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A Review of Travel Time Estimation and Forecasting for

Advanced Traveler Information Systems

September 14, 2012

Abstract

Providing on line travel time information to commuters has become an important issue for

Advanced Traveler Information Systems and Route Guidance Systems in the past years, due

to the increasing traffic volume and congestion in the road networks. Travel time is one of

the most useful traffic variables because it is more intuitive than other traffic variables such as

flow, occupancy or density, and is useful for travelers in decision making.

The aim of this paper is to present a global view of the literature on the modeling of travel

time, introducing crucial concepts and giving a thorough classification of the existing tech-

niques. Most of the attention will focus on travel time estimation and travel time prediction,

which are generally not presented together. The main goals of these models, the study areas

and methodologies used to carry out these tasks will be further explored and categorized.

1 Introduction

In recent years, the technological advances have enabled the collection and diffusion of real-time

traffic information and this, in combination with the growing traffic volume and congestion, has

triggered an increasing interest in traffic modeling [31]. These models and algorithms enable a

more efficient traffic management and also provide the commuters with the necessary tools for

decision making [70].

While variables such as flow, occupancy and speed are very useful in Advanced Traffic Man-

agement Systems (ATMS), travel time measures are more popular in Advanced Traveler Informa-

tion Systems (ATIS), because they are highly intuitive for both engineers and users and can be

easily understood by non experts [46].

Travel time is defined as the total time for a vehicle to travel from one point to another

over a specified route, taking into account the stops, queuing delay and intersection delay [134].

The modeling of this traffic variable is a recurrent research topic and there are a vast number

of algorithms and applications whose main goal is obtaining travel time in the past and cur-

rent [11, 108, 110] or future timestamps [31, 36, 70, 120].

Indeed, two of the main issues concerning travel time are the prediction and estimation of this

traffic variable, which are frequently confused terms in the literature [72].

The main difference between travel time prediction and estimation is the dynamicity. Esti-

mation algorithms are more or less complex calculations of travel times of trajectories that have
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already ended, using other traffic variables or incomplete data captured during the trip. In predic-

tion algorithms, a time variable is included and the objective is to use the current and past data to

forecast the travel time in future time intervals [72]. Prediction models are more useful for ATIS

because they enable decision making but evidently, predicting travel times for future time intervals

incorporates higher uncertainty and demands more complex models. On the contrary, estimation

models are not directly useful for ATIS but are necessary for validation purposes and as a baseline

for many prediction models.

In practice, the two concepts are closely related and in some cases estimation and prediction

algorithms can even have the same formulae [71, 131], but with clearly different objectives. De-

spite these differences, the two approaches to travel time have similar difficulties due to the highly

dynamic and nonlinear nature of traffic processes [70] and the influence of many exogenous fac-

tors such as demands, weather, roadway conditions or traffic conditions [127], that are usually

difficult to model.

The remainder of this paper is organized as follows. We will first introduce some critical

concepts in the topic of travel time prediction and estimation in Section 2. Next, in Section 3,

travel time estimation will be introduced and an extensive categorization of the methodologies

used in the literature will be described. In Section 4, the most recurrent topic regarding travel

time will be approached: travel time prediction. Finally, some conclusions and insights will be

presented in Section 5.

2 Basic Concepts in Travel Time Modeling

When modeling travel time, there are three basic concepts that are present in all investigations and

should be approached beforehand. First of all, modeling travel time requires the acquisition of a

large quantity of data and it is necessary to have some knowledge of the different types of data

that can be used for each purpose. A second important factor regarding travel time is the location

in which the model is situated, because the different characteristics of each study site have a clear

influence in the modeling process [117]. Finally, since we will generally be dealing with temporal

data, the treatment of the variable time is also influential and should be studied in advance.

2.1 Data Sources

Recent progress in advanced technologies for intelligent transportation systems have enabled the

extraction of traffic information from many different sources and in multiple formats [31]. At

the same time, advances in computer science and modeling have introduced methods and tools to

accurately manage and simulate these traffic variables [2, 39, 122].

Simulated or real, traffic data sources are classified into two main groups [69, 120]: point

detectors and interval detectors. This classification is based on the ability of the different sensors

to directly obtain travel time [108].

2.1.1 Point detectors

This type of detectors are set in fixed points of the road and capture traffic variables in those

specific points. They accurately represent the traffic state in the target points but have problems in
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capturing area wide traffic dynamics [16]. They can further be classified into intrusive and non-

intrusive sensors, where the first type of detectors are directly placed on or beneath the pavement,

whereas the latter type are situated in the surroundings of the road but not directly on the asphalt

[61].

The most conventional point detectors are the intrusive inductive loop sensors [16, 70, 127].

They consist of a set of square inductive loops buried in the road that generate a magnetic field

and are able to sense the passing of vehicles [61].

These sensors provide accurate data and are not affected by external factors, but their instal-

lation is expensive and complicated. For this reason, in the recent years, non intrusive devices

are gaining approval because of their low installation cost and their high accuracy. Some of the

most common non intrusive point detectors are video image detection methods, that use image

processing methods to obtain vehicle counts and speeds at specific points of the road. The main

drawback of non-intrusive detectors is that they are usually susceptible to external factors such as

weather, and that they precise periodic maintenance [61].

2.1.2 Interval detectors

Interval detectors measure travel time between two points directly by using active floating vehicles,

passive probe vehicles or automatic vehicle identification techniques (AVI) [120]. Floating and

probe vehicles are generally equipped with cell-phones or Global Positioning Systems and send

location, direction and speed information every few seconds [61]. On the contrary, AVI systems

can be of various types, from manual surveys [91] to automatic toll collection systems [33] or

video cameras in combination with license plate matching techniques [114]. These AVI detectors

detect and identify the vehicles in the beginning and end of the study segment and calculate travel

time from this data.

This type of data collection promises high accuracy and high quality description of the traffic

situation [69]. However, there are some practical inconveniences to using interval detectors. These

issues, which will be explained in Section 3.2, are the main reason why, in the literature, point

detectors are more frequently used than interval detectors. In any case, in the last few years

different techniques have been introduced in the models to permit the introduction of interval

detector data for a better description of the real traffic situation [11, 58, 69, 135].

2.2 Study Site

The characteristics of the area in which the model is situated clearly influence it and, in fact, one

of the drawbacks of travel time models is that many of them are site specific [72] and not easily

transferable to other areas.

Most of the travel time models in the literature are set in freeway or highway segments because

the acquisition of data and the construction of the model in these roads is simpler than in other road

types [117]. The length of the segment may vary from less than 15 km in most cases [70,127,131]

to more than 50 km [119, 120].

On the contrary, research on urban and arterial road segments is not so abundant because traffic

sensors are not always available in these sites. However, interest in this type of areas is gaining

strength as sensors are developed and placed in more roads [11, 91, 134]. Moreover, traffic in
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urban sites is more complex and factors such as signal and intersection delays must be taken into

account [123].

Another crucial fact related to the study site is that since travel time depends on the origin

and destination, and given the huge number of possible combinations of origins and destinations

in a road network, ATIS normally use methods that calculate travel time information at link or

section level [12]. A section can be defined as the distance between two intersections in the urban

environments, the distance between two entry and exit ramps in highways or the distance between

two detectors, in general cases. The travel time of a whole trajectory is obtained as the sum of the

travel times of the links or sections that constitute it. As exceptions, there are a few articles that

construct their models for pre-defined complete trajectories instead of dividing the study site into

links [8, 60] but this becomes unfeasible when modeling a big road network.

Finally, there are very few models that are evaluated in an entire network because travel time

modeling for a whole road network is more challenging than modeling a road segment. Most

researchers limit their study to a limited number of links or trajectories.

2.3 Treatment of the temporal variable

The treatment of the temporal variable is a fact to be taken into account in this type of dynamic

applications. In travel time modeling, data is not usually presented in its continuous form, but

aggregated and simplified in a certain way to facilitate the modeling process. Because of this, the

authors generally refer to discrete time intervals and not continuous time instants. The aggregation

technique can vary depending on the type of detectors used in the study and the arrival pace of the

data.

Point detectors sense the passing of vehicles continuously but the data is generally not pre-

sented in this raw form. The sensors sort and aggregate the data into discrete time intervals of

a predefined length and so the data from the vehicles that traverse the sensor in the same time

interval are averaged. Furthermore, a balance must be found between the too high variability that

short time aggregation introduce and the too smooth data that long time aggregations generate.

Typically the data is averaged between 1 and 5 minute intervals [31, 36, 70, 120, 131, 134] but in

some papers shorter 10, 20 or 30 second intervals [24, 28, 135] or longer 15 minute aggregation

intervals [37] are also used.

Interval detectors offer more possibilities because they measure area wide variables such as

travel time, which is the variable of interest in this case. On the one hand, with AVI interval

detectors, travel time is available each time a vehicle arrives to the destination point. In most

cases, an aggregation similar to that used for point detectors is applied and the travel times of

vehicles arriving in the time interval are averaged [8, 58, 69, 134]. This aggregation is a solution

for applications where the most recent data is required in real time but, it is not the best way to

represent the traffic because the grouped vehicles may have started their trip at very different times

and useful information might be lost. An aggregation based on departure time represents the traffic

situation more adequately than an arrival based aggregation but, in the case of AVI detectors, it

can not be calculated in real time, because the data is not available until the vehicles arrive to

the destination point. This is called the time delay problem and will be further commented in

Section 4.5.

On the other hand, in the case of probe vehicles provided with GPS detectors, the position
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and the speed of the vehicles is available every few seconds [92] and this provides more freedom

and eliminates some of the inconveniences found when working with AVI detectors. Both arrival

time and departure time based aggregations are possible in an on line fashion by using the position

and speed in an adequate manner. Furthermore, in some specific cases, when the sample of probe

vehicles is not very big, no aggregation is done and the time intervals are defined using the arrival

time of each probe vehicle to the destination [119].

3 Travel time estimation

Travel time estimation consists in calculating travel times of already completed trips based on

other quantities or traffic variables which are somehow related to travel time [72]. It can be said

that travel time estimation is a descriptive task that is not directly useful for ATIS because the input

data is not available until the time interval or the vehicle trajectories are over. However, estimation

algorithms are essential to obtain statistics on the performance of new traffic measures [71] and

as a baseline to calculate input data [113] and validation data [70] for more complex travel time

prediction algorithms.

The general objective of the researchers is to obtain the mean travel time because it gives an

overall view of the traffic situation in a given time interval. For this purpose, in the literature, the

true mean travel time of a given segment for the vehicles that depart in time interval [t − l, t] is

defined by:

TT[t−l,t] =
L

v̄space,[t−l,t]
(1)

where L is the length of the study segment and v̄space,[t−l,t] is the space mean speed of vehicles

departing in the time interval [t − l, t]. Since L is generally well known, the modeling of space

mean speed and travel time are essentially equivalent.

The space mean speed is defined as the division of the total distance traveled by all the vehicles

that depart in time interval [t− l, t] with the total time of travel of all these vehicles. It is important

to note that the space mean speed is an area wide variable that is used to describe the velocity in

the whole road section and not only a specific point in the road.

This formulation poses different problems to all the traffic data detectors that have been pre-

sented in the previous section and is not directly calculable in most real world situations. Point

detectors are only able to capture data in specific locations of the study segment and since the

space mean speed is a section wide variable, the data from these detectors is not sufficient to cal-

culate Equation 1. Among the interval detectors the main problem is that in real situations, it is

not usually possible to track all the vehicles, which is necessary to explicitly calculate equation 1,

and only a sample of the whole data will be available [55].

So, since the mean travel time for vehicles departing at a certain time interval can not be

calculated directly, approximation or estimation schemes will have to be presented.

3.1 Travel Time Estimation from Point Detectors

For many years, double or single inductive loop detectors have been the most widely used detectors

[102] and therefore the vast majority of the travel time estimation algorithms from point detectors
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use this type of sensors. However, most point detectors, intrusive or non intrusive, provide the

same type of data and the algorithms that will be presented next could be applied equivalently for

point detectors other than loop detectors [61].

There are two types of loop detectors. The first type are called single loop detectors and

consist of a single induction loop that is able to detect the passing of big metallic objects, in this

case vehicles. These detectors output variables such as flow (number of passing vehicles/hour)

and occupancy (% of the time that the detector is occupied) [38], often aggregated in specific

time intervals as explained before. The second type of inductive detectors are called double loop

detectors. As the name indicates, the double loop detectors consist of a pair of detectors set very

close to each other and that are able to sense the passing of vehicles. This pair of sensors is

capable of obtaining flow and occupancy but they can also collect speed at the point where the

detectors are situated as well as vehicle lengths, by using the travel time of the vehicles between

the two sensors [45]. The speed captured by double loop detectors is called point mean speed and

is conceptually different to the space mean speed mentioned previously because it is not an area

wide variable and is only valid to describe the mean speed at a specific point of the road.

3.1.1 Single Loop Detectors

As we have explained above, single loop detectors are able to capture flow and the occupancy

of the detector and obtaining travel time estimates from these traffic variables is a complex task.

Therefore, a few approaches have been presented in the literature and they can be divided into

two classes: traffic theory based methodologies and data based methodologies such as machine

learning or statistical techniques.

The first class of techniques apply relations between traffic variables, obtained from traffic flow

theory, to extract travel time values from flow data [76, 84, 116, 130]. Different traffic dynamics

approaches are introduced, essentially based on flow conservation equations. The main idea is

to estimate traffic density (vehicles/km) using the difference in cumulative vehicle arrivals and

cumulative vehicle departures in the target link in different ways. Finally, using the density (k)

and flow (q), space mean speed can be obtained using the following identity [26]:

v̄space = q/k (2)

On the contrary, in data based methods, models and equations from traffic theory are ignored

and diverse statistical and machine learning methods are used to create new structures that relate

flow, occupancy and travel time using the data as a baseline.

One of the most recurrent and successful data based models are artificial neural networks.

These models are inspired in the structure and functional aspects of the biological networks that

neurons form in the brain and are able to construct complex non-linear relations between the input

and the output variables. Because of this, they have been extensively used in many classification

and regression problems in different application fields. A wide variety of different neural structures

have been used to find the best relation between occupancy, flow and travel time or space mean

speed, from fuzzy neural networks [87] to Multilayer Perceptron, radial basis neural networks and

probabilistic networks [56].

More statistical models such as polynomial regression models are also used in the literature

[99,100] where occupancy, flow and speed are related generally with linear and quadratic relations.
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Finally, more unusual approaches use time series modeling techniques such as calculating the cross

correlation function between flow and travel times series [26].

It can be seen that the references for direct estimation of travel time from single loop detectors

are not very numerous and are very sparse and distinct from each other. The main reason for this is

that the majority of the researchers have focused their attention in imitating double loop detectors

by estimating point mean speed using data from single loop detectors, instead of estimating travel

time. Although these algorithms do not directly obtain travel time values, which are of interest in

this paper, they can be helpful for obtaining travel time measurements if used in combination with

other estimation methods that will be presented in latter sections. Therefore, the most exploited

methodologies for point mean speed estimation from single loop detectors will be commented

briefly in the following paragraphs.

The most conventional method for point mean speed estimation is a traffic theory model based

on the identity in Equation 2. Since density can not be obtained directly from loop detectors,

the main idea consists in using occupancy values (o) to approximate this traffic variable and the

following formulation is obtained:

v̄space =
q

o · g
(3)

where g is the inverse of the average effective vehicle length in the target study period [38]. The

effective length for each vehicle is calculated by summing the vehicle length and the detection zone

length [45]. This methodology is denominated the g-factor approach and since vehicle length can

not be obtained directly from single loop detectors, different techniques have been presented to

approximate it adequately.

In the simplest case, g, and therefore vehicle length, is assumed to be constant over all the

time intervals [20] but certain studies observe that this approach gives biased estimates in some

cases [41,45,93]. Since vehicle length is not directly collected by single loop detectors, they have

tried to find suitable approximations of g. Some proposals for obtaining more reliable values of g

are presented in [20, 26, 118].

The second point mean speed estimation method that deserves a mention is Bayesian filtering.

It is assumed that vehicle speed (vk) is a random variable that is not observable from the sensors

and two equations are defined:

State Equation: vk = F (vk−1) +B(uk−1) + rn

Measurement Equation: yk = H(vk) + wn

where uk is the control vector that is not taken into consideration in many approaches, yk is

the observed variable that is available from the traffic sensors and rn and wn are the model and

measurement noises. In the case of point mean speed estimation from single loop detectors, it is

typical to use equation 3 and its variations to define functions F , B and H [25, 38, 126].

The Kalman filters are widely used to solve these dynamic state-space model iteratively and a

variety of Kalman filters exist depending on the linearity of the equations involved. The downside

of the Kalman filters is the assumption of the normality of the variables involved. However, new

methodologies such as Particle Filters provide alternatives to this condition [125].
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These two methodologies estimate point mean speed, which is the variable captured by double

loop detectors, and not travel time, which is the variable of interest in this case. Consequently, one

of the travel time estimation methods that will be presented in the next section for double detectors

would have to be applied in order to obtain travel time values.

A summary of all the methodologies presented for travel time and point speed estimation using

data from single loop detectors is present in Table 1 including the advantages and disadvantages

of each of the proposals.

Table 1: Travel Time Estimation Methods with Single Loop Detectors

Estimated variable Method Type Methods Advantages Disadvantages

Traffic Theory Flow conservation equations Realistic theoretical Expertise on traffic theory

Travel Time or based methods and traffic dynamics relations are applied models is necessary

Space Mean Speed Statistical -Polynomial Regression methods Underlying structures in A lot of good quality

and -Cross Correlation functions the data can be found data is needed

machine learning methods -Artificial Neural Networks

g-factor approaches -Constant g Simplicity Another

Point Speed -Non-constant g estimation method

Bayesian filtering -Kalman filters Better results in is necessary to

-Particle Filters congested states obtain travel time

3.1.2 Double Loop Detectors

These loop detectors are able to capture flow, occupancy and speed at the point where the detector

is situated. Speed is more easily related to travel time and therefore, it is generally simpler to

estimate travel time from double loop detectors than single loop detectors. However, the speed

captured by double loop detectors is only valid for a specific point and it is not always reliable to

assume that it can represent the whole study site [23]. Because of this, very different approaches

have been proposed to extend the data to the whole target site, which is usually a road segment,

and provide travel time estimations.

The first and most common approach consists in extending the speeds of the captured points

to the whole study site by using combinations of speeds from various detectors and interpolation

schemes. As we have explained previously, the road is usually divided into smaller links, and

although there are certain articles that present different divisions [23], normally each link is defined

as the road length between two detectors. The detector at the beginning of the link is called the

upstream detector while the one at the end of the link is denominated the downstream detector.

The main objective is to estimate the travel time for each link and then, the travel time for

longer routes is obtained by summing the traversing times of the links that constitute the trajectory.

This type of travel time calculations are denominated “Trajectory methods” [71].

Two types of “Trajectory methods” will be differenced: the static methods and the dynamic

methods. The static methods collect the data from all the detectors situated in the trajectory of

interest at the departure time and assume that the measurements from the detectors will remain

constant throughout the trip. On the contrary, other authors present dynamic methods where the

most recent available data, the data captured by each detector at the arrival time to that specific
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detector, is used as input. Since the arrival time to each detector is unknown a priori and must be

estimated, more complex iterative methods must be introduced [23,71], but these models are more

realistic.

Both in static and dynamic “Trajectory methods”, it is necessary to decide how the speed

collected from the sensors will be expanded so that it represents a whole link. The most simple way

is by using “Piece-wise Constant methods”, where the speed captured in one of the detectors that

delimit the link will represent the whole link [71,103]. More complex approaches combine speeds

from both upstream and downstream detectors in the link or even use speeds from neighboring

links [23, 71, 103, 108].

All these “Trajectory methods” are widely used and present similar good performances in free

flow conditions. However, they demand a dense spacing of the detectors and they do not provide

very good solutions in congested situations, although the dynamic methods combining data from

more that one detector perform slightly better [103].

Apart from the point speed interpolation and combination methods, there has been some in-

terest in trying to use double loop detectors as if they were interval detectors by using vehicle

re-identification, which attempts to find a signature that uniquely identifies each vehicle at two

consecutive detectors. On the contrary of interval detectors such as AVI detectors, it is not so easy

to uniquely identify vehicles using data from loop detectors and because of this, various techniques

have been developed.

Since vehicle lengths can be obtained from dual detectors, one way of acquiring a vehicle sig-

nature can be by using this length. However, vehicle lengths are not unique and different solutions

have been searched to convert them to unique signatures [19, 22]. A second approach to obtain

unique signatures is presented in [1, 106] where it can be seen that some special dual detector

manufacturers are incorporating the ability to monitor and output vehicle inductance values such

as maximum magnitude of inductance, length and shape of the metal mass of the vehicle. This vec-

tor of information is used as a signature to match vehicles arriving to the upstream and downstream

detectors and different methods have been applied to find the best match. A last methodology for

unique re-identification can be found in [77], where vehicle platoons are created and re-identified

using flow and volume. This last approach only uses flow data and therefore could also be applied

in the case of single loop detectors.

This re-identification approach has some advantages compared to AVI interval detection [19].

First, the identification of the vehicles is anonymous and does not invade the privacy of the drivers.

Second, there is no need of active population participation since all vehicles can be identified with

the loop detectors and no special device has to be installed in the vehicles. Finally, these systems

have more capacity to detect incidents, because not only travel time is observable but also spot

speeds which give additional information. However, double loop detectors usually only provide

aggregates of speed, flow and volume and since individual vehicle data may not be available, these

contributions are not very popular for real world applications [102, 116].

Finally, less common approaches for travel time estimation from double loop detectors are

traffic flow approaches based on different relations between traffic variables [21, 113] and sta-

tistical and machine learning models such as simple Bayesian estimators, feed forward neural

networks [91] and Markov chains [127].

A summary of all the presented methodologies for travel time estimation from double loop

detector data is provided in Table 2 with the advantages and disadvantages of each method.
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Table 2: Travel Time Estimation Methods with Double Loop Detectors

Estimated variable Method type Methods Advantages Disadvantages

Point Speed Interpolation -Static in time methods Simplicity Inaccurate in congested and

and Combination methods -Iterative methods transition state conditions

-Re-identification using length Travel time is obtained The necessary input data

Vehicle Re-identification -Re-identification using directly is not always available

methods vehicle inductance values

Travel time - Re-identification using

or volume and flow

Space Mean Speed Traffic Theory -Traffic identities using More complex and realistic Expertise on traffic theory

based method flow, occupancy and point speed relations are applied models is necessary

Statistical and -Artificial Neural Networks No expertise in traffic theory A lot of data is needed

Machine Learning methods -Markov Chains is needed and good and the quality of the data

-Simple Bayes Estimators results are obtained conditions the precision

3.2 Travel Time Estimation with Interval Detectors

Interval detectors are more recent than point detectors, and in the past few years research on the

use of these sensors has flourished considerably. The reason is that interval detectors provide travel

time data directly and offer more possibilities for ATIS. However, travel time from all the vehicles

is generally not available and because of this, most of the effort is focused on estimating the

minimum number of detected vehicles needed to obtain a reliable picture of the traffic situation.

For this purpose, some statistical approaches are presented in which the authors frequently

assume a normal probability distribution for travel time/speed [94, 98], mean travel time/speed

[105,112] or mean error [12,55] and extract the minimum vehicle sample size by using reliability

concepts [105] and constructing confidence intervals.

Although it is proved in [7] that the Gaussian distribution is not always the most adequate,

and a possible improvement is presented for non Gaussian travel times, the cited techniques that

use normality are widely accepted and directly used in the case of links and small road segments.

Nevertheless, they are not directly applicable and must be slightly extended in the case of a whole

network [7, 105].

In general, the minimum percentage of vehicles needed varies depending on the permitted

error, the level of congestion and the characteristics of the study area, and it is not possible to give a

unique minimum sample value for all situations because each case has to be studied independently.

However, the minimum sample size needed for accurate representation of traffic is generally quite

large and difficult to obtain in real situations.

3.2.1 GPS provided Probe Vehicles

Probe vehicles equipped with GPS systems are able to collect position, speed and time stamp

data every few seconds [66] and this introduces a wide range of new possibilities into travel time

estimation. Probe vehicles are able to provide all the data needed to calculate the space mean speed

because the vehicles can be tracked at all times, but in real situations, it is usually impossible to

track all the vehicles in a traffic network.
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Given this situation, the main objective of the research is generally to estimate travel time from

a reduced probe vehicle sample. In the past few years some examples of this type of estimation

have been published and the increase in GPS enabled devices promises more interest in this type

of models in the near future.

A couple of different statistical approaches are available in [92] and [34]. In these approaches a

Bayesian prior conjugate scheme and a weighted average with historical data are used to generalize

the observations obtained from an insufficient vehicle sample to the whole traffic.

Another approximation is the use of fuzzy logic [63, 66], that is an extension of regular set

theory, in which each element is associated to a fuzzy set with a degree of membership. The

objective is to assign the individual trajectories of probe vehicles to different fuzzy driving patterns

and fuzzy traffic situations and to derive the mean travel time of the whole population from this

information.

It is quite common to use bus or taxi fleets as probe vehicles because these vehicles cover a

large part of the traffic network and the fleet sample is quite big [34, 92].

3.2.2 AVI detectors

Another type of interval detectors that have gained popularity in the past few years are the AVI

detectors. We recall that these detectors identify the vehicles at the beginning and end of the

study section and infer travel time values from this data. Some of these detectors, such as license

plate matching video cameras or closed toll highways, are able to collect the travel times of all the

vehicles that travel in the surveilled section. However, in many cases, the detectors only capture the

travel times of a sample of the whole traffic population and this sample is not always sufficiently

large.
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Figure 1: Travel Time Estimation from Interval Detectors
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In the second case, for example when using electronic toll collection tags or roadside beacons,

the travel time must be extrapolated to the whole population. The solutions are a series of statistical

methods that vary from simple averaging of the valid travel time records as in the TransGuide

system [109] to more complex approaches that combine current, historical and estimations from

the previous time intervals in different manners [78, 81, 110].

Furthermore, even when the sample of detected vehicles is big enough, when using data from

AVI detectors there is a problem that arises, unlike with GPS enabled vehicles and a large part of

the research attention is focused on finding solutions to this problem. This obstacle is the difficulty

in differentiating noisy and unusual data from valid data. Extremely short and long observations

should be eliminated from the data base to obtain more reliable estimations, but the identification

of non valid data is not always immediate [86]. Because of this, some effort is put into filtering

these erroneous or invalid registers such as travel times of vehicles that stop midway, duplicate

entries, and observations of vehicles that travel faster than permitted [29, 78, 86, 102, 109, 110].

3.3 Estimation with Fusion of Different Data Sources

Most of the studies in the literature use only one kind of detector data as input to the model and

not many studies combine different sources of data. However, lately, fusion of different type of

sensors has been introduced into the travel time estimation field to increase reliability of travel

time estimates [14] and to reduce sensing costs [35].

Although in the literature the term “data fusion” is used with various meanings, we will focus

on data fusion from different types of traffic sensors, also denominated multi-sensor data fusion.

We will distinguish between two distinct types of fusion algorithms. The first type directly

accepts input data from different sources and constructs a unique estimation model. The second

type of fusion consists in constructing an estimation model for each data source by using one

of the methods presented in the previous sections and finally fusing these estimates by different

techniques. A graphical example of these two fusion methodologies can be seen in Figure 2.

In the first type of fusion, the direct fusion of data from different sources, methodologies such

as neural networks, state space models or traffic theory based models are proposed in the travel

time estimation literature.

Artificial neural networks have already been mentioned in the previous sections and used for

different purposes. Regarding travel time or space mean speed estimation from different sources,

in [3, 11, 68], feed forward neural networks are built with some of the input nodes corresponding

to data from loop detectors and the remainder of input nodes corresponding to data obtained from

probe vehicles.

Another way of fusing data from different sensors consists of a state space model similar to

the presented in Section 3.1 but adapted to a multi-sensor case.

Three different types of adaptations to the multi-sensor case are observed in the literature and

the first one is present in [16] and [82]. In this occasion, the control vector (uk) in the state

equation is obtained with data from loop detectors and on the contrary, the observations present in

the measurement equation (yk) are travel times or speeds obtained with the help of GPS enabled

probe vehicles. The second adaptation is introduced in [3] where the information from all sources

is introduced in a multivariate measurement equation in a state space system. The third type of

adaptation is also introduced in [3] and is denominated the SCAAT Kalman filter. In this case the

12
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Figure 2: Travel Time Estimation from Different Data Sources

state space equation only uses the last piece of available data from all sensors. Therefore, in each

step only one sensor is used and the state space model is reduced to the case of one sensor.

Finally, models based on traffic theory are not so common when the data is provided by dif-

ferent sources, because it is not easy to find models that accept inputs from various sensors [18].

Some isolated and distinct cases can be seen in [80], where shock wave theory is used to better

estimate travel time in a urban stretch from AVI cameras and probe vehicles data; in [45], where a

g-factor approach is used to combine data from single and double loop detectors and in [18], where

the Moskowitz formula from kinematic wave theory is applied fusing data from loop detectors and

GPS provided mobile phones.

The second type of fusion algorithms estimate travel time separately for each available sensor

and then fuse these estimations using linear combinations, evidential theory or fuzzy theory.

The first way to combine estimations from different sensors is by weighted linear combination

or weighted average. The weights can be calculated in different manners, but they are usually built

by measuring the reliability of the estimations from each individual source and giving more weight

to the most reliable sources. Some ideas for calculating these weights are proposed in [3, 14, 15].

Another methodology that is often used for fusion of estimators is evidential theory or Dempster-

Shafer theory, and several attempts to apply this theory to estimation of travel time can be seen

in [32, 33, 101]. Evidential theory is a generalization of Bayesian probability theory and it per-

mits the treatment of ignorance, which is not contemplated in Bayesian theory. In the first step,

the target variable must be discretized into a set of states {ω1, ω2, ..., ωn} because evidential the-
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ory is only applicable to discrete variables. Next, each of the possible states or combination of

states is assigned a credibility measurement on the basis of a belief function (mi), defined dif-

ferently for each source i and that indicates the credibility or degree of trust that the source has

for each possible output. Different methods have been proposed to calculate these mass functions

in [32, 33, 101].

Once the mass functions for each data source are well defined, Demster-Shafer theory provides

a simple formula that permits the fusion of two sources of information based on the orthogonal

sum of the belief functions.

A last typical approach in data fusion is the use of fuzzy set theory which allows the intro-

duction of vagueness into the model [57]. However, in travel time estimation, this methodology is

only used in [101].

3.4 Comments about the study site

To finish with the section about travel time estimation, some comments about the study site or

location of the model must be made. Most of the models presented in these sections are built

for highways, expressways or motorways. In essence, roads without intersections or programmed

delays [74].

However, there are some authors that refer to estimation of travel time in urban roads [80,92],

where signalized and non signalized intersections are present. In these cases some authors cal-

culate the travel time using a unique model, chosen from the ones presented in the previous sec-

tions, that calculates the sum of the cruising time and the intersection delay directly in a single

model [87, 92]. On the contrary, there are other approaches that attempt to estimate travel time by

modeling the cruising time and the intersection delay separately and then summing both compo-

nents [11, 74]:

TT = Tcruise + Tdelay

Generally, the cruise travel time is obtained with models similar to those introduced in the

previous sections, and the intersection delay is calculated using delay formulas and queuing theory

approaches.

4 Travel Time Prediction

The objective of the travel time prediction models is to obtain the travel time for a given departure

time in the future using the traffic and contextual data available in the moment together with data

from the past. Similar to estimation methods, the predictive models have to deal with the non-

linear nature of traffic but in addition, they are no longer static in time and they must handle the

dynamicity [72].

In the past few years the need for traffic predictions has become indispensable due to the

increasing congestion in the road networks. It has been extensively proved that traffic prediction

is beneficial for ATIS [120] because it provides the necessary pre-route and in-route information

to schedule and choose the most adequate trajectories in each situation. Moreover, travel time has
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been qualified as the most suitable traffic variable for ATIS due to its high comprehensibility and

intuitiveness [46].

Because of this, the prediction of this traffic variable has become a very recurrent topic in

the literature of intelligent transportation systems and a vast portfolio of different methods have

been presented for this goal [46]. A couple of reviews on short-term traffic prediction have been

presented in the past [46,117] but, since this paper is focused on ATIS, we will restrain the review

to the variable travel time and discard the prediction of other traffic variables.

Before presenting a general taxonomy for the existing methods for travel time prediction, some

clarifications must be made for better understanding.

Firstly, same as in estimation of travel time, most of the authors concentrate in the prediction

of mean travel time as opposed to individual travel times. A few remote cases provide confidence

intervals [65, 114] or probability distributions [36, 50] for the mean travel time but in general the

authors focus on estimating a single mean value.

The second important factor to take into account is the prediction horizon concept. This refers

to how far in the future the predictions are made. In general, the authors have focused their

attention in short term prediction, which considers the predictions up to one hour in the future [46].

The cases where travel time is predicted for further than one hour in the future are almost non

existent [59, 104] because it is difficult that these type of predictions are robust enough to be used

in ATIS.

Finally, as explained in Section 2.3 the time variable is usually divided into discrete intervals,

and therefore we will be referring to time intervals of length ∆t instead of continuous time stamps.

The time interval lengths vary from a few seconds [28] to 15 minutes [59,128], and the prediction

horizon is generally defined as the number of time steps into the future (k).

Taking into account all these factors, a typical travel time predictive model can be formulated

as:

TTi(t+ k) = f(X(t), Y1(1), ..., Yt−1(t− 1)) (4)

where, t and t + k are the number of time intervals of length ∆t from the beginning of the study

period and TTi(t + k) is the travel time on link i of vehicles departing at time interval t + k.

X(t) is the set of explicative variables observed at the time interval the prediction is made (t) and

the set of explicative information collected in the past is expressed by {Y1(1), . . . , Yt−1(t − 1)},

starting from the first time interval until time interval t − 1. Finally, f is the function that relates

the explicative variables with the target variable.

Once a general notation for travel time prediction models is given, a taxonomy of these will

be presented in the next sections. This taxonomy is schematically represented in Figure 3. The

models will be classified depending on the technique used to construct the function f defined

in equation 4. Estimation methods presented in the previous section are more dependent of the

specific characteristics of each data source and because of this, the classification has been given

based on data sources. However, the data source or typology of the input data is not so relevant in

prediction methods because the data can be translated from one format to another using estimation

methods. Because of this, it is interesting to categorize the prediction methods based on the type

of model applied and not on the data source. Anyhow, some comments about the input data will

be addressed in the last part of the section.
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Figure 3: Travel Time Prediction Models Taxonomy

4.1 Naive Models

As the name indicates, these are the most simple and ad hoc travel time prediction methods. They

do not need any training or estimation of parameters and are very simple and fast. Nevertheless,

they make some very restrictive assumptions that are not fulfilled in many situations [72]. They

are mainly used in commercial ATIS because of their simplicity [48, 81, 109] but in the scientific

literature they are usually only used as a baseline for comparison with other more complex meth-

ods. These methods are divided into instantaneous, historical and hybrid methods, and a summary

including advantages and drawbacks is available in Table 3.

Table 3: Naive Travel Time Prediction Methods

Method type Methods Advantages Disadvantages

-Simplicity -Assumptions are rarely fulfilled

Instantaneous Instantaneous predictors -Can give good results -Weak when the prediction

for short prediction horizons horizon increases

Historical Historical predictors -Simplicity -Similarity with past conditions is required

-Can give good results -Not good for non-recurrent congestion

for long prediction horizons

Combination methods -Exponential Filtering -The assumptions are not so strong -The weight assigned to each predictor must

-Switch Models be chosen manually

4.1.1 Instantaneous Predictors

The first type of naive predictors are the so called “Instantaneous Predictors”. These forecasting

models assume that the traffic conditions in the time when the prediction is made will remain

constant until the departure time in the future [46]. This can be formulated as:
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TT (t+ k) = TT (t)

where t is the time interval where the prediction is made.

Since estimation methods calculate the travel time of current or past journeys, in essence, any

estimation method presented in the previous section could be used as an “Instantaneous Predictor”

by outputting the most up-to-date travel time estimation. The most used estimation methods are the

static combination and extrapolation methods presented in Section 3.1.2, because these methods

do not suffer from the time delay problem.

The assumption that the traffic state will not suffer any changes becomes more and more

erroneous as the prediction time horizon increases and therefore, these predictors are only reliable

when the prediction is done for the near future and the traffic remains sufficiently constant [97].

4.1.2 Historical Predictors

The second type of naive predictors are the historical predictors that assume that the travel time at

a certain time interval is very similar to the travel times collected at the same time in the past. The

most recurrent method is to simply average all the historical travel times collected in the given

time interval [97]. Slightly more complex methods further reduce the historical set by filtering by

weekday, month or any other characteristic [48,120] or weight the historical average according to

the similarity of the current situation with the historical profile [48].

These methods depend greatly on the similarity in traffic conditions between current and past

days and this not always occurs, especially in non-recurrent congestion situations. However, his-

torical estimators are generally more accurate for long term prediction than the instantaneous

predictors [97].

4.1.3 Hybrid methods

This third type of models combine historical and instantaneous methods in a simple way and with

no need for parameter estimation. A first example is the exponential smoothing technique used

in [121] and expressed as:

TT (t+ k) = αTh + (1− α)Ti

where α is a manually specified parameter, Th is the historical prediction and Ti is the instanta-

neous prediction.

A second approach can be seen in [97] where a switch model between the two naive predictors

is applied. The instantaneous predictor is applied for short term prediction while the historical

predictor is applied for longer term prediction.

4.2 Traffic Theory Based Models

Traffic theory based approaches usually focus on recreating the traffic conditions in the future

time intervals and then deriving travel times from the predicted traffic state and variables [72].

The most recurrent use of traffic theory based models in travel time prediction is done by using

simulation tools. These simulation models can be divided into three main categories: macroscopic,
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Table 4: Traffic Flow Based Travel Time Prediction Methods

Method type Simulators Advantages Disadvantages

Macroscopic Simulation Models -EMME Good for prediction in big networks -Travel time is not obtained directly

-METANET of different order -Individual details are overlooked

Microscopic Simulation Models -CORSIM Very detailed information can be obtained -Computationally intensive

-PARAMICS -O-D matrices must be predicted

-INTEGRATION

Mesoscopic Simulation Models -CONTRAM -Faster than microscopic models They inherit some of the disadvantages

-DynaMIT -More detailed than macroscopic models of microscopic and macroscopic models

-DynaSMART

Delay Formulas and Good for specific situations Not very used for ATIS

Queuing theory (intersections, congestion etc.)

microscopic and mesoscopic simulation [46]. Moreover, apart from simulation models, there are

some other traffic theory based methods that must be taken into account and are more suitable for

specific situations of delay and congestion: delay formulas and queue theory.

Traffic theory based models are specially advantageous for ATMS because they give very

detailed information about the location and causes of delays on a road network, and they provide

means for decision making in route construction and management [46]. Furthermore, they allow

the representation and inclusion of crucial components in traffic modeling such as traffic lights,

intersections, lanes etc. In addition, they also provide useful information for ATIS and are widely

used in these systems.

The main drawback of these models is that they are in general computationally very inten-

sive and furthermore, a high knowledge of traffic theory is necessary for their application. More

specific information about each type of traffic theory based method can be looked up in Table 4.

4.2.1 Macroscopic Simulation Models

Macroscopic simulation, also called continuous flow simulation, applies equations from fluid flow

theory to model the traffic by simulating aggregated traffic variables such as flow, density and

mean speed in the future time intervals.

There are many equations and general relations between traffic variables that can be used for

macroscopic simulation and they are categorized based on the order of the mathematical equa-

tion. These models do not generally output travel time values and therefore, these will have to be

inferred using estimation methods as the ones presented in Section 3 [6, 24]. Some examples of

macroscopic simulator softwares are EMME [44] and METANET [88].

The use of macroscopic models for travel time prediction is not very common in the literature

because these models are mainly used for prediction of other traffic variables.

4.2.2 Microscopic Simulation Models

There are different ways to represent the distribution of traffic in a traffic network. Two typical

ways are Origin-Destination (O-D) matrices, which represent the traffic flow from every possible

origin to every destination, or turning volumes that represent the percentage of the traffic that turns
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in each direction in an intersection. Microscopic models take predictions of these O-D matrices

or turning volumes as input and simulate trajectories of individual vehicles in the future time

intervals, taking into account factors such as interactions between vehicles, driver behavior, lane

changing, etc. [72].

Some of the models used in microscopic simulation are car-following models and cellular

automaton models. The first are time-continuous ordinary differential equations which represent

the behavior and trajectory of each vehicle depending on the vehicle in front. On the contrary, the

second are simpler models that discretize the time and study road into small cells and move the

vehicles along the cells by following some predefined rules for lane-changing and acceleration,

among other factors.

As opposed to the macroscopic models, in these cases, travel times can be derived directly

[72] but there is an additional task of predicting O-D matrices or turning volumes which can be

done with methods similar to the ones that will be presented for travel time prediction in the next

sections [75, 79].

Some microscopic simulation softwares are CORSIM [39], PARAMICS [122], and INTE-

GRATION [2].

4.2.3 Mesoscopic Simulation Models

These models combine the features of microscopic and macroscopic simulations models. They

simulate individual vehicles, but describe their behavior and interactions based on general macro-

scopic relationships [46]. They are mostly used in cases of large networks where the microscopic

simulation of all the vehicles is unfeasible.

Some examples of mesoscopic simulators are CONTRAM [111], which groups the vehicles

into platoons and assigns the same behavior to the whole platoon , DynaMIT [4], that divides the

road into cells and assigns a behavior to each cell and DynaSMART [54], where the vehicles are

represented individually but the speed in each link is determined by a macroscopic speed-density

function.

In this case, the prediction of O-D matrices or turning volumes is also necessary as we can see

in [49].

4.2.4 Delay formulas and Queuing Theory

To finish with traffic theory based travel time prediction models, delay formulas and queue theory

[132] must be mentioned. They are basically estimation methods equal to the ones mentioned in

section 3.4, but they become predictive methods when the input variables are predicted values and

not direct measurements.

These models are mostly used for delay prediction in urban roads in more specific situations

of congestion or signalized intersections. They are widely used for optimization of signal timing

and traffic management in general [30], but are not so recurrent in travel time prediction for ATIS.

The reason is that they only represent specific situations and they must be used in combination

with another method that predicts the cruising time for the rest of the link [74].
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4.3 Data Based Models

In data based models, the function that relates the explicative variables with the target variable (f )

is not obtained from traffic theory identities and relations, but instead, the structure of this function

is determined either by the researcher or by the data itself by using statistical and machine learning

techniques [72]. Moreover, in either case, the rest of the parameters that will fully determine the

model are found by using the data.

The main advantage of these methods is that expertise in traffic theory is not required. The

downsides are that usually a lot of data is needed, which is not always available, and that the

models are very linked to the data and consequently to a certain study site [72]. Because of this,

they are not always successfully transferable to other sites.

An outline of these methods is present in Table 5, where the advantages and disadvantages of

each method are underlined.

Table 5: Data Based Travel Time Prediction Methods

Method type Methods Advantages Disadvantages

Parametric models -Linear Regression Visual and easy to understand Too simple structures

-Bayes Nets may not represent the data well

-Time Series Models

Non Parametric models -Neural Networks Underlying complex, nonlinear A lot of data is needed

-Decision Trees structures can be found

-Support Vector Regression

Semi Parametric models -Varying Coefficient Models -Not so simple as parametric models Structure is somewhat predefined and

-Valid for situations where may not represent the data well

non parametric models suffer from

the curse of dimensionality

4.3.1 Parametric Models

In these models the ensemble of parameters that must be estimated is predefined and set in a finite

dimensional space [42]. In the case of travel time prediction, this means that the structure of f is

fully predetermined by the researcher but however, some parameters will be determined using the

data.

The most typical parametric model is the linear regression where the target variable is a linear

function of the explanatory or input variables:

TT = β0 + β1X1 + β2X2 + ...+ βnXn (5)

The use of different sets of input variables and different techniques to estimate these param-

eters (β0, β1, ...βn) define the different linear regression models. Some possible input variables

are traffic observations from current and past time intervals [5, 83] or more elaborate inputs such

as historical and instantaneous predictors [31]. Adding context information such as the departure

moment, the weekday and the weather can also be beneficial [5]. In travel time prediction, the
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parameter learning techniques can also vary from the common least squares approach [5, 83] to

more complex entropy minimization methods [31].

The next type of parametric models are the Bayes Nets. In some cases, the conditional in-

dependences between variables, and therefore, the structure of the graph are pre-specified by an

expert or by the researcher. However, as in all parametric models, a set of real valued parameters

have to be estimated from the data to fully determine the model. The most simple example is the

Naive Bayes model [62, 129] where it is assumed that the explanatory variables are conditionally

independent, given the target variable. In some other more complex cases, the structure of the

graph is not pre-specified and it is constructed by using the data [52].

A third type of parametric models for travel time prediction are time series models. Among

all the existing time series models, the most common are the state space models that have been

mentioned in previous sections. In the case of travel time prediction, the most typical model

corresponds to the following equations:

State Equation: TT (t+ 1) = ΦtTT (t) + wt

Measurement Equation: Y (t) = TT (t) + vt

where TT is the hidden travel time variable to predict, Y corresponds to the travel time obser-

vations collected by the traffic sensors and wt and vt are white noise errors with zero mean. When

linearity and normality conditions are fulfilled or assumed, this model can be solved by using a

regular Kalman filter [8, 13, 60, 124]. In addition, some enhancements to this state space model

are presented in [134] and [115] where the travel times of neighboring links are also taken into

account when predicting travel time for a certain link.

Another type of time series models, which can also be formulated as a state space model,

are ARMA models which are a combination of autoregressive (AR) and moving average (MA)

models. The general formulation of an ARMA(p,q) model is:

TTt −

p∑

i=1

φiTTt−i = Zt +

q∑

j=1

θjZt−j (6)

where the target variable TTt, in our case travel time at departure time interval t, is represented as

a linear function of this same variable in previous time intervals (TTt−1, ..., TTt−p) and a set of

white noise variables (Zt, ...Zt−q). The parameters of the ARMA model (φ1, .., φp, θ1, ..., θq) can

be estimated with different methods [123]. An improvement of this approach is applied in [37],

where a seasonal component is added to the ARMA model, obtaining a structure denominated

SARIMA model.

Finally, a more unusual time series methodology is the use of non linear time series [53].

4.3.2 Non-Parametric models

In this case, the structure of the model is not predefined and therefore the shape of f is also

obtained from the data. Consequently the term non-parametric does not mean that there are no

parameters to be estimated, but on the contrary, it means that the number and typology of the

parameters is unknown a priori and possibly infinite [46].
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There are many methodologies for non parametric regression, and the most typical and re-

current in the literature of travel time prediction is the use of artificial neural networks. Many

different types of neural networks have been applied for travel time prediction from regular multi-

layer feed forward neural networks [5,9,51,65,83,90,119] to more complex spectral basis neural

networks [89], counter propagation networks [27], generalized regression networks [56] and re-

current neural networks [28, 70, 85]. Different input variables are used in each case depending on

the availability. The training of the neural networks is commonly done by different variations of

the back propagation algorithm [5,9,70,89], although depending on the network type, other types

of techniques might be preferable [27, 70].

Another option for travel time prediction is using regression trees [5, 83]. In travel time pre-

diction, regression trees are trained by using top-down iterative methods, where at each iteration a

set of new branches of the tree are created by choosing the explanatory variable that best divides

the dataset. The choice of the explanatory variable and the division thresholds is done by using a

pre-specified criterion for example the Gini Impurity or the Information Gain.

A third non parametric approach that gives very accurate results are the local regression mod-

els. The main idea of these methods is to choose a set of historical data instances which have

similar characteristics to the current situation and then obtain the prediction by using a model

constructed with these chosen data points [83]. Different types of local regression models ap-

pear depending on the type of technique used to fit the model to the selected historical data

points [17, 83, 107]

Finally, a couple of researchers [104, 120] have used Support Vector Regression (SVR) tech-

niques to find travel time in the future. This approach consists on mapping the input dataset into

a higher dimensional space with the help of a kernel function and finding the flattest linear func-

tion that relates these modified input vectors and the target variable with an error smaller than a

predefined ǫ. This linear function is mapped again into the initial space to obtain a final non linear

function that is used to predict travel time. Some of the most common kernel functions used in

travel time prediction are radial basis kernels and linear kernels [120].

4.3.3 Semi-Parametric models

This last case is a combination of parametric and non parametric regression schemes. The idea is to

loosen some of the strong assumptions of the parametric model to obtain a more flexible structure

[96]. There are many types of semi-parametric models but, in the case of travel time prediction,

semi-parametric models are presented in the form of varying coefficient regression models [43].

Travel time is defined as a linear function of the naive historical (Th) and instantaneous predictors

(Ti), but the parameters vary depending on the departure time interval (t) and prediction horizon

(∆) [40, 95, 97, 131]:

TT (t,∆) = α(t,∆)Th + β(t,∆)Ti (7)

In this approach, the structure of f is defined as a linear function with respect to Th and Ti,

which corresponds to a parametric model. However, the parameters α and β are defined as smooth

functions of departure time and prediction horizon and have previously unknown structures, which

corresponds to non-parametric models.
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A enhancement of this method is presented in [50], where a log-linear regression model with

varying coefficient is applied. The logarithm of the target variable is approached with a varying

linear combination of the logarithms of the explanatory variables.

4.4 Combined or hybrid models

The last type of models are denominated hybrid models or combination models because they

combine several models of the same or different type. The objective is to enhance the performance

of each of the participant models.

As we can see in Figure 4, we will define two different types of combinations. The first

initially uses a method for preprocessing the data and then applies a second method to perform the

predictions. The second type of combination directly fuses a number of methods in the prediction

phase.
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Figure 4: Travel Time Prediction with Hybrid Methods

4.4.1 Combination in preprocessing and prediction step

This type of combination consists in the consecutive use of two methods. A first method, generally

data based, is applied to pre-process and simplify the input data. Then, a second method is used

to obtain the predictive travel time values.

The typical approaches are clustering [64, 135], principal component analysis [28] or other

methods such as rough set theory [10] in order to reduce the number of features and obtain a new

and simplified set of input data. These new input vectors are later introduced in models such as

neural networks [64, 135] or support vector regression [10] to calculate the predictions.

4.4.2 Combination in prediction step

This second type of combination fuses several methods in the prediction step in order to obtain

more reliable predictions.

A first typical example is the use of meta-models. In this case, several models of the same type

are combined by methodologies such as boosting [67], bagging [104] or Bayesian combination
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[47, 114]. Some examples for travel time prediction can be seen with combinations of decision

trees [104] and neural networks [47, 67].

A second strategy is the introduction of traffic theory identities or queue theory equations in

the data based state-space equations to include theoretical traffic dynamics into the model [73].

Finally, a third approach is to use another data based method in the training process of a

neural network. In [70, 73] extended Kalman filters are used to train neural networks. Moreover,

in [56,133] radial basis neural networks are used and these neural networks make use of clustering

or other data based methods in the training phase to obtain the centers of the hidden nodes.

4.5 Comments about the input data

To finish with this section, some comments about the input data in the predictive models are

necessary.

To begin with, it is important to note that most of the predictive models accept historical traffic

data, current traffic data or both from a certain type of sensors situated in the target segment, as well

as characteristics of the departure such as time, day of the week or month. However, the inclusion

of contextual information such as weather [9, 59, 104] or data from nearby locations [129, 134]

does not appear so much in the research papers and it is only approached in a few cases.

Furthermore, most of the predictive models only accept input from one type of sensor, and

data fusion schemes are hardly available in the literature. A few existing examples can be found,

but they are generally very simple combinations [48, 58, 69] or neural network models [64, 119].

Finally, it is important to note that the time delay problem introduced in Section 2.3 and present

mostly when using AVI detectors, must really be taken into account in predictive models. When

using data from AVI detectors, data is only available when the vehicles finish the trajectory and

therefore, if the most recent data is used in an on line manner, the difference in the departure times

of vehicles used for prediction and vehicles that will receive the prediction might be very large,

especially in congested situations. A few solutions for this problem are presented in [69, 70].

5 Concluding Remarks

Travel time is a useful traffic variable, especially for ATIS, which are generally oriented to non

expert users. The modeling of this traffic variable has been a recurrent topic in the scientific

literature because of its utility. However, the only reviews available for this topic are restricted

to predictive models. Furthermore, these reviews do not focus their attention on travel time but

survey the predictive models for all the traffic variables.

In this review on the construction of travel time models, an extensive survey of all the neces-

sary concepts when modeling travel time is done and a complete and innovative taxonomy of the

existing methods for estimation and prediction of travel time is presented.

Although numerous methods exist for travel time modeling, further research is necessary to

enhance their applicability in ATIS. First, it is observed that most of the methods are restricted to

short road segments, usually highways or freeway stretches and not many authors refer to methods

extended to whole road networks or urban roads. In second place, very few methods are able to

incorporate data from different types of sensors, and in real situations the data available from a

unique type of sensors might not be sufficient to represent the traffic state adequately. Finally,
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many of the presented methods give precise outputs in free flow conditions or even recurrent

congestion, but are not so reliable in non-recurrent congestion, where the traffic state changes

abruptly and erratically. These aspects are crucial to enhance the quality of an ATIS system and

should be studied in future research.

To finish, it is important to note that it is difficult to choose a specific method that is reliable for

all situations because many of the presented methods are site specific and not easily transferred

to other zones. Therefore, a deep study must be done in each site to decide which is the most

adequate model and adaptive or combined models should be taken into consideration to better

adjust to the changing traffic situation.
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