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1. Introduction. A hypersurface in the unit round sphere $™*! is called
isoparametric if it has constant principal curvatures. It is known from [1] that
an isoparametric hypersurface in S* is either an open portion of a 3-sphere
or an open portion of the product of a circle and a 2-sphere, or an open por-
tion of a tube of constant radius over the Veronese embedding. Because every
isoparametric hypersurface in $* has constant mean curvature (CMC) and con-
stant scalar curvature, it is interesting to determine all hypersurfaces with CMC
and constant scalar curvature. In [2], it was proved that a closed hypersurface
with CMC and constant scalar curvature in S* is isoparametric. Furthermore,
complete hypersurfaces with CMC and constant scalar curvature in S* or in E*
have been completely classified in [9].

For each Riemannian n-manifold M™ with n > 3, the first author defined in
[3, 4] the Riemannian invariant 6 on M by

o(p) =7(p)—infK(p), (1.1)

where T = >, jK(ei nej) is the scalar curvature and infK is the function as-
signing to each p € M" the infimum of K(7r), 71 running over all planes in
T, M. Although the invariant 6 and the scalar curvature are both Riemannian
scalar invariants, they are very much different in nature.

Itis known that the invariant 6 plays some important roles in recent study of
Riemannian manifolds and Riemannian submanifolds (see, e.g., [4, 5, 6, 7, 8, 10,
11,12, 14, 15, 16]). In particular, it was proved in [3] that for any submanifold
of a real space form R™(€e) of constant curvature €, one has the following
general sharp inequality:

n2(m-2)

0= Sm-1D

H2+%(n+ 1)(n-2)e, (1.2)
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where H? is the squared mean curvature function and 7 is the dimension of
the submanifold.

Clearly, every isoparametric hypersurface in $* or in E* has constant mean
curvature and constant §-invariant. So, it is a natural problem to study hyper-
surfaces in $* and F* with CMC and constant S-invariant. The purpose of this
paper is thus to classify such hypersurfaces.

Our main results are the following theorems.

THEOREM 1.1. A CMC hypersurface in the Euclidean 4-space E* has constant
d-invariant if and only if it is one of the following:
(1) an isoparametric hypersurface;
(2) a minimal hypersurface with relative nullity greater than or equal to 1;
(3) an open portion of a hypercylinder N x R over a surface N in E3 with
CMC and nonpositive Gauss curvature.

THEOREM 1.2. A CMC hypersurface M in the unit 4-sphere S* has constant
S-invariant if and only if one of the following two statements holds:
(1) M is an isoparametric hypersurface;
(2) there is an open dense subset U of M and a nontotally geodesic isometric
minimal immersion ¢ : B2 — S* from a surface B? into S* such that U is
an open subset of NB?> c S*, where NB? is defined by

NpB? = [ € Ty S*: (E.8) = 1, (5, (T,B%)) = 0}. (1.3)

In contrast to [2, 9], we do not make any global assumption on the hyper-
surfaces in Theorems 1.1 and 1.2.

As an immediate application of Theorem 1.1, we have the following corol-
lary.

COROLLARY 1.3. Let M be a complete hypersurface of Euclidean 4-space E*.
Then M has constant 6-invariant and nonzero CMC if and only if M is one of
the following hypersurfaces:

(1) an ordinary hypersphere;
(2) a spherical hypercylinder: R x S?;
(3) a hypercylinder over a circle: E? x S1.

2. Preliminaries. Let R™(4) denote the complete simply connected space
form R*(¢) of constant curvature €. Let M be a hypersurface of an R*(¢). De-
note by V and V the Levi-Civita connections of M" and R*(e), respectively.
Then the Gauss and Weingarten formulas of M™ in R*(e) are given, respec-
tively, by

VxY =VxY+h(X,Y), VxE=-AX (2.1)
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for tangent vector fields X, Y, and unit normal vector field &, where h denotes
the second fundamental form and A the shape operator. The second funda-
mental form and the shape operator are related by

(AX,Y) = (h(X,Y),E). (2.2)

The mean curvature H of M in R*(e) is defined by H = (1/3)trace A. A
hypersurface is called a CMC hypersurface if it has CMC.

Denote by R the Riemann curvature tensor of M. Then the equation of Gauss
is given by

R(X,Y;Z,W) = ((X,W)(Y,Z) = (X, Z)(Y,W))e+ (h(X,W),h(Y,Z))
—(h(X,Z),h(Y,W))

for vectors X, Y, Z, and W tangent to M. The Codazzi equation is given by
(VxA)Y = (VyA)(X). (2.4)

Since A is a symmetric endomorphism of T, M, p € M, we have three eigen-
values a, b, and ¢ with three independent unit eigenvectors ey, e»>, and e3 so
that

Ae; = aey, Aey = bey, Aes = ces, (2.5)

where A = A,,. The functions a, b, and c are called the principal curvatures
and ey, e», and e3 the principal directions.

With respect to the frame fields e;, e», and e3 of M chosen above, let w!, w?,
and w? be the field of dual frames and let w3, A, b = 1,2,3,4, be the connection
forms associated with ey, e», e3, and e4. Then the structure equations of M in
R*(¢) are given by

3

dw'=-> wirw, w§+w{=0, (2.6)
j=1
3 "
dwE:Zw};/\wi+w‘i‘/\w§+ewiij, (2.7)
k=1
3
dwi = wirwt, i,j=1,2,3. (2.8)
j=1

Moreover, from (2.5), we have
wi=aw', w3 =bw?, w3 = cw?. (2.9)

Without loss of generality, we may choose e1, e, and e3 such thata > b > c.
It is well known that a, b, and ¢ are continuous on M and differentiable on the
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open subset U = {p e M:a(p) > b(p) > c(p)}. The principal directions ey, e,
and e3 can be chosen to be differentiable on U.

Let p be any given point in M. If 0 > b > ¢ at p, then, after replacing & by
—¢& and interchanging a and ¢, we obtaina >b >0 and b > c.

3. Lemmas. We follow the notations given in Section 2. Throughout this
paper, we will choose e, e, e3, and e4 sothata>b >0and b > c.

LEMMA 3.1. For each point p € M, either
(@) infK = bc+¢€ withc =0 at p, or
(b) infK =ac+e€ withc <0 atp.

PROOF. Recall that we have assumed thata = b =0 and b > ¢ at p. Let P
be any 2-plane in T, M. Then P must intersects the 2-plane Span{e;,e;}. Thus,
there exists an orthonormal basis {X,Y} of P such that X € PnSpan{e;,e»}
and

X = cos0eq +sinfey,

3.1
Y = =sin 6 cos ¢pe; F cos O cos ¢pe; + singes (3.1

for some 6 and ¢ with 6 € [0,17), ¢p € [0, 77]. It is easy to see that the sectional
curvature K(P) of P is given by

K(P) = abcos® ¢ +c(acos? 0+ bsin® 0) sin® ¢ + €. (3.2)

We regard the sectional curvature at p as a function K(6,¢) of 0 and ¢.
If ¢ > 0, (3.2) can be expressed as

K(0,¢) =ac+a(b—-c)cos?¢p—c(a—Db)sin®0sin’ ¢ +e, (3.3)

which implies that K(6,¢) > bc + € with the equality holding at (9,¢)
(rr/2,11/2).
If ¢ <0, we can express (3.2) as

K(0,¢) =bc+b(a—c)cos’p+c(a—b)cos®0sin® ¢ +e¢, (3.4)

which implies that K(8,¢) = ac + € with the equality holding at (9,¢) =
(0,71/2). O

LEMMA 3.2. On the open subset U on which M has three distinct principal
curvatures, the following equations hold:
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exa = (a—b)w3(ey), (3.5)
eza = (a—c)wi(er), (3.6)
esb = (b-c)w3(ez), (3.7)
eib=(b-a)wi(e), (3.8)
eic = (c—a)wi(es), (3.9)
exc = (c—b)wi(e3), (3.10)
(c-Db)wj(e1) = (c—a)wl(er), (3.11)
(b-c)wsi(e)) = (b—a)wi(esz), (3.12)
(a-b)w?(e3) = (a—c)wi(ez). (3.13)

PROOF. The proof follows from Codazzi’s equation and is a straightforward
computation. O

4. Proofs of Theorems 1.1 and 1.2. We use the same notations as before.
Let M be a (connected) CMC hypersurface with constant §-invariant in R*(e).
Then the scalar curvature T of M is given by

T=ab+bc+ac+3e. (4.1)
From the constancy of the mean curvature, we have
a+b+c=7 (4.2)

for some constant 7;. By combining Lemma 3.1 with (1.1) and (4.1), we obtain
i d=a(b+c)+2ewithc =0, or
(i) 6 =b(a+c)+2ewith c <0.

When U = {peM:a(p) > b(p) > c(p)} is empty, M is an isoparametric
hypersurface since the mean curvature and the J-invariant are both constant.
Thus, from now on, we may assume that U is nonempty and work on U.

We will treat Cases (i) and (ii) on U separately.

CASE (i) (6 = a(b +c) + 2€, ¢ = 0). Since ¢ is constant, we get a(b +c¢) =
1> — 2€ for some constant 7. Combining this with (4.2) yields

a=cqc, b+c=cp 4.3)
for some constants ¢; and c». For simplicity, let
wile) =p,  wilex)=f, wilex)=g, wiles)=h. (4.4)

If b and ¢ are constant, then M is isoparametric. So, we assume that b
and c¢ are nonconstant on U. Using (4.3), we get e;b = —ejc, j = 1,2,3. Thus,
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Lemma 3.2 gives

w3 (er) = wi(er) =0, (4.5)
eib=(a-b)f = (c-a)wi(es), (4.6)
esb=(b-c)h, 4.7)
esb=(b-c)g. (4.8)

From (4.5), we know that the integral curves of e, are geodesics in U. Apply-
ing (3.12), (3.13), (4.6), (4.7), and (4.8), we find

etb=(a-b)f, eob = (c—b)h,

4.9
esb=(b-c)g, eja=0, ejc=—e;jb, (4.9)
b-c
2 _ 2 3
wi=fw+ b_auw , (4.10)
b-c a-b .
1= —pw? 3 4.11
Wy = Hw +C_afw, ( )
w3 = —pw! + gw? +hw?, (4.12)
for j =1,2,3. By applying (2.6), (4.9), (4.10), (4.11), and (4.12), we find
b-c b-c
1_ 2 3
dw = (a—bJrc—a)“w N,
dwz=fw1/\w2+%uwl/\w3+gw2Aw3, (4.13)
dw? = a_buwl /\a)z—a—_bfw1 AW +hw? Aw?.
a-c a-c
Using (V,e1 — Ve, €2 —[e2,e1])b = 0, we get
(@a—b)esf+(b-cleth=2(c—a)fh+ w;lg. (4.14)

C

Similarly, from (Ve,e1 — Ve, e3—[e3,e11)b = (Veye2 — Ve, e3—[e3,e21)b = 0, we
get

— _ _ 2 _ A2 2
(a-c)(c b)uh+2a(b+c) bc—cc-2a

(@a-bjesf+(c-bjerg=—7"—~ —a

fa,

c—b
esh+exg = Eﬂf-
(4.15)
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By computing dw‘]2 and applying (4.10), (4.11), (4.12), (4.13), and Cartan’s
structure equations, we obtain

elf—M 2_prg @16
el(ii{”) :{%J’Zficb)}uﬁ (4.17)
e3f+e2<Z:Zu):b+cc_—aza{ buh} i

Similarly, by computing dw? and dw3, and by applying (4.10), (4.11), (4.12),
(4.13), and Cartan’s structure equations, we obtain

el(f:;“) _ {2a2+2c2 +(l;2_—ca)k27—3ac—bc }uf, 4.19)
e1<z:2f> =—ac—e—(a—w>2f2+%u2, (4.20)
e3<%u>+ez<z:2f> Zaa bc C{fm b:;;ug}, (4.21)
exp+eg= %uh—fg, (4.22)

eth+esu= Z c bug, (4.23)

exh—e3g = (2%—)?&‘; 4z ?fz —g°-h?—bc—e.  (4.24)

Combining (4.9), (4.16), and (4.20) yields

22a-b-c)(a-b)>+2Ra-b-c)(b-c)’y?

(4.25)
+(a-b)(a-c){ab(a-b)+acla—-c)+a-b-c)e} =

which is impossible unless € < 0, since we assume thata > b > ¢ > 0 in Case (i).

CASE (ii) (6 = b(a+c) + 2€, ¢ < 0). Since ¢ is constant, we get b(a+c) =
1> — 2€ for some constant 7. Combining this with (4.2) yields

b =c3, a+c = cy, (4.26)

for some constants c3 and c4. For simplicity, let

wilex) =f, wile))=f, wile)=4, wiles)=h. (4.27)

If a and c are constant, then M is isoparametric. So, from now on, we may
assume that a and ¢ are nonconstant on U. Using (4.26), we get

eja=—-ejc, j=1,2,3. (4.28)
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Thus, Lemma 3.2 yields

w3 (e2) = wh(ez) =0, (4.29)
era=(c—a)h, ea=b-a)f, ea=(a-c)g. (4.30)

Equation (4.28) shows that the integral curves of e, are geodesics in U. Ap-
plying (3.12), (3.13), (4.29), and (4.30), we find

w? —f"wl—a:ziiw3, (4.31)
W} = gw' - fiw? +hw?, (4.32)
3_a—-c. 1 a—-bx ;3
wz——c_ flw +b—c (4.33)
By applying (2.6), (4.31), (4.32), and (4.33), we find
1 7ol 2, A1 3, b-c_ 3
dw' = -fw' AW +gw' Aw +muw AW?,
2 (a-c a-c\_ 4 3
dw* = (a—b+—b—c>uw AW?, (4.34)
s_a-b_ o o1, .3, a"bs 5 3
dw’ = o Fw AW +hw' Aw +h—cfw AW?>.
Using (Ve,e1 — Ve e2 —[e2,e1])a = 0, we find
(@—b)erf—(a—clesh = 2(b—a) i+ 2=DNA=C) 50 4.35)

b-c

Similarly, from (Ve,e1 — Ve e3—[e3,e1])a = (Veyer —Ve,e3 —[e3,e2])a =0, we

get

(a-c)(b-c) . 2ab+2bc-2b*-a%—c? -
i b fth + b e £,
~ - C—a~~

e3h+e1g——b_cuf.

(a-b)esf+(a—cleg =

(4.36)
By computing dw? and applying (4.31), (4.32), and (4.33) and Cartan’s struc-
ture equations, we obtain

erf = Z(If__cc) 12~ f2—ab-e, (4.37)

a-c_.\ (a-c 2(a-b)] .=
e2<a7hu>_{bfa_ b-c }“f’ (4.38)
e3f+el<Z:Zﬂ) - “zc__;b {fg+ Z:Zﬂﬁ}. (4.39)
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Similarly, by computing dw?, dw3, and by applying (4.31), (4.32), and (4.33)
and Cartan’s structure equations, we obtain

ez(Z:ZI:‘) = {2h2+2€2+ﬁj_£?3bcac }ﬂf, (4.40)
e Z:ff) :—bC—E—<%)2f2+2(aa__bC)[l2, 4.41)
(58 (3227) - B i 2],
erfi+erd = ‘Z:gml— fa, (4.43)

esh+esfi = Z:’jfﬂ—Z:Zﬂg, (4.44)

erh—e3d = (i(_aa_)f;_ﬂi) - Z:ffz —-g°—h’-ac-e. (4.45)

Applying (4.30), (4.37), and (4.41) yields

2@b—a-c)a-b)2f2+2(2b-a—c)(a-c)i?

(4.46)
+((b-a)(b-c){ab(b—a)+bc(b—-c)+(2b—a-c)e} =0.
Using (4.26), (4.30), and (4.38), we find
_b)2 _a21 L
el = 2[(a-b)*+(b-c) ]I:lf- (4.47)

(a-c)(c—b)

On the other hand, by differentiating (4.46) with respect to e, and using
(4.26), (4.30), and (4.37), we obtain

4(a+c—-2b)(a—c)*fi(exfi)

=b(a-b)(3a®-13a’b +10ab? +7a’c —4abc - 2b*c —3ac’ +bc® +c3) f
(a+c-2b)*(a-b)(a-c)
-8
b-c
—(a—b)(a+c—2b)(4b—3a—c)ef.

f2f+8(a+c—2b)(a-b)2f?

(4.48)

Replacing f2 in (4.48) by using (4.46) yields

4(a+c—2b)(a—c)’fi(exfi)
=3(a-b)(a-c)(a+c—-2b)éf
+3b(a—b)(a—c)(a’—3ab+2b? +2ac—3bc+c?)f (4.49)

78(a+c72b)(afc)[(afb)2+(b7c)2]

..2"
h—c aef.
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Substituting (4.47) into (4.49) yields
fla+c-2b){b(a+c—b)+e€} =0. (4.50)
CASE (ii-a) (f =0). In this case, (4.37) and (4.41) imply that
2(a-c)p? = (ab+e)(b—c) = (bc+e€)(a—D). 4.51)
The equality in (4.51) yields
b(ab+bc—-2ac) = (a+c—-2b)e. (4.52)

CASE (ii-a.1) (f =0, b # 0). In this case, (4.26) and (4.52) imply that ac is
constant. Hence, by (4.26), we know that both a and ¢ are constant. Thus, M
is isoparametric.

CASE (ii-a.2) (b = f =0, € = 1). In this case, (4.52) reduces to a + ¢ = 2b.
So, M satisfies the equality case of inequality (1.2). Therefore, by applying [7,
Theorem 2], we know that M is given by Theorem 1.2 (2).

CASE (ii-a.3) (b = f = € = 0). In this case, (4.37) implies that i = 0. Thus,
by (4.31) and (4.33), we obtain w% = w% = 0. On the other hand, from (4.29),
we have V.,e> = 0. Therefore, &, = Span{e;,e3} and %, = Span{e,} are inte-
grable distributions in M with totally geodesic leaves. Hence, M is locally the
Riemannian product of a line and a Riemannian 2-manifold N2. Moreover, be-
cause the second fundamental form h of M in E* satisfies h(%;,%,) = {0},
Moore’s lemma [13] implies that M is an open portion of a hypercylindrical
Rx N2 c ExE3 = E%. Furthermore, from the assumption on the shape operator
of M in E*, we know that the mean curvature of N in E3 is constant and the
Gauss curvature of N is nonpositive. Thus, we obtain case (3) of Theorem 1.1.

CASE (ii-b) (f # 0, b = 0). In this case, (4.50) yields (a +c)e = 0.

If € =1, then a + ¢ = 0. Hence, M is a minimal hypersurface satisfying the
equality case of inequality (1.2). Thus, by applying [7, Theorem 2], we obtain
case (2) of Theorem 1.2.

If € = 0, then (4.46) implies that a+c—2b =0 due to b = 0 and a # b.
Hence, M satisfies the equality case of inequality (1.2). Since M has CMC, [7,
Theorem 1] implies that M is either an isoparametric hypersurface or a minimal
hypersurface which satisfies the equality 6 = 0. Hence, we obtain either case
(1) or case (2) of Theorem 1.1.

CASE (ii-c) (b # 0, f # 0). In this case, (4.50) yields
(a+c—-2b){b(a+c-b)+e€} =0. (4.53)

If a+c—2b =0 holds, then (4.46) implies that a(a—b) —c(b —c) = 0 which
is impossible, since a > 0, ¢ <0, and a > b > 0 by assumption. Therefore, we



CONSTANT MEAN CURVATURE HYPERSURFACES ... 4215

must have
e=b(b-a-c). (4.54)
From (4.54), € = 0, and b > 0, we get
bza+c. (4.55)
On the other hand, by substituting (4.54) into (4.46), we find
(a+c-2b)[(a—c)2 @2+ (a—-b)2f2]=b(b—a)*(b—c)?. (4.56)

In particular, we obtain a + ¢ > 2b. Combining this with (4.55) gives b < 0 which
is a contradiction. Thus, this case is impossible.
The converse follows from [7, Theorem 2| and from direct computation.
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