Validity of Resting Energy Expenditure Predictive Equations before and after an Energy-Restricted Diet Intervention in Obese Women

Jonatan R. Ruiz1,2, Francisco B. Ortega2,3, Gerardo Rodríguez4, Pilar Alkorta5, Idioa Labayen2,6*

1 Department of Physical Education and Sport, School of Physical Activity and Sport Sciences, University of Granada, Granada, Spain, 2 Unit for Preventive Nutrition, Department of Biosciences and Nutrition at NOVUM, Karolinska Institutet, Huddinge, Sweden, 3 Department of Medical Physiology, School of Medicine, University of Granada, Granada, Spain, 4 Department of Pediatrics, University of Zaragoza, Zaragoza, Spain, 5 Department of Nuclear Medicine, Hospital of Santiago Apóstol, Vitoria, Spain, 6 Department of Nutrition and Food Science, University of the Basque Country, Vitoria, Spain

Abstract

Background: We investigated the validity of REE predictive equations before and after 12-week energy-restricted diet intervention in Spanish obese (BMI < 40 kg/m²) women.

Methods: We measured REE (indirect calorimetry), body weight, height, and fat mass (FM) and fat free mass (FFM, dual X-ray absorptiometry) in 86 obese Caucasian premenopausal women aged 36.7 ± 7.2 y, before and after (n = 78 women) the intervention. We investigated the accuracy of ten REE predictive equations using weight, height, age, FFM and FM.

Results: At baseline, the most accurate equation was the Mifflin et al. (Am J Clin Nutr 1990; 51: 241–247) when using weight (bias: −0.2%, P = 0.982), 74% of accurate predictions. This level of accuracy was not reached after the diet intervention (24% accurate prediction). After the intervention, the lowest bias was found with the Owen et al. (Am J Clin Nutr 1986; 44: 1–19) equation when using weight (bias: −1.7%, P = 0.044), 81% accurate prediction, yet it provided 53% accurate predictions at baseline.

Conclusions: There is a wide variation in the accuracy of REE predictive equations before and after weight loss in non-morbid obese women. The results acquire especial relevance in the context of the challenging weight regain phenomenon for the overweight/obese population.

Introduction

The largest component of daily energy expenditure, especially in people with sedentary lifestyle, is resting energy expenditure (REE). To determine reliable REE measurements in obese individuals is important in order to establish reachable goals for dietary intervention and weight loss [1]. REE can be objectively and accurately measured through indirect calorimetry; however, their use is limited in most dietetic settings due to their high cost, the need of qualified and trained technicians and time constraints [2]. Hence, REE estimation by mathematical equations developed from direct or indirect calorimetry was frequently adopted as the major alternative method.

The validity of REE predictive equations is under debate, especially in obese individuals [3]. Indeed, it is likely that the inaccuracy of REE predictive equations in obese subjects might be one of the reasons explaining the low efficacy of low caloric diet treatments [4,5]. REE highly depends on body size and body composition, but considerable variability exists among individuals after taking into account several key variables such as age, sex, weight, height, fat free mass (FFM), fat mass (FM), sex-hormonal status or ethnicity [6,7,8,9,10]. Differences in the level of overweight/obesity, as well as the participants' age range are also potential factors explaining the accuracy/inaccuracy of the REE predictive equations and the differences observed in the few available studies [11,12,13,14].

Several studies have assessed the validity of REE predictive equations in overweight and obese subjects (body mass index (BMI) > 25 kg/m²) [3,13,16], and in morbid obese people (BMI > 40 kg/m²) [17,18]. Less studies have however examined the validity of REE predictive equations specifically in non-morbid obese women (BMI < 40 kg/m²) [3,15,19]. All these studies included women with a wide age range and examined pre-and post-menopausal women together despite previous reports showed that REE decreases with aging and may also decrease in women as a result of the menopause [20].

Evidence exists that weight loss leads to a reduction in REE beyond that explained by the decrease in FFM and FM. This phenomenon has been described as “adaptive thermogenesis” or...
“metabolic adaptation” [21,22]. Metabolic adaptation occurs when the body countravails energy restriction by decreasing REE [23]. This decrease is beyond the expected decrease in REE due to changes in body weight, which could account in part for the common cessation of weight loss observed after 12–20 weeks of energy restriction [24]. Our understanding of the molecular mechanisms that regulate energy homeostasis has increased remarkably over the past decade, however, little is known about the effect of energy restriction on adaptive changes in energy homeostasis. Moreover, the accuracy of REE predictive equations after a weight loss program and the consequent “metabolic adaptation” has not been thoroughly examined [12] despite its implication in the weight regulation after a dietary intervention and the challenging weight regain phenomenon in the overweight/obese population. Indeed, a variety of factors are known to influence weight maintenance in overweight and obese persons [25]. To better understand the accuracy of REE predictive equations in obese persons right after an energy intervention program may help to patients to prevent weight regain.

In the present study, we systematically searched for REE predictive equations including (or not) body composition measurements and compared the estimated vs. the measured REE before and after a 12-week energy-restricted intervention. Therefore, the purpose of this study was to investigate the validity of REE predictive equations before and after a 12-week energy-restricted diet intervention in Spanish obese, non-morbid pre-menopausal Caucasian women.

Methods
Participants
Participants were obese (BMI inclusion criteria: 30–39.9 kg/m²) pre-menopausal Caucasian women from Vitoria (North Spain), aged between 19 and 49 years, non-physical-active (<20 minutes on <3 days/week), and with stable weight (body weight changes <3 kg) over the last 3 months. None of them were enrolled in a weight loss program. Each participant underwent a comprehensive medical examination and laboratory tests for blood glucose, plasma proteins, red and white blood cells, platelets, and liver, thyroid, and kidney function. Exclusion criteria included history of cardiovascular disease or diabetes, pregnancy, total cholesterol levels >300 mg/dL (7.85 mmol/L), levels of triglyceride >300 mg/dL (3.38 mmol/L) and blood pressure >140/90 mmHg. We also excluded women under medication for hypertension, hyperlipidemia, hyperuricemia or other illness. Smoking, or use of oral contraceptives, was not considered an exclusion criterion. All women received verbal and written information about the nature and purpose of the survey, and all of them gave written consent for participation in the study. This study was in accordance with the Helsinki II Declaration and was approved by the Ethical Committee in Hospital at 8–9 a.m. in a fasting condition of at least 12 hours. The measurements were taken in peaceful and relaxing environment and at a constant temperature (~24°C) and humidity (~50%). Women were in a supine position and awake. After 30 min of rest, respiratory exchange measurements were determined by means of an open-circuit computerised indirect calorimeter (Vmax, Sensormedics, Germany) using a transparent, ventilated canopy-hood system and after daily calibration with a reference gas mixture (95% O₂, 5% CO₂). The first and final 5 min of each set were routinely discarded and the mean value of the remaining 20 min was used for the calculations, once the steady-state conditions were obtained. The coefficient of variation (CV) was <10%. If steady-state could not be maintained that long, a 10-min segment with CV<5% was accepted. This instrument has shown to be valid to assess REE and respiratory exchange ratio [30]. Urine was collected in the postabsorptive state to determine nitrogen output. REE was calculated from O₂ and CO₂ volumes, as well as from urine excretion nitrogen values, by using the formula of Weir and expressed as kcal/day as reported elsewhere [31,32,33].

Assessment of resting energy expenditure
Respiratory exchange measurements by indirect calorimetry were used to estimate REE following the recommended measurements conditions [29]. The participants were asked not to perform any intense physical activity the day immediately before the measurement. For each examination day (at baseline and 12 weeks after), participants arrived by car or bus at the Hospital at 8–9 a.m. in a fasting condition of at least 12 hours. The measurements were taken in peaceful and relaxing environment and at a constant temperature (~24°C) and humidity (~50%). Women were in a supine position and awake. After 30 min of rest, respiratory exchange measurements were determined by means of an open-circuit computerised indirect calorimeter (Vmax, Sensormedics, Germany) using a transparent, ventilated canopy-hood system and after daily calibration with a reference gas mixture (95% O₂, 5% CO₂). The first and final 5 min of each set were routinely discarded and the mean value of the remaining 20 min was used for the calculations, once the steady-state conditions were obtained. The coefficient of variation (CV) was <10%. If steady-state could not be maintained that long, a 10-min segment with CV<5% was accepted. This instrument has shown to be valid to assess REE and respiratory exchange ratio [30]. Urine was collected in the postabsorptive state to determine nitrogen output. REE was calculated from O₂ and CO₂ volumes, as well as from urine excretion nitrogen values, by using the formula of Weir and expressed as kcal/day as reported elsewhere [31,32,33].

Body composition
Body weight (±10 g) was measured after voiding using a digital integrating scale (SEGA 760). Height was measured to the nearest 5 mm using a stadiometer (SECA 220) at the start of the study. Body mass index (BMI) was calculated as weight (kg)/height (m)². Dual Energy X-ray Absorptiometry (DXA) measurements were performed within ±3 days of the pre- and post-intervention examinations. A DXA scanner 140 (HOLOGIC, QDR 4500W) with QDR software for Windows version 12.4 was used to estimate fat mass (FM) and FFM. All DXA scans, which were completed with the same device and software, were performed by the same qualified technician who was trained in the operation of the
between the predicted and measured REE, was examined by the agreement (mean difference ±1.96SD of the difference). The confidence intervals of the difference, and the 95% limits of agreement (mean difference ±1.96SD of the difference). The heteroscedasticity, that is, the association between the magnitude of the measurement (i.e. measured REE) and the difference between the predicted and measured REE, was examined by regression analysis, entering the absolute difference between the predicted and measured REE as dependent variable and the measured value as independent variable. Data were analyzed by using PASW (Predictive Analytics SoftWare, v. 18.0 SPSS Inc., Chicago, IL, USA).

Results
The characteristics of the study sample at baseline and after a 12-week energy-restricted diet intervention are shown in Table 2. Women had lower BMI, FM and FFM after the intervention (all P<0.001).

Table 3 shows (before and after 12-week diet intervention) the means and SD values of measured REE and estimated REE with the selected predictive equations, the percentage bias, the maximum values observed for negative errors (under-prediction) and positive errors (over-prediction), the RMSE (in kcal/d), and the percentage of under and over predictions. At baseline, we observed a significant bias in all the REE predictive equations (all P<0.05) except in the equation reported by Mifflin et al. [36] when using weight (bias: −0.2%, P=0.982), RMSE of 136 kcal/d, 74% of accurate predictions, 14% under-predictions and 12% over-predictions. The highest bias observed corresponded to the equation reported by Bernstein et al. [38] when including FFM

Table 1. Resting energy expenditure predictive equations.

<table>
<thead>
<tr>
<th>Reference</th>
<th>REE predictive equations</th>
</tr>
</thead>
<tbody>
<tr>
<td>HB1919 [34]</td>
<td>Weight (kg)×9.5634±Height (cm)×1.8406−Age (y)×4.6756+655.0955</td>
</tr>
<tr>
<td>Owen et al. [35] Weight</td>
<td>Weight (kg)×7.18±795</td>
</tr>
<tr>
<td>Owen et al. [35] Fat free mass</td>
<td>19.7×Fat free mass (kg)+334</td>
</tr>
<tr>
<td>Mifflin et al. [36] Weight</td>
<td>9.99×Weight (kg)+6.25×Height (cm)−4.92×Age (y)+166×Sex−161</td>
</tr>
<tr>
<td>Mifflin et al. [36] Fat free mass</td>
<td>19.7×Fat free mass (kg)+413</td>
</tr>
<tr>
<td>FAO/OMS/UNU [37] Weight</td>
<td>Age 18–30 y: 14.7×Weight (kg)+496</td>
</tr>
<tr>
<td>FAO/OMS/UNU [37] Weight and Height</td>
<td>Age 30–60 y: 8.7×Weight (kg)+82</td>
</tr>
<tr>
<td>FAO/OMS/UNU, [37] Weight and Height</td>
<td>Age 18–30 y: 13.3×Weight (kg)+334×Height (m)+35</td>
</tr>
<tr>
<td>FAO/OMS/UNU, [37] Weight and Height</td>
<td>Age 30–60: 8.7×Weight (kg)+25×Height (m)+865</td>
</tr>
<tr>
<td>Wejs & Vansant [19] Weight and Height</td>
<td>Weight (kg)×14.038+Height (cm)×4.498−Age (y)×0.977−221.631</td>
</tr>
<tr>
<td>Bernstein et al. [38] Weight</td>
<td>7.48×Weight (kg)−0.42×Height (cm)−3×Age (y)+844</td>
</tr>
<tr>
<td>Bernstein et al. [38] Fat free mass, Fat mass</td>
<td>19.02×Fat free mass+3.72×Fat mass−1.55×Age (y)+236.7</td>
</tr>
</tbody>
</table>

Table 2. Descriptive characteristics of the study participants before (baseline) and after a 12-week energy-restricted diet intervention.

<table>
<thead>
<tr>
<th>Age (y)</th>
<th>Weight (kg)</th>
<th>BMI (kg/m²)</th>
<th>Fat mass (kg)</th>
<th>Fat free mass (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>36.6</td>
<td>89.5</td>
<td>33.9</td>
<td>37.8</td>
<td>50.6</td>
</tr>
<tr>
<td>7.2</td>
<td>10.2</td>
<td>2.8</td>
<td>6.3</td>
<td>5.4</td>
</tr>
<tr>
<td>81.2</td>
<td>30.7</td>
<td>2.8</td>
<td>32.6</td>
<td>47.8</td>
</tr>
<tr>
<td>10.0</td>
<td>2.8</td>
<td>6.2</td>
<td>5.3</td>
<td></td>
</tr>
</tbody>
</table>

*BMI, body mass index; sd, standard deviation.

doi:10.1371/journal.pone.0023759.t002
After 12-week energy-restricted diet intervention, the equation reported by Owen et al. [35] when using weight was the one with the lowest bias (−2.1%, \(P = 0.044 \)), RMSE of 106 kcal/d, 81% accurate predictions, 12% under-predictions and 7% over-predictions. The equation reported by Mifflin et al. [36] when using weight and height (−20.1%, \(P < 0.001 \)), RMSE of 238 kcal/d, 13% accurate predictions and 87% under-predictions.

Percentage bias and RMSE at baseline and after the 12-week energy-restricted diet intervention of those women who completed the intervention (n = 78) is depicted in Figure 1 and 2, respectively. Both percentage bias and RMSE at baseline were significantly different compared to that observed after the 12-week diet intervention in all the studied REE predictive equations (all

<table>
<thead>
<tr>
<th>REE predictive equation</th>
<th>REE* kcal/d</th>
<th>SD</th>
<th>Bias¹</th>
<th>Maximum negative error¹</th>
<th>Maximum positive error¹</th>
<th>RMSE kcal/d</th>
<th>Accurate predictions¹</th>
<th>Accurate predictions²</th>
<th>Under predictions¹</th>
<th>Over predictions¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline (n = 86)</td>
<td></td>
</tr>
<tr>
<td>RMR measured</td>
<td>1564</td>
<td>172</td>
<td>−20</td>
<td>22</td>
<td>152</td>
<td>41</td>
<td>66</td>
<td>6</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>HB 1919 [34] Weight</td>
<td>1640</td>
<td>115</td>
<td>4.6</td>
<td>−20</td>
<td>22</td>
<td>152</td>
<td>41</td>
<td>6</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>Owen et al. [35] Weight</td>
<td>1438</td>
<td>73</td>
<td>−8.7</td>
<td>−32</td>
<td>9</td>
<td>185</td>
<td>23</td>
<td>53</td>
<td>56</td>
<td>0</td>
</tr>
<tr>
<td>Owen et al. [35] Fat free mass</td>
<td>1331</td>
<td>107</td>
<td>−17.3</td>
<td>−41</td>
<td>5</td>
<td>259</td>
<td>9</td>
<td>23</td>
<td>77</td>
<td>0</td>
</tr>
<tr>
<td>Mifflin et al. [36] Weight</td>
<td>1565</td>
<td>141</td>
<td>−0.2</td>
<td>−31</td>
<td>18</td>
<td>136</td>
<td>38</td>
<td>74</td>
<td>14</td>
<td>12</td>
</tr>
<tr>
<td>Mifflin et al. [36] Fat free mass</td>
<td>1410</td>
<td>107</td>
<td>−10.7</td>
<td>−33</td>
<td>10</td>
<td>192</td>
<td>24</td>
<td>40</td>
<td>59</td>
<td>1</td>
</tr>
<tr>
<td>FAO/OMS/UNU, [37] Weight and Height</td>
<td>1661</td>
<td>154</td>
<td>5.5</td>
<td>−18</td>
<td>26</td>
<td>182</td>
<td>37</td>
<td>58</td>
<td>6</td>
<td>36</td>
</tr>
<tr>
<td>FAO/OMS/UNU, [37] Weight and Height</td>
<td>1366</td>
<td>267</td>
<td>−17.7</td>
<td>−55</td>
<td>24</td>
<td>326</td>
<td>5</td>
<td>16</td>
<td>71</td>
<td>13</td>
</tr>
<tr>
<td>Wejs & Vansant, [19] Weight and Height</td>
<td>1726</td>
<td>163</td>
<td>9.1</td>
<td>−19</td>
<td>24</td>
<td>213</td>
<td>29</td>
<td>52</td>
<td>1</td>
<td>47</td>
</tr>
<tr>
<td>Berstein et al. [38] Weight and Height</td>
<td>1336</td>
<td>79</td>
<td>−17.1</td>
<td>−43</td>
<td>4</td>
<td>266</td>
<td>13</td>
<td>24</td>
<td>76</td>
<td>0</td>
</tr>
<tr>
<td>Berstein et al. [38] Fat free mass, Fat mass</td>
<td>1284</td>
<td>115</td>
<td>−21.9</td>
<td>−52</td>
<td>−1</td>
<td>302</td>
<td>3</td>
<td>8</td>
<td>92</td>
<td>0</td>
</tr>
<tr>
<td>Post 12-week diet (n = 78)</td>
<td></td>
</tr>
<tr>
<td>RMR measured</td>
<td>1403</td>
<td>144</td>
<td>−8</td>
<td>26</td>
<td>189</td>
<td>21</td>
<td>56</td>
<td>0</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>HB 1919 [34]</td>
<td>1559</td>
<td>114</td>
<td>10.0</td>
<td>−8</td>
<td>26</td>
<td>189</td>
<td>21</td>
<td>56</td>
<td>0</td>
<td>44</td>
</tr>
<tr>
<td>Owen et al. [35] Weight</td>
<td>1378</td>
<td>72</td>
<td>−1.7</td>
<td>−19</td>
<td>17</td>
<td>111</td>
<td>44</td>
<td>81</td>
<td>12</td>
<td>7</td>
</tr>
<tr>
<td>Owen et al. [35] Fat free mass</td>
<td>1276</td>
<td>105</td>
<td>−10.0</td>
<td>−30</td>
<td>10</td>
<td>156</td>
<td>23</td>
<td>45</td>
<td>54</td>
<td>1</td>
</tr>
<tr>
<td>Mifflin et al. [36] Weight</td>
<td>1641</td>
<td>141</td>
<td>14.4</td>
<td>−6</td>
<td>29</td>
<td>261</td>
<td>4</td>
<td>24</td>
<td>0</td>
<td>76</td>
</tr>
<tr>
<td>Mifflin et al. [36] Fat free mass</td>
<td>1355</td>
<td>105</td>
<td>−3.5</td>
<td>−21</td>
<td>15</td>
<td>103</td>
<td>38</td>
<td>82</td>
<td>14</td>
<td>4</td>
</tr>
<tr>
<td>FAO/OMS/UNU, [37] Weight and Height</td>
<td>1566</td>
<td>127</td>
<td>10.3</td>
<td>−6</td>
<td>25</td>
<td>204</td>
<td>23</td>
<td>51</td>
<td>0</td>
<td>49</td>
</tr>
<tr>
<td>FAO/OMS/UNU, [37] Weight and Height</td>
<td>1556</td>
<td>119</td>
<td>9.7</td>
<td>−6</td>
<td>25</td>
<td>194</td>
<td>26</td>
<td>54</td>
<td>0</td>
<td>56</td>
</tr>
<tr>
<td>Wejs & Vansant, [19] Weight and Height</td>
<td>1610</td>
<td>163</td>
<td>12.6</td>
<td>−12</td>
<td>27</td>
<td>238</td>
<td>10</td>
<td>32</td>
<td>1</td>
<td>67</td>
</tr>
<tr>
<td>Berstein et al. [38] Weight and Height</td>
<td>1170</td>
<td>112</td>
<td>−20.1</td>
<td>−45</td>
<td>−2</td>
<td>250</td>
<td>24</td>
<td>13</td>
<td>87</td>
<td>0</td>
</tr>
<tr>
<td>Berstein et al. [38] Fat free mass, Fat mass</td>
<td>1211</td>
<td>114</td>
<td>−16</td>
<td>−40</td>
<td>1</td>
<td>212</td>
<td>8</td>
<td>24</td>
<td>76</td>
<td>0</td>
</tr>
</tbody>
</table>

*As measured.
¹Mean percentage error between predictive equation and measured value.
²The largest underprediction observed with this predictive equation as a percentage of the measured value.
³The largest overprediction observed with this predictive equation as a percentage of the measured value.
⁴Percentage of women predicted by this predictive equation within 5% of the measured value.
⁵Percentage of women predicted by this predictive equation within 10% of the measured value.
⁶Percentage of women predicted by this predictive equation <10% of the measured value.
⁷Percentage of women predicted by this predictive equation >10% of the measured value.

doi:10.1371/journal.pone.0023759.t003

and FM (−25%, \(P < 0.001 \)), RMSE of 341 kcal/d, 5% accurate predictions and 95% under predictions.

Percentage bias and RMSE at baseline and after the 12-week energy-restricted diet intervention of those women who completed the intervention (n = 78) is depicted in Figure 1 and 2, respectively. Both percentage bias and RMSE at baseline were significantly different compared to that observed after the 12-week diet intervention in all the studied REE predictive equations (all
The bias observed with the equation reported by Mifflin et al. [36] changed from −0.35% at baseline to 14.4% after 12-week diet intervention (RMSE: 136 and 249 kcal/d, at baseline and after 12-week diet intervention, respectively). Similarly, the bias observed with the equation reported by Owen et al. [35] changed from −8.7% at baseline to −1.7% after 12-week diet intervention (RMSE: 185 and 106 kcal/d, at baseline and after 12-week diet intervention, respectively). The HB1919 equation [34] had a predicted REE within ±10% of the measured REE at both baseline (bias 4.6%, RMSE of 152 kcal/d, 66% accurate predictions, 6% under-predictions and 28% over-predictions) and post 12-week diet intervention (bias 10.0%, RMSE of 180 kcal/d, 56% accurate predictions and 44% over-predictions).

Figure 3 and 4 shows the Bland Altman plots for the Mifflin et al. [36] REE predictive equations, Figure 5 and 6 shows the Bland Altman plots for the Owen et al. [35] REE predictive equations, and Figure 7 and 8 shows the Bland Altman plots for the HB1919 [34] REE predictive equations. We observed heteroscedasticity in all equations (all \(P \leq 0.001 \)). There was an inverse association between the magnitude of the measurement (i.e. measured REE) and the difference of the predicted and measured REE.

Discussion

The results of this study indicate that the best equation to estimate REE before a weight loss program in obese (BMI: 30–39.9 kg/m\(^2\)) pre-menopausal Caucasian women is the equation reported by Mifflin et al. [36] when using weight, whereas the Owen et al. [35] equation (when using weight) is the best to estimate REE after a 12-week energy-restricted diet intervention in the same women. The Mifflin equation provides 74% accurate predictions before the diet intervention, yet, this level of accuracy cannot be reached after the 12-week diet intervention (24% accurate prediction). The Owen equation provides 81% accurate predictions after a 12-week energy-restricted diet intervention, although it only provides 53% accurate predictions at baseline. The average weight loss percentage in this study was close to 10%, which matches well the current clinical recommendations for overweight or obese persons [41,42]. These findings are clinically relevant and suggest that the best equation to estimate REE in Caucasian obese women greatly depends on whether the patient has recently participated or not on an energy-restricted diet intervention.

The Mifflin equation was derived from a sample of 498 men and women, which included non-obese, overweight and obese subjects and whose age ranged between 19 and 78 years. Several studies proposed this equation as the most valid to estimate REE in non-obese subjects aged 18 to 78 years (82% accurate predictions) [3], and in overweight and obese subjects aged 19 to 69 years (78% accurate predictions). There is some support also for using the Mifflin equation in European American females [43] and extremely obese females [17]. Likewise, Frankenfield et al. [14] in a validation study conducted in a cohort of 20 adults (12 women) aged 18 to 69 years, observed that 70% were within the range of agreement (±10% of measured REE). Weâs [15] tested the accuracy of 27 REE predictive equations in Dutch and U.S.
overweight (BMI between 25 and 40 kg/m²) adults (18–65 years) and reported that the Mifflin equation provided almost 80% accurate predictions for U.S. adults and performed well across sex and BMI groups; but, for the whole sample of Dutch adults, none of the equations reached this level of accuracy. Nevertheless, the Mifflin equation provided 68% of accurate predictions for obese Dutch women (n = 74 women aged <65 years) from this same sample. More recently, Weijs et al. [19] examined the validity of REE predictive equations in 536 normal weight to morbid obese Belgian women and showed that either the original Harris–Benedict (69% of accurate predictions) or the Mifflin equation (68% of accurate predictions) can be used with accuracy to predict REE across a wide range of body weight (BMI, 18.5–50 kg/m²). However, they noticed that the accuracy of both Harris–Benedict and the Mifflin equations was fairly low when considering the BMI range of 30–40 kg/m². Our results confirm and extend these findings, and provide more evidence for the use of the Mifflin equation in pre-menopausal, non-morbid obese women with weight stability of at least 3 months.

The observed variability in the accuracy of the Mifflin equation for predicting REE in obese women in the above mentioned studies could be explained by (i) the inclusion of both pre-menopausal and post-menopausal women; and (ii) the lack of control about weight stability during the previous months. REE decreases beyond values expected from body weight and body composition loses as result of energy restriction [24]. Thus, this metabolic adaptation could affect the validity of the equations which are derived from data of individuals with a stable energy balance. Interestingly, we observed that the error of all equations changed after losing ~9% of body weight and that we cannot use with accuracy the same equation before and after a weight loss program. Indeed, both percentage bias and RMSE at baseline were significantly different compared to those observed after the 12-week diet intervention in all the studied REE predictive equations. Moreover, the percentage of over-predictions increased after weight loss in all the predictive equations. Siervo et al. [12] explored the influence of losing at least 5% of body weight in the accuracy of REE predictive equations in 31 subjects, and reported that the Owen equation was the most accurate, which is in agreement with our own findings. However, no information regarding the energy restriction treatment (diet composition, duration of intervention, etc.) or study sample characteristics (i.e. sex, age and BMI range) was provided, which hamper further between study comparisons. Interestingly, the Mifflin equation using FFM after the 12-week diet intervention had similar accuracy than the Owen equation. As far as we are aware, ours is the first study examining the influence of an energy restriction treatment on the validity of REE predictive equations in a well...
characterized sample of obese pre-menopausal Caucasian women. Whether the best equation to estimate REE after an energy-restricted diet intervention varies depending on the length of the intervention is not known. Moreover, the possible variation in the validity of REE equations when weight loss is achieved through programs combining hypocaloric diet and exercise remains to be elucidated. Future studies should address these issues. Furthermore, future studies should also investigate which is the best REE

Figure 3. Bland Altman plots for the Mifflin et al. (34) for resting energy expenditure predictive equations in Spanish obese women before a 12-week energy-restricted diet intervention (baseline, n = 78). Solid line represents the mean difference (bias) between predicted and measured resting energy expenditure (REE). Upper and lower dashed lines represent the 95% limits of agreement (mean difference ±1.96 SD of the difference).
doi:10.1371/journal.pone.0023759.g003

Figure 4. Bland Altman plots for the Mifflin et al. (34) (weight) for resting energy expenditure predictive equations in Spanish obese women after a 12-week energy-restricted diet intervention (post 12-week diet intervention, n = 78). Solid line represents the mean difference (bias) between predicted and measured resting energy expenditure (REE). Upper and lower dashed lines represent the 95% limits of agreement (mean difference ±1.96 SD of the difference).
doi:10.1371/journal.pone.0023759.g004
predictive equation after a follow up period of, for instance, 3–6 months in women that followed an energy-restricted diet intervention.

The Harris-Benedict equation is one of the most commonly used in clinical practice and, as it is the oldest, has undergone the most extensive validation. An expert panel evaluated 25 of validation studies and showed that accurate REE predictions occurred in 45% to 80% of individuals and that REE overestimates occurred more frequently than underestimates [3]. We observed that the Harris-Benedict equation had 66% of accurate prediction (6% under-predictions and 28% over-predictions) with a bias of 4.6% at baseline, and 56% of accurate prediction (0% under-predictions and 44% over-predictions) with a bias of 10.0% after 12-week of energy-restricted diet intervention. It has been reported that this equation systematically overestimates REE by approximately 5% [12,14,36,44], which is

Figure 5. Bland Altman plots for the Owen et al. (33) (weight) for resting energy expenditure predictive equations in Spanish obese women before a 12-week energy-restricted diet intervention (baseline, n = 78). Solid line represents the mean difference (bias) between predicted and measured resting energy expenditure (REE). Upper and lower dashed lines represent the 95% limits of agreement (mean difference ±1.96 SD of the difference).

doi:10.1371/journal.pone.0023759.g005

Figure 6. Bland Altman plots for the Owen et al. (33) (weight) for resting energy expenditure predictive equations in Spanish obese women after a 12-week energy-restricted diet intervention (post 12-week diet intervention, n = 78). Solid line represents the mean difference (bias) between predicted and measured resting energy expenditure (REE). Upper and lower dashed lines represent the 95% limits of agreement (mean difference ±1.96 SD of the difference).

doi:10.1371/journal.pone.0023759.g006
in agreement with our results at baseline. In the current study, we extend these observations to the over-estimation of REE by the Harris-Benedict equation after 12-week of energy-restricted diet that reached the 10% of bias in obese women (RMSE of 180 kcal/d and 44% over-predictions).

Previous studies noted that the error in the prediction of REE was more likely in obese than in non-obese individuals [14,19]. In our study, we observed that there was an inverse association between the magnitude of the measurement (i.e. measured REE) and the difference between the predicted and the measured REE. Indeed, the error in the REE estimation increased when increasing the magnitude of REE, which is closely associated with body size. In consequence, the use of adjusted body weight in the prediction of REE for the calculation of energy content in the prescription of

Figure 7. Bland Altman plots for the HB 1919 (32) for resting energy expenditure predictive equations in Spanish obese women before a 12-week energy-restricted diet intervention (baseline, n = 78). Solid line represents the mean difference (bias) between predicted and measured resting energy expenditure (REE). Upper and lower dashed lines represent the 95% limits of agreement (mean difference ± 1.96 SD of the difference).

doi:10.1371/journal.pone.0023759.g007

Figure 8. Bland Altman plots for the HB 1919 (32) for resting energy expenditure predictive equations in Spanish obese women after a 12-week energy-restricted diet intervention (post 12-week diet intervention, n = 78). Solid line represents the mean difference (bias) between predicted and measured resting energy expenditure (REE). Upper and lower dashed lines represent the 95% limits of agreement (mean difference ± 1.96 SD of the difference).

doi:10.1371/journal.pone.0023759.g008
low caloric diets does not seem a reasonable maneuver in clinical
practice.

In agreement with other studies [14,15,19], we noted that the
inclusion of body composition (FFM and/or FM) did not improve
the accuracy of REE prediction while women were within a stable
weight period. Likewise, the most accurate predictive equation
after the 12-week diet intervention program, the Owen equation,
does not consider body composition. This is a relevant finding,
because weight derived equations are more feasible in clinical
practice. Only the Mifflin et al. equation that includes FFM was
enough accurate in predicting REE after weight loss in obese pre-
menopausal women.

Although this study has strengths, we acknowledge several
limitations. We did not measure sex hormones level to ensure that
women were at the same phase of the menstrual cycle at baseline
and after the dietary treatment. However, it is reasonable to think
that they were at almost the same phase; indeed we designed the
length of the treatment to be multiple of 4 weeks. Second, we did
not exclude participants if they smoked, Yet, smoking was not
allowed before performing the indirect calorimetry measurement
[29]. In our study conditions of measurement were strictly
controlled and standardized, which is certainly a strength.

Moreover, it is worth mentioning that our sample was more
homogeneous than other previously reported due to the strict
inclusion criteria and to the highly controlled intervention.
Women were Spanish Caucasian, non-diabetic and non-morbid
obese pre-menopausal women and followed an energy-restricted
diet with similar macronutrient composition based on Mediterra-
nean dietary habits, and whose energy content was estimated from
measured REE. The use of DXA to measure body composition
before and after weight loss should also be acknowledged.

In conclusion, this study shows that there is a wide variation in
the accuracy of REE predictive equations before and after weight
loss in non-morbid obese women. These findings are clinically
relevant and suggest that the best equation to estimate REE
greatly depends on whether the patient has recently participated
or not on an energy-restricted diet intervention. The results
acquire also special relevance in the context of the challenging
weight regain phenomenon for the overweight/obese population.
Our findings confirm that the best equation to estimate REE in
non-morbid obese, pre-menopausal women is the equation
reported by Mifflin et al. [36]. However, the equation that best
estimates REE in obese women after a 12-week energy-restricted
diet intervention is the equation reported by Owen et al. [35].

There is a need to develop best practices with focus on weight
regain [45], and understanding the accuracy of REE predictive
equations in obese individuals after an energy intervention
program may be such an example. Future studies in post-
menopausal women, in morbid obese women, in men, and in
other ethnicities are needed to further investigate the validity of
REE predictive equations before and after and energy-restricted
diet intervention so that the efficacy of weigh loss programs can be
improved.

Acknowledgments
The authors thank Raquel Ares, Lurdes Barrenetxea, Silvia Francisco,
Izaskun Felipe and Emilio Sanz for their contribution to the participant’s
recruitment and medical supervision of the study. Our profound gratitude
goes to all volunteers who spent much time in participating in this
demanding research study.

Author Contributions
Conceived and designed the experiments: IL JRR. Performed the
experiments: PA. Analyzed the data: JRR. Wrote the paper: IL JRR.

Criticaly discussed and revised the manuscript: JRR FOB GR PA IL.

References

 Why do obese patients not lose more weight when treated with low-calorie diets?
equations for resting metabolic rate in healthy nonobese and obese adults: a
 Meta-analysis of resting metabolic rate in formerly obese subjects. Am J Clin
5. Ravussin E; [1995] Low resting metabolic rate as a risk factor for weight gain: role
 of the sympathetic nervous system. Int J Obes Relat Metab Disord 19 Suppl 7:
 S8–S9.
 Determinants of 24-hour energy expenditure in man. Methods and results
 Asians can be attributed to body composition. Obesity (Silver Spring) 15: 2964–2973.
 Differences in resting energy expenditure between men and women:
 implications for the maintenance of weight loss. Int J Obes Relat Metab Disord
 World Health Organization equations have shortcomings for predicting
 resting energy expenditure in persons from a modern, affluent population:
 generation of a new reference standard from a retrospective analysis of a
 we use in normal-weight, overweight and obese women? Ann Nutr Metab 49:
 193–204.
 measurement in adolescents: comparison of skinfold thickness equations with
 established equations for resting metabolic rate in obese and nonobese people.
15. Weijs PJ (2008) Validity of predictive equations for resting energy expenditure
 in US and Dutch overweight and obese class I and II adults aged 18–65 y.
 energy expenditure in an adult Spanish population of obese adult population.
 Predicting energy expenditure in extremely obese women. J Parenter Enteral
 Prediction of resting energy expenditure in severely obese Italian women.
 expenditure in Belgian normal weight to morbid obese women. Clin Nutr 29:
 347–351.
 hormone suppression reduces resting energy expenditure and [beta]-adrenergic
 Metabolic and behavioral compensations in response to calorie restriction:
 Effect of 6-month calorie restriction on biomarkers of longevity, metabolic
 adaptation, and oxidative stress in overweight individuals: a randomized
 controlled trial. JAMA 8: 1539–1548.
 Effect of calorie restriction on resting metabolic rate and spontaneous physical
 activity. Obesity (Silver Spring) 15: 2964–2973.

