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Abstract

Differently from previous studies of tag-based cooperation, we assume that individuals fail
to recognize their own tag. Due to such incomplete information, the action taken against the
opponent cannot be based on similarity, although it is still motivated by the tag displayed by
the opponent. We present stability conditions for the case when individuals play unconditional
cooperation, unconditional defection or conditional cooperation. We then consider the removal
of one or two strategies. Results show that conditional cooperators are the most resilient agents
against extinction and that the removal of unconditional cooperators may lead to the extinction
of unconditional defectors.

Keywords: cooperation, snowdrift game, replicator dynamics, evolution, similarity.

1 Introduction

The emergence of cooperation has been widely studied in many branches of science. In a well-mixed

homogeneous population in which players select either to cooperate or defect, the prisoner’s dilemma

leads to the extinction of cooperation. Using the standard replicator dynamics, pure defection is the

only asymptotically stable state, hence natural selection reduces the average fitness of the population

[9]. Other classes of games may lead to cooperation. In the class of coordination games, cooperators

survive and take over the entire population in the long run as long as their proportion in the popula-

tion at the initial conditions is above a threshold given by the Nash equilibrium in mixed strategies.

Asymptotic stability in the snowdrift game (class of anti-coordination games) results in a polymorphic

population in which both defectors and cooperators survive and coexist. Cooperation can also emerge

through other mechanisms such as kin selection [5, 9] in which donors and recipients of cooperation

are genetically related, direct reciprocity [15, 9] such as in the iterated prisoner’s dilemma with the

use of the tit-for-tat strategy and indirect reciprocity where individuals who cooperate are more likely

to receive cooperation [10, 9]. Other forms of promoting cooperation can be found in the prisoner’s
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dilemma in regular lattices and networks or through group selection [9]. The use of punishment as in

[16] may also lead to the extinction of defectors, although punishment is a form of reciprocity.

Contrasting with reciprocity, cooperation can also emerge based on similarity. In [12, 14] a well-

mixed population of heterogeneous individuals is modelled. In [12] heterogeneity stems from individuals

having a tag and a tolerance threshold, both randomly drawn from a uniform distribution [0, 1]. Indi-

vidual i cooperates with j as long as j’s tag is similar enough to i’s tag, i.e., |τi− τj | ≤ Ti. Evolution is

modelled numerically. Differently from the iterated prisoner’s dilemma, the same pair of players is un-

likely to meet again. In [14] the same problem is analytically modelled using only two tags (blue, red)

and two forms of cooperation (unconditional cooperators and conditional cooperators, i.e., cooperate

if the opponent displays the same tag), which combined lead to four strategies. In [13] unconditional

defectors are also considered. In such models all individuals can see the opponents’ tags as well as they

know their own tag (type).

However, in some environmental sciences and behavioural research contexts such assumptions do

not hold completely. In the experiment carried out by [3], domestic fowls are artificially marked at

random at the back of their necks resulting in their inability to identify their own type while they

are able to identify their opponent. Depending on the opponent being tagged or not, the player may

behave differently. Although the action taken is motivated by the opponent’s tag, it is not based on

similarity. A theoretical model of such experiment using a hawk-dove game with finite population

is proposed in [7]. In this paper, we investigate the evolution of tag-based cooperation in the same

context.

As in [14], individuals are assigned one of two tags, a type-I or type-II individual. On the other

hand, they cannot condition their strategy on their own type as they fail to recognize it. By contrast

they recognize their opponent’s type and can thus choose a different action for the two types of

opponent. This leads to four possible pure strategies: cooperate (defect) against both types and

cooperate (defect) against the first type and defect (cooperate) against the second type. The first two

strategies are non-discriminating: individuals are programmed to play the same action against any

type of opponent, while the last two are discriminating. Thus individuals playing non-discriminating

strategies are either unconditional cooperators or unconditional defectors while individuals playing

discriminating strategies are conditional cooperators.

In order to adapt the model to the context of the experiment in [3], we introduce some important

assumptions that differ from [12, 14]. We assume that the new offspring are randomly assigned their

tag in such a way that the proportion of each tag in the population is kept constant over time. The

allocation of tag is thus completely independent of the strategy an offspring is programmed to play,

as in [2]. Hence, offspring inherit strategies but not tags. Also, we use standard replicator dynamics,

eliminating the probability of mutations happening. The latter is similar to the replicator in [14]
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without the drift towards cooperation. In particular we eliminate from the dynamics the so-called

“tides of tolerance” found in both [12, 14].

When all four strategies are available the dynamics leads to a set of neutrally stable fixed points

in which all strategies generally survive (see [2]). Here we consider the effect of removing one pure

strategy (an extinction when the population suffers some natural shock). If it is a discriminating

strategy, neutral stability remains. By contrast if it is a non-discriminating strategy, asymptotic

stability can be achieved. One single discriminating strategy survives, driving the other strategies to

extinction. The frequency of cooperation differs from the one in the homogeneous population game

(no tags). Two direct consequences of such results are (i) by removing all unconditional cooperators

from the population, the extinction of unconditional defectors can be achieved (and vice-versa) under

specific conditions leading to a monomorphic population of only conditional cooperator individuals, (ii)

conditional cooperators are more resilient against extinction than individuals who do not discriminate.

In [14], using standard replicator dynamics, the inexistence of unconditional defectors does not lead

to the extinction of unconditional cooperators. Most initial conditions lead to fixed points where the

latter survive although selection generally favours a larger proportion of conditional cooperators. Back

to our model, when a second strategy is removed, the result that only discriminating strategies are

able to survive alone still holds.

The paper is organized as follows: Section 2 presents the snowdrift game for the heterogeneous

population with all four pure strategies available in the population. In Section 3 the analysis is

extended for the game when one strategy is removed from the population at the initial conditions

and we compare our results with those of the snowdrift game played by a homogeneous population

as well as those of previous studies on similarity-based cooperation. In Section 4 a second strategy is

suppressed. Section 5 concludes.

2 Evolutionary snowdrift game with heterogeneous population

Two individuals have to choose among two actions, cooperate (C) or defect (D). Following [4] or [6]

the game payoff matrix (see also [16]) is given by:

C D
C (b− c/2, b− c/2) (b− c, b)
D (b, b− c) (0, 0)

where b is the benefit of cooperation, c its cost. In the prisoner’s dilemma the cost of cooperation

is larger than the benefit: b < c, and defect is always a dominant strategy. Still both individuals

are better off if both cooperate than if both defect: c < 2b. In the snowdrift game the benefit of

cooperation is larger than its cost, b > c. If an individual cooperates with probability α while her
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opponent cooperates with probability β the individual’s expected payoff is given by u(α, β) with

u(α, β) = βb+ [(b− c)− (b− c/2)β]α = βb+ (b− c/2)(a− β)α where a =
b− c

b− c/2
(1)

An individual’s best response is to cooperate if the opponent cooperates with probability β < a, to

defect if β > a and is indifferent between defection and cooperation if β = a. The equilibrium is when

both individuals cooperate with probability a.

Cooperation at equilibrium has a larger probability than defection (a > 1/2) if the benefit of

cooperation is relatively large with respect to its cost, i.e., if b > (3/2)c. We will refer to large benefits

of cooperation if b > (3/2)c and small benefits of cooperation if b < (3/2)c.

Consider a very large well-mixed population with bilateral encounters between individuals pro-

grammed to play pure strategies (cooperate or defect) in the snowdrift game. In this homogeneous

population there is one asymptotically stable state where the proportion of cooperators (i.e., the fre-

quency with which cooperation emerges) equals a. Now assume that the population is heterogeneous:

it is composed of two different types of individuals, type-I and type-II, where an over time fixed pro-

portion x (0 < x < 1) of the individuals is of type-I. We assume that one type is more numerous than

the other: x ̸= 1
2 . Given the very large population, at any bilateral encounter between two individuals

the probabilities of the four possible encounters can be written as

p(I, I) = x2; p(I, II) = p(II, I) = x(1− x); p(II, II) = (1− x)2 (2)

A strategy is denoted α=(αI , αII) where αI is the probability of cooperating when the opponent is

of type-I, αII is the probability of cooperating when the opponent is of type-II. There are four pure

strategies (1, 1), (1, 0), (0, 1), and (0, 0) that we denote CC, CD, DC, and DD respectively. Generic

pure strategies will be denoted by i, j. A strategy is non-discriminating if αI = αII (as pure strategies

CC and DD) discriminating if αI ̸= αII (as pure strategies CD and DC). Hence, unconditional

cooperators (defectors) play CC (DD) while conditional cooperators play either CD or DC.

The expected payoff of an individual playing α while the opponent plays β = (βI , βII) is the sum

of the expected payoffs she would obtain in every possible encounter weighted by its probability of

occurrence. Therefore the expected payoff of an individual playing α against an opponent playing β,

that we denote by U(α,β), is given by

U(α,β) = p(I, I)u(αI , βI) + p(II, I)u(αI , βII) + p(I, II)u(αII , βI) + p(II, II)u(αII , βII).

Using (1) and (2) we can rewrite

U(α,β) = b [xβI + (1− x)βII ] + (b− c/2) [a− xβI − (1− x)βII ] [xαI + (1− x)αII ] . (3)

Note the similarity between this equation and equation (1): α is substituted by Ψα = xαI + (1−
x)αII and β by Ψβ = xβI + (1− x)βII . The probability of cooperation (α or β) is substituted by the

frequency of cooperation (Ψα or Ψβ).
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Now consider that the population is divided into the subgroups that play the four possible pure

strategies. A possible state of the population is denoted θ. It gives the proportions of the population

using each pure strategy: θ = (θCC , θCD, θDC , θDD). Of course for each strategy i we have 0 ≤ θi ≤
1 and θCC + θCD + θDC + θDD = 1. A state is monomorphic if all population uses one single strategy:

θi = 1 for some strategy i. Otherwise the state is polymorphic.

In state θ cooperation occurs with frequency θCC + θCD if the opponent is of type-I, and with

frequency θCC +θDC if the opponent is of type-II. Indeed those who play CC and those who play CD

cooperate when facing an opponent of type-I. For an individual it is as if the opponent was playing

βθ = (θCC + θCD, θDC + θCC) when the population is in state θ. The individual’s expected payoff

when playing α is U(α,βθ) in state θ.

The increase in the proportion of individuals playing pure strategy i is proportional to the payoff

gain of the strategy. The population dynamics is governed by replicator dynamics:

θ̇i = θi [U(i,βθ)− U(βθ,βθ)] for any i.

This can be rewritten using (3) as

θ̇CC = θCC(b− c/2) (a−Ψθ) (1−Ψθ) , (4)

θ̇CD = θCD(b− c/2) (a−Ψθ) (x−Ψθ) , (5)

θ̇DC = θDC(b− c/2) (a−Ψθ) (1− x−Ψθ) , (6)

θ̇DD = θDD(b− c/2) (a−Ψθ) (−Ψθ) , (7)

with

Ψθ = θCC + xθCD + (1− x)θDC . (8)

The frequency of cooperation in state θ is given by Ψθ. Note that one equation of the system (4-7) is

redundant. In [2] the stability of the system is studied when all strategies are available. Their results

can be summarized as follows. No monomorphic state is stable. All states θ with Ψθ = a are neutrally

stable. In the long run (t → ∞), the population evolves to a particular neutrally stable state θ which

depends on the initial conditions θ0. At the neutrally stable states all strategies generally survive.

Even if one strategy disappears from the population, the population is still susceptible to be invaded

by this strategy. Any natural shock would move the population over time to a different neutrally stable

state θ such that Ψθ = a. At the neutrally stable states, the frequency of cooperation is given by a,

as happens in the homogeneous snowdrift game.
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3 Extinction of one strategy

We now analyze the evolutionary pattern of the population when one of the strategies is removed

from the set of strategies, i.e., θi = 0 at the initial conditions. This could be the result of extinction

driven by a natural shock suffered by the population. In line with [2] we focus the analysis on cases

where the system of ordinary differential equations given by (4-7) is hyperbolic at all θ corresponding

to a monomorphic population. A first result is that when a discriminating strategy is removed, the

population evolves to a neutrally stable state with the same frequency of cooperation as in the game

played by a homogeneous population. The proof of the following theorem is given in the Appendix.

Theorem 1 When θCD = 0 or θDC = 0 (i) no monomorphic state is stable, (ii) all states θ with

Ψθ = a are neutrally stable.

Asymptotic stability can never be attained when one discriminating strategy is removed. The

population evolves to a weak (neutrally) stable stationary state, susceptible to shocks that move the

population away from it to alternative stationary states close enough to ensure neutral stability. Still

asymptotic stability is violated. The frequency of cooperation at any neutrally stable state is the

same as in the homogeneous game. We illustrate in figure 1 the vector field when θCD = 0. The

figure is drawn for (θCC , θDC). The thick solid straight line in the interior of the state space is the

set of neutrally stable states. Its intersections with the boundaries of the state space are {(a, 0),
(x−1+a

x , 1−a
x )} if x > 1− a or {(a, 0), (0, a

1−x )} if x < 1− a.

Figure 1: Dynamics when CD is removed. Parameters used: b − c/2 = 1; x = 0.60 ∧ a = 0.55 (left
panel) and x = 0.30 ∧ a = 0.45 (right panel).

If instead, a non-discriminating strategy is removed, polymorphism may disappear and the popu-

lation may evolve to a monomorphic state where the whole population plays a discriminating strategy.

In this case all remaining strategies become extinct and asymptotic stability is achieved.

Theorem 2 In a snowdrift game with large benefits of cooperation, (i) if θDD = 0, no monomorphic
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state is stable, while (ii) if θCC = 0, a monomorphic state with discriminating strategy is asymptotically

stable for 1− a < x < a.

Theorem 3 In a snowdrift game with small benefits of cooperation, (i) if θCC = 0, no monomorphic

state is stable, while (ii) if θDD = 0, a monomorphic state with discriminating strategy is asymptotically

stable for a < x < 1− a.

The proof of the theorems is given in the Appendix. Note that the frequency of cooperation is 1

if all individuals always cooperate, 0 if all individuals always defect. At any neutrally stable state the

frequency of cooperation is a, as in the homogeneous game.

When a discriminating strategy is removed, none of the remaining strategies is fit enough to drive

the other strategies to extinction. Let us illustrate this when θCD = 0. From (3)

U(CC,βθ)− U(DC,βθ) = (b− c/2)(a−Ψθ)x

U(CC,βθ)− U(DD,βθ) = (b− c/2)(a−Ψθ)

U(DC,βθ)− U(DD,βθ) = (b− c/2)(a−Ψθ)(1− x)

When Ψθ < a cooperation against all individuals is always the best performing strategy (θ̇CC > 0),

and defect against all individuals the worst performing strategy (θ̇DD < 0). Cooperation increases its

proportion of adoption in the population over time. By contrast when Ψθ > a defecting against all

individuals is the fittest strategy and increases its proportion over time, while cooperation against all

individuals is the worst performing strategy. The only condition leading to a stable stationary state is

when Ψθ = a and a polymorphic neutrally stable state holds.

In fact when one discriminating strategy is removed from the population, the remaining discrim-

inating strategy is always less fit than one of the non-discriminating strategies. The fittest strategy

is always one of the non-discriminating strategies but none of them are dominant because they only

perform the best when few individuals have adopted them. Once many individuals have adopted a

non-discriminating strategy, this strategy always becomes the worst performing strategy, and the pro-

portion of individuals adopting it decreases over time. Thus asymptotic stability cannot be attained

and the population evolves to a neutrally stable state in which all strategies available in the population

generally survive.

By contrast, when a non-discriminating strategy is removed, a discriminating strategy can be fit

enough to drive the other strategies to extinction. Let us illustrate this when θCC = 0. From (3)

U(CD,βθ)− U(DD,βθ) = (b− c/2)(a−Ψθ)x

U(CD,βθ)− U(DC,βθ) = (b− c/2)(a−Ψθ)(2x− 1)

First consider that Ψθ < a. Strategy DD performs the worst, DC becomes the fittest strategy for

small proportion of individuals of type-I (i.e., for x < 1
2 ) while CD becomes the fittest strategy for
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Figure 2: Dynamics when CC is removed. Parameters used: b − c/2 = 1; from left to right: x =
0.60 ∧ a = 0.25; x = 0.60 ∧ a = 0.90; x = 0.60 ∧ a = 0.55 and x = 0.30 ∧ a = 0.45.

x > 1
2 . Moreover from (5) it can be seen that we can obtain θ̇CD = 0 for x = Ψθ. Also Ψθ = x > 1

2 is

compatible with Ψθ < a for large benefits of cooperation (a > 1
2 ). Note that in this case the frequency

of cooperation is x, which is smaller than a, the frequency of cooperation in the homogeneous game.

Similarly from (6) it can be seen that we can obtain θ̇DC = 0 for Ψθ = 1− x. Then Ψθ = 1− x > 1
2 is

compatible with Ψθ < a for large benefits of cooperation (a > 1
2 ). Note that in this case the frequency

of cooperation is 1−x, again smaller than a. In sum, removing unconditional cooperators leads to the

extinction of unconditional defectors under the conditions stated in theorem 2. Still, independently of

the asymptotically stable state (be it CD or DC), cooperation is less frequent than in the homogeneous

snowdrift game, although cooperation emerges always with a frequency larger than 1
2 . This contrasts

with the results found in [12]. In the latter, also for large benefits of cooperation, although the frequency

of cooperation is 74% for b
c ≥ 10

3 , it decays sharply when the benefit of cooperation decreases below

b
c = 2.5 (frequency equals only 25% for b

c = 2 and equals a residual value of 2% for b
c = 5

3 ).

Second consider that Ψθ > a. Defect against all individuals is the best performing strategy and

from (7) it can be seen that θ̇DD > 0. But there is no state θDD ̸= 0 leading to θ̇DD = 0. Whenever

Ψθ > a, there is no asymptotically stable state and the state space necessarily contains a set of neutrally

stable states θ with Ψθ = a dividing the state space into two regions, one in which Ψθ > a holds and

the other with Ψθ < a. On the other hand, when the state space has no neutrally stable state, Ψθ < a

necessarily holds at any θ. A simulation showing the dynamics for all possible cases when θCC = 0 is

presented in figure 2. In the second left most panel, the state space displays no neutrally stable state

and θCD = 1 is asymptotically stable.

The results of theorems 2 and 3 are further displayed in two diagrams in figure 3 for the case

when CC is removed and the population has the same share of individuals playing the three available

strategies at the initial conditions, i.e., θCD = θDC = θDD = 1/3. For different values of a ranging

from 0.01 to 0.99, we have run simulations with 10,000 interactions (enough for the system to achieve

a stable state for any value of a) and the diagrams show how the stable states vary with different

values of a. In line with theorem 3, there is no asymptotically stable state for a < 1/2 and the region
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of the diagrams in which small benefits of cooperation hold always displays the coexistence of all

three strategies (neutral stability). Asymptotic stability with the survival of a single discriminating

strategy necessarily holds within the region where large benefits of cooperation hold. In the left panel,

x = 0.30 (population composed mainly of type-II individuals) and the survival of DC alone holds for

a > 1− x = 0.70, as stated in theorem 2. In the right panel, x = 0.85 and survival of CD alone holds

for a > x = 0.85. The diagrams also display Ψθ, which is increasing and equals a until asymptotic

stability is achieved.

Figure 3: Stable states for different values of a when CC is removed (color online).

Before closing this section, consider the case when θDD = 0. For small benefits of cooperation,

the removal of unconditional defectors leads to the extinction of unconditional cooperators under

the conditions in theorem 3. Still, the surviving monomorphic population plays cooperation more

frequently than in the homogeneous snowdrift game although with a frequency lower than 1
2 due to

the small benefits of cooperation. Our result for θDD = 0 differs from the typical outcome using

standard replicator dynamics in [14] where unconditional defectors do not exist and both conditional

and unconditional cooperators end up surviving, although selection tends to favor the individuals who

discriminate.

Finally, based on the results so far, individuals who discriminate are more resilient against extinc-

tion. This remains true even if a second strategy is suppressed from the population as we show in the

next section.

4 Extinction of a second strategy

When a second strategy is removed, only discriminating strategies are able to survive alone and take

over the entire population. The following theorem shows that monomorphic states are not stable when

only non-discriminating strategies are available:
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Theorem 4 When θCD = 0 and θDC = 0 the only asymptotically stable state is polymorphic with

(θCC , θDD) = (a, 1− a).

Note that at the asymptotically stable state the frequency of cooperation is Ψθ = a. When only

discriminating strategies are initially possible monomorphic and polymorphic states can be stable. The

conditions of stability are given in the next theorem:

Theorem 5 If θCC = 0 and θDD = 0, (i) a monomorphic state with discriminating strategy is

asymptotically stable for min{a, 1 − a} < x < max{a, 1 − a} (ii) a polymorphic state (θCD, θDC) =

(a+x−1
2x−1 , x−a

2x−1 ) is asymptotically stable for x < min{a, 1− a} or x > max{a, 1− a}.

The last result is when we have one non-discriminating strategy and one discriminating strategy.

In this case either the discriminating strategy takes over the population or an asymptotically stable

(polymorphic) state holds.

Theorem 6 When the set of possible strategies is composed of one discriminating and one non-

discriminating strategy a monomorphic state with the non-discriminating strategy is always unstable.

Either a monomorphic state with the discriminating strategy or a polymorphic state is asymptotically

stable.

The proof of the theorems above is straightforward. The state of the population is represented by

one single equation of the system (4-7). There are always two isolated fixed points (θi = 0; θi = 1)

corresponding to a monomorphic population and, conditional on the values of the parameters, there

may also exist a third isolated fixed point 0 < θi < 1 corresponding to polymorphism. Asymptotic

stability requires ∂θ̇i
∂θi

< 0, which always holds either at the fixed point associated with polymorphism

or at the fixed point associated with a monomorphic population of conditional cooperators. With only

two strategies available, asymptotic stability can hold with polymorphism due to the lower dimension

of the state space (ℜ1 instead of ℜ3 as in section 2 or ℜ2 as in section 3).

For all asymptotically stable points in theorems 4, 5 and 6, the frequency of cooperation equals

(differs from) that of the homogeneous snowdrift game whenever asymptotic stability corresponds

to a polymorphic (monomorphic) population. Differently from theorems 2 and 3, the existence of

asymptotic stability associated with a monomorphic population is not conditional on the size of the

benefit of cooperation.

5 Conclusion

In this paper, we have studied how frequent cooperation emerges in the context of a snowdrift game

played by a heterogeneous population composed of two types of players and incomplete information
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with regard to players’ own type. We have considered the case in which not all four pure strategies are

available in the population. When one pure strategy has been removed two core results are: when a

discriminating strategy is not played by the population, neutral stability persists but, if instead, a non-

discriminating strategy is not played, asymptotic stability can be achieved. When asymptotic stability

holds, it is always for a monomorphic state with a discriminating strategy, implying the extinction of

both unconditional cooperators and defectors. Frequency of cooperation however differs from the one

obtained in the game played by a homogeneous population. For small (large) benefits of cooperation,

cooperation emerges at a frequency lower (greater) than 1
2 , however more (less) often than in the

homogeneous population case.

Appendix

In order to find the stable states, we start by looking for the system fixed points, i.e., the solutions

of the system of equations (4-7). Then the eigenvalues of the Jacobian matrix (evaluated at the fixed

points) are computed. Recall that the condition for asymptotic stability is that the eigenvalues are all

negative. The entries of the Jacobian matrix are for any i ̸= j

∂θ̇i
∂θi

= (b− c/2)

[
(a−Ψθ) (ηi −Ψθ) + θi(2Ψθ − ηi − a)

∂Ψθ

∂θi

]
∂θ̇i
∂θj

= (b− c/2)θi(2Ψθ − ηi − a)
∂Ψθ

∂θj

with ηi =


1 if i = CC
x if i = CD
1− x if i = DC
0 if i = DD

(9)

Theorem 1

Proof. First consider that strategy θCD = 0. The population dynamics is governed by equations (4)

and (6) and the frequency of cooperation (8) can be rewritten as Ψθ = θCC + (1 − x)θDC . A state

can be represented by θ = (θCC , θDC) as θDD = 1− θCC − θDC . There are three isolated fixed points

(1, 0), (0, 1), (0, 0), and all θ such that Ψθ = θCC + (1− x)θDC = a are non-isolated fixed points. We

compute the Jacobian matrix Ω(θ) using (9)

Ω(θ) =

(
∂θ̇CC

∂θCC
(θ) ∂θ̇CC

∂θDC
(θ)

∂θ̇DC

∂θCC
(θ) ∂θ̇DC

∂θDC
(θ)

)
that we evaluate at the isolated fixed points. We obtain

Ω((1, 0)) = (b− c/2)(1− a)

(
1 1− x
0 x

)
Ω((0, 0)) = (b− c/2)a

(
1 0
0 1− x

)
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and

Ω((0, 1)) = (b− c/2) (1− a− x)

(
−x 0
1 1− x

)
Both eigenvalues of the first two matrices are positive. In consequence, state (0, 0) and state (1, 0)

are unstable. The eigenvalues of the third matrix are of opposite signs: state (0, 1) is a saddle point.

Neutral stability is achieved for θ such that Ψθ = a. Indeed the set of neutrally stable states always

divides the state space into two regions with θCC = 1 in one region and θDD = 1 in the other. Therefore

the vector field flows from these two sources towards stationary states θ such that Ψθ = a. When

θDC = 0, the dynamics is similar: we also obtain that neutral stability is achieved for all θ such that

Ψθ = a.

Theorems 2 and 3

Proof. First consider that θCC = 0. The population dynamics is governed by (5) and (6) and the

frequency of cooperation (8) can be rewritten as Ψθ = xθCD +(1−x)θDC . A state can be represented

by θ = (θCD, θDC) as θDD = 1− θCD − θDC . We compute the Jacobian matrix Ω(θ) using (9)

Ω(θ) =

(
∂θ̇CD

∂θCD
(θ) ∂θ̇CD

∂θDC
(θ)

∂θ̇DC

∂θCD
(θ) ∂θ̇DC

∂θDC
(θ)

)

at the isolated fixed points (1, 0), (0, 1), and (0, 0). We obtain

Ω((1, 0)) = (b− c/2)(x− a)

(
x 1− x
0 2x− 1

)
.

That is, when the benefits of cooperation are large (a > 1/2) the eigenvalues are negative if 1/2 < x < a,

i.e., (1, 0) is asymptotically stable for 1/2 < x < a. When the benefits of cooperation are small

(a < 1/2), (1, 0) is unstable or a saddle point. Similarly, we have

Ω((0, 1)) = (b− c/2) (1− a− x)

(
1− 2x 0

x 1− x

)
Thus for large benefits of cooperation (0, 1) is asymptotically stable for 1 − a < x < 1/2, while when

the benefits of cooperation are small (0, 1) is unstable or a saddle point. By contrast in the Jacobian

matrix

Ω((0, 0)) = (b− c/2)a

(
x 0
0 1− x

)
the eigenvalues are both positive and (0, 0) is unstable. Whenever none of the isolated fixed points is

asymptotically stable, all states θ with Ψθ = a are neutrally stable.

Second consider that θDD = 0. A state can be represented by θ = (θCC , θCD) as θDC = 1− θCC −
θCD. The population dynamics is governed by (4) and (5) and the frequency of cooperation (8) can

12



be rewritten as (using θDC = 1− θCC − θCD) Ψθ = 1−x+xθCC +(2x− 1)θCD. The Jacobian matrix

Ω′(θ) using (9) is now

Ω′(θ) =

(
∂θ̇CC

∂θCC
(θ) ∂θ̇CC

∂θCD
(θ)

∂θ̇CD

∂θCC
(θ) ∂θ̇CD

∂θCD
(θ)

)
Evaluated at the isolated fixed points (1, 0), (0, 1) and (0, 0), the Jacobian matrices become

Ω′((1, 0)) = (b− c/2)(1− a)

(
x 2x− 1
0 1− x

)

Ω′((0, 1)) = (b− c/2)(a− x)

(
1− x 0
−x 1− 2x

)
Ω′((0, 0)) = (b− c/2) (a− 1 + x)

(
x 0
0 2x− 1

)
When the benefits of cooperation are small (a < 1/2) we obtain that (1, 0) is unstable, (0, 1) is

asymptotically stable for a < x < 1/2 and (0, 0) is asymptotically stable when 1/2 < x < 1− a. When

the benefits of cooperation are large, (1, 0), (0, 1) and (0, 0) are unstable. All states θ with Ψθ = a are

neutrally stable if there is no asymptotically stable state.
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