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Abstract

Formation of the 30S initiation complex (30S IC) is an important checkpoint in regulation of gene expression. The selection
of mRNA, correct start codon, and the initiator fMet-tRNAfMet requires the presence of three initiation factors (IF1, IF2, IF3) of
which IF3 and IF1 control the fidelity of the process, while IF2 recruits fMet-tRNAfMet. Here we present a cryo-EM
reconstruction of the complete 30S IC, containing mRNA, fMet-tRNAfMet, IF1, IF2, and IF3. In the 30S IC, IF2 contacts IF1, the
30S subunit shoulder, and the CCA end of fMet-tRNAfMet, which occupies a novel P/I position (P/I1). The N-terminal domain
of IF3 contacts the tRNA, whereas the C-terminal domain is bound to the platform of the 30S subunit. Binding of initiation
factors and fMet-tRNAfMet induces a rotation of the head relative to the body of the 30S subunit, which is likely to prevail
through 50S subunit joining until GTP hydrolysis and dissociation of IF2 take place. The structure provides insights into the
mechanism of mRNA selection during translation initiation.
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Introduction

Initiation is the most regulated step of translation, at which the

ribosome selects mRNAs according to their translation initiation

regions (TIR) and establishes a correct reading frame. In bacteria,

translation initiation is promoted by three initiation factors (IF),

IF1, IF2, and IF3 [1,2]. The small ribosomal subunit, 30S, is

recruited to single-stranded mRNA regions at the TIR [3]. The

Shine-Dalgarno sequence (SD) of the mRNA binds to the anti-

Shine-Dalgarno sequence (ASD) of 16S rRNA in a cleft between

the head and the platform at the back of the 30S subunit, whereas

mRNA wraps in a groove that encircles the neck of the 30S

subunit [4–6]. IFs bind to the 30S subunit and work synergistically

to accelerate initiation and ensure the choice of the correct start

codon and initiator tRNA. IF1 is a one-domain compact protein

which binds at the A site of the 30S subunit [7]. IF2 is a multi-

domain GTPase that plays a major role in the recruitment of

fMet-tRNAfMet to the 30S IC. The highly conserved C-terminal

half of the protein (CTD) contains the GTP- and fMet-tRNAfMet-

binding domains. The role of the less conserved N-terminus

(NTD) is not clear, except that it may provide an additional

anchor for IF2 on the 30S subunit [8,9]. Docking of fMet-

tRNAfMet to the complex of the 30S subunit with mRNA and IFs

completes the formation of the 30S IC [10]. The initiator tRNA is

held in a characteristic position by two interactions: one involving

the tRNA decoding stem which is buried in the P site of the 30S

subunit, and the other between IF2 and the tRNA acceptor end

[11]. The orientation of fMet-tRNAfMet in the complex differs

from the canonical P-site position and was designated as P/I state

[12]. IF2 and fMet-tRNAfMet provide a large interaction surface

for binding the 50S subunit [11–13]. Formation of the 30S IC

constitutes an important step for the selection of a favorable TIR.

The ability of the ribosome to screen the TIR and to check for the

fidelity of codon-anticodon interaction strongly depends on the

presence of IF3 [14]. However, a structure of a 30S IC with IF3 is

not available.

IF3 consists of two domains, IF3C and IF3N, connected by a

linker. The structures of the separate domains are known, but not

of the full-length protein. The binding site for IF3 on the ribosome

has been examined by a variety of biochemical techniques and by

cryo-EM [15–18]. Overall, IF3 appears to bind to the platform of

the 30S subunit, but the domain orientation of IF3 and exact

binding contacts for each domain remain controversial. IF3 has

several functions during translation initiation. It interferes with

ribosomal subunit association [19], affects the rates of tRNA

association to and dissociation from the P site [20,21], and ensures

the fidelity of translation initiation [22–24]. Most importantly, IF3

is crucial for sensing the TIR of mRNA. In the absence of IF3, the

ribosome is largely unable to discriminate against unfavorable

TIRs or incorrect initiation codons [14,25].
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During the last years, structures of the 30S IC and 70S IC in the

absence of IF3 [11,13] and of the 70S IC with density attributable

to IF3 [12] have been reported. However, the structure of the

complete 30S IC has remained elusive, probably due to intrinsic

structural dynamics of the 30S subunits. Comparison of the 70S

IC structures in the GTP- and GDP-bound states of IF2 revealed

that in the pre-hydrolysis state the 30S subunit is found in a

rotated (ratcheted) state relative to the 50S subunit. Consistent

with this notion, single molecule FRET data have shown that

docking of the 50S subunit to the 30S IC initially forms the 70S IC

that is in the rotated conformation, and that GTP hydrolysis by

IF2 promotes the rearrangement from the rotated to non-rotated

state, thus enabling the ribosome to progress into the elongation

phase [26].

Here, we present the cryo-EM reconstruction of the complete

30S IC containing all three IFs, mRNA, and fMet-tRNAfMet. We

analyze the conformational changes of the 30S subunit induced by

binding of IFs and tRNA and identify the position and orientation

of IF3 and of the NTD of IF2. Unlike the 30S IC obtained in the

absence of IF3 [11], the complete 30S IC studied in the present

work reflects a translation initiation intermediate that is fully

competent in the selection of the TIR and the correct start codon.

The data show a rotation of the head of the 30S subunit upon

formation of the 30S IC and suggest how the conformational

changes of the 30S subunit could regulate 50S subunit joining and

mRNA selection.

Results

Reconstruction of a Complete 30S IC
The 30S IC was prepared from E. coli 30S subunits, IF1, IF2,

IF3, fMet-tRNAfMet, mRNA, and a GTP analog, GDPNP

(Materials and Methods). The mRNA used for complex formation

was m002, which contains a 9-nt SD and a 5-nt spacer between

the SD and the AUG start codon [27]. The extended SD provides

strong interactions with the ASD in the 16S rRNA and drastically

reduces the dissociation rate of IF3 [14]; m002 is similar to

mRNAs with ‘‘enhanced’’ SD used in previous structural and

biochemical studies [11–14,26,28]. An initial set of 48,000

particles resulted in a cryo-EM map that showed density which

could be attributed to tRNA and IF2 on the surface of the 30S

subunit (Figure 1A) at positions expected from a previous cryo-EM

reconstruction of the 30S subunit in complex with initiator tRNA

and IF2 [11]. However, the densities in our initial reconstruction

did not reveal structural details of the tRNA or IF2, suggesting

heterogeneity of the sample due to differences in the occupancy of

the 30S subunit with ligands and/or distinct conformational states.

Separation into two classes by non-supervised maximum likeli-

hood–based classification (ML3D) [29], a recently developed tool

that has been successfully applied to other ribosomal samples [30],

and independent image processing yielded the 3D maps shown in

Figure 1B and 1C. The EM map for class 1 particles (23% of all

particles) showed no density for IFs or tRNA (Figure 1B). Class 2

accounted for the majority (77%) of the particles, and the

corresponding 3D map revealed the presence of fMet-tRNAfMet

and IFs (Figure 1C). In the latter reconstruction, the putative

densities for IF2 and tRNA could be seen at a higher density

threshold compared with the map obtained from the total set of

images. Structural details of the initiator tRNA from the X-ray

structure [31] and of IF2 known from previous cryo-EM

reconstructions [11–13] were clearly recognizable. Importantly,

high-density threshold rendering revealed density for the SD-ASD

duplex for both classes (Figure S1), indicating that class 1

represented 30S?mRNA complexes, rather than vacant 30S

subunits. The resolutions estimated at 0.5/0.14 cut-off criteria in

the Fourier shell correlation (FSC) were 16.8/14 Å (total set of

images), 21/17 Å (class 1, representing the 30S-mRNA complex),

and 18.3/15 Å (class 2, representing the 30S IC). Classification

into more classes or re-classification of class 2 did not result in

improvement of resolution or identification of further conforma-

tional states. The limited resolution of the reconstructions may

reflect inherent flexibility within the 30S IC induced by IF3-IF1

binding to the 30S subunit, as suggested by kinetic experiments

[14].

Segmentation of the Map for the 30S IC
After removing the density corresponding to the 30S subunit

from the class 2 map (Figure 1C), positions for tRNAs and IFs

could be assigned, which were consistent with previous structural

and biochemical studies (Figure 1D and 1E). The main part of the

resulting density could be attributed to the IF2?fMet-tRNAfMet

complex placed along the shoulder and the cleft between the head

and the body of the 30S subunit. The density for IF1 was not

obvious within the 30S IC map, because its binding site was

covered by the IF2 structure. However, fitting the crystal structure

of IF1 bound to the 30S subunit [7] suggested that, in our map,

IF1 can be embedded in the boundary between the 30S subunit

and IF2 (Figure 1D) in the cleft formed by the 530 loop, helix 44 of

16S RNA, and ribosomal protein S12 [7]. The moderate

resolution of the current 3D map and the lack of a complete

atomic model for IF2 (see below) precluded an unambiguous

definition of the boundary between IF1 and IF2. Additional

densities observed close to the initiator tRNA and the platform of

the 30S subunit were assigned to IF3 (Figure 1E). Thus, the

cryoEM map of the 30S IC had densities attributable to all the

elements of the complete complex (see below for further details of

fitting).

Author Summary

Translation is the process by which a ribosome converts
the sequence of a messenger RNA (mRNA)—produced
from a gene—into the sequence of amino acids that
comprise a protein. Bacterial ribosomes each have one
large and one small subunit: the 50S and 30S subunits.
Initiation of translation entails selection of an mRNA,
identification of the correct starting point from which to
read its code, and engagement of the initial amino acid
carrier (tRNA). These events take place in the 30S subunit
and require the presence of three initiation factors (IF1, IF2,
IF3). Formation of this 30S initiation complex precedes
joining with the 50S subunit to assemble the functional
ribosome. By using a cryo-electron microscopy approach
to visualize the structures without fixation or staining, we
have determined the structure of a complete 30S initiation
complex and identified the positions and orientations of
the tRNA and all three initiation factors. We found that the
presence of the initiation factors and tRNA induces
rotation of the head relative to the body of the 30S
subunit, which may be essential for rapid binding to the
50S subunit and for regulating selection of the mRNA. IF3
had not been seen previously in the context of the 30S
structure and its visualization gives insight into a potential
role in preventing association of the two ribosomal
subunits. These findings are important for understanding
how the interplay of elements during the early stages of
translation selects the mRNA and regulates formation of
functional ribosomes.

Structure of 30S Initiation Complex
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The 30S Subunit Head Rotation
To investigate whether the binding of initiation factors and

fMet-tRNAfMet changed the conformation of the 30S subunit, we

compared the structures of 30S subunits from classes 1 and 2

(Figure 2). When the maps were superimposed in such a way as to

produce a maximal correlation of the 30S bodies, a clockwise

rotation of the head toward the E site of the subunit in the 30S IC

was found, compared to the 30S?mRNA complex (Figure 2A).

Measured by the position of the globular domain of ribosomal

protein S13 as a reference point, the displacement was about 10 Å,

corresponding to a rotation of the 30S head of approximately 4–

5u. The direction and extent of the rotation in the 30S IC map are

very similar to those found in the 70S IC (Figure 2B) [12], as

opposed to the conformation of the 30S subunit in the map

attributed to the 30S?mRNA complex (Figure 2C).

IF2 Structure and Interactions in the 30S IC
The crystal structure of full-length E. coli IF2 is not available so

far. To interpret the density attributed to IF2 and to identify the

interactions of IF2 within the 30S IC, a domain homology model

of IF2 was constructed (Figure 3). The C-terminal half of the

protein (CTD; G2, G3, C1, C2 domains) is highly conserved,

whereas the N-terminus (NTD; N1, N2, G1 domains) varies in

both amino acid composition and length and is absent in archaea

[32]. The NTD is lacking in IF2/eIF5B from Methanobacterium

thermoautotrophicum, the crystal structure of which is available [33]

and which has been used for homology modeling of IF2 from T.

thermophilus and E. coli [11,12]. To model the full-length E. coli IF2,

including the NTD which was not visualized previously, we

combined several tertiary structures based on sequence homology

(Figure S2). Rigid-body fitting was carried out independently for

each of the modeled homologous domains. Subsequently, all of

them were combined into a single structural model, which was

fitted into the density of the 30S IC using MD-based flexible fitting

(Materials and Methods). In the MD simulations, secondary

structure elements were conserved, and most of the large changes

are related to long loops, especially in the NTD region. During the

flexible fitting the cross-correlation between atomic coordinates

and the EM map improved significantly (from 0.87 to 0.95

estimated at the current resolution). The evolution of the fitting

Figure 1. Cryo-EM reconstruction and classification of the 30S IC. (A) Initial reconstruction of the 30S IC with partial densities for tRNA and
IF2 on the surface of the 30S subunit (arrow). (B) Cryo-EM map of class 1 particles after ML3D classification of the total set of images. No density for
tRNA or IF2 can be seen. (C) The cryo-EM map of class 2 particles showing improved density for tRNA and IF2 on the 30S subunit (arrow). This map
was assigned to the 30S IC complex. (D and E) Two orientations of the cryo-EM map for the 30S IC complex after segmentation and fitting of atomic
coordinates attributed to the 30S subunit (gray), IF2 (green), IF1 (blue), fMet-tRNAfMet (red), and IF3 (orange). Smaller thumbnails depict segmented
map with solid densities in different colors, while large renderings in semi-transparent representation show fitted atomic coordinates. Landmarks on
the 30S subunit in all figures indicate: h, head; sp, spur; sh, shoulder; pt, platform; h44, helix 44 from the 16S rRNA.
doi:10.1371/journal.pbio.1001095.g001

Structure of 30S Initiation Complex

PLoS Biology | www.plosbiology.org 3 July 2011 | Volume 9 | Issue 7 | e1001095



was also monitored by comparison with the initial IF2 model, and

in the last cycles the RMSD values between the initial and flexible-

fitted models reached a plateau of 8 Å. The overall arrangement

of domains in the CTD of the present model of IF2 (Figure 3) is in

agreement with the previous models based on cryo-EM [11–13],

except for some differences that are discussed below. The expected

volume of the modeled NTD domains (irrespectively of the

uncertainties of their modeled positions) nicely accounted for the

observed cryo-EM density indicating the location of the NTD at

the 30S subunit surface.

In the 30S IC, IF2 makes extensive contacts with 16S rRNA

(helices h5 and h14), IF1, and S12 (Figure 4). The model suggests

that the contacts to IF1 and ribosomal protein S12 are made by the

NTD of IF2 (Figure 4A), in line with the ability of the isolated NTD

of E. coli IF2 to bind to the 30S subunit [9,34]. Domain G3 of IF2

interacts with helix h5 of 16S rRNA and domain C1 of IF2 with

Figure 2. Conformation of the 30S subunit within the 30S IC. (A) 30S subunit conformations in reconstructions of particles from class 1 (red
mesh) and class 2 (semitransparent yellow). The arrow indicates the clockwise rotation of the 30S subunit head. The inset shows the positions of
protein S13 in the two maps. (B) The current 30S IC map (class 2 after ML3D classification) aligned with the cryoEM map for the 70S IC (EM database
code 1249 [12]) in two distinct orientations. (C) Comparison of the 30S?mRNA map (class 1 after classification) with the 70S IC map [12]. The
alignment between density maps was performed by maximum overlap of the body of the 30S subunits.
doi:10.1371/journal.pbio.1001095.g002
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helix h14 (Figure 4B). This set of connections between IF2 and the

30S subunit is similar to the one described in the 70S IC [12],

whereas in the 30S IC lacking IF3 the contacts between IF2 and the

30S subunit were seen as small connections involving G3 domain

from IF2 and helices h5 and h14 from the 16S rRNA [11].

Interactions with IF1 or S12 were not observed, probably due to the

shortened NTD in IF2 from T. termophilus. The position of IF2 on the

present 30S IC does not interfere with intersubunit bridges formed

upon 50S subunit joining (Figure 4C). The only bridge in the vicinity

of IF2 is bridge B8, which is established via helix h14 [35]. However,

the residues involved in the connection with the 50S subunit

(highlighted orange in Figure 4B) are on the face of the helix opposite

to the IF2 contact, suggesting that this interaction of IF2 with the 30S

IC does not interfere with the binding of the 50S subunit.

Novel P/I Position of fMet-tRNAfMet

Comparison of the fMet-tRNAfMet position in the present 30S

IC reconstruction with crystal structures of ribosomes with tRNAs

in A, P, and E sites (Figure 5) reveals that the anticodon loop of

fMet-tRNAfMet is positioned essentially in the P site of the 30S

subunit, while the tRNA elbow in the 30S IC is tilted

approximately 10u towards the E site (Figure 5A). The tilt is

similar to that in the P/I intermediate position for the initiator

tRNA previously described in cryo-EM studies of the 30S IC and

70S IC [11,12]. However, unlike the P/I state visualized before,

where the acceptor arm of the tRNA was shifted towards the E site

[11,12], the CCA end of fMet-tRNAfMet in our reconstruction is

oriented towards the A site by its interaction with the C2 domain

of IF2 (Figure 5B). The differences in the orientation are clearly

seen at the junction between fMet-tRNAfMet and the C2 domain

of IF2 in the respective complexes (Figures 5C,D and S3). Notably,

the present 30S IC and the 70S IC reported by [12] have been

prepared in the presence of all three IFs and are from the same

organism and yet the observed P/I positions are clearly distinct

(Figure 5C,D). To distinguish between the two states of the

initiator tRNA, we name the state observed in our structure P/I1.

Compared to the P-site tRNA, the P/I1 position requires a

rotation of the acceptor stem of the tRNA of around 15u (Figure 5).

Location of IF3 in the 30S IC
Apart from the density for the fMet-tRNAfMet?IF2 complex, a

bilobed density was observed connecting the 30S platform and the

elbow region of the fMet-tRNAfMet (Figure 1E). Subtracting the

volume occupied by the 30S?fMet-tRNAfMet?IF2 complex from

the 30S IC reveals a density comprising two domains connected by

a linker. According to its size and position, the density was

attributable to IF3 (Figure 6). Rigid-body fitting of the atomic

coordinates of the N- (IF3N) and C-terminal (IF3C) globular

domains of IF3 from Geobacillus stearothermophilus [36] linked by an

a-helix yielded a good fit of the EM map. For detailed fitting,

IF3C from E. coli was used [37]. The density for IF3 in our cryo-

EM map had to be visualized at a lower threshold compared to

that of tRNA?IF2 (Figure S4), presumably due to incomplete

occupancy of the 30S IC with IF3. Further sorting of the class 2

particles did not separate distinct conformational/occupancy

states. The two domains of IF3 were placed in such a way that

IF3N contacted the elbow region of fMet-tRNAfMet, whereas IF3C

was engaged in interactions with the 30S subunit. Cross-

correlation measurements support the assignment of IF3 domains,

since the alternative arrangement after domain swapping reduces

the coefficient from 0.79 to 0.65. IF3C was bound to the 790 loop

of h24 of 16S rRNA in the vicinity of fMet-tRNAfMet; however, no

direct contact between IF3C and tRNA was found (Figure 6B).

Implications for Subunit Joining
To examine whether the conformation of the 30S IC was

suitable for 50S subunit joining, we aligned our 30S IC map with

that of the 70S IC [12]. The position for IF3C in the 30S IC would

impair the formation of bridge B2b at the interface between the

ribosomal subunits (Figure 7A), suggesting that in this arrange-

ment IF3 in the complex physically impairs subunit joining. The

fMet-tRNAfMet?IF2 complex provided an extensive surface area

for the interaction with the 50S subunit (Figure 7B). Binding of the

50S subunit would position the junction between IF2 and the

CCA end of fMet-tRNAfMet close to the peptidyl transferase

center. The region containing the sarcin-ricin loop (SRL) of 23S

rRNA docked accurately in a cleft formed by domains G2 and C1

of IF2. The GTPase domain, G2, is oriented toward the SRL in

the same way as domain I of EF-Tu [38]; the contact with the SRL

is expected to be important for the GTPase activation of IF2 [39].

Discussion

Structure of the 30S IC
In this study we present the cryo-EM reconstructions of the

complete E. coli 30S IC containing initiator tRNA, mRNA, and all

three initiator factors, as well as of the 30S subunit in the complex

with the mRNA alone. The comparison of the 30S IC and the

30S?mRNA complex revealed that the 30S subunits were present

in different configurations in the two complexes. In the 30S IC, the

head of the 30S subunit was rotated with respect to the body,

which can be attributed to the presence of IFs and fMet-tRNAfMet.

Early site-directed crosslinking studies suggested that the forma-

tion of the SD-ASD complex in the absence of IFs places the

Figure 3. Homology model for IF2 guided by the cryo-EM map.
(A) Close-up view of the fMet-tRNAfMet?IF2 complex on the 30S IC.
Densities for fMet-tRNAfMet and IF2 were rendered semitransparent to
show the fitted IF2 (ribbon representation). For fMet-tRNAfMet (pdb
code 2FMT; [31]), a rigid-body fitting was performed. Domains G2
(orange), G3 (green), C1 (grey), and C2 (purple) of IF2 are indicated. The
NTD was modeled as three sub-domains (yellow, blue, and pink). (B)
Domain structure of IF2. Colors are as in (A). Below the segment for
each domain, the homology T-Coffee score [72] between IF2 from E. coli
and the atomic coordinates used is shown.
doi:10.1371/journal.pbio.1001095.g003
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Figure 4. IF2 on the 30S IC. (A) Interactions of the NTD of IF2 with IF1 and S12. Thumbnail shows orientation. (B) Interactions of domains G2 and
G3 of IF2 with 16S rRNA. Residues of helix h14 involved in formation of the intersubunit bridge B8 are highlighted in orange. (C) Position of IF2
relative to intersubunit bridges. The binding site for IF2 entails 16S rRNA helices h5 and h14 (green), and proteins IF1 (blue) and S12 (pink). The crystal
structure of IF1 bound to the 30S subunit is taken from (pdb code: 1HRO; [7]). Intersubunit bridges are shown in orange. Bridges in the head of the
30S subunit are highlighted in red and the arrow indicates the direction of the 30S subunit head movement.
doi:10.1371/journal.pbio.1001095.g004

Figure 5. Orientation of fMet-tRNAfMet bound to the 30S IC. (A) Comparison of the positions of fMet-tRNAfMet in the 30S IC (red) with the
atomic coordinates for A-, P-, and E-site tRNAs (pdb code: 2HGP; [41]). The arrow indicates a tilt of the fMet-tRNAfMet by around 10 degrees compared
to the tRNA in the P site. (B) Top view showing the 15 Å rotation of fMet-tRNAfMet in the complex with IF2 (semitransparent green). (C and D)
Comparison between the P/I1 and P/I sites. In (C) densities for IF2 and tRNA from the 30S IC are shown semitransparent, allowing us to visualize fitted
coordinates for tRNA (red ribbons) and IF2 (green). For comparison, coordinates fitted in the 70S IC (pdb code: 1ZO1 [12]) are represented for IF2
(purple ribbons) and tRNA in the P/I site (blue). In (D) density for IF2 and tRNA is taken from the 70S IC (EM database code 1249) and depicted semi-
transparent. Atomic coordinates are as in (C).
doi:10.1371/journal.pbio.1001095.g005

Structure of 30S Initiation Complex
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mRNA in a ‘‘standby’’ position, from which it is shifted backward,

closer to the P site upon binding of initiation factors, in particular

IF3, before the interaction with the large subunit takes place [40].

Similarly, crystal structures of the 70S complexes indicated that

mRNA moves in the 39R59 direction with simultaneous clockwise

rotation and lengthening of the SD duplex, bringing it into contact

with ribosomal protein S2 [41]. The conformational change in the

30S IC induced by factor binding moves the head of the subunit in

the right direction along the pathway of the mRNA and could

promote the reported back-tracking of the messenger. At the

current resolution, the conformation of the 30S subunit in the 30S

IC is the same as in the 70S IC before GTP hydrolysis by IF2,

where the 30S subunit is found in a rotated (ratcheted) orientation

with respect to the 50S subunit [12] when compared with a 70S

post-initiation complex [42]; it should be noted that the origin of

initiation components (E. coli) and the mRNAs (extended SD

sequence) are very similar in the present study and in [12],

allowing for such detailed comparisons. The change in the 30S

configuration is similar to that described within other 70S

complexes along several steps of translation (see Figure S5)

Figure 6. IF3 on the 30S IC. (A) Density for IF3 (semitransparent orange) fitted using the atomic coordinates for IF3 domains, IF3N (pdb code: 1TIF;
[36]) and IF3C (pdb code: 2IFE; [37]). Thumbnail shows the orientation. (B) Same orientation as in (A) with semitransparent 30S subunit. Regions on
16S rRNA and tRNA in the proximity of IF3, based on hydroxyl radical footprinting [17], are shown in navy blue. Arrow indicates helix h24 and the loop
around nucleotide 790 in 16S rRNA.
doi:10.1371/journal.pbio.1001095.g006

Figure 7. Docking of the 50S subunit onto the 30S IC. (A) Steric clash between IF3C and helix H69 of 23S rRNA at intersubunit bridge B2b. The
present map for the 30S IC was aligned with the 70S IC [12]. (B) IF2 as an important determinant for the 50S subunit association. The position of the
sarcin-ricin loop (SRL) at the cleft formed by domains G2 and C1 of IF2 is indicated. In both panels, the thumbnails show the 30S IC docked onto the
50S subunit. Labels on the 50S subunit indicate helices in 23S rRNA (H69, H89, and H95) and the stalk region for protein L1.
doi:10.1371/journal.pbio.1001095.g007
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[30,43–52], but in the current study, the 30S conformation does

not require the presence of the 50S subunit. Conformational

changes of the 30S subunit were not described in the 30S initiation

complex lacking IF3 [11]. This suggests that binding of IFs, in

particular IF3, could induce or stabilize the altered 30S subunit

conformation. This conformational state of the 30S subunit

appears to be retained upon 50S subunit joining until GTP

hydrolysis and dissociation of IF2 [26].

The positions of fMet-tRNAfMet and IF2 in the complete 30S IC

are similar to, but not identical with, those found in the previously

reported reconstructions. As in all available structures, the

anticodon stem of the tRNA is buried in the P site of the 30S

subunit. However, the position of the tRNA CCA end differs in

the reported P/I states. Comparing the 30S IC with the 70S IC

from E. coli (both with GDPNP) suggests that, upon binding of the

50S subunit, the orientation of the CCA end of the tRNA changes

from the P/I1 state, pointing towards the A site of the peptidyl

transferase center (30S IC; this article), towards the P/I state,

which resides between the P and E sites (70S IC; [12]). The

position of the C2 domain of IF2 to which the fMet moiety of

fMet-tRNAfMet is bound changes accordingly. A somewhat

different P/I state was reported for the 30S IC from T. thermophilus

formed with GTP in the absence of IF3 [11], which may reflect the

known effect of IF3 on the stability of the tRNA binding to the 30S

IC. Alternatively, different P/I states may reflect the flexibility of

the CCA end of the tRNA. It is possible that all described P/I

positions can be sampled during the transition of the initiator

tRNA toward the final P site and are important for discrimination

of mRNAs with unfavorable TIR (see below).

The density in the cryo-EM map accounted for the entire IF2

and allowed us to map the domain contacts of the factor. As

expected, the C2 domain of IF2 binds fMet-tRNAfMet at the

single-stranded acceptor end and the fMet moiety of fMet-

tRNAfMet [53]. Kinetic studies suggested that IF2 binds to the 30S

subunit independent of the tRNA and recruits fMet-tRNAfMet to

the 30S IC [10]. The NTD of IF2 contacts IF1 and S12, the latter

interaction in line with the biochemical evidence suggesting that

the isolated NTD of E. coli IF2 can bind to the 30S subunit [9,34].

The ribosome-bound IF2 provides a large surface area for the

joining of the 50S subunit, which would dock in a correct position

for the activation of GTP hydrolysis in IF2.

IF1 binds at the A site of the 30S subunit [7]. On the ribosome,

IF1 from E. coli interacts with IF2, stabilizes IF2 binding [9], and

accelerates IF2-dependent fMet-tRNAfMet recruitment [1,2]. The

present results suggest that the stimulatory effect of IF1 may be

mediated by a direct contact with the NTD of IF2. In contrast,

thermophilic IF1 does not interact with the NTD of IF2 and does

not augment IF2 functions [54]; consistently, no direct contact

between IF1 and IF2 was found in the T. thermophilus 30S IC

reconstruction [11]. The NTD region is significantly shorter in IF2

from T. thermophilus compared to E. coli, suggesting that the IF1–

IF2 interaction is not universally conserved [54].

IF3 binds simultaneously to the fMet-tRNAfMet via IF3N and to

the 30S subunit at the 790 loop of 16S rRNA via IF3C. The position

of IF3C is consistent with hydroxyl radical probing data [17] which

located the IF3C binding site close to helices h23, h24, and h45 at

the 30S platform in the vicinity of the P site (Figure 5B). Mutation of

nucleotide 791 of h24 resulted in a 10-fold decrease of the affinity

for IF3 [55]. The 790 loop of h24, which by hydroxyl radical

footprinting was located in the vicinity of IF3C [17], was found in

contact with IF3C in our reconstruction. However, IF3N in the

present complex assumes an orientation that differs from previous

models and contacts the elbow region of fMet-tRNAfMet. Notably,

most of the footprinting probes from IF3N failed to cleave 16S

rRNA, making the previous placement of the N domain uncertain

[16,17]. In the cryo-EM reconstruction of the 70S IC [12], an extra

density at the platform of the 30S subunit was attributed to IF3.

Although no detailed modeling was carried out in that work, the

position of IF3N, contacting the elbow region of the initiator tRNA,

appears similar to our 30S IC. The position of IF3C in the 70S IC,

filling the space between helix H69 of the 50S subunit and initiator

tRNA and contacting the anticodon arm of fMet-tRNAfMet, seems

shifted compared to that in the present 30S IC reconstruction,

consistent with the necessity to remove IF3C from the binding site of

bridge B2b. The different IF3 positions in the 30S IC and 70S IC

may reflect the rearrangement of IF3C upon binding of the 50S

subunit; further structural work on the 70S IC complexes will be

necessary to substantiate this notion.

Implications for mRNA Selection
In E. coli, mRNAs typically contain a SD sequence of 5 nt or less

and a 5–9 nt spacer between the SD sequence and the initiation

codon [56]. Variations within the SD region or in the distance

between the SD sequence and the start codon strongly influence

the efficiency of translation [57,58]. Kinetic evidence suggested

that the regulation occurs at the step of the conversion of the 30S

IC into the translating 70S IC, i.e. 50S subunit joining and

dissociation of IF3 and IF1 [14], and that the ribosomes

discriminate against an mRNA with a strong SD sequence and

a short spacer to the start codon, such as the one used in this study.

The present structure suggests several potential mechanisms by

which the rate of 50S subunit joining may be regulated.

One very likely reason is the positioning of IF3C, which hinders

the formation of the intersubunit bridge B2b to the 50S subunit. In

this case, the rate-limiting step for 50S subunit association and IF3

release observed in kinetic experiments [14] may reflect an IF3

rearrangement—for example, the movement of IF3C away from

the 790 loop of 16S rRNA, which would allow the bridge to form.

Another possible mechanism for tuning 50S subunit joining is the

orientation of the 30S subunit head relative to the body, which is

rotated in the complex with IF3, but not in the 30S complex without

IF3 [11]. It is conceivable that the relative movement of the head of

the 30S subunit alters the formation of bridges during 50S subunit

joining, even though the body of the 30S subunit, IF2, and initiator

tRNA provide multiple docking interactions. Consistent with this

notion, kinetic experiments suggest that the omission of IF3 restores

the rapid 50S subunit joining even for 30S IC with an extended SD

sequence [14]. Yet another reason for slow 50S subunit joining may

be the particular orientation of IF2 and fMet-tRNAfMet observed in

the present 30S IC compared to the complex without IF3 [11] on an

mRNA with extended SD sequence; both orientations would be

compatible with 50S subunit joining, but one of them might be

more favorable. In this case, IF3 and IF1 may affect the positions of

fMet-tRNAfMet and IF2 through their respective direct contacts.

Apparently, a strong SD-ASD interaction stabilizes the 30S IC in

the given conformation, which is maintained through 50S subunit

joining [12] and the dissociation of IF1 and IF3 [13], and relaxes

only after GTP hydrolysis and dissociation of IF2 [26]. While most

of the structural and functional data published so far pertain to

mRNAs with a very strong SD [11–13,26,59], it would be

important in the future to obtain structures of initiation complexes

with other, more physiological mRNAs.

Materials and Methods

Preparation of the 30S IC
30S subunits from E. coli, IFs, and fMet-tRNAfMet were

prepared as described [14]. 30S subunits (0.1 mM), IF1 (0.3 mM),
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IF2a (0.2 mM), IF3 (0.3 mM), 002 mRNA (0.6 mM), fMet-

tRNAfMet (0.6 mM), and GDPNP (0.5 mM) were incubated at

37uC for 15 min in buffer A (50 mM Tris-HCl, pH 7.5, 70 mM

NH4Cl, 30 mM KCl, and 7 mM MgCl2). Immediately before grid

preparation and vitrification, the mixture was diluted to 30 nM

30S IC with buffer A containing 0.5 mM GDPNP.

Cryo-EM, Image Processing, and Image Classification
Thin carbon was floated onto Quantifoil grids (Quantifoil Micro

Tools GMBH, Jena, Germany). A 3.5-ml aliquot of the sample was

placed on each grid. Grids were blotted, plunge-frozen in liquid

ethane, and stored in liquid nitrogen until data collection. Low-

dose images were taken on Kodak SO-163 films in a JEM-2200FS

electron microscope (JEOL) operated at 200 kV at a magnification

of 50,000. Micrographs were scanned on a Z/I Photoscan scanner

(Zeiss) with a step size of 14 mm, resulting in a final pixel size of

2.82 Å. A collection of 238 micrographs was assigned to one of 28

defocus groups ranging from 0.6 to 4 mm underfocus. The 3D

reconstruction for the total set of images followed reference-based

projection matching in Spire-Spider package [60]. The final

resolution was determined by using the Fourier-shell correlation

curve with a 0.5 cut-off. Non-supervised maximum-likelihood

classification (ML3D) of the images was used from the Xmipp

package [29,61]. Based on the maxima of the probability functions

upon convergence of the likelihood optimization, the dataset was

separated into two groups. The data accounting for each group

were further refined separately, following the same procedure as

described for the total number of particles. Rigid-body fitting of

atomic coordinates was performed semi-automatically in Chimera

[62].

Modeling an Atomic Structure for IF2
Homology modeling was carried out using the Swiss-Model

server [63]. Since for the entire E. coli IF2 no homolog of known

structure was found, proteins and protein domains with the highest

sequence similarity corresponding to domains and sub-domains of

IF2 were searched by BLAST [64]. Parts of IF2 were modeled

based on the respective homolog structure. Residues 1–50 were

modeled using the N-terminal subdomain of IF2 from E. coli (pdb

code 1ND9; [65]); residues 51–185 with the dynamin-like protein

BDLP from Nostoc punctiforme (pdb code 2J68; [66]); residues 186–

390 with the homologous region of aIF2 from S. solfataricus (pdb

code 3CW2; [67]); residues 391–559 (corresponding to the G2

domain) and 560–672 (corresponding to the G3 domain) using the

IF2/eIF5B from M. thermautotrophicus (pdb code 1G7S; [33]);

residues 673–779 using the C1-subdomain of IF2 from B.

stearothermophilus (pdb code 1Z9B; [68]); and residues 780–890

(C2 domain) based on the fMet-tRNAfMet-binding domain of IF2

from B. stearothermophilus (pdb code 1D1N; [69]). Independent

rigid-body fitting of each modeled region into the IF2 density map

was performed using Chimera [62]. The initial relative positions of

domains was taken as described in the crystal structure for aIF5B

[33], taking into account the interaction between domain C2 of

IF2 and the initiator tRNA. Connecting residues were adjusted

using the Swiss-PDB Viewer software [70]. Molecular dynamics-

based flexible fitting of the assembled model was carried out by

Flex-EM software [71].

Accession Numbers
The cryoEM maps for the 30S?mRNA complex (class 1) and for

the 30S IC (class 2) have been deposited in the Electron

Microscopy Data Bank, http://www.ebi.ac.uk/pdbe/emdb/

(accession numbers 1770 and 1771, respectively).

Supporting Information

Figure S1 SD-ASD helix on cryo-EM maps. Cryo-EM map for

class 1 (A) and class 2 (B) after ML3D classification. The maps are

rendered semitransparent and fitted with crystal structure of 30S

subunit in the complex with mRNA (pdb code: 1JGO; [5]). The

SD-ASD helix from the crystallographic structure is shown in blue.

Labels: S7 and S11 indicate positions of ribosomal proteins; h,

head of the 30S subunit.

(TIF)

Figure S2 Sequence alignment of IF2 from E. coli with

sequences of proteins used for homology modeling. PDB codes

for the different atomic coordinates are indicated under the

designation of IF2.

(TIF)

Figure S3 Comparison of the current 30S IC map with previous

cryo-EM data from initiation complexes. (A) 30S IC with all three

IFs (present work, yellow) aligned with the 30S IC from T.

thermophilus lacking IF3 (green; [11]). (B) 30S IC and the isolated

density for tRNA?IFs extracted from the cryo-EM map of the 70S

IC from E. coli (blue) [12]. Labels: h, head of the 30S subunit; pt,

platform; sp, spur. Arrows point to the junction between fMet-

tRNAfMet and IF2.

(TIF)

Figure S4 Visualization of the density attributed to IF3 at

different thresholds. In panels (A) and (C) the cryo-EM map is

depicted solid; in (B) and (D) the map is semitransparent to show

the fitted atomic coordinates for IF3 domains: IF3N (pdb code:

1TIF; [36]) and IF3C (pdb code: 2IFE; [37]). The sigma values

used for the rendering are indicated. Thumbnail shows

orientation.

(TIF)

Figure S5 Comparison of the 30S conformation from class 1

(30S?mRNA) and class 2 (30S IC), both in semi-transparent

renderings, with 30S subunits coming from 70S ribosomes from E.

coli in rotated (red and solid) and non-rotated (green) states [52].

The conformation of the 30S in the 30S IC is closer to the rotated

state. The alignment between density maps was performed by

maximum overlapping in the body of the 30S subunits.

(TIF)
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