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Communities in complex networks

A. Moujahid

Abstract

The study of complex networks has attracted the attention of the

scientific community for many obvious reasons. A vast number of sys-

tems, from the brain to ecosystems, power grid, and the Internet, can be

represented as large complex networks, i.e, assemblies of many interact-

ing components with nontrivial topological properties. The link between

these components can describe a global behaviour such as the Internet

traffic, electricity supply service, market trend, etc. One of the most rel-

evant topological feature of graphs representing these complex systems is

community structure which aims to identify the modules and, possibly,

their hierarchical organization, by only using the information encoded in

the graph topology. Deciphering network community structure is not only

important in order to characterize the graph topologically, but gives some

information both on the formation of the network and on its functionality.

1 Introduction

The science of social networks is one of the pillars upon which the whole field
of network science has been built. Since the early works of [1], social networks
have been the object of constant analysis and study. Social networks represent
the individuals of the population as nodes and the interaction pattern among
individuals as links between these nodes. The links therefore may refer to very
different attributes such as friendship among classmates, sexual relations among
adults, or just the belonging to common institutions or work teams (collabo-
rative interactions). The importance of these networks goes beyond social sci-
ences and affects our understanding of a variety of processes ranging from the
spreading of sexually transmitted diseases to the emergence of consensus and
knowledge diffusion in different kinds of organizations and social structures.

The study of the underlying laws governing the dynamics and evolution of
complex systems and the characterization of their network representations re-
veals that large-scale networks are generally characterized by complex topologies
and heterogeneous structures. The connectivity structure of these networks of-
ten features an organization in communities (clusters, modules), revealing the
existence of specialized groups of vertices that share common properties and/or
play similar roles within the network. Community structure appears in many
networked systems, including a variety of biological, social, technological, and
information networks [2]. Communities may be groups of related individuals
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in social networks, sets of Web pages dealing with the same topic, biochemical
pathways in metabolic networks, etc.

A network is a graph composed by a large number of highly interconnected
units, and a community is characterized by a large number of edges connecting
vertices within individual groups, with only low concentrations of edges between
these groups [3, 4]. The aim of community detection is to identify the modules
and, possibly, their hierarchical organization, by only using the information
encoded in the graph topology. The problem has a long tradition and it has
appeared in various forms in several disciplines [6, 7, 8]. The general notion of
community structure in complex networks was first pointed out in the physics
literature by Girvan and Newman [3].

This review is organized as follows. The next section gives a brief account
of the main quantities and measures that are commonly used to characterize
the properties of complex networks (see [19] for an extensive review). Section 3
reports some algorithms that have been proposed during the last years to deal
with the problem of community detection in complex network. In Section 4
we introduce benchmark graphs commonly used to test community detection
algorithms. A brief description of the evolution of social network is discussed
in Section 5. Finally, Section 6 gives some useful packages for network analysis
and community structure detection.

2 Definitions and measures of complex networks

Formally, a network is represented by a graph. An undirected graph G is defined
by a pair of sets G=(V,E), where V is a non-empty countable set of elements,
called vertices or nodes, and E is a set of unordered pairs of different vertices,
called edges or links. The edge (i,j) joins the vertices i and j, which are said to
be adjacent or connected. It is also common to call connected vertices neighbors
or nearest neighbors. The total number of vertices in the graph is denoted as N
and defines the order of the graph. In many biological and physical contexts, N
defines the physical size of the network since it identifies the number of distinct
elements composing the system. However, in graph theory, the size of the graph
is identified by the total number of edges E. For a graph of size N, the maximum
number of edges is N(N − 1)/2.

There exists an intimate relationship between graph theory and matrix the-
ory with both fields benefiting from insights in the other. A graph can be
completely described by giving the adjacency matrix A, a N ×N square matrix
whose entry aij (i, j = 1, 2, ..., N) is equal to 1 when the link lij exists, and
zero otherwise. An important feature of many graphs, which helps in dealing
with their structure, is their sparseness. The number of edges E for a connected
graph (i.e., with no disconnected parts) ranges from (N-1) to N(N-1)/2. The
graph is said to be sparse if the number of edges E scales as Nα with α < 2,
and is considered dense if E scales as N2.
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2.1 Degree distribution

The degree ki of the node i is the number of edges incident with that node, and
is obviously defined in terms of the adjacency matrix A as ki =

∑

j∈N aij . The
most basic topological characterization of a graph G can be obtained in terms
of the degree distribution P (k), defined as the probability that a node chosen
uniformly at random has degree k or, equivalently, as the fraction of nodes in
the graph having degree k. The n-moment of P (k) is defined as:

< kn >=
∑

k

knP (k).

The first moment < k > is the mean degree of G, while the second moment
measures the fluctuations of the connectivity distribution. Graphs are usually
said homogeneous (heterogeneous) if the value of the second moment of the
degree distribution is small (large) if compared with the value of the first moment
of the same distribution.

A first approximation of homogeneous networks is the uncorrelated random
graph model proposed by Erdos and Renyi in 1959 with the original purpose
of studying, by means of probabilistic methods, the properties of graphs as a
function of the increasing number of random connections. This model consists in
drawing an undirected edge with a fixed probability p between each possible pair
out of N given nodes. The resulting graph shows a binomial degree distribution
with average < k >≃ Np, which for large N can be approached by a Poisson
distribution. In order to account for degree heterogeneity, other constructions
have been proposed for random graphs with arbitrary degree distributions [10,
11].

Since many real networks are not static but evolving, with preferential at-
tachment mechanisms, many models of growing networks have also been intro-
duced. The Barabsi and Albert model [12], has become one of the most famous
models for complex heterogeneous networks. The model begins from a small set
of m fully interconnected nodes, new nodes are introduced one by one. Each new
node is connected to m existing nodes according to the preferential attachment
rule, i.e., with probability proportional to their degree, and creates links with
them. The procedure stops when the required network size N is reached. The
obtained network has average degree < k >= 2m, small clustering coefficient
(see Section 2.3) and a power law degree distribution P (k) ∝ k−γ , with γ = 3
(when γ ≤ 3 the graphs are referred to as scal-free networks).

2.2 Characteristic path length

The distribution of geodesic (the shortest path between two nodes) play a crucial
role in all processes involving transport of information across the network. It
is therefore useful to represent all the shortest path lengths of a graph G as a
matrix D in which the entry dij is the length of the geodesic from node i to node
j. The maximum entry of the matrix D is called the diameter of the graph, and
gives a measure of the maximal extent of a graph.
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A measure of the statistically typical separation between any two nodes in
the graph is given by the characteristic path length defined as the mean of
geodesic lengths over all couples of nodes:

L =
1

N(N − 1)

∑

i,j∈V,i6=j

dij

A graph is said to display the small world property if L scales with the
logarithm of N, i.e, an increase of the network size do not affect substantially
the mean distance between any pair of nodes of the graph.

2.3 Clustering coefficient

The concept of clustering of a graph refers to the tendency observed in many
natural networks to form cliques (A clique is a complete n-subgraph of size
n < N) in the neighborhood of any given vertex. In this sense, clustering
implies the property that, if the vertex i is connected to the vertex j, and at the
same time j is connected to l, then with a high probability i is also connected to l.
The clustering of an undirected graph can be quantitatively measured by means
of the clustering coefficient C which measures the local group cohesiveness [9].
Given a vertex i, the clustering C(i) of a node i is defined as the ratio of the
number of links between the neighbors of i and the maximum number of such
links. If the degree of node i is ki and if these nodes have ei edges between
them, we have:

C(i) =
2ei

ki(ki − 1)
=

∑

j,m aijajmami

ki(ki − 1)

The average clustering coefficient of a graph is simply given by the average
of C(i) over all the nodes in G:

C =
1

N

∑

i∈V

C(i)

2.4 Node betweenness

The communication of two nonadjacent nodes, say j and k, depends on the nodes
belonging to the paths connecting j and k. In order to account quantitatively
for the role of vertices which may be crucial for connecting different regions
of the network by acting as bridges, the concept of betweenness centrality has
been introduced [Newman, 2001]. More precisely, the betweeness bi of a node i,
sometimes referred to also as load, is defined as:

bi =
∑

j,k∈V,j 6=k

njk(i)

njk

where njk is the total number of different shortest paths going from j to k and
njk(i) is the subset of those distances passing through the node i.
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According to this definition, central nodes are therefore part of more shortest
paths within the network than less important nodes. This centrality measure of
a node is often used in transport networks to provide an estimate of the traffic
handled by the vertices, assuming that the number of shortest paths is a zero-th
order approximation to the frequency of use of a given node. Analogously to the
node betweenness, the betweenness centrality of edges can be calculated as the
number of shortest paths among all possible vertex couples that pass through the
given edge. Edges with the maximum score are assumed to be important for the
graph to stay interconnected. These high-scoring edges are the ”bridges” that
inter-connect modules of nodes. Removing them frequently leads to unconnected
communities of nodes. These centralized edges are particularly important for
decreasing the average path length among nodes in a network, for speeding up
the diffusion of information, or for increasing the size of the part of the network
at a given distance from a node.

3 Deciphering community structure

A significant step to understand the properties of a network consists in deter-
mining its communities. However, the best way to establish the community
structure of a network is still disputed. During the last years, many algorithms
have been proposed to extract the optimal partition of a network into communi-
ties ranging from traditional methods (Graph partitioning, spectral clustering),
modularity-based methods [5] and synchronization-based dynamics algorithms
[13, 14, 16].

To determine the optimal number of modules or clusters, most of these
algorithms adopt the criterion of maximum modularity (Q) [5]. The modularity

is defined as the fraction of links within communities minus the expected fraction
of such links in a random network. This measure provides a way to determine
if a certain description of the graph in terms of communities is more or less
accurate. High values of modularity should indicate good partitions with many
more internal connections than expected at random. For an arbitrary network,
and an arbitrary partition of that network into Nc communities We can define
a (Nc × Nc) size matrix e whose entries eij give the fraction of edges that in
the original graph connect subgraph i to subgraph j. The sum of the any row
(or column) of e, ai =

∑

j eij corresponds to the fraction of links connected
to subgraph i. If the network does not exhibit community structure (random
graph), the expected value of the fraction of links within partitions can be
estimated. It is simply the probability that a link begins at a node in i, ai,
multiplied by the fraction of links that end at a node in i, ai. So the expected
number of intra-community links is just a2i . The modularity of a subgraph
division is then defined by

Q =
∑

i

(eii − a2i )

Recently, a global criterion called Surprise, which implicitly assumes a more
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complex definition of community has been proposed [26]. In this case finding the
optimal community structure of a undirected graph is equivalent to maximize
the following parameter:

S = − log

min(M,n)
∑

j=p

(

M
j

)(

F−M
n−j

)

(

F
n

)

where F is the maximum possible number of links, n is the observed number of
links, M is the maximum possible number of intracommunity links for a given
partition, and p is the total number on intracommunity links actually observed
in that partition. This criterion measures the improbability of finding by chance
a partition with the observed enrichment of intracommunity links in a random
graph.

Others methods seek the optimal partition by minimizing the compression
of the information that best describes the network [20], minimizing the Hamil-
tonian of a Potts-like spin model that represents the graph [21], or deducing
the maximum-likelihood model that best fits the structure of the network [22],
to name just a few examples. Figures 1 reports an example of technological
complex networks with community structure.

4 Benchmarks to compare the performance of

community detection algorithms

As reported early, characterizing the community structure of complex networks
is a key challenge in many scientific fields. To this end, many algorithms and
methods have been proposed with a performance that varies greatly, depending
on the topological parameters of the analyzed network. The main problem
is then to estimate the accuracy of a method and to compare it with other
methods. This issue of testing is as crucial as devising powerful community
detection algorithms.

Testing an algorithm consists in analyzing a network with a well-defined
community structure and recovering its communities. Ideally, one would like to
have many instances of real networks whose modules are precisely known, but
this is unfortunately not the case. Therefore, the most extensive tests are per-
formed on computer generated networks, with a built-in community structure.
The most popular benchmark for community detection is a class of networks
introduced by Girvan and Newman [3] in which communities are, by definition,
Erdos-Renyi subgraphs. This makes this benchmark inappropriate for represent-
ing real-world networks since the latter exhibit much more heterogeneous degree
distributions [19]. A good benchmark should have a skewed degree distribution,
similar to real networks, and should include communities of very different sizes
[24]. These benchmarks are characterized by an initial well-defined community
structure which is degraded by randomly rewiring links. During this process, the
proportion of intercommunity links grows and the original communities gradu-
ally disappear.
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5 Evolution of social networks

In many social network evolution studies, the underlying process for network
change is assumed to be located in the network structure. As real and online
social systems grow ever larger, their analysis becomes more complicated, due
to their intrinsic dynamic nature, the heterogeneity of the individuals, their in-
terests, behavior etc. In this perspective, revealing the community structures,
i.e., the identification of more homogeneous groups of individuals, is a major
challenge. In this context, one has to distinguish the communities as typically
intended in social network analysis [27] from a broader definition of communi-
ties. In a more general context, for e.g. providing recommendation strategies,
one is more interested in finding communities of users with homogeneous inter-
ests and behavior. Such homogeneity is independent of contacts between the
users although in most cases there will be at least a partial overlap between
communities defined by the user contacts and those by common interests and
behavior.

Recently the modern Information and Communication Technology (ICT)
has opened new interaction modes between individuals, like mobile phone com-
munications and online interactions enabled by the Internet. Such new social
exchanges can be accurately monitored for very large systems, including mil-
lions of individuals, whose study represents a huge opportunity for social sci-
ence. Social networking services, like Myspace (www.myspace.com), Friendster
(www.friendster.com), Facebook (www.facebook. com), etc. have become ex-
tremely popular in the last years. They are online platforms that allow people
to communicate with friends and other users through private or public mes-
sages and a chat feature, and unite people with common interests and/or beliefs
through groups and other pages.

6 Network analysis packages

• Graphviz: is an open-source software for graph visualization, developed
by researchers at AT&T.

• igraph: is a package for the generating, manipulating, analyzing, and
visualizing network graphs, of sizes up to millions of vertices and edges.

• Jerarca: is a suite of hierarchical clustering algorithms that provides
a simple and easy way to analyze complex networks. It is designed to
efficiently convert unweighted undirected graphs into hierarchical trees by
means of iterative hierarchical clustering. Moreover, Jerarca detects and
returns the community structure of the network.

• MultiDendrograms: is a simple yet powerful program to make the Hi-
erarchical Clustering of real data.

• Pajek: is a freely available package for the visualization of large networks.
It also has a suite of network analysis tools, mainly oriented towards social
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network analysis.

• Redatools: is a collection of programs to analyze complex networks, with
special emphasis on community detection and mesoscales Search.

• statnet: is a suite of software packages for network analysis and model-
ing, that allows for the estimation, evaluation, and simulation of network
models, as well as network analysis and visualization.

• Workbench: is a Large-Scale network analysis, modeling and visualiza-
tion toolkit for biomedical, social science and physics research

• yEd Graph Editor: is a powerful desktop application that can be used
to quickly and effectively generate high-quality diagrams.

Figure 1: Community structure in technological networks. Sample of the web
graph consisting of the pages of a web site and their mutual hyperlinks, which
are directed. Communities, indicated by the colors, were detected with the al-
gorithm of Girvan and Newman, by neglecting the directedness of the edges.
Reprinted figure with permission from Ref. [5]. c©2004, by the American Phys-
ical Society.
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