω

1∧ω3+gω2∧ω3,

dω3 = a−b
a−c µω

1∧ω2− a−b
a−c fω

1∧ω3+hω2∧ω3.

(4.13)

Using (∇e2e1−∇e1e2−[e2,e1])b = 0, we get

(a−b)e2f +(b−c)e1h= 2(c−a)fh+ (b−a)(b−c)
c−a µg. (4.14)

Similarly, from (∇e3e1−∇e1e3−[e3,e1])b = (∇e3e2−∇e2e3−[e3,e2])b = 0, we

get

(a−b)e3f +(c−b)e1g = (a−c)(c−b)b−a µh+ 2a(b+c)−b2−c2−2a2

c−a fg,

e3h+e2g = c−ba−c µf .
(4.15)
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By computing dω2
1 and applying (4.10), (4.11), (4.12), (4.13), and Cartan’s

structure equations, we obtain

e1f = 2(b−c)
a−c µ2−f 2−ab−ε, (4.16)

e1

(
b−c
b−aµ

)
=
{
b−c
a−b +

2(a−b)
a−c

}
µf , (4.17)

e3f +e2

(
b−c
a−bµ

)
= b+c−2a

c−a
{
fg− b−c

a−bµh
}
. (4.18)

Similarly, by computing dω3
1 and dω3

2, and by applying (4.10), (4.11), (4.12),

(4.13), and Cartan’s structure equations, we obtain

e1

(
b−c
c−aµ

)
=
{

2a2+2c2+b2−ab−3ac−bc
(a−c)2

}
µf , (4.19)

e1

(
a−b
c−af

)
=−ac−ε−

(
a−b
c−a

)2

f 2+ 2(b−c)
b−a µ2, (4.20)

e3

(
c−b
c−aµ

)
+e2

(
a−b
c−af

)
= 2a−b−c

a−c
{
fh+ b−c

a−bµg
}
, (4.21)

e2µ+e1g = a−bc−aµh−fg, (4.22)

e1h+e3µ = a−ba−c fh+
a−c
a−bµg, (4.23)

e2h−e3g = 2(b−c)2µ2

(a−b)(a−c) +
a−b
a−c f

2−g2−h2−bc−ε. (4.24)

Combining (4.9), (4.16), and (4.20) yields

2(2a−b−c)(a−b)2+2(2a−b−c)(b−c)2µ2

+(a−b)(a−c){ab(a−b)+ac(a−c)+(2a−b−c)ε}= 0,
(4.25)

which is impossible unless ε < 0, since we assume that a> b > c ≥ 0 in Case (i).

Case (ii) (δ = b(a+ c)+2ε, c ≤ 0). Since δ is constant, we get b(a+ c) =
r2−2ε for some constant r2. Combining this with (4.2) yields

b = c3, a+c = c4, (4.26)

for some constants c3 and c4. For simplicity, let

ω1
3

(
e2
)= µ̃, ω1

2

(
e1
)= f̃ , ω3

1

(
e1
)= g̃, ω3

1

(
e3
)= h̃. (4.27)

If a and c are constant, then M is isoparametric. So, from now on, we may

assume that a and c are nonconstant on U . Using (4.26), we get

eja=−ejc, j = 1,2,3. (4.28)
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Thus, Lemma 3.2 yields

ω3
2

(
e2
)=ω1

2

(
e2
)= 0, (4.29)

e1a= (c−a)h̃, e2a= (b−a)f̃ , e3a= (a−c)g̃. (4.30)

Equation (4.28) shows that the integral curves of e2 are geodesics in U . Ap-

plying (3.12), (3.13), (4.29), and (4.30), we find

ω2
1 =−f̃ω1− a−c

a−b µ̃ω
3, (4.31)

ω3
1 = g̃ω1− µ̃ω2+ h̃ω3, (4.32)

ω3
2 =

a−c
c−b µ̃ω

1+ a−b
b−c f̃ω

3. (4.33)

By applying (2.6), (4.31), (4.32), and (4.33), we find

dω1 =−f̃ω1∧ω2+ g̃ω1∧ω3+ b−c
a−b µ̃ω

2∧ω3,

dω2 =−
(
a−c
a−b +

a−c
b−c

)
µ̃ω1∧ω3,

dω3 = a−b
b−c µ̃ω

1∧ω2+ h̃ω1∧ω3+ a−b
b−c f̃ω

2∧ω3.

(4.34)

Using (∇e2e1−∇e1e2−[e2,e1])a= 0, we find

(a−b)e1f̃ −(a−c)e2h̃= 2(b−a)f̃ h̃+ (a−b)(a−c)
b−c µ̃g̃. (4.35)

Similarly, from (∇e3e1−∇e1e3−[e3,e1])a= (∇e3e2−∇e2e3−[e3,e2])a= 0, we

get

(a−b)e3f̃ +(a−c)e2g̃ = (a−c)(b−c)a−b µ̃h̃+ 2ab+2bc−2b2−a2−c2

b−c f̃ g̃,

e3h̃+e1g̃ = c−ab−c µ̃f̃ .
(4.36)

By computing dω2
1 and applying (4.31), (4.32), and (4.33) and Cartan’s struc-

ture equations, we obtain

e2f̃ = 2(a−c)
b−c µ̃2− f̃ 2−ab−ε, (4.37)

e2

(
a−c
a−b µ̃

)
=
{
a−c
b−a −

2(a−b)
b−c

}
µ̃f̃ , (4.38)

e3f̃ +e1

(
a−c
b−aµ̃

)
= a+c−2b

c−b
{
f̃ g̃+ a−c

a−b µ̃h̃
}
. (4.39)
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Similarly, by computing dω3
1, dω3

2, and by applying (4.31), (4.32), and (4.33)

and Cartan’s structure equations, we obtain

e2

(
a−c
c−b µ̃

)
=
{

2b2+2c2+a2−ab−3bc−ac
(b−c)2

}
µ̃f̃ , (4.40)

e2

(
a−b
b−c f̃

)
=−bc−ε−

(
a−b
c−b

)2

f̃ 2+ 2(a−c)
a−b µ̃2, (4.41)

e3

(
a−c
b−c µ̃

)
+e1

(
a−b
b−c f̃

)
= 2b−a−c

b−c
{
f̃ h̃− a−c

a−b µ̃g̃
}
, (4.42)

e1µ̃+e2g̃ = a−bb−c µ̃h̃− f̃ g̃, (4.43)

e2h̃+e3µ̃ = b−ab−c f̃ h̃−
b−c
a−b µ̃g̃, (4.44)

e1h̃−e3g̃ = 2(a−c)2µ̃2

(b−a)(b−c) −
a−b
b−c f̃

2− g̃2− h̃2−ac−ε. (4.45)

Applying (4.30), (4.37), and (4.41) yields

2(2b−a−c)(a−b)2f̃ 2+2(2b−a−c)(a−c)2µ̃2

+(b−a)(b−c){ab(b−a)+bc(b−c)+(2b−a−c)ε}= 0.
(4.46)

Using (4.26), (4.30), and (4.38), we find

e2µ̃ = 2
[
(a−b)2+(b−c)2]
(a−c)(c−b) µ̃f̃ . (4.47)

On the other hand, by differentiating (4.46) with respect to e2 and using

(4.26), (4.30), and (4.37), we obtain

4(a+c−2b)(a−c)2µ̃(e2µ̃
)

= b(a−b)(3a3−13a2b+10ab2+7a2c−4abc−2b2c−3ac2+bc2+c3)f̃
−8

(a+c−2b)2(a−b)(a−c)
b−c µ̃2f̃ +8(a+c−2b)(a−b)2f̃ 3

−(a−b)(a+c−2b)(4b−3a−c)εf̃ .
(4.48)

Replacing f̃ 2 in (4.48) by using (4.46) yields

4(a+c−2b)(a−c)2µ̃(e2µ̃
)

= 3(a−b)(a−c)(a+c−2b)ε̃f̃

+3b(a−b)(a−c)(a2−3ab+2b2+2ac−3bc+c2)f̃
−8

(a+c−2b)(a−c)[(a−b)2+(b−c)2]
b−c µ̃2f̃ .

(4.49)
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Substituting (4.47) into (4.49) yields

f̃ (a+c−2b)
{
b(a+c−b)+ε}= 0. (4.50)

Case (ii-a) (f̃ = 0). In this case, (4.37) and (4.41) imply that

2(a−c)µ2 = (ab+ε)(b−c)= (bc+ε)(a−b). (4.51)

The equality in (4.51) yields

b(ab+bc−2ac)= (a+c−2b)ε. (4.52)

Case (ii-a.1) (f̃ = 0, b 
= 0). In this case, (4.26) and (4.52) imply that ac is

constant. Hence, by (4.26), we know that both a and c are constant. Thus, M
is isoparametric.

Case (ii-a.2) (b = f̃ = 0, ε = 1). In this case, (4.52) reduces to a+ c = 2b.

So, M satisfies the equality case of inequality (1.2). Therefore, by applying [7,

Theorem 2], we know that M is given by Theorem 1.2 (2).

Case (ii-a.3) (b = f̃ = ε = 0). In this case, (4.37) implies that µ̃ = 0. Thus,

by (4.31) and (4.33), we obtain ω2
1 =ω3

2 = 0. On the other hand, from (4.29),

we have ∇e2e2 = 0. Therefore, �1 = Span{e1,e3} and �2 = Span{e2} are inte-

grable distributions in M with totally geodesic leaves. Hence, M is locally the

Riemannian product of a line and a Riemannian 2-manifold N2. Moreover, be-

cause the second fundamental form h of M in E4 satisfies h(�1,�2) = {0},
Moore’s lemma [13] implies that M is an open portion of a hypercylindrical

R×N2 ⊂ E×E3 = E4. Furthermore, from the assumption on the shape operator

of M in E4, we know that the mean curvature of N in E3 is constant and the

Gauss curvature of N is nonpositive. Thus, we obtain case (3) of Theorem 1.1.

Case (ii-b) (f̃ 
= 0, b = 0). In this case, (4.50) yields (a+c)ε= 0.

If ε = 1, then a+c = 0. Hence, M is a minimal hypersurface satisfying the

equality case of inequality (1.2). Thus, by applying [7, Theorem 2], we obtain

case (2) of Theorem 1.2.

If ε = 0, then (4.46) implies that a+ c − 2b = 0 due to b = 0 and a 
= b.

Hence, M satisfies the equality case of inequality (1.2). Since M has CMC, [7,

Theorem 1] implies thatM is either an isoparametric hypersurface or a minimal

hypersurface which satisfies the equality δ = 0. Hence, we obtain either case

(1) or case (2) of Theorem 1.1.

Case (ii-c) (b 
= 0, f̃ 
= 0). In this case, (4.50) yields

(a+c−2b)
{
b(a+c−b)+ε}= 0. (4.53)

If a+c−2b = 0 holds, then (4.46) implies that a(a−b)−c(b−c)= 0 which

is impossible, since a ≥ 0, c ≤ 0, and a > b > 0 by assumption. Therefore, we



CONSTANT MEAN CURVATURE HYPERSURFACES . . . 4215

must have

ε= b(b−a−c). (4.54)

From (4.54), ε≥ 0, and b > 0, we get

b ≥ a+c. (4.55)

On the other hand, by substituting (4.54) into (4.46), we find

(a+c−2b)
[
(a−c)2µ̃2+(a−b)2f̃ 2]= b(b−a)2(b−c)2. (4.56)

In particular, we obtain a+c > 2b. Combining this with (4.55) gives b < 0 which

is a contradiction. Thus, this case is impossible.

The converse follows from [7, Theorem 2] and from direct computation.
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