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Abstract

This paper models the mean and volatility spillovers of prices
within the integrated Iberian and the interconnected Spanish and
French electricity markets. Using the constant (CCC) and dynamic
conditional correlation (DCC) bivariate models with three different
specifications of the univariate variance processes, we study the extent
to which increasing interconnection and harmonization in regulation
have favoured price convergence. The data consist of daily prices cal-
culated as the arithmetic mean of the hourly prices over a span from
July 1st 2007 until February 29th 2012. The DCC model in which the
variances of the univariate processes are specified with a VARMA(1,1)
fits the data best for the integrated MIBEL whereas a CCC model with
a GARCH(1,1) specification for the univariate variance processes is se-
lected to model the price series in Spain and France. Results show that
there are significant mean and volatility spillovers in the MIBEL, in-
dicating strong interdependence between the two markets, while there
is a weaker evidence of integration between the Spanish and French
markets. We provide new evidence that the EU target of achieving a
single electricity market largely depends on increasing trade between
countries and homogeneous rules of market functioning.
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1 Introduction

The European Union (EU) has the ambitious target of fully integrating national
energy markets by 2014. Market integration seeks to encourage more intense
competition and security of supply. The progressive harmonization of electricity
market rules is at the heart of promoting an effectively competitive internal market
and delivering benefits to electricity customers and opportunities to generators and
electricity traders.

Although the target date is fast approaching, electricity markets in Europe
are not actually harmonized. Some progress has been made since the first steps
were taken with the passing of Directive 96/92/EC, which set common rules for
the construction of the single European electricity market by which country mem-
bers must favour the interconnection and interoperability of systems. However,
this directive was not very successful because the degree of openness and speed
of reforms was very uneven. Moreover border electricity trade did not increase
significantly in the years following the adoption of the directive, thus jeopardizing
the ultimate goal of building a single market and remaining limited to creating
national liberalized electricity markets. Finally, Directive 2003/54/EC established
“common rules for the generation, transmission and distribution of electricity”.
It also defined procedures regarding network operations but set no further tar-
gets on interconnections.1 In 2007, the European Commission published its third
energy package: It identified the lack of electricity market integration as one of
the factors that results in distortions to competition. This mainly results from
insufficient interconnecting infrastructure between national grids, insufficient in-
centives to improve cross border infrastructures, inefficient allocation of existing
capacities, and incompatible market design between transmission system operators
(TSO) and spot market operators (SMO).2

Much work still needs to be done with respect to aligning national market and
network operation rules as well as making cross-border investment in energy in-
frastructure. However, despite this general framework regional market integration
has already been launched: MIBEL, which integrates Spain and Portugal, and
EPEX, which integrates France, Germany, Austria and Switzerland (a non EU
country) are two examples. Our aim here is to analyze price volatility transmis-
sions between bordering countries, with reference on the one hand to the integrated
Iberian electricity market and on the other hand the situation between the inter-
connected Spanish and French electricity markets, for the period July 1st, 2007 to
February 29th, 2012. It is possible that shocks in one country may be transmitted
to distant non-bordering markets, i.e. from France to Portugal, however we would

1See Jamasb and Pollitt (2005) for an early review of the process towards market
integration in the EU countries and the identification of regional markets.

2These conclusions among others related to national market structural rigidities were
published in the Sector Inquiry into the energy sector conducted by the DG COMP in
2007.
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expect this to be a second-order effect and computationally costly.
The peculiarities of power are reflected in the characteristics of the prices.

Once electricity has been produced there is little possibility of storing it. As a
result prices show explicit intra-day patterns that vary with the season. Moreover,
– due to grid constraints – the price can differ between regions and countries. Most
of the relevant literature concentrates on stochastic price models that account for
seasonal-adjusted log-prices. These periodic within-day, week and year patterns
influence prices and estimations must be controlled to circumvent bias in estima-
tion. Furthermore, electricity price volatility has a marked variability in time. It
is not uncommon to find time series of prices with sharp price spikes within the
day, although overall mean reversion is observed. Another feature is that electric-
ity spot prices exhibit long memory behavior. Finally, the fact that markets are
becoming increasingly interconnected implies that there is room to analyze price
shock transmissions between markets.

Several studies take the line of supporting the interdependence hypothesis be-
tween electricity markets, although the econometric methods used are different.
One strand of literature uses vector error correction models, cointegration and
Granger causality methods in the study of the dynamic relationships between
electricity prices from different markets and time periods (see De Vany and Walls,
1999a, Park et al., 2006 and 2008, Ferkingstad et al., 2011, Moutinho et al., 2011
or Bunn and Gianfreda, 2010, among others). Another strand studies and mod-
els spot price volatility using volatility models such as jump diffusion and regime
switching models as proposed by Weron et al. (2004). The starting point is a
stochastic differential equation that includes mean reversion and jumps. Other pa-
pers, following similar econometric methods include Huisman and Mahieu (2003),
Bierbrauer et al. (2004), Haldrup and Nielsen (2006), Higgs and Worthington
(2008) and Lindström and Regland (2012), among others.

There are other studies at country level that use various models of the GARCH
family to capture dynamics and volatility in markets with high frequency data.
These models are widely used for modeling the volatility of financial assets be-
cause they are capable of capturing the main empirical features observed in the
volatility, measured as the conditional variance3. However, it is also accepted that
financial assets and electricity prices share empirical features which make it ap-
propriate to use GARCH models for electricity price series. Some examples can
be found in Sadorski (2012), who finds volatility spillovers between oil prices and
the stock prices of clean energy companies and technology companies. Nomikos
and Andriosopoulos (2012) fit GARCH models to spot prices in the eight energy
markets that trade futures contracts on NYMEX, though they do not analyze
for spillovers between markets. Malo and Kanto (2006) fit several multivariate
GARCH (MGARCH) models to daily NordPool closing prices for spot and futures
contracts between 1996 and 2002. Worthington et al. (2005) perform a study

3See for example Byström (2003), Syllignakis and Kouretas (2011), Weber and Zhang
(2012), Kim et al. (2005) and Nomikos and Andriosopoulos (2012).
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for the NEM Australian market to assess whether the target of a nationally inte-
grated and efficient electricity market is being achieved, using data from 1998 to
2001. The market accounts for five electricity spot markets. Despite the existence
of NEM, regional electricity spot markets are not fully integrated. Nevertheless,
shocks or innovations in particular markets still exert an influence on price volatil-
ity. Later, Higgs (2009) models price and volatility in the same market for the
extended period 1999 to 2007, involving four integrated sub-markets. She finds
strong interdependence between markets which are well-connected and weaker ef-
fects when they are not. Denny et al. (2010), using a stochastic model, show that
increased interconnection should reduce average prices and the variability of those
prices in a country with a large installed wind power capacity. However, increased
interconnection does not necessarily reduce excess wind power generation because
priority is given in the daily scheduling decisions to renewable generation.

The methodology used in this paper is based on MGARCH models, which
allow the study of volatility transmission between different markets and can help to
understand better the differences between interconnected and integrated markets
through the analysis of the presence and degree of interdependence between them.
Bivariate constant and dynamic conditional correlation models in which seasonal
effects are taken into account are estimated and compared to select the best ones
for modeling electricity prices in the MIBEL and Spanish and French electricity
markets.

The paper is structured as follows. Section 2 explains the interconnection
structure and the trading between Spain and France and Spain and Portugal.
Section 3 presents the data and provides some descriptive statistics. In Section
4 the methodology is described and in Section 5 we summarize the results. The
paper concludes with some implications of the study.

2 Markets and Interconnections

Spain began liberalization in 1998 when the market operator OMEL was launched.
Portugal joined Spain in July 2007 to create the integrated Iberian electricity
market operated by OMIE. Until then, based on European targets, each country
developed its own transmission network and their systems were interconnected
at a few strategic points along the border. Market rules say that generators sell
electricity to meet demand across the interconnected power systems, which are
constrained by the available capacity. Therefore, there are two possibilities: if there
is no congestion in the grid there is a single price for both countries. However, if
there is congestion then there is market splitting and the system operator schedules
cost efficient plants to cover the demand.

France launched the Powernext Day-ahead market in November 2001. In 2008
there was a transfer of Powernext Day-Ahead, Powernext Intraday, market cou-
pling staff and activities into the EPEX Spot SE. In Spain and France transmission
is governed by capacity allocation rules. Auctions are organized jointly in both
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directions by the TSOs. However, separate auctions are implemented in each di-
rection.

The achievement of a single market depends largely on the existence of well-
developed interconnections that allow for spillovers between markets. Table 1
summarizes yearly basic market structure characteristics for each country and
year; generation capacity (MW) and capacity of interconnections (MW), within
MIBEL and between Spain and France. We take Spain as the reference country,
thus M stands for the maximum import capacity of Spain from either France or
Portugal and X stands for the maximum export capacity from Spain to either
France or Portugal. All the values reported bellow are from the annual reports of
the TSOs.

Table 1: Market structures

Interconnexionsa

Installed capacity SP-FR SP-PO
FR SP PO M X M X

2007 115,938 86,323 14,123 1,400 300 1,700 1,600
2008 117,628 90,915 14,899 1,400 500 1,700 1,600
2009 120,434 94,561 16,625 1,400 600 1,700 1,600
2010 123,783 99,043 17,912 1,400 700 1,700 1,900
2011 100,168 18,914 1,400 1,000 2,400 2,400
a Maximum values taking into account the unavailability of the network.

FR-France, SP-Spain and PO-Portugal. M-imports and X-exports.

Source: REE in Spain, RTE in France, and REN in Portugal.

The target set in 2005 of an import capacity of at least 10 percent of installed
generation capacity for each country had not been reached in Spain or France in
2011. By then, total import capacity of Spain was at most 4400 MW, which is
4.4 percent of the total installed capacity. Thus, Spain is far from reaching the
target set in 2005. In the case of Portugal, the only interconnection is with Spain
and the share is at most 12 percent, well above the limit. The maximum import
capacity between Spain and France has remained stable whereas export capacity
has significantly increased.

We illustrate the extent to which there is correlation between prices and elec-
tricity flows. Figures 1 and 2 plot net selling positions and differences in prices in
both interfaces. Since the reference country is Spain, positive (negative) values of
the electricity flows indicate that Spain is a net importer (exporter) of electricity,
and a positive (negative) price difference indicates higher prices in Spain than in
France or Portugal.
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Figure 1: Monthly net trade and price differences. Spain-Portugal
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Figure 2: Monthly net trade and price differences. Spain-France

Net selling position Price difference

N
et

 s
el

lin
g

 p
o

si
ti

o
n P

rice d
ifferen

ce

2007 2008 2009 2010 2011
-800

-600

-400

-200

0

200

400

-50

-40

-30

-20

-10

0

10

20

Note that until November 2009 Spain was a net importer of electricity from
France and net exporter of electricity to Portugal. After that period there was a
sharp increase in the use of generation from renewable sources in Spain. Thereafter,
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the net selling position with Portugal has shrunk and it has turned negative.
Variability has also sharply increased in both interfaces.

The degree of utilization observed at the interface between the two areas of
MIBEL has historically been high, and the entry into force of the market splitting
mechanism has allowed almost full occupation. Even when the level of occupation
of the lines connecting the two countries is satisfactory, this is a fact to be rel-
ativized in terms of total value capacity available for commercial purposes. The
proportion of hours with congestion is 34.5 percent, of which 32 percent result in
a lower price on the Spanish market than on the Portuguese one. This highlights
the fact that despite this being one of the European interconnections in which the
share of total consumption has increased most rapidly, congestion is still signifi-
cant. The expectation is to reach an available capacity in 2014 of close to 3000
MW either way, which should enable the degree of structural congestion to be
reduced significantly.

The correlation between the net selling position of Spain with respect to each
trading partner and the differences in the system marginal prices is 0.7348 with
respect to France and 0.7237 with respect to Portugal. However, although corre-
lation is close to constant for the whole sample period between France and Spain,
for Portugal and Spain it is more volatile. As the price difference between Spain
and either trading partner increases there is an increase in the net selling position.
Thus, the existence of market integration or market interconnection does not sig-
nificantly affect correlation, which is quite high in both cases. Hence, the study of
the transmission of volatilities between interconnected markets is justified.

3 Data and Descriptive Statistics

The data used consist of daily electricity prices (measured in e/MWh) from Spain,
Portugal and France obtained as the arithmetic mean of the hourly prices for the
period from 1-7-2007, the date of the creation of the MIBEL market, to 29-2-2012.4

Therefore, the sample contains 1705 daily observations for each country. Natural
logarithms of the series are taken, with PS , PP and PF being the final price series
for Spain, Portugal and France, respectively.

This section describes the main characteristics of the time series distribution
and analyzes the stationarity of the series. Figures 3 and 4 show the log of daily
electricity prices for each pair of countries, Spain-Portugal and Spain-France, re-
spectively.

Figure 3 shows that the paths of prices in Spain and Portugal are very similar
throughout, especially in the second half, when the volatility of the series is also
higher. The sample correlation coefficient takes the value 0.97, indicating a very
strong positive linear relation between the series. This is because when there is no
congestion in the markets the price in both countries is the same.

4Results using weighted average prices do not differ from those using simple averages.
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Figure 3: Logarithm of electricity prices. Spain-Portugal
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Figure 4: Logarithm of electricity prices. Spain-France
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A comparison of the path of the price series in Spain and France, Figure 4,
shows that the French series is much more volatile than the Spanish one and differs
more than those of Spain and Portugal because the markets are not integrated and
hence the prices are never the same. As expected, the sample correlation coefficient
is lower: 0.47.

In order to analyze the behavior of the sample correlation over time, a time-
varying correlation coefficient is computed via a moving window of 120 observations
forming a time series of sample correlation coefficients between the two pairs of
electricity price series, shown in Figures 5 and 6. There are some differences in
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the behavior of the correlation series depending on the pair of countries consid-
ered. Specifically, Figure 5 shows that the correlation between prices in Spain and
Portugal does not remain constant throughout the sample period: it is higher and
more stable in the second half. This is because increasing market interconnection
has resulted in a greater number of hours in which the price is the same. However,
the correlation coefficients between prices in Spain and France are lower, or even
negative, and remain more stable over the sample period. This can be explained
by the fact that France is more oriented towards integration through EPEX and
Spanish interconnection has not increased significantly.

In general, volatility clusters can be observed in all price series, i.e. periods
with high (low) volatility are usually followed by periods with high (low) volatility.

Figure 5: Time-varying sample correlation coefficient. Spain-Portugal
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Figure 6: Time-varying sample correlation coefficient. Spain-France
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Table 2 reports the main statistics and the results of the ADF unit root tests
for the price series and the price series in logarithms. The highest mean price
corresponds to the French price series with a value of 52.46 e/MWh, followed by
the Portuguese price series, 49.38 e/MWh, and the Spanish one, 46.74 e/MWh.
Moreover, prices are more volatile in France, which is reflected in a higher stan-
dard deviation. In fact, French prices fluctuate between 11.26 and 612.77 e/MWh,
while the minimum price value for both Spanish and Portuguese price series is 2.47
e/MWh and the maximum price is around 90 e/MWh. It should be noted that
market rules establish a maximum price of 180.3 e/MWh for MIBEL and 3000
e/MWh for EPEX. There is also a minimum price of 0 e/MWh for MIBEL and
-3000 e/MWh for EPEX, which means that negative prices can emerge in equi-
librium for some hours. The price series distribution of probability is positively
skewed in all three countries at the 10% significance level but leptokurtic in France
and platykurtic in Portugal. According to the Jarque-Bera test, there is evidence
of a normal distribution of probability in the Spanish series. Regarding the sta-
tionarity of the series, the results of the ADF unit root tests when no trend is
included in the regressions show that the null hypothesis of unit root is rejected
for the French price series at the 1% significance level and also for the Spanish
series at the 10% level, while there is evidence of a unit root in the Portuguese
price series5. Among others, De Vany and Walls (1999a, 1999b), Ferkingstad et al.
(2011), Moutinho et al. (2011) and Park et al. (2008) find unit roots in electricity

5The ADF tests were also carried out including a trend but results do not change
significantly. The number of lags in the ADF regressions was selected according to AIC
criterion.
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prices or logged prices, while Worthington et al. (2005), Thomas et al. (2011) and
Higgs (2009) find stationarity.

When prices are measured in logs, mean, standard deviation, maximum and
minimum values do not change qualitatively. However, both Spanish and Por-
tuguese series have a negatively skewed leptokurtic distribution indicating that
prices higher than the mean are more probable than those lower than the mean
and the tails of the distributions are heavier than those of the normal distribution.
In the case of France, the distribution of prices presents excess kurtosis but is not
skewed. The distributions of the prices are not normal in the three markets: using
the Jarque-Bera test the null hypothesis of normal distribution is rejected for all
the series. Finally, all the price series in logarithms are stationary, which is why
logarithms are taken in the final price series for estimation purposes.

Table 2: Descriptive statistics and unit root tests of prices and natural log-
arithms of prices

Mean St. Dev. Max. Min. Skew. Kurt. (Ex.) J-B ADF
SP 46.74 13.27 82.13 2.47 0.10c -0.01 2.89 -2.60c

PO 49.38 14.95 93.35 2.47 0.22a -0.21c 16.46a -2.32
FR 52.46 25.31 612.77 11.26 8.62a 161.29a 1869334.42a -7.15a

SP (Log) 3.80 0.34 4.41 0.90 -2.18a 12.18a 11886.5a -4.06a

PO (Log) 3.85 0.35 4.54 0.90 -1.81a 9.44a 7261.8a -3.47a

FR (Log) 3.89 0.37 6.42 2.42 0.07 2.54a 459.3a -6.02a

a and c indicate rejection of the null hypothesis at 1% and 10% significance levels,
respectively. St. Dev. is the standard deviation, Max. the maximum value, Min. the
minimum value, Skew. the skewness coefficient, Kurt. (Ex.) the Kurtosis coefficient (in
excess), J-B the Jarque-Bera test for non-normality and ADF the Augmented Dickey
Fuller test for unit roots. FR-France, SP-Spain and PO-Portugal.

4 Methodology

Various bivariate GARCH models are considered for the MIBEL market on the
one hand, and the Spanish and French electricity markets on the other. The mean
equation takes the same form in all the models considered:

(
PS
t

P I
t

)
=

(
αS
0

αI
0

)
+

(
αS
1S αS

1I

αI
1S αI

1I

)
·
(

PS
t−1

P I
t−1

)
+ . . .+

(
αS
JS αS

JI

αI
JS αI

JI

)
·
(

PS
t−J

P I
t−J

)
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+

(
δS0 0
0 δI0

)
·
(

WS
t

W I
t

)
+

(
δS1 δS2 . . . δS11
δI1 δI2 . . . δI11

)
·


JANt

FEBt

MARt
...

NOVt

+

(
ϵSt
ϵIt

)
, (1)

where t = 1, . . . , 1705, S stands for Spain and I = P , F for Portugal and France.
(WS

t W I
t )

′ is a vector of dummy variables for weekends and holidays in Spain
and Portugal or France, respectively, and (JANt FEBt . . . NOVt)

′ is a vector of
monthly dummy variables. The optimal number of lags, J , is such that errors are
white noise and the figure differs depending on the pair of countries considered.
It should be noted that the main difference with respect to financial series is that
electricity price series present an important serial correlation so that the number

of lags needed to get uncorrelated errors is large. Finally, ϵt = (ϵSt ϵIt )
′ = µtH

1/2
t

is a bivariate vector, where µt is an i.i.d. normally distributed process with mean
zero and identity covariance matrix and Ht is the conditional covariance matrix of
the price vector (PS

t P I
t )

′. These equations show that the electricity price series
of each country depends on its own past, the past prices in the other country,
weekends and holidays in the own country and the month of the year.

The model is completed with the specification of the conditional covariance
matrix, Ht, which can be written as:

Ht =

(
σSS,t σSI,t
σIS,t σII,t

)
= DtRtDt, (2)

where I = P , F . Rt is the conditional correlation matrix of ϵt and Dt is a diagonal
matrix containing the conditional standard deviations of the elements of ϵt, that
is, Dt = diag(

√
σSS,t,

√
σII,t). The processes of the standard deviations can be

defined as any univariate GARCH model.
To start with, the bivariate constant conditional correlation (CCC) model by

Bollerslev (1990) is considered. This model is based on the assumption that the
correlation coefficient between the two price series is time-invariant, ρSI,t = ρSI ,
I = P , F , and therefore Rt = R. However, the main drawback of the CCC model
is that the assumption of constant conditional correlation may not be true. This
hypothesis is tested using the LM statistic proposed by Tse (2000). The dynamic
conditional correlation (DCC) model by Engle (2002), in which the conditional
correlation is time varying, is also considered. In this model the estimated condi-
tional correlation is continuously computed with the time-varying volatility, which
could be closer to reality. To estimate the conditional covariance matrix in (2) the
conditional correlation matrix is specified as follows:

Rt = diag(q
−1/2
SS,t , q

−1/2
II,t )Qtdiag(q

−1/2
SS,t , q

−1/2
II,t ), I = P, F
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where the bivariate matrix Qt = (qSI,t) is given by:

Qt = (1− θ1 − θ2)Q̄+ θ1µt−1µ
′
t−1 + θ2Qt−1, (3)

with Q̄ being the unconditional covariance matrix of the standardized errors µit =
ϵit/

√
σii,t.

Estimation of the models requires the specification of the conditional variances
of the univariate processes. Three alternatives, from the most general to the most
restricted, are considered:

• VARMA(1,1), proposed by Ling and McAleer (2003). The variance terms
take the form:

σii,t = wi +
∑
j

aijσjj,t−1 +
∑
j

bijϵ
2
j,t−1, (4)

where i, j = S, P or i, j = S, F , that is, Spain and France or Spain and
Portugal, depending on the pair of countries analyzed. This specification is
the most general since it captures both own and cross volatility spillovers
through the past volatility and the past square error term.

• The following alternative modifies the previous one by not including the
cross lagged variance, that is:

σii,t = wi + aiiσii,t−1 +
∑
j

bijϵ
2
j,t−1, (5)

where i, j = S, P or i, j = S, F . In this specification the cross volatility
spillovers are only captured by the past square error term.

• A standard GARCH(1,1):

σii,t = wi + aiiσii,t−1 + biiϵ
2
i,t−1, (6)

where i = S, P, F . This specification is the most restricted since it does not
consider possible volatility transmissions between different markets. The
volatility of a market only depends on the own past volatility and square
error term.

The CCC and DCC models with the three different specifications of the vari-
ances of the univariate price data series are estimated by maximum likelihood
using the BFGS algorithm of optimization.
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5 Results

Regarding the estimation results for the MIBEL series, the constant conditional
correlation hypothesis assumed in the CCC model is rejected at the 1% significance
level using the LM statistic by Tse (2000). This result suggests that models as-
suming time-varying conditional correlation are more appropriate for the Spanish
and Portuguese price series.6 Table 3 reports the estimation results of the DCC
model with the alternative specifications of the univariate variance processes for
the MIBEL series. It should be noted that 9 lags are needed in all cases in order to
obtain uncorrelated error terms, which means that there is major serial correlation
in both series. αS

jS and αS
jP , j = 1, . . . , 9 coefficients measure the mean spillover

from Spanish and Portuguese lagged electricity prices, respectively, to the Span-
ish price. Analogously, αP

jS and αP
jP , j = 1, . . . , 9 coefficients measure the mean

spillover from Spanish and Portuguese lagged electricity prices, respectively, to the
Portuguese price. In all cases mean spillovers are mostly significant and positive,
which means that increases in lagged electricity prices in one country cause an
increase in electricity prices in both countries at time t. For example, according
to the estimation results in the DCC model with GARCH univariate variances, a
1% increase in the Spanish price causes an increase of 0.57% in the Spanish price
the next day and also an increase of 0.12% in the Portuguese price the next day.
However, some significant coefficients are negative, specifically for some even lags,
indicating that the relation is inverse. As expected, the magnitude of the mean
spillovers is, in general, larger for the price lags in the own country and the most
important influence comes from the previous day’s lag.

The coefficients of the dummy variables for weekends and holidays, δS0 and δP0 ,
are significant and negative. This is the result of significant reduction of demand for
electricity coming from industrial users on those dates. Monthly dummy variables
were included as regressors in the mean equations. However, those that were not
significant at the 10% level, either individually or jointly, have been removed. Some
monthly effects are significant but results are different depending on the dependent
variable in the mean equation, PS

t or PP
t , and the specification considered. All the

models estimate that prices in March are lower than in any other month in Spain.
However, for Portugal there is no clear pattern and results differ depending on the
model.

Regarding the estimation results of the variance equation, in the DCC model
with a VARMA process for the univariate variances, aSP and aPS coefficients,
which measure the GARCH spillovers from the Portuguese market to Spanish
volatility and vice versa, respectively, are not significant at the 5% level. This
means that there are no GARCH volatility spillovers between Spanish and Por-
tuguese prices: the only GARCH volatility shocks that affect the price in a market

6Estimation results of the CCC model do not change significantly across the three
specifications for the univariate variance processes, equations (4), (5) and (6), and are
available from the authors upon request.
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Table 3: Estimated coefficients. Spain-Portugal

Coeff. DCC-A DCC-B DCC-C Coeff DCC-A DCC-B DCC-C
αS
0 0.024 0.021 0.030 αP

0 0.039b 0.003 0.003
αS
1S 0.577a 0.570a 0.568a αP

1S 0.110a 0.120a 0.124a

αS
2S 0.048a 0.048b 0.041a αP

2S -0.024a -0.035 -0.041a

αS
3S 0.128a 0.139a 0.083a αP

3S 0.055a 0.067a 0.022a

αS
4S -0.069a -0.076a -0.003 αP

4S -0.091a -0.108a -0.035a

αS
5S 0.114a 0.157a 0.080a αP

5S 0.069a 0.099a 0.039a

αS
6S 0.043a 0.022 0.078a αP

6S -0.070a -0.087a -0.043a

αS
7S 0.216a 0.200a 0.178a αP

7S 0.010a 0.092a 0.065a

αS
8S -0.159a -0.143a -0.122a αP

8S -0.103a -0.102a -0.082a

αS
9S 0.068a 0.067a 0.070a αP

9S 0.003 0.011 0.001
αS
1P 0.074a 0.060b 0.044a αP

1P 0.463a 0.451a 0.442a

αS
2P -0.056b -0.061a -0.027a αP

2P 0.065a 0.058b 0.081a

αS
3P -0.020 -0.024 0.013a αP

3P 0.032a 0.031b 0.060a

αS
4P 0.064a 0.081a 0.028a αP

4P 0.106a 0.138a 0.086a

αS
5P -0.045a -0.065a -0.015b αP

5P 0.008 -0.007 0.021a

αS
6P -0.006 -0.012 -0.028a αP

6P 0.137a 0.126a 0.123a

αS
7P -0.017a -0.003 0.014a αP

7P 0.089a 0.103a 0.124a

αS
8P 0.003 0.0002 -0.035a αP

8P -0.034 -0.037b -0.071a

αS
9P 0.035a 0.039b 0.029a αP

9P 0.080a 0.084a 0.087a

δS0 -0.035a -0.036a -0.037a δP0 -0.039a -0.039a -0.040a

δS1 0.012 0.013b 0.014b δP1 0.009 0.011c 0.012c

δS3 -0.031a -0.022a -0.024a δP3 -0.014b

δS5 0.010 δP5 0.011b 0.004
δP6 0.005b 0.005a

δS10 0.032a 0.040a δP10 0.020a 0.011b

wS 0.0003a 0.0003a 0.0003a

wP 0.0002a 0.0002a 0.0002a

aSS 0.724a 0.670a 0.672a

aSP -0.066c

aPS 0.003
aPP 0.699a 0.703a 0.709a

bSS 0.254a 0.380a 0.527a

bSP 0.352a 0.208a

bPS 0.185a 0.157a

bPP 0.256a 0.284a 0.406a

θ1 0.118a 0.104a 0.093a

θ2 0.881a 0.895a 0.906a

Ln L 4954.73 4946.72 4918.85
AIC -9795.46 -9779.44 -9727.70
a, b and c denote significance at the 1%, 5% and 10% levels, respectively.
DCC-A, DCC-B and DCC-C correspond to the DCC model with conditional
variances as in equations (4), (5) and (6), respectively.
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are those that occur in that same market. However, ARCH effects between the
markets are significant and positive, with the effect being larger from Portugal to
Spain (bSP = 0.35) than from Spain to Portugal (bPS = 0.19).

Taking into account that the GARCH spillovers between markets are not sig-
nificant at the 5% level, it is natural to estimate the DCC model with the specifi-
cation (5) in which these terms are removed. The results of this estimation show
significant positive coefficients. The own ARCH effects are greater than the ef-
fects caused in the other market and again ARCH spillovers from the Portuguese
market to Spanish volatility are larger than those from the Spanish market to
Portuguese volatility. The sum of the estimated coefficients for the conditional
correlation equation, θ1 + θ2, is less than one for all DCC models and, therefore,
these correlations are mean-reverting.

When the univariate variance processes are specified with a GARCH(1,1), all
the coefficients are positive and significant. The estimated coefficients aii and bii
for i = S, P , which represent the own GARCH and ARCH spillovers, respectively,
show that the GARCH effects (aSS = 0.67 and aPP = 0.71) are greater than the
ARCH effects (bSS = 0.53 and bPP = 0.41) in both countries. The sum of the
estimated coefficients aii and bii for i = S, P is greater than one for both the
Spanish and Portuguese electricity price markets, meaning that the processes are
not stationary. Higgs (2009) finds similar results for one of the four Australian
electricity markets considered in her study.

Table 4 shows that, according to the results of the multivariate version of the
Ljung-Box test statistic by Hosking (1980), both the standardized residuals and
the squared standardized residuals of the DCC estimated model under GARCH
and VARMA specifications of the univariate variances are found not to be au-
tocorrelated at the 1% level, whereas standardized residuals in the model with
specification (5) are autocorrelated. Moreover, on the basis of the log-likelihood
and the AIC criterion (last two lines in Table 3), the DCC model with the speci-
fication of the variances of the univariate processes as a VARMA, equation (4), is
the best for representing the behavior of the integrated Spanish and Portuguese
electricity prices.
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Table 4: Diagnostic tests for standardized residuals.

Spain-Portugal

DDC-A DCC-B DCC-C

Q(8) 48.97 57.29 38.98
p-value 0.03 0.004 0.18
Q(8) sq. 16.58 13.70 14.19
p-value 0.99 0.99 0.99

Q(8) is the value of the multivariate version of the

Ljung-Box statistic of order 8 for the standardized

residuals and Q(8) sq. is for the squared

standardized residuals.

DCC-A, DCC-B and DCC-C correspond to the DCC

model with conditional variances as in equations

(4), (5) and (6), respectively.

Figure 7 shows the estimated volatility (standard error) for each Spanish and
Portuguese price series and time-varying correlations for the DCC model with the
VARMA specification for the univariate variances, respectively. The volatility path
captures the characteristics of the price series observed in Figure 3, for example,
the high volatility in the last part of the sample. The estimated correlation mean
is 0.8, unevenly distributed and increasing through the sample period, as observed
in Figure 5, with the minimum being 0.015 and the maximum 0.997. This result
may reflect a growing integration between the Spanish and Portuguese electricity
price markets.
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Figure 7: Estimated volatility and correlations. DCC-B. Spain-Portugal
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The estimation results are very different when the Spanish and French price
series are considered. Table 5 reports the estimation results of the CCC and DCC
models when a GARCH(1,1) is specified for the univariate variance processes.7 To
start with, the constant conditional correlation hypothesis is not rejected using
the Tse (2000) test, with the statistic value being 0.54. This result is expected
from Figure 6.8 The estimated correlation coefficient between price series is 0.12,
much smaller than the corresponding sample coefficients. The DCC model, which
assumes time-varying correlation, is also estimated in order to compare the results
and to detect possible dynamics in correlations in response to innovations that are

7Specifications (4) and (5) were also considered but convergence was not reached. An
extended sample period of the French and Spanish series from January 2002 was also
considered in order to analyze the robustness of the estimation results and, although
convergence is reached considering specifications (4) and (5), the standardized residuals
are correlated.

8Although the selection of the window length for computing the time series of sample
correlation coefficients is arbitrary, it can give an idea about the path of the correlation.
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not captured in the CCC model. The number of lags of price series needed to get
uncorrelated standardized residuals is 15, which reflects that Spanish and French
prices have a larger dependence on past prices than the Spanish and Portuguese
series. In both estimated models own mean spillovers are positive and significant
for the first, seventh and fourteenth lags. This reveals that price formation not only
depends on the information on the price contained in the previous period but that
there is also a strong week effect. Prices at weekends and holidays are significantly
lower than the rest of the days, with the figure being higher for the French prices.
There are some monthly effects although they differ from one country to the other,
reflecting different patterns of consumption. For example, there is evidence of
higher prices in January, May and September and lower prices in March in the
Spanish market. By contrast, prices are estimated to be lower in February and
more significantly in July in the French market.

The estimated mean cross spillovers from Spain to France are, in general,
larger than those from France to Spain. The one-lagged mean spillover from Spain
to France is positive and significant while the one from France to Spain is not.
Overall, it can be observed that the CCC model estimates weak links in the mean
price spillovers from France to Spain.

All the coefficients of the variance equation are significant and positive and the
magnitudes are very similar in the two models. Both consider that price volatility
in a country only depends on the past volatility and innovations in the own market
and both ARCH and GARCH effects are larger in the Spanish market than in the
French one. Although using the Hosking (1980) test the standardized residuals and
their squares in both models are not autocorrelated at the 1% level (see Table 6),
according to the log-likelihood and AIC criterion the price series in the electricity
markets of Spain and France is better modelled by a CCC model, in which the
conditional correlation is assumed to be constant throughout the sample period.

Figure 8 shows the estimated volatility (standard error) for each Spanish and
French price series for the CCC model with the GARCH specification for the
univariate variances. In both cases, the volatility clusters observed in Figure 4 are
captured.
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Table 5: Estimated coefficients. Spain-France

Coeff. CCC-C DCC-C Coeff. CCC-C DCC-C

αS
0 0.063a 0.062a αF

0 0.194a 0.200a

αS
1S 0.613a 0.608a αF

1S 0.052a 0.048a

αS
2S 0.022 0.037 αF

2S -0.053a -0.048a

αS
3S 0.069a 0.051a αF

3S 0.062a 0.058a

αS
4S -0.027 -0.016 αF

4S -0.083a -0.090a

αS
5S 0.118a 0.109a αF

5S 0.049a 0.054a

αS
6S -0.014 0.0002 αF

6S -0.031 -0.035a

αS
7S 0.116a 0.111a αF

7S 0.006 0.006
αS
8S -0.058a -0.064a αF

8S -0.073a -0.074a

αS
9S 0.048b 0.054a αF

9S 0.081a 0.082a

αS
10S 0.076a 0.081a αF

10S -0.025 -0.018
αS
11S 0.013 0.009 αF

11S 0.020 0.021c

αS
12S 0.008 0.009b αF

12S 0.015 0.017c

αS
13S -0.052a -0.051a αF

13S -0.037b -0.040a

αS
14S 0.077a 0.075a αF

14S 0.054a 0.063a

αS
15S -0.058a -0.060a αF

15S -0.012 -0.021

αS
1F -0.005 -0.005 αF

1F 0.644a 0.646a

αS
2F 0.012 0.010a αF

2F 0.020 0.014
αS
3F 0.012 0.013a αF

3F 0.104a 0.103a

αS
4F 0.013 0.012a αF

4F 0.055a 0.055a

αS
5F 0.011 0.012a αF

5F 0.079a 0.080a

αS
6F -0.022a -0.021a αF

6F -0.009 -0.004
αS
7F 0.036a 0.036a αF

7F 0.259a 0.252a

αS
8F -0.024b -0.025a αF

8F -0.261a -0.256a

αS
9F 0.006 0.006b αF

9F -0.032c -0.031c

αS
10F -0.002 -0.001 αF

10F -0.002 -0.003
αS
11F 0.001 0.004 αF

11F 0.031c 0.033b

αS
12F 0.029a 0.027a αF

12F 0.002 -0.0001
αS
13F -0.022b -0.026a αF

13F -0.020 -0.024c

αS
14F 0.004 0.006c αF

14F 0.195a 0.196a

αS
15F -0.014c -0.013a αF

15F -0.126a -0.126a

δS0 -0.048a -0.047a δF0 -0.147a -0.143a

δS1 0.023a 0.024a

δF2 -0.026b -0.025b

δS3 -0.021a -0.021a

δS5 0.013b 0.014b δF5 -0.027 -0.029c

δF7 -0.067a -0.067a

δS9 0.012b 0.011b

wS 0.0003a 0.0003a

wF 0.004a 0.004a

aSS 0.652a 0.650a

aFF 0.535a 0.526a

bSS 0.492a 0.483a

bFF 0.407a 0.425a

θ1 0.016a

θ2 0.983a

Ln L 2628.90 2623.50
AIC -5101.80 -5089.00
a, b and c denote significance at the 1%, 5% and 10% levels,
respectively.
CCC-C and DCC-C correspond to the CCC and DCC models with
conditional variances as in equation (6).
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Table 6: Diagnostic tests for standardized residuals.

Spain-France

CCC-C DCC-C

Q(8) 48.83 48.13
p-value 0.03 0.03
Q(8) sq. 13.80 13.84
p-value 0.99 0.99

Q(8) is the value of the multivariate version

of the Ljung-Box statistic of order 8 for the

standardized residuals and Q(8) sq. is for the

squared standardized residuals.

CCC-C and DCC-C correspond to the CCC

and DCC models with conditional variances

as in equation (6).

Figure 8: Estimated volatility. CCC-C. Spain-France

(a) Spanish electricity price volatility
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6 Conclusions

The creation of a fully integrated electricity market in Europe largely depends
on harmonization of market rules across countries. Some initial steps have been
taken by launching regional initiatives such as MIBEL between Spain and Portugal,
and EPEX between France, Germany, Austria and Switzerland. However, lack of
sufficient interconnections prevents the ultimate goal of effective price integration
from being reached.

Using Spain as the reference country, this paper analyzes the mean price and
volatility spillovers within the integrated MIBEL market and between the inter-
connected Spanish and French markets for the period July 2007 to February 2012.
Bivariate CCC and DCC models under three different specifications for the uni-
variate variance processes are estimated and compared. Estimation results show
that although weekly and some monthly effects are significant in all markets, there
are major differences in the interrelationships between the integrated and intercon-
nected markets analyzed. The DCC model with a VARMA(1,1) for the univariate
variance processes is selected to model prices in the MIBEL. In this case there are
significant cross mean and volatility spillovers and the estimated time-varying cor-
relation increases throughout the sample period, and has a mean of 0.8. This may
imply a process of market integration in terms of price convergence and spillovers
which has grown up in recent years and is expected to continue in the future
with new interconnections. Therefore, the targets of the Directive 2003/54/CE
are being achieved.

By contrast, the models estimated for prices in Spain and France do not enable
a similar conclusion to be reached. In fact, the CCC model with a GARCH(1,1)
specification for the univariate variance processes fits the joint dynamics of the
Spanish and French prices better. The model assumes a fixed correlation for the
whole period and its estimated value is 0.12, much lower than the mean estimated
correlation for the MIBEL. While the model does not capture the cross volatility
spillover effects, the mean cross spillover effects are asymmetric because they are
weaker from France to Spain. Although total consumption of electricity in France
is greater than in Spain, the value of electricity traded on the Spanish day-ahead
market is much higher than that traded in France. This fact helps explain the
magnitude of the spillovers. Thus, the evidence of integration between Spanish
and French markets is much weaker than that observed in the MIBEL.
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