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Abstract

We have developed a rat brain organotypic culture model, in which tissue slices contain cortex-subventricular zone-striatum
regions, to model neuroblast activity in response to in vitro ischemia. Neuroblast activation has been described in terms of
two main parameters, proliferation and migration from the subventricular zone into the injured cortex. We observed distinct
phases of neuroblast activation as is known to occur after in vivo ischemia. Thus, immediately after oxygen/glucose
deprivation (6–24 hours), neuroblasts reduce their proliferative and migratory activity, whereas, at longer time points after
the insult (2 to 5 days), they start to proliferate and migrate into the damaged cortex. Antagonism of ionotropic receptors
for extracellular ATP during and after the insult unmasks an early activation of neuroblasts in the subventricular zone, which
responded with a rapid and intense migration of neuroblasts into the damaged cortex (within 24 hours). The process is
further enhanced by elevating the production of the chemoattractant SDf-1a and may also be boosted by blocking the
activation of microglia. This organotypic model which we have developed is an excellent in vitro system to study
neurogenesis after ischemia and other neurodegenerative diseases. Its application has revealed a SOS response to oxygen/
glucose deprivation, which is inhibited by unfavorable conditions due to the ischemic environment. Finally, experimental
quantifications have allowed us to elaborate a mathematical model to describe neuroblast activation and to develop a
computer simulation which should have promising applications for the screening of drug candidates for novel therapies of
ischemia-related pathologies.
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Introduction

Adult neurogenesis
Generation of newborn neurons in the adult mammalian brain

occurs throughout life in specific neurogenic structures. The

subgranular zone is located in the dentate gyrus of the

hippocampus and generates newborn neurons. These migrate

into the granule cell layer or the CA1 region under physiological

and/or pathological conditions such as ischemia [1–3]. Recently

the posterior periventricular zone (pPV) has also been reported to

be a neurogenic region in the hippocampus [4,5]. The pPV has

been identified in organotypic cultures as a part of the lateral

ventricle wall lining the stratum oriens. Neuronal precursors have

been identified as nestin+ cells responding to basic fibroblast

growth factor treatment. Also, the peripheral nervous system has

regions which exhibit characteristics of neuroregeneration and cell

proliferation, such as the carotid body [6]. This body acts as an

oxygen-sensing organ which produces new neuron-like cells from

glia-like sustentacular cells.

The best characterized region which sustains adult neurogenesis

is the subventricular zone (SVZ). This is the region which

contributes to the regeneration of interneurons in the olfactory

bulb. Under certain pathological condition, the SVZ can also

contribute to neurogenesis for damaged structures such as the

cerebral cortex after cerebral ischemia or Alzheimer disease [7,8]

or the striatum in an animal model of Parkinson’s disease [9].

Structure of the subventricular zone
The SVZ is located close to the ependyma, the thin layer that

lines the lateral ventricle, and exhibits a specific cellular structure

and molecular milieu which constitutes an optimal niche for neural

precursors. It has been suggested that ependymal cells are the adult

neural stem cells (NSCs) responsible for neurogenesis in the adult

brain [10]. However, it is also claimed that NSCs are derived from

the type B cell subpopulation which expresses the astrocytic marker

GFAP. These cells are morphologically and functionally different to

mature astrocytes. Furthermore, more recently, it has been

demonstrated that, among these GFAP+ cells, only a monociliated

subset protruding cilia into the lateral ventricle are really responsible

for neurogenesis [11]. Type B cells are in contact with type C cells

(transient amplifying precursors) and both ensheathe type A cells, the

migrating neuroblasts [12]. The identification of both subclasses of

precursors, cell types C and A, was mainly based on morphological

observation and by the expression of specific markers such as

doublecortin (DCX) and polysialylated neural adhesion molecule

(PSA-NCAM), both co-expressed during proliferation (indicated
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experimentally by bromodeoxyuridine-BrdU incorporation). How-

ever, the use of such molecular markers to identify neural precursors

in vivo has not been demonstrated convincingly until recently.

Therefore, the term ‘‘neural precursor’’ may be used to describe a

dividing cell with the ability to differentiate into a neural or neuronal

population [12]. Cells obtained from SVZ in culture can grow in

neurospheres and proliferate in response to mitogens (mainly bFGF

and EGF).

Under normal conditions, precursors generated in the SVZ

migrate through the rostral migratory stream, ‘‘walking’’ on a cord

mainly made by astrocytes. Migrating precursors still maintain

their ability to proliferate and to incorporate BrdU, but once they

enter the olfactory bulb, they start to differentiate.

Neurogenesis under pathological conditions
Neurogenesis can occur in brain regions which are damaged due

to pathological conditions such as ischemia or, more recently,

multiple sclerosis [2,13,14] via similar mechanisms. In this case, the

local environment influenced by cellular stress plays a crucial role in

modulating the mechanisms of proliferation, migration and differen-

tiation. For example, after focal ischemia, the damaged cortex and

SVZ communicate with each other by emitting chemotactic messages

which induce a neurogenic response from the SVZ into the cortex

[15,16]. Factors which can positively modulate neurogenesis include

the release of chemokines, mainly SDf-1a or IFNc, whereas in

contrast, cytotoxic extracellular ATP levels (with consequent

ionotropic P2X1–7 and metabotropic P2Y1,2,4,6,11–14 receptor

hyperactivation), glutamate or IL1-6 release impede the neurogenic

effect. Although an abundant number of stem cell studies have been

carried out over the last decade, the mechanisms and functional

implications of adult neurogenesis under both physiological and

pathological conditions still needs to be investigated in more depth.

The principal questions which remain to be addressed are: 1) does a

common progenitor exist for the three mature neural lineages? 2)

What are the mechanisms which impede activation of neurogenesis,

survival and integration into the neural network and 3) can the

activation of neurogenesis following brain insult be recapitulated in a

general law?

Mathematical modelling and computer simulations play a

steadily increasing role in the study of biological systems. Both

aim at explaining complex physiological and pathological

phenomena in terms of basic physical processes. Numerical

modelling complements the traditional empirical and experimen-

tal approach of biomedical research since they are able to provide

effective ways to organize existing data. In addition, they focus

experiments through hypothesis generation, identify critical areas

where data are missing, and allow virtual experimentation

whenever real experiments are impractical or just too expensive.

In this paper, we wish to address the latter two queries. We have

studied the proliferative and migratory behavior of neuroblasts

activated by oxygen/glucose deprivation (OGD) in an organotypic

model which includes the neurogenic SVZ and the cortex. This

has allowed us to localize biological factors which modulate

neurogenesis under pathological conditions and to generate a

mathematical analysis for neuroblast behavior on the basis of

biological observations. In particular, we have analyzed attractant

(SDf-1a) and repellent (extracellular ATP and microglia inflam-

mation) factors which modulate neuroblast recruitment.

Materials and Methods

Cell cultures
All experiments were conducted under the supervision and with

the approval of our internal animal ethics committee (Neurotek-

UPV/EHU). Animals were handled in accordance with the

European Communities Council Directive. All possible efforts

were made to minimize animal suffering and the number of

animals used.

Organotypic cultures. Cultures were prepared from coronal

cerebral sections (400 mm of thickness) of brains from Wistar rat

pups (2–3 days old) [16] using a modification of the method by

Plenz and Kitai [17]. The brain was sliced in such a way as to

maintain the connection between the subventricular zone and

corpus callosum. Slices were plated on Millicell CM culture inserts

(Millipore, Schwalbach, Germany) and maintained in 75% HME

03 (Cell concept, Berlin, Germany), 2 mM L-glutamine

(Biochrom, Berlin, Germany), 25% horse serum (Gibco,

Eggenstein, Germany) and 25 mg/ml gentamycin (Biochrom) for

3 days at 37uC, and then shifted to 33uC in Neurobasal medium

supplemented with 0.5% B27 supplement (both from Gibco).

More detailed information about organotypic culture preparation

can be found supplementary information (Text S1).

Primary neurospheres from the SVZ. The SVZ region of

Wistar rat pup brains (2–3 days old) was dissected under microscope

and diced with a McIlwain Tissue Chopper (Campden Instruments,

Pasadena, USA). Tissue was incubated for 7 minutes at 37uC with

0.5 g/l trypsin and 0.2 g/l EDTA (both from Sigma, Madrid,

Spain). Trypsin was then inhibited by the addition of trypsin

inhibitor and 0.001% DNAseI (Sigma) for 2 minutes at room

temperature. Tissue was collected by centrifugation, washed 3 times

with PBS and triturated with glass Pasteur pipette and 1 ml plastic

tip. The cell suspension was resuspended in Neurobasal medium

(Gibco, Barcelona, Spain) supplemented with 0.5% B27

supplement, 0.7% w/v glucose, 10 mM glutamine, 20 ng/ml

EGF, 10 ng/ml bFGF and 20 ng/ml PEDF (all from Promega,

Madrid, Spain) and plated at a density of 46105 cells/cm2. Medium

(50%) with growth factors was changed every 2 days.

N9 cell line. The mouse N9 microglial cell line [18] was

cultivated at 37uC in Iscove’s modified Dulbecco’s medium

(IMDM, ICN, Eschwege, Germany) containing 5% Fetal Calf

Serum (Gibco), 2 mM glutamine, penicillin (100 IU/ml),

streptomycin (100 mg/ml) and 50 mM ß-mercaptoethanol.

Oxygen/glucose deprivation
Glucose-Free Medium (GFM; 120 mM NaCl, 4 mM KCl,

2 mM MgSO4, 2 mM CaCl2, 2 mM KH2PO4 and 2 mg/ml

mannitol, pH 7.4) was saturated with 95% N2. After saturation,

the inserts with organotypic slices or the N9 cell line were placed in

1 ml saturated GFM and then maintained at 37uC for 30 min in

an N2 saturated environment. For control conditions, medium

consisted of GFM supplemented with 1 mg/ml glucose instead of

mannitol. GFM was then replaced with Neurobasal medium and

the cultures were kept under normoxic conditions for different

periods of time at 33uC before evaluating cell death.

Immunofluorescence
Treated slices were fixed for 40 min in 4% paraformaldehyde

and saturated at room temperature in 1% BSA in PBS containing

0.5% Tween. The slices were then incubated overnight at 4uC
with different primary antisera in 1% BSA in PBS (see Table 1 for

specific working concentrations of primary and secondary

antibodies). After further washing, the cultures were incubated in

a solution containing a mixture of the secondary antibodies. After

final washing, the plates were coverslipped with anti-fading gel/

mount (Biomeda, CA, USA). Immunofluorescence was visualized

by a scanning confocal microscope (LSM 510, Zeiss) equipped

with an argon laser emitting at 488 nm and a helium/neon laser

emitting at 543 nm.

Neuroblast Activation in OGD
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Cell damage
Cell death in organotypic cultures was evaluated by cellular

uptake of propidium iodide (PI). Cultures were incubated with

culture medium containing PI (10 mM) for 2 h at 37uC.

Afterwards, the slices were excited with a 510–560 nm light and

the emitted fluorescence acquired at 610 nm using a rhodamine

filter on an inverted fluorescence microscope (Eclipse TE 300,

Nikon). Images were taken using a CCD camera and analyzed on

a PC with image analysis software (LUCIA, Nikon). The uptake of

PI to identify degenerating cells has been performed accordingly to

Pozzo Miller [19].

Cell proliferation
Cells were incubated for two hours with 20 mM bromodeoxy-

uridine (BrdU), which is incorporated into proliferating cells. In

order to label different phases of proliferation, slices were fixed 24

or 120 hours after OGD. Immunofluorescent detection of BrdU

was performed as described above (see Table 1 for antibody

concentrations).

Cell migration
YFP transgenic mice. Organotypic co-culture experiments

were performed with SVZ from transgenic B6.Cg-TgN(Thy1-

YFP)16Jr mice (The Jackson Laboratory; distributed by Charles

River). As published elsewhere [20], these transgenic mice express

yellow florescent protein (EYFP) at an enhanced level in subset of

central neurons. The SVZ from YFP mice was co-cultivated in

contact with wild type mouse cortex (see organotypic preparation

above). YFP fluorescent cells migrating from the SVZ were detected

in the cortex by fluorescent detection 24 hours after OGD.

Neuronal tracking. Wistar rat pups (4 days old) were

anesthetized by trichloroacetaldehyde hydrate. The neuronal

tracer Vybrant DiO (20 ml; Molecular Probes, Mi, Italy) was

injected into the ventricle (i.v. injection) (coordinates: 1.4 mm

posterior to the Bregma; 1.8 mm lateral to the midline; 3.5 mm

from the brain surface). After 8 hours, co-cultures of labeled SVZ

and contralateral (unlabeled) cortex were prepared. OGD

experiments were performed after 10 DIV and green migrating

cells were localized 24 hours later in the contralateral cortex.
Morphological analysis. Neuroblast migration was detected

by morphological observation after double immunofluorescence

for DCX and vinculin, both used at a concentration of (1:200).

Migrating cells were identified as amoeboid-shaped bodies

revealed by vinculin expression.

Measurement of [Ca2+]i

Whole neurospheres at 7 DIV were attached to poly-ornithine

coated coverslips and loaded with fura-2 AM (5 mM; Invitrogen,

Carlsbad, CA) in Neurobasal/B27 medium for 45 min at 37uC.

Cells were washed in HBSS containing 20 mM HEPES, pH 7.4,

10 mM glucose and 2 mM CaCl2 (incubation buffer) for 5 min at

room temperature. Experiments were performed in a coverslip

chamber continuously perfused with incubation buffer at 1 ml/

min. The perfusion chamber was mounted on the stage of a Zeiss

(Oberkochen, Germany) inverted epifluorescence microscope

(Axiovert 35), equipped with a 150 W Polychrome IV xenon

lamp (T.I.L.L. Photonics, Martinsried, Germany) and a Plan

Neofluar 406 oil immersion objective (Zeiss). Single cells within

neurospheres were selected with a high-resolution digital black/

white CCD camera (ORCA; Hamamatsu Photonics Iberica,

Barcelona, Spain), and image acquisition and data analysis were

performed using the AquaCosmos software program (Hamamatsu

Photonics Iberica). [Ca2+]i was estimated by the 340/380 ratio

method, using a Kd value of 224 nM. At the end of the assay, in situ

calibration was performed with the successive addition of 10 mM

ionomycin and 2 M Tris/50 mM EGTA, pH 8.5. Data were

analyzed with Excel (Microsoft, Seattle, WA) and Prism

(GraphPad Software, San Diego, CA) software.

ELISA
Organotypic cultures at 10 DIV were deprived of oxygen and

glucose for 30 minutes as described above. Medium was collected

at different times after OGD and subjected to ELISA, using the

commercial kit QuantikineH for SDf-1a (R&D system, Milan,

Italy). Positive reactions were evaluated using a Multiscan EX

ELISA reader (Labsystems, Orlando, USA).

Statistical analysis
Values were normalized as specified in each Figure legend.

Statistical differences were evaluated by one-way analysis of

variance (ANOVA), followed by post hoc test (HSD Tukey). All

values reported, where n is the number of experiments, are

significant, with p,0.05.

Results

Characterization of organotypic cultures as a model to
study adult neurogenesis

In this paper, we use rat organotypic culture from cortex/SVZ/

striatum to model neuroblast activation after brain ischemia. The

presence of the SVZ in the slices, and its connectivity to the

striatum and cortex through the corpus callosum, confers a 3D

structure which facilitates an examination of the mechanisms of

adult stem cell proliferation and neurogenesis. As shown in Figure

S1, these cultures contain a region originally flanking the lateral

ventricle, of high proliferative activity, as assessed by BrdU

incorporation, with an approximate area of 0.9 mm2; we assume

this to be equivalent to the SVZ. We used doublecortin (DCX) and

BrdU as markers for neuroblasts [21] and proliferation [22]

Table 1. List of antibodies used for fluorescence
immunochemistry.

Antibody
Work.
dilution Host Company

Primary

Double cortin (DCX) 1/200 Mouse Santa Cruz, Milan-Italy

Bromo de-oxy uridine 1/200 Mouse Sigma, Milan-Italy

Vinculin 1/200 Rabbit AbCam, Milan-Italy

P2X1 1/500 Rabbit Alomone, Jerusalem-Israel

P2X2 1/200 Rabbit Alomone, Jerusalem-Israel

P2X3 1/500 Rabbit Alomone, Jerusalem-Israel

P2X4 1/100 Rabbit Alomone, Jerusalem-Israel

P2X5 1/200 Rabbit Alomone, Jerusalem-Israel

P2X6 1/200 Rabbit Alomone, Jerusalem-Israel

P2X7 1/500 Rabbit Alomone, Jerusalem-Israel

CXCR4 1/200 Rabbit Santa Cruz, Milan-Italy

Secondary

Cy2 conj. Anti rabbit 1/200 Donkey Dianova, Hamburg-Germany

Cy3 conj. Anti mouse 1/200 Donkey Dianova, Hamburg-Germany

Cy3 conj. Anti goat 1/200 Donkey Dianova, Hamburg-Germany

doi:10.1371/journal.pone.0005278.t001
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respectively. Confocal analysis after double immunofluorescence

for BrdU and DCX revealed a high concentration of proliferating

neuroblasts (approximately 5000 neuroblasts/mm2) in the SVZ

(Figure S1). We also observed ciliated cell activity with microfluxes

in the space surrounding the SVZ (see Video S1) indicating that

the organotypic structure recapitulates the SVZ with its ciliated

ependymal cells. Other structures, such as the cortex, maintain

neuronal viability and substructure as demonstrated by lentivirus-

mediated GFP infection (Figure S2).

OGD induced neuroblast activation
To model neuroblast activity, we quantified proliferation and

migration from the SVZ into the cortex as experimental

parameters. We subjected organotypic cultures (at 10 DIV) to

30 minutes of OGD [16,23] and counted the number of

neuroblasts (measured as DCX+ cells) in the cortex, at different

times after the insult. Counts showed early and drastic decreases

within the first 6–12 hours, with a tendency to recover to normal

levels 5 days after the insult (Figure 1A). Direct counting of DCX+

cells revealed 30, 18 and 25 neuroblasts/mm2 in the cortex at 6,

12 and 24 hours respectively after the insult and 69 at the end of

the experiment (5 days after OGD).

On the basis of these observations, we hypothesized that the

early decrease in neuroblast number during the first 12 hours

might be due to metabolic stress induced by OGD which leaves

neuroblasts and stem cells in the SVZ in a quiescent state. Our

previous results had demonstrated that extracellular ATP induces

excitotoxicity after metabolism impairment and that the blocking

of P2X receptors protects against neuronal death [24–26]. We

tested the effect of PPADS, a broad spectrum antagonist for P2X

receptors [27], on the presence of DCX+ cells in the cortex.

PPADS was applied at 100 mM during and after OGD and the

number of DCX+ neuroblasts in the cortex was counted at

different times after the insult. PPADS was ineffective 6 hours after

OGD but the number of DCX+ cells started to increase 12 hours

later, reaching a maximal level at 24 hours (73 neuroblasts/mm2)

(Figure 1A). It should be noted that after PPADS administration,

the number of DCX+ cells slightly decreased to 45 and 55

neuroblasts/mm2 at 3 and 5 days post OGD, which are levels

similar to those found in control and OGD cultures. However, this

falloff may be simply due to the ageing of the cultures. Another

P2X receptor antagonist, trinitrophenyl adenosine triphosphate

(TNP-ATP), was tested at the point of maximal effect of P2X

blockade and it showed the same results (Figure 1A). As

demonstrated by PI incorporation, PPADS was also effective in

protecting against cortical cell damage (Figure 1B) with a

maximum effect at 24 hours (as demonstrated by untreated/

treated PI incorporation ratio, data not shown).

In order to study the effect of PPADS on neuroblast

proliferation, cultures were primed with 20 mM BrdU and further

analyzed after OGD. These BrdU experiments showed an ‘‘early’’

and ‘‘late’’ neuroblast population. The early population, counted

in the cortex as the number of DCX+ cells during the first

24 hours, was sustained by PPADS treatment and did not show

BrdU labeling (Figure 1C). The late population was observed in

the cortex 5 days after OGD, in PPADS treated and untreated

slices, and was also positive for BrdU staining. This finding

indicates that the early neuroblast population migrated from the

SVZ without proliferating.

The antimitotic agent AraC was used together with PPADS

during OGD to confirm that neuroblasts observed in the cortex

24 hours after the insult were not proliferating (Figure 2). After

OGD, DCX+ cells counted in the cortex decreased by 45–50%

with respect to the control, whereas antagonism of P2X receptors

by PPADS restored the number of neuroblasts to 150–160% of

control values. The inhibition of proliferation by AraC did not

affect the number of neuroblasts in the cortex, thus confirming

that the increase in the number of neuroblasts induced by the

blockade of P2X receptors was not due to a local proliferative

event.

Neuroblast migration from the SVZ to the cortex
Enhanced migration into the cortex induced by P2X receptor

blockade during OGD was also suggested by cell spreading

observed by DCX immunofluorescence 24 hours after PPADS/

OGD treatment (Figure 3A). Neuroblasts (detected as DCX+ cells)

were abundantly present in the SVZ and seemed to migrate into

Figure 1. Pharmacological blocking of P2X ATP receptors
during OGD increases the number of neuroblasts in the
damaged cortex. Cortex/SVZ/striatum organotypic cultures at 10
DIV were subjected to 30 minutes of OGD. PPADS (100 mM) when used
(OGD/PPADS) was added during, and for different times after OGD. (A)
All neuroblasts in the cortex were counted at different times after OGD
and expressed as the number of DCX expressing cells per mm2.
Neuroblasts were also counted 24 hours after OGD in cultures treated
with 50 mM TNP-ATP (asterisk). Counts represent means6SEM (n = 6).
Control cultures were maintained in the presence of 1 mg/ml glucose.
(B) Cell damage in the cortex was visualized by PI incorporation at
different time points after OGD in the presence or absence of PPADS.
(C) Organotypic cultures were subjected to OGD in the presence or
absence of 100 mM PPADS. BrdU (20 mM) was added to the cultures
2 hours before fixing the slices and slices were maintained in culture for
24 hours or 5 days after OGD. Immunofluorescence was performed with
anti-DCX (red) and anti-BrdU (green) antibodies. The control condition
was conducted in the presence of 1 mg/ml glucose. Arrows indicate co-
localization. The scale bar represents 20 mm.
doi:10.1371/journal.pone.0005278.g001
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the cortex, since they exhibited a higher migratory density in the

proximal in comparison to the distal part of the corpus callosum.

Moreover, they exhibited an amoeboid-like morphology when

double stained with DCX and vinculin, an intermediate

cytoskeleton filament (Figure 3B). Migration of neuroblasts

induced by P2X receptor pharmacological blockade was further

demonstrated in experiments with co-cultures.

In the first set of experiments, slices of fluorescent SVZ,

obtained from YFP transgenic mice were cultivated in contact with

wild-type cortex (Figure 4A). In this case, all neurons in the SVZ,

both mature and immature, are fluorescent, whereas cortical cells

do not express fluorescent proteins. Co-cultures were subjected to

30 minutes OGD in the presence or absence of PPADS and

migration was observed during the first 24 hours after the insult.

We observed a sporadic migration of fluorescent cells under

control conditions which was slightly enhanced in slices treated

with PPADS only. OGD induced a drastic reduction of fluorescent

cells in the SVZ, but no migration at this time point was observed.

OGD may affect the viability of precursor cells but not that of stem

cells which remain in a resting state but are still able to generate

new precursor cells (see also mathematical model below). Blockade

of P2X receptors by PPADS not only sustained the survival of

fluorescent cells, but also induced cell spreading from the SVZ into

the cortex. Co-cultures were fixed 24 hours after OGD and

subjected to DCX immunofluorescence to verify that fluorescent

migrating cells were indeed neuroblasts (Figure 4B).

In the second set of co-culture experiments, we used SVZ

labeled with the neuronal tracer DiO. Rat pups (4 day-old) were

i.v. injected with DiO and 8 hours later sacrificed for organotypic

culture preparation. Co-cultures were prepared with labeled

ipsilateral SVZ and unlabeled contralateral cortex and fixed

24 hours after OGD (Figure 4C). Once again, PPADS was found

to enhance the migration of fluorescent cells into the cortex under

conditions of OGD; these migrating cells expressed DCX

(Figure 4C2–4). In both experiments, the amount of migrating

neuroblasts was found to be similar to that found in Figures 1–3

(data not shown).

Factors that modulate neuroblast activation
In order to demonstrate that the SVZ harbors cells which are

sensitive to extracellular ATP, primary neurospheres obtained

from SVZ disgregation were loaded with the fluorescent calcium

indicator Fura-2 AM. The response of cells to a range of

concentrations of extracellular ATP (from 100 mM to 5 mM; data

not shown) was assayed. Neurospheres which contain both types of

cells present in the SVZ (stem and progenitor cells), responded to

bath applied 1 mM ATP (range concentration that resemble

toxicity conditions) with an influx of extracellular calcium

(Figure 5A). Calcium entry was specifically blocked by 50 mM

PPADS - a lower concentration more accessible in neurospheres

[28] - as shown in Figure 5B.

Involvement of extracellular ATP in modulating neuroblast

activation was further confirmed by P2X1–7 ionotropic receptor

subunit immunofluorescence, accompanied by counterstaining

with DCX in the SVZ and cortex, under different experimental

conditions. Of all the P2X subunits, only P2X6 and P2X7

colocalized with DCX in the SVZ (Tab. 2). OGD induced the

expression of P2X1 and P2X6 in cortical neuroblasts, while

inhibiting P2X6 expression in the SVZ. In contrast, expression of

neuroblast P2X7 remained constant in the SVZ, under the

different experimental conditions. PPADS added during OGD

inhibited the expression of P2X1 and P2X6, but not P2X7.

In our attempt to model OGD-induced neuroblast activation,

we took into account other factors which can modulate, positively

or negatively, migration from the SVZ to the cortex. The role of

microglial activation in neurogenesis after ischemia is currently

strongly debated. Here, we treated organotypic culture with

10 mM indomethacine during OGD [16] and counted DCX+

neuroblasts in the cortex (Figure 6). We observed a reduction of

approximately 60% in the number of DCX+ cells in the cortex

24 hours after OGD. Blocking microglial activation by indo-

methacine completely abrogated this effect. Furthermore, co-

cultivating organotypic cultures with the N9 microglial cell line

and subjecting these co-cultures to OGD drastically reduced the

Figure 3. Neuroblasts migrate from the SVZ into the cortex.
Morphological evidence. (A) Slices at 10 DIV were fixed 24 hours after
OGD in the presence of 100 mM PPADS. The photo shows DCX
immunofluorescence and was taken at the border between the SVZ-
corpus callosum-cortex (cx) as depicted in the scheme to the right. (B)
Slices were also double labeled with vinculin and DCX and photographs
were taken in the cortex. Bar represents 10 mm.
doi:10.1371/journal.pone.0005278.g003

Figure 2. DCX expressing cells counted in the cortex do not
proliferate. Cortex/SVZ/striatum organotypic cultures at 10 DIV were
subjected to 30 minutes of OGD under different experimental
conditions. PPADS (100 mM) and the mitotic inhibitor AraC (20 mM)
were added during and after OGD. Cultures were fixed 24 hours later
and subsequently labeled for DCX expression. Labeled cells in the
cortex were counted as a percentage with respect to the control
condition. Counts represent means6SEM (n = 4).
doi:10.1371/journal.pone.0005278.g002
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number of DCX+ cells in the cortex, further corroborating the

idea that microglia activated by OGD negatively modulate

neuroblast migration.

Having identified factors which negatively regulate neuroblast

activation, we searched for other factors which positively

modulated neuroblast migration. It is well known that the

migration of precursor cells is sustained by different chemokines,

including SDf-1a. Thus, we measured the release of SDf-1a in

organotypic cultures at different time points after OGD by ELISA

(Figure 7A). We found that OGD induced a 70% decrease in the

levels of SDf-1a early after OGD; these decreased levels remained

low even 48 hours after the insult. Levels slightly increased only 5

days after OGD. P2X receptor antagonism by 100 mM PPADS

during OGD led to a peak in SDf-1a release 48 hours after the

insult (156% with respect to control); levels relapsed to control

values 3 days later (77%). Curiously, PPADS administered in the

presence of glucose (control condition) enhanced SDf-1a release

for more than 30 hours. The keen reader will have noticed that

SDf-1a measurements are out of phase by almost 24 h with

respect to DCX counting data (peak in Figure 1A occurs at 24 h).

This may be an artifact due to delayed solubilization of SDf-1a
from tissue to the medium through membrane. To finally confirm

that neuroblasts are migrating by a chemo-attractant gradient

mechanism during PPADS treatment in OGD, we performed

fluorescent double immunohistochemistry for the CXCR4 recep-

tor (which is the receptor for SDf-1a) and DCX. As shown in

Figure 7B, migrating neuroblasts expressed the CXCR4 receptor,

supporting the assumption that SDf-1a gradients participate as

guidance cues in neuroblast migration.

Mathematical model of neuroblast activity induced by
OGD

We have constructed a simple mathematical model with

minimal number of parameters able to reproduce the neuroblast

activity induced by OGD, both in the absence and presence of

PPADS. It is important to note that by ‘‘minimal’’ we mean that

removing a single reaction term in any of the equations causes the

disruption of the qualitative adherence of the resulting dynamics

with the experimental data set. The model is based on partial

differential equations and involves the balance, mass-action and Fick

laws [29] as its main biological assumptions. Our primary concern

in building a reliable model was to express the assumptions in

quantitative terms in order to isolate in silico the contribution to the

dynamics of the main components of the model.

The spatial extension of the model is equivalent to an

organotypic slice. The size of the germinative area and that of

the ischemic area is ideally represented as regular and homoge-

neous (see Table S1 for Space-time parameters used in the

simulations). The following assumptions were made (also listed in

Table 3):

N Stem cells (S) generate precursors (P); the basal concentration

of ATP (indicated by Aa) contributes to their physiological

functions;

N Resting stem cells (R) are temporarily inhibited by the

presence of high concentrations of ATP (indicated by Ai)

released after in vitro ischemia;

N R cells become active after a certain delay;

N Precursor (P) cells die after in vitro ischemia in the presence of

high concentrations of ATP;

N The chemokine SDf-1a (indicated by C) is released into the

medium after ischemia;

N P cells follow the gradient of SDf-1a, hence migrating from the

SVZ to the ischemic cortex.

The expected dynamics of the mathematical model of

neuroblast activity after OGD can be summarized as follows:

the ischemic event triggers the generation of a gradient of

chemicals (i.e. signals) from the ischemic to the germinative area.

The activation of stem cells, the generation of precursors and their

migration to the ischemic area ensue. According to the different

Figure 4. Neuroblasts migration from the SVZ into the cortex.
Co-culture experiments. YFP co-cultures. (A) The SVZ from a 4 day-old
YFP transgenic mouse was tightly placed in contact with cortex from a
wild type mouse. OGD was performed and migration of fluorescent
neuroblasts from the SVZ to the cortex (cx) was observed 24 later in the
presence (OGD/PPADS) or absence (OGD) of 100 mM PPADS. Controls
were performed in the presence of 1 mg/ml glucose (CTRL) and PPADS.
(B) Co-cultures were fixed after OGD/PPADS treatment and fluorescent-
migrating neuroblasts (green) were analyzed for the expression of DCX
(red) 24 hours after the insult. DiO co-cultures. (C) Four day-old rat pups
were i.v. injected with DiO and cultures prepared 8 hours later.
Ipsilateral SVZ was plated in contact with contralateral cortex of the
same injected animal (as indicated in the scheme). OGD was performed
and migration of fluorescent neuroblasts (image 3, green) from the SVZ
to the cortex was observed 24 later in the presence of 100 mM PPADS.
Controls were performed in the presence of 1 mg/ml glucose (1, YFP/
DCX merged). Co-cultures were fixed and fluorescent migrating
neuroblasts were analyzed for the expression of DCX (2) at 106 (1–3)
and 206magnification (4, DiO/DCX merged).
doi:10.1371/journal.pone.0005278.g004
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coefficients of the modeling equations, precursors can cover short

or long distances to the ischemic area.

To actually observe the dynamics of the model equations (see

Table S2 for constant parameters used in the simulation), we set

up a computer simulation (for further details see Text S1, Figure

S3, S4, S5, and Video S2, S3). The simulation reveals neuroblast

activity which is consistent with both i) proliferation and migration

of proliferating cells into the damaged areas in the absence of

PPADS, and ii) earlier neuroblast migration followed by late

proliferation in the presence of PPADS.

The overall picture is quite consistent with our biological

observations. In particular, Figure 8B–8E shows the concentration

of precursor cells at 12 and 24 hours both in the absence and

presence of PPADS (see also Figure S5 and Video S2, S3). Our

experimental data (Figure 1) is qualitatively recapitulated by the

model’s dynamics (Figure 8A). Shortly after OGD (6–24 hours),

there is a reduction in the proliferative and migratory activity of

precursors, whereas later (2 to 5 days after the insult), these cells

start to proliferate and migrate into the damaged cortex. At the

same time, a moderate increase in the level of SDf-1a is observed

(Figure 8F).

In the presence of PPADS, the picture is different since much

more SDf-1a is readily produced (within about 1 to 2 days after

the insult) and consequently, neurogenic migration and successive

proliferation occurs earlier and is more pronounced.

Discussion

Modulation of endogenous neurogenesis following ischemia or

other conditions of neuronal failure by pharmacological treatment

represents a potential clinical tool with the valuable characteristics

of not-invasiveness and efficiency. Current pharmacological

treatments for ischemia are devoted to reestablishing vasculariza-

tion and even anticoagulants and thrombolytics are used to

prevent further attacks [30]. However, both approaches are

merely palliative, and offer no promise of neuronal regeneration.

Figure 5. Cells from the SVZ respond to ATP by permitting extracellular calcium entry. (A) Neurospheres cultivated from the SVZ were
used to measure ATP-mediated calcium influx. Neurospheres under control conditions were stimulated with 1 mM ATP, washed and re-stimulated in
order to evaluate receptor desensitization. (B) PPADS efficiently blocks ATP-mediated calcium influx.
doi:10.1371/journal.pone.0005278.g005

Table 2. The expression of a subset of P2X receptors is
modulated after OGD.

CTRL CTRL OGD OGD
OGD/
PPADS OGD/PPADS

SVZ CX SVZ CX SVZ CX

P2X1 2 2 2 + 2 2

P2X2 2 2 2 2 2 2

P2X3 2 2 2 2 2 2

P2X4 2 2 2 2 2 2

P2X5 2 2 2 2 2 2

P2X6 + 2 2 + 2 2

P2X7 + 2 + 2 + 2

P2X receptor subunit expression in neuroblasts during OGD was analyzed in
organotypic cultures at 10 DIV. Slices were subjected to 30 min OGD in the
presence or absence of PPADS and fixed 24 hours later. Co-expression of DCX
with P2X receptor subunits was assessed by confocal analysis both in the SVZ
and in the cortex under different experimental conditions. Abbreviations: CTRL,
control consisting of 1 mg/ml glucose; OGD, oxygen and glucose deprivation;
OGD/PPADS, OGD in the presence of 100 mM PPADS.
doi:10.1371/journal.pone.0005278.t002

Figure 6. Microglial activation negatively affects neuroblast
migration into the cortex. Organotypic cultures were co-cultivated
with the microglial cell line N9 or treated with 10 mM indomethacine
(OGD/Indo) during OGD. Cultures were fixed 24 hours later and DCX
expressing cells were counted in the cortex and measured as a
percentage of the control condition (1 mg/ml glucose). Counts in cells/
mm2 represent means6SEM (n = 3).
doi:10.1371/journal.pone.0005278.g006
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Over the last decade, which has seen remarkable progress in the

area of stem cell research, cell therapy by embryonic or adult stem

cell transplantation has been proposed as an alternative to

pharmacological treatment, in order to regenerate lost neurons.

Currently, cell therapy by autologous or heterologous stem cell

transplantation seems to have been unsuccessful in this regard, due

to the invasive nature of the treatment, cell rejection, death of

transplanted cells and even ethical issues [31,32]. In contrast, the

induction of endogenous neurogenesis is a method which is free of

the above-mentioned problems associated with pharmacological

treatment and cell transplantation (for a review, see 33).

Neurogenesis does physiologically occur after different brain

diseases, but it has to be enhanced in order to definitively restore

lost neuronal functions. It is well established that neurogenesis

from cell birth to differentiation and finally to functional

integration is modulated by molecular signals and influenced by

both the micro and macro environment [34].

Neurorestorative strategies have two principal milestones: 1)

research into novel mechanisms and new molecules involved in

sustaining adult neurogenesis and 2) the identification of general

rules which govern the behavior of all cell types involved in the

regenerative machinery (stem cells, progenitor cells, newborn cells,

and their responses to attractant and repelling molecules). One of

the principal objectives of the multidisciplinary research reported

herein was to develop a mathematical model on the basis of

biological observations of adult neurogenesis induced by OGD.

Several principles have emerged from our studies.

Culture model
Organotypic cultures from different brain and CNS regions have

become instrumental for the study of neurodegeneration following a

variety of brain diseases [35,36]. This culture model is also quite

versatile, since electrophysiology as well as immunofluorescence

techniques can be applied [37,38]. It must be noted that

organotypic slices, like any in vitro model, can give rise to artifacts

and cellular reactions that are not seen in in vivo models. Upon

preparation, gliosis involving astrocyte and microglia proliferation is

observed [39]. Also, the three-dimensional structure is slightly

remodeled (e.g., in our model, the area of the SVZ observed in

culture is larger than that observed in vivo). The model reported

herein is to our knowledge the first in vitro model representing

tridimensionally the situation which occurs in vivo between a

neurogenic region (SVZ) and a target region after a brain insult.

Tridimensionality is completed by the presence of the corpus callosum

which links the SVZ, cortex and striatum, mimicking the rostral

migratory stream for precursor migration. Thus, this tissue model

contains all of the fundamental elements necessary to recapitulate

neuroblast activation and neurogenic responses. Moreover, through

the fields-based, organotypic cultures can provide a template for the

development of computer simulation, a feature which is not feasible

with any other cellular models or in vivo.

Dynamics
Genesis of newborn neurons was first described by Alvarez-

Buylla [1,40] and involved migration of cells from the adult SVZ

Figure 7. The SDf-1a chemokine as a guidance cue in OGD-
induced neuronal migration. Cortex/SVZ/striatum cultures were
subjected to 30 minutes of OGD in the presence or absence of 100 mM
PPADS. PPADS was added during and after OGD or, as a control, alone.
(A) Conditioned media were collected at different time points after OGD
and examined by ELISA. SDf-1arelease was measured as a percentage
with respect to the control condition (1 mg/ml glucose). Counts
represent means6SEM (n = 3). (B) DCX (green) and the CXCR4 receptor
(red) were detected by double immunofluorescence. Merged capture is
shown at two different magnifications. Double positive cells were
photographed in cortical areas following OGD/PPADS-mediated migra-
tion.
doi:10.1371/journal.pone.0005278.g007

Table 3. Model reactions.

Reactions Comments

SzAa DCA
ks1

SzP
DCX+ generation

SzAi DCA
ks2

R
Inhibition of S by high
concentration of ATP

R DCA
ks3

S
Resting S become active

PzAi DCA
kp1 ~PP

Inhibition of DCX+

PzC DCA
kp2

moves P
Movement by chemotaxis

P DCA
Kp ~PP

Death by aging

A DCA
Ka ~AA Death by aging

Aa DCA
kca x xð Þ

AazC
SDF-1a generation

C DCA
kc ~CC Death by aging

Model reactions summarizing the model assumptions. S, R, P, C, and A are the
actors of the model (the tilde sign above the letter indicate a dead entity). A
more detailed description of the mathematical model can be found in the
Supplementary materials. Abbreviations: stem cells (S); precursors cells (P); basal
concentration of ATP (Aa); resting stem cells (R); high concentrations of ATP (Ai);
SDf-1a (C).
doi:10.1371/journal.pone.0005278.t003
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into the olfactory bulb. Stem and progenitor cells differentiate

through developmental stages with distinctive molecular and

morphological properties [41,42]. The characterization of a series

of markers expressed at different stages of development (e.g. DCX

for neuroblasts- 21, 43, 44), together with live experiments [21],

helped to elucidate the dynamics of neurogenesis induced by

OGD. In rodents, neurogenesis induced by global or focal

ischemia is basically characterized by i) enhanced progenitor

proliferation ii) migration of proliferating cells into damaged areas

and iii) differentiation. Most studies have reported an increase in

proliferation at 7–10 days, with persisting cell survival and

differentiation for 2–3 weeks. It is evident that a large latent

period exists between neuronal damage and neurogenesis

activation. This period turns out to be an essential window of

therapeutic opportunity for patient recovery and neuronal activity.

Our group, as well as others, has demonstrated how damaged and

neurogenic regions communicate with each other during an

ischemic insult by molecular and diffusible factors [15,23].

Gradients of molecules are generated and modulated by molecular

mechanisms, thereby establishing a positive and negative envi-

ronment, which in turn facilitates or delays proliferation,

migration and differentiation. Our strategy to enhance neurogen-

esis towards neuronal replacement and recovery intends to shift

this balance toward a more salutary environment, while

minimizing negative factors.

One factor which contributes to impeding neurogenesis is high

levels of extracellular ATP. Several features suggest that

extracellular ATP plays a relevant role in modulating neurogenesis

after OGD: i) massive amounts of ATP released following

metabolism impairment have been shown to be neurotoxic

[16,24,25]; ii) calcium signaling through purinergic P2X-Y

receptors [45] regulates proliferation and differentiation of several

stem cells types including muscle, bone marrow and neural stem

cells [46,47]; iii) purinergic signaling regulates neural progenitor

expansion and corticogenesis under physiological condition [48]

and iv) ectonucleotidases are functionally expressed on progenitor

cells in postnatal and adult neurogenic zones [49]. Our model

reproduces previously published data in which neurogenesis is

transiently activated after OGD with a peak of DCX+ cells

observed in the damaged cortex, 5 days after the insult. The lowest

number of neuroblasts was found between 6 and 24 hours after

OGD which is considered the latent period between neuronal

damage and neurogenesis activation. Using our mathematical

model, we can predict the consequences of pharmacological

modulation of purinergic signaling. Several P2X receptors are

expressed in the SVZ. Furthermore, these cells are ATP-sensitive

and respond by permitting the influx of extracellular calcium. This

reinforces the choice to use PPADS and TNP-ATP to block

purinergic signaling through P2X receptors. Depending on the

concentration of ATP in the extracellular milieu, it can act by

sustaining stem cell proliferation (Aa in Tab. 3 of mathematical

model), by leaving stem and progenitor cells in a resting state (Ai in

Tab. 3) or by killing SVZ cells and neurons (excitotoxicity). These

observations support the data published by Stafford and colleagues

[50] on primary neurosphere cultures and highlight the critical

role of extracellular ATP in modulating both neuronal survival

and neurogenesis activation.

Blocking purinergic signaling allowed us to uncover other

components of the dynamics of neurogenesis induction. Thus, in

the absence of purinergic signaling (inhibited by P2X antagonists),

the system responds to the ischemic insult with an SOS response.

In fact, shortly after the insult (24 hours), a subpopulation of

neuroblasts is liberated and rapidly recruited into the damaged

area. In this response, proliferation is exhibited only five days after

Figure 8. Modeled density of DCX+ and concentration of SDf-
1a. (A) DCX+ density expressed as cells/mm2 as a function of time
expressed in minutes after OGD. (B) Their spatial distribution in the
slices under different conditions (OGD, panels B and C, and OGD with
PPADS, panels D and E) at 12 (panels B and D) and 24 (panels C and E)
hours after treatment. F) Concentration of SDf-1a as a function of time.
Lines represent experimental data whereas dotted lines show the result
of the mathematical model. Error percentage is calculated upon error
bars expressed in Figure 1.
doi:10.1371/journal.pone.0005278.g008
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OGD. Experiments with AraC and neuroblast migration observed

in co-culture exclude an activation of resident cortical neuroblasts.

We hypothesize the presence of two neuroblast subpopulations in

the SVZ. One can be rapidly recruited by halting proliferation and

migrating into the damaged cortex. The second, already described

elsewhere, is further activated and migrates only when the

extracellular environment is buffered from toxic molecules.

Analysis of SDf-1a release would also suggest that the two

proposed neuroblast populations can migrate under different

chemical/cellular mechanisms. In fact, after P2X modulation (by

PPADS blockade), neuroblasts migrate under the influence of an

intense SDf-1a signal (Figure 7, OGD/PPADS at 48 hours),

whereas in the absence of PPADS, neuroblasts migrated (and

proliferated) 5 days after OGD under the influence of low levels of

released SDf-1a (Figure 7, OGD at 5 days).

Another point to be considered is brain inflammation which

invariably occurs after ischemia. There has been a great debate

about the role of inflammation and cytokine release after brain

insult [51]. For example, infiltration of activated polymorphonu-

clear neutrophils into the injured parenchyma and the activation

of microglia are playing an important role in the pathology of

cerebral ischemia. Activated polymorphonuclear neutrophils can

exacerbate brain damage by release of oxygen radicals or

proinflammatory cytokine, whereas more debated is the role of

microglia activation. Depending on the cytokine released and time

of action, microglia activation can suppress or promote cell repair.

More interesting became the role of neural stem cells as

immunomodulators beside of repairing brain damage. There are

several evidences that transplanted stem cells (after brain ischemia)

can release factors acting as neuroprotectant (for a review see

[14]). A neural stem cell-mediated peripheral immunomodulatory

effect was postulated, through the modulation of macrophage-

related TNF-a release.

Here, we have demonstrated that when inflammation is intense

and additionally accompanied by other factors (such as high levels

of extracellular ATP), it can impede neurogenesis.

Functional implications
Our data show that in the face of massive neuronal loss, the rate

of neuroblast migration is low (70–80 cells/mm2). This is in

agreement with data previously published elsewhere (i.e. [52]).

However, the functional consequences of this neurogenesis

response remain unclear. In line with Lee and colleagues [53],

we propose here some general mechanisms which may underlie

the behavior of neural stem cells during adult neurogenesis. These

researchers studied the effects of stem cell transplantation in a

neurogenetic degenerative disease called Sandhoff’s disease. Only

a small percentage of neural stem cells transplanted in an animal

model of the disease (Hexb2/2) differentiated into neurons.

Moreover, disease symptoms and animal death were delayed,

inflammation was reduced or immunosuppression was required.

The authors discussed that although neuronal network replace-

ment still receives most attention, this may be complemented by

other stem cell function. In line with this work, it seems possible

that adult stem and progenitor cells may act as ‘‘chaperone cells’’

by supporting the physiology of rested and damaged neurons; thus,

they may sustain or preserve established circuitry, rather than

attempting to reconstruct new connections, or participating in the

reestablishment and buffering of the local environment.

We decided to use neuroblasts as an index of neurogenesis

activation which was required for the development of the

mathematical model. Nevertheless, further studies need to be

done to investigate the fate of migrated neuroblasts (neuronal

differentiation, integration into pre-existing networks, apoptosis),

and to characterize and isolate the proposed neuroblast subpop-

ulations. The mathematical model presented here should be of use

for other studies of the functionality of adult neurogenesis.

Numerical simulations can be useful to predict short and long-

term consequences of using parameters and conditions in real

experiments. Indeed, when there is no applicable animal model,

computer modelling is often the only way to obtain new

knowledge. The model we constructed here reproduces the

qualitative behaviour of the system fulfilling the goal with the

minimal parameters. However, a better fitting of the experimental

data could be achieved by using a more sophisticated mathemat-

ical model justified only by a richer experimental data set.

Supporting Information

Text S1 Materials and methods for organotypic cultures and

mathematical model.

Found at: doi:10.1371/journal.pone.0005278.s001 (0.14 MB

DOC)

Figure S1 Characterization of cortex/SVZ/striatum organoty-

pic cultures: the SVZ. Organotypic cultures at 10 DIV were

primed in culture with 20 mM BrdU and fixed 2 hours later. BrdU

(which labels proliferating cells) is shown in green and DCX (a

neuroblast marker) in red in the SVZ. Bars represent 100 mm and

50 mm. Abbreviations: cx, cortex; cc, corpus callosum; SVZ,

subventricular zone; str, striatum.

Found at: doi:10.1371/journal.pone.0005278.s002 (0.13 MB TIF)

Figure S2 Characterization of cortex/SVZ/striatum organoty-

pic cultures: the cortex. Organotypic cultures at 10 DIV were

infected with pLVTHM-GFP and pictures of the cortex were

taken with 106 (A) and 636 (B) magnification. (C) 3D

reconstruction performed by LSM1 software after Z stack

acquisition.

Found at: doi:10.1371/journal.pone.0005278.s003 (0.10 MB TIF)

Figure S3 Model domains: cortex (in red) and subventricular

zone (in green).

Found at: doi:10.1371/journal.pone.0005278.s004 (0.04 MB TIF)

Figure S4 Activation/inhibition modalities of ATP. A low

concentration of ATP is represented on the left side of the curve

(activation response, Aa) and a high concentration is on the right

(inhibition response, Ai).

Found at: doi:10.1371/journal.pone.0005278.s005 (0.05 MB TIF)

Figure S5 Pharmacodynamics of PPADS.

Found at: doi:10.1371/journal.pone.0005278.s006 (0.04 MB TIF)

Table S1 Space-time parameters used in the simulations.

Found at: doi:10.1371/journal.pone.0005278.s007 (0.03 MB

DOC)

Table S2 Constant parameters used in the simulations. Symbols

c, t and s represent cells, time (in minutes), and spatial (in

centimeters) unity, respectively.

Found at: doi:10.1371/journal.pone.0005278.s008 (0.09 MB

DOC)

Video S1 Ciliated cells in the SVZ of organotypic cultures. This

organotypic culture at 10 DIV was recorded at 206magnification

with 190 frames of 10 milliseconds of delay, for a total length of

10 seconds.

Found at: doi:10.1371/journal.pone.0005278.s009 (4.28 MB

MPG)

Video S2 Computer simulation of neuroblast migration in the

absence of PPADS. The video illustrates a representation of
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neuroblast migration (by means of counted DCX cells) from the

SVZ to the cortex during 120 hours after OGD. SVZ is

represented at the bottom right and the cortex at the top left of

the video. The density of neuroblasts is represented by a

colorimetric scale ranging from dark blue (low density) to red

(high density) (see also Fig. 8B–8E).

Found at: doi:10.1371/journal.pone.0005278.s010 (0.27 MB

MPG)

Video S3 Computer simulation of neuroblast migration in the

presence of PPADS. The video shows a representation of

neuroblast migration (represented in terms of counted DCX cells)

from the SVZ to the cortex during 120 hours after OGD in the

presence of 100 mM PPADS. The SVZ is represented at the

bottom right, and the cortex at the top left of the video. The

density of neuroblasts is represented by a colorimetric scale

ranging from dark blue (low density) to red (high density) (see also

Fig. 8B–8E).

Found at: doi:10.1371/journal.pone.0005278.s011 (0.32 MB

MPG)
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