
GmcA Is a Putative Glucose-Methanol-Choline
Oxidoreductase Required for the Induction of Asexual
Development in Aspergillus nidulans
Oier Etxebeste1*, Erika Herrero-Garcı́a2, Marc S. Cortese1,3, Aitor Garzia1, Elixabet Oiartzabal-Arano1,

Vivian de los Rı́os2, Unai Ugalde1, Eduardo A. Espeso2

1 Department of Applied Chemistry, Faculty of Chemistry, University of The Basque Country. Manuel de Lardizabal, San Sebastian, Spain, 2 Department. Medicina Celular y

Molecular, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu, Madrid, Spain, 3 IKERBASQUE, Basque Foundation for Science, Plaza Bizkaia, Bilbao, Spain

Abstract

Aspergillus nidulans asexual differentiation is induced by Upstream Developmental Activators (UDAs) that include the bZIP-
type Transcription Factor (TF) FlbB. A 2D-PAGE/MS-MS-coupled screen for proteins differentially expressed in the presence
and absence of FlbB identified 18 candidates. Most candidates belong to GO term classes involved in osmotic and/or
oxidative stress response. Among these, we focused on GmcA, a putative glucose-methanol-choline oxidoreductase which
is upregulated in a DflbB background. GmcA is not required for growth since no differences were detected in the radial
extension upon deletion of gmcA. However, its activity is required to induce conidiation under specific culture conditions. A
DgmcA strain conidiates profusely under acid conditions but displays a characteristic fluffy aconidial phenotype in alkaline
medium. The absence of asexual development in a DgmcA strain can be suppressed, on one hand, using high
concentrations of non-fermentable carbon sources like glycerol, and on the other hand, when the cMyb-type UDA TF flbD is
overexpressed. Overall, the results obtained in this work support a role for GmcA at early stages of conidiophore initiation.
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Introduction

Aspergillus nidulans is a widely used model organism for

industrially or medically important filamentous fungi as well as

for the study of basic developmental processes in eukaryotes [1].

Since its discovery for science, Aspergillus has been exploited for

more than six decades to explore fungal genetics and cell biology

[2]. It is currently the reference organism in the study of asexual

development [3–5].

The life cycle of A. nidulans starts with the germination of spores,

forming vegetative hyphae that extend apically through the

deposition of new material at the tip [6]. This vegetative mode

of growth is maintained under optimum nutritional and environ-

mental conditions but the exposure of the mycelium to an air

interphase [3,7], light [8,9] and/or nutrient starvation [10,11]

may activate different signaling pathways which transduce these

signals into intracellular cues, ultimately resulting in the activation

of brlA expression. brlA is the master gene for the production of

asexual reproductive structures called conidiophores (see referenc-

es within [4,5,12]). Generation of a conidiophore comprises the

ordered formation of six well differentiated cell types: the foot-cell,

the stalk, the vesicle, primary sterigmata (metulae), secondary

sterigmata (phialides) and long chains of asexual spores (conidia)

[13].

Some of the genes whose products are involved in the

transduction of environmental signals and the activation of the

asexual development process have been previously identified ([3,5]

and references therein). Loss-of-function mutations in these genes

yield a ‘‘fluffy’’ aconidial phenotype that is manifested as masses of

vegetative cells and the absence of cell differentiation. From the

genetic point of view, the fluffy phenotype is associated with the

inability to induce the expression of the C2H2-type transcription

factor brlA, the first conidiation-specific TF [3]. Hence, those

regulatory elements acting at this level are generally known as

Upstream Developmental Activators (UDA; [5]). FluG is an UDA

factor necessary for the synthesis of the terpene dehydroaustinol

[14]. This compound, assisted by the orsellinic acid derivative

diorcinol, is thought to be required to inhibit the repressive effect

on conidiation of the transcription factor (TF) SfgA [15] and

consequently activate a set of inducers of development. The bZIP-

type TF FlbB and its partner FlbE form a complex at the

Spitzenkörper of vegetative cells [16,17], where they could play a

sensory function [16,18]. Jointly with FlbB, the cMyb-type TF

FlbD binds the brlA promoter and activates asexual development

[19]. The C2H2-type TF FlbC activates brlA expression through a

pathway parallel to that defined by FlbB and FlbD [20].

The understanding of the molecular mechanisms underlying the

asexual reproductive process requires a deeper study of the
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functional relationship among UDA factors as well as the

identification of additional regulatory/signalling functions or

associated metabolic elements acting at this level. In this study, a

2D-PAGE/MS-MS-coupled screening of proteins with altered

cellular levels in the absence of the UDA factor FlbB revealed that

one of them was GmcA, a predicted glucose-methanol-choline

oxidoreductase. In addition, our results show that GmcA is

required in the process of induction of asexual development under

specific environmental conditions.

Results

Identification of Proteins with Altered Concentration
and/or Stability in the Absence of FlbB Activity

To identify proteins with altered cellular levels in the absence of

the UDA factor FlbB, we used the following proteomic approach.

Total protein extracts were obtained from mycelia of DflbB and its

parental wild-type, TN02A3, strains and separated using two-

dimensional protein electrophoreses (2D-PAGE). Since UDA

genes are expressed during vegetative phase and all evidence

indicates that they play a role at this stage in the signaling leading

to conidiation [4,5], protein extracts were obtained from

vegetative cultures. From more than 200 spots detected in each

2D-PAGE gel, we selected 21 displaying differential intensity: 6

had a higher intensity in the DflbB strain protein extract

(calculated WT/DflbB volume ratio of those spots, VWT/VDflbB,

lower than 0.8 in all cases) while 15 had a lower intensity (VWT/

VDflbB higher than 1.2). Proteins in those spots were identified by

mass spectroscopy with the sole exception of spot-16 (Figure 1A;

Table S1). Candidates from searches using the A. nidulans protein

database yielded high scores, in the range of 238 and 1090. The

identified peptides from each spot covered between 41 and 91

percent of their respective candidate sequences.

GO term classification for each candidate is shown in Table S1.

In the protein extract from a null flbB strain we found reduced

amounts of a number of enzymes that participate in glycolytic and

gluconeogenic reactions (spots 8, 12, 15 and 20), reduced levels of

the NADP+-dependent glycerol dehydrogenase (spot-14), involved

in glycerol and arabinose metabolism, and of three enzymes that

catalyze different reactions from pentose metabolism (spots 13, 19

and 21). Finally, spots 9, 10 and 11 corresponded to different

isoforms of citrate synthase and spots 7 and 18 were related to

enzymes involved in amino acid metabolism.

Among candidates directly or indirectly repressed through FlbB

regulatory activity, spots 1 and 5 corresponded to enzymes from

galactose metabolism and the pentose cycle, respectively, while

spots 2 and 3 were identified as a pyruvate decarboxylase. Spot-6

is a NADP-specific glutamate dehydrogenase involved in the

synthesis of glutamine-derived amino acids. These results suggest

that the presence of FlbB in the cell has an influence in the pattern

of carbon metabolism during vegetative growth, from glycolytic to

gluconeogenic pathways. This influence extends to amino acid

biosynthesis. The above mentioned proteins detected in our assay

quantitatively represent major metabolic processes, rather than

those elements which are expressed in small amounts or are

restricted to specific compartments. For example, we could not

detect FlbD among the above proteins, despite the fact that this

TF has been proven to be directly regulated by FlbB [19].

Among the proteins discovered in this screen, we detected one

with hitherto unreported importance in the induction of conidia-

tion. The product of gene An8547 (corresponding to spot-4)

predictably encodes a glucose-methanol-choline oxidoreductase

(hereafter referred to as GmcA) with a proposed role in stress

response [21,22].

UDA Pathway Regulates AN8547/gmcA Expression
GMC proteins are, in general, involved in the oxidation of

aromatic and aliphatic alcohols to aldehydes. Usually oxygen, O2,

acts as an electron acceptor and the reaction generates H2O2 as a

product [23]. Interestingly, air exposure is one of the main stimuli

that induces development in Aspergillus nidulans [3] while reactive

oxygen species (ROS) like H2O2 have widely been linked to

development in fungi [24,25]. In addition, members of the GMC

family of enzymes are implicated in the control of diverse aspects

of development in higher eukaryotes (see discussion; [26,27]).

Thus, we decided to investigate the role of An8547/gmcA in A.

nidulans conidiophore development. Firstly, we confirmed by

Northern-blot experiments that An8547/gmcA expression is

dependent on FlbB function, and that of its interacting UDA

partner FlbE, since both act in a concerted manner [17]. In a wild-

type background, gmcA transcript levels are low in vegetative

hyphae, increase six hours after the induction of conidiation and

return to basal levels again as conidiophore development proceeds

(Figure 1B). We noticed higher gmcA levels at the same

developmental stage in the absence of either element of the

FlbB/FlbE apical complex that regulates asexual reproduction.

Moreover, there was no return to basal expression levels

thereafter. Consistent with the accumulation of An8547/gmcA

transcript in flbB or flbE null backgrounds, Western blots showed

increased levels of a GmcA-HA3x tagged protein in a null flbB

background (Figure 1C). These results confirm the data from the

2D-PAGE screen and suggest that gmcA expression is heightened

and mis-scheduled when specific UDA activities are lost.

Modulation of gmcA transcript levels during early conidiogenesis

points to a specific role for this putative oxidoreductase in the

asexual differentiation program.

An8547 Codes for a Novel Fungal Specific GMC
Oxidoreductase

Prior to evolutionary and domain architecture analyses, we

confirmed that the gmcA cDNA sequence matched that predicted

at the Aspergillus Genome Database (http://www.aspgd.org/;

NCBI GenBank accession number CBF80774). The cDNA

sequence was deposited at the GenBank database with the

accession number JN872213.

GmcA, a 576 amino acids polypeptide, encodes the two Pfam

domains [28] that define the GMC family: pfam05199 (GMC

oxred C) and pfam00732 (GMC oxred N) at E values of 8.4240

and 7.1265, respectively (Figure 2A). Additionally, the sequence

also encodes all defining residues of Prosite motif PS00624

(GMC_OXRED_2), 10 of the 12 defining residues of Prosite

PS00623 (GMC_OXRED_1) and the ADP-binding beta-alpha-

beta fold involved in FAD binding [29,30]. BLAST searches

revealed high similarities with a large number of GMCs in the

NCBI nr database. Restricting the search to Protein Data Bank

proteins revealed that GmcA had high homology to several

proteins from GMC clade 1 described by [23], which includes,

among other types, alcohol and glucose oxidases and alcohol,

glucose, sorbose and choline dehydrogenases. The phylogenetic

analysis of the 27 clade 1 GMCs plus GmcA resulted in a

phylogenetic tree that placed GmcA next to an aryl-alcohol-

oxidase (PerynAAO; Table 1; [31]) and between CboinAOX and

AnigeGOX (alcohol and glucose oxidases, respectively; Figure 2B;

[32]).

More detail of the sequence divergence between GmcA and

related sequences was sought by aligning the AOX and AAO

sequences along with the two most closely related GOX proteins.

As the FAD cofactor binding domain is highly conserved across all

GMCs while the substrate binding domain (SBD) is highly

Role of GmcA Oxidoreductase in Conidiation
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variable, the A. nidulans GmcA sequence was partitioned into the

cofactor and substrate binding domains (Figure 2A). After

alignment of the six sequences, the sequence blocks comprising

the SBD were boxed and residue identity and similarity were

highlighted (Figure 3). The alignment clearly shows that substan-

tial differences exist in the SBD regions of the four different types

of GMCs. These differences range from residue conservation to

insertions and/or deletions. Furthermore, composition analyses

comparing GmcA to other known GMCs revealed that GmcA

sequence is enriched in cysteines and that the SBD contains 20 of

the 22 histidines in GmcA (see Text S1 and Table S2). Six

orthologs (among the 26 GMC sequences with BLAST E values of

zero) exhibited positional conservation equal to or greater than

85% for both histidine and cysteine residues. Interestingly, these

same six fungal species are predicted to contain a functional FlbB/

FlbE complex for the signaling of conidiation [33]. In light of these

results, we propose that GmcA defines a new subfamily of GMC

proteins restricted to ascomycota, close in evolution to AAO,

GOX and AOX proteins, and the substrate of which is likely an

alcohol.

GmcA is not predicted by SignalP [34] to contain a signal

sequence as do seven of the 27 Zamocky clade 1 GMCs [23],

including AnigeGOX, PamagGOX and PerynAAO ([35];

Figure 2B). This suggests that GmcA is not likely to be exported,

similarly to PpestAOX and CboinAOX. These in silico predictions

are supported by the observation of GmcA::GFP chimera

dispersed throughout the hypha, without any visible accumulation

in defined cellular regions or compartments, and not excluded

Figure 1. Regulation of An8547 by the UDA pathway. A) 2D-PAGE images from wild-type (TN02A3) and DflbB (BD143) strains grown in liquid
MMA medium for 18 hours. Every spot analyzed by mass spectroscopy is marked by white dotted circles and the corresponding number. Locus
identification and GO term classification for proteins in each spot is shown in Table S1. B) Northern blot experiment comparing An8547 expression
levels in the transition of vegetative to asexual development (18 hours of vegetative growth, labeled as 0, and 6, 12, 24 and 48 hours after the
induction of conidiation) in the parental wild-type (TN02A3), DflbB (BD143) and DflbE (BD142) genetic backgrounds. RNA samples were obtained from
mycelia grown using ammonium (10 mM) as the main nitrogen source. Ribosomal RNAs (rRNA) are shown as a loading control. C) Western-blot
experiment comparing GmcA-HA3x levels from DflbB (BD142) and the parental wild type (TN02A3) vegetative mycelia (18 hours), both grown in liquid
MMA containing either ammonium (10 mM; left) or nitrate (80 mM; right) as the main nitrogen source. Levels of hexokinase (Hxk) were used as a
loading control.
doi:10.1371/journal.pone.0040292.g001
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from nuclei (not shown). The same distribution was exhibited in

media with different nitrogen sources and during the formation of

conidiophores. We predict an intracellular role for GmcA because

a HA3x-tagged version was not detected in the culture medium.

GmcA is Required for the Onset of Conidiophore Genesis
With the aim of exploring the function of GmcA during the

development of asexual structures we generated strains carrying a

null allele of gmcA, DgmcA, and the double null DflbB;DgmcA. When

cultured in standard minimal medium (MMA), containing glucose

and nitrate as main carbon and nitrogen sources respectively, we

observed that GmcA is not required for radial growth (Figure 4A).

However, a DgmcA mutant showed a visible defect in conidiation

compared to an isogenic wild-type strain. This aconidial pheno-

type is the results of loss of GmcA function, as proved a

reconstituted strain carrying an ectopic copy of gmcA integrated at

the pyroA locus (Figure S1). In addition, we verified that this effect is

specific for the loss of GmcA activity, since the deletion of An7832/

gmcT, a GMC-family protein with high homology (E = 2e218,

27% identity, 41% positive over 70% overlap) with respect to

GmcA, did not result in a loss of conidiation capability (not

shown). This aconidial phenotype of DgmcA mutants is different in

these conditions to that exhibited by a null flbB strain and such

fluffy phenotype is not altered in a DflbB;DgmcA double null strain

(Figure 4A).

To determine whether GmcA acts at the induction level or

during the formation of conidiophore cell types we compared the

developmental programs of the parental wild type, DflbB, DgmcA

and double null (DflbB; DgmcA) strains under inducing conditions

in submerged cultures. Spores of all strains were initially

inoculated and cultured in fully supplemented liquid minimal

medium (MMA) and, then, transferred to carbon or nitrogen

Figure 2. Characterization of Aspergillus nidulans GmcA sequence. A) Domain, conserved motif location and residue enrichments in A.
nidulans GmcA sequence. Gray: Sequence comprising the SBD of GmcA as identified by homology modeling of the GmcA sequence on the PDB 3FIM
structure (PerynAAO). Dark blue diamonds: Cysteine residues. Green diamonds: Histidine residues. PF00732 and PF05199: GMC N- & C-term Pfam
motifs, respectively. Light blue: Prosite (PS) motifs and the bab dinucliotide binding motif. B) Inferred unrooted phylogenetic tree of 27 GMC
sequences from the first clade of [23] plus the A. nidulans GmcA sequence. GMCs with predicted signal sequence are labeled with SS. Bootstrap
support values calculated from 100 trees are indicated at relevant nodes.
doi:10.1371/journal.pone.0040292.g002
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starvation media, that is lacking either glucose or nitrate (see

Experimental procedures; Figure 4B). Consistent with previous

studies, nutrient starvation induced the development of complete

conidiophores in cultures of the wild type strain, bearing all cell

types under nitrogen starvation (FC; Figure 4B) and 2–3 phialides

with short chains (SC) of conidia under carbon starvation (SC;

Figure 4B; row 1; [11,36]).

In the DgmcA strain, nitrogen starvation conditions, using

glucose as the main carbon source, induced the production of

complete, wild-type like, conidiophores (Figure 4B, column 2; row

3). These results contrasted with the absence of cell differentiation

or the production of any kind of conidiating structures by the DflbB

strain (Figure 4B, column 2; row 2; previously described in [36]).

The effect of carbon starvation was studied using two different

nitrogen sources: ammonium and nitrate (Figure 4B; columns 3

and 4, respectively). In both growth conditions, the wild-type

parental strain produced SCs. However, the DgmcA strain

produced SCs only when ammonium was used while it barely

generated single spores arising directly from phialide-like struc-

tures [36] when nitrate was used (C; Figure 4B). The double null

strain did not produce any type of asexual structures in the

conditions studied, suggesting a complete block of asexual

developmental program when both flbB and gmcA were deleted

(Figure 4A and 4B).

These results using liquid media show that GmcA is required for

the induction of asexual development in nitrate-containing

medium, but not for the synthesis of any of the cell types that

form the conidiophore. These differences between DgmcA and

DflbB aconidial phenotypes prompted us to study additional

specificities of GmcA activity comparing to the UDA pathway.

GmcA is Required for the Synthesis of an Extracellular
Metabolite Involved in the Induction of Conidiation

The presence in the medium of certain extracellular metabolites

precedes the process of asexual development and these compounds

act in trans when produced by different fungal strains [37]. This

means that some strains can restore conidiation upon physical

contact with specific aconidial mutants (see a scheme of the

experiment in Figure 5A and Materials and Methods). To analyze

whether GmcA, as described for FluG or FlbB [37], is involved in

the synthesis of an extracellular metabolite required to induce

conidiation, we checked the restoration of conidiation upon

physical contact between DgmcA and DflbB strains. We used strains

Table 1. Zamocky Clade 1 GMCs plus A. nidulans GmcA.

Abbreviation NCBI Accession N. Species
References used in [23]
Abbreviation Accession*

AniduGMCA CBF80774 Aspergillus nidulans – –

AtumeGMC NP_396582 Agrobacterium tumefaciens Atumef GMC (NP_536181)

AborkADH CAC38030 Alcanivorax borkumensis Aborkum ADH

AmellGOX BAA86908 Apis mellifera Amellifera GOX (AB022907)

AnigeGOX AAA32695 Aspergillus niger Aniger GOX (J05242)

AgambGMC EAA08043 Anopheles gambiae Anopheles putative ORF –

BjapoGMC NP_769660 Bradyrhizobium japonicum BradyjaGMC –

CboinAOX Q00922 Candida boinidii Cboinidii AOX –

CcresGMC AAK22929 Caulobacter crescentus CcresGMC –

CelegGMC Q18429 Caenorhabditis elegans Celegans GMC –

DmelaGlucDH NP_477503 Drosophila melanogaster Dmelanogaster GlucDH (NM_058155)

DpseuGlucDH AAA28572 Drosophila pseudoobscura Dpseudoobscura GlucDH (M29299)

DradiGMC NP_294689 Deinococcus radiourans DradiGMC –

EcoliCHD NP_414845 Escherichia coli Ecoli CHD –

GoxydSDH BAA13145 Gluconobacter oxydans Glucoxyd SDH –

HelonCHD CAB77176 Halomonas elongata Helongata CHD (Q9L4K0)

HsapiCHD NP_060867 Homo sapiens Hsapiens CHD (XP_040608)

MlotiDH NP_102692 Mesorhizobium loti Mloti DH –

MtubeGMC NP_335763 Mycobacterium tuberculosis MtuberGMC –

PamagGOX AAD01493 Penicillium amagasakiense Penicillium GOX (AF012277)

PerynAAO O94219 Pleurotus eryngii Pleurotus AOX (AAF31169)

PpastAOX XP_002493556 Pichia pastoris Ppastoris AOX (P04842)

PoleoADH Q00593 Pseudomonas oleovorans Pseudomonas ADH –

PaeruCHD NP_254059 Pseudomonas aeruginosa Pseudomonas CHD –

RsolaADH NP_518244 Ralstonia solanacearum Rsolananac ADH –

RsolaCHD CAD17133 Ralstonia solanacearum Rsolan CHD –

SmeliSDH AAK65431 Sinorhizobium melioti Smelioti SDH –

SterrPEGDH BAB61732 Sphingopyxis terrae Sterrae PEG-DH –

*Referenced in [23] but have since been superseded.
doi:10.1371/journal.pone.0040292.t001
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producing different spore colors to easily visualize the trans-

induction of asexual development. Complete medium (MCA; see

Materials and Methods) supplemented with 80mM nitrate was

used in these experiments to achieve an extreme DgmcA aconidial

phenotype (see next section). We found that conidiation of the

DgmcA strain was rescued when in contact with a wild-type strain,

similarly to what was determined for DfluG or DflbB mutants

([3,36]; Figure 5B, left block, rows 1, 2 and 3, respectively). We

also verified that a DflbB mutant unidirectionally restored

conidiation in the fluG loss-of-function mutant, as reported

([36,37]; Figure 5B; right block, row 1). In addition, no conidiation

was observed upon physical contact of two DgmcA strains (not

shown).

Bidirectional restoration of conidiation was observed between a

DgmcA strain in contact with either flbB- or DfluG mutants

(Figure 5B, right block, rows 2 and 3, respectively). These results

suggest that the null gmcA strain produces both FluG and FlbB

signals, and that the corresponding DfluG and flbB- strains

produced the metabolite linked to GmcA activity.

In view of these results, we also tested a DtmpA strain. The

transmembrane protein TmpA participates in the control of

conidiation in a different pathway to that defined by FluG [38].

However, we observed again the bidirectional restoration of

conidiation when both DtmpA and DgmcA mutants were in contact

(not shown). Thus, these results suggest that GmcA either does not

act in the synthesis of the signaling molecules controlled by the

abovementioned genes or it is linked with these synthesis pathways

through non-hierarchical relations.

GmcA Participates in Conidiation at Alkaline Ambient pH
To determine the environmental context that requires GmcA

activity, we examined the conidiation pattern of the DgmcA strain

in solid media of varying compositions (Figure 6A). The

conidiation defect of the DgmcA mutant became more severe at

increasing concentration of nitrate (80 mM; Figure 6A; upper

panel) but was almost suppressed when ammonium was used as

the nitrogen source (Figure 6A; lower panel; see spore production

on the right). The DflbB strain remained fluffy with a barely

measurable production of conidia in all conditions tested

(Figure 6A).

Since nitrate assimilation causes an overall consumption of

protons [39] and, hence, alkalinization, we used urea as the main

nitrogen source to maintain the growth medium at a constant pH

[39]. In these conditions, we analyzed the phenotype of a DgmcA

strain when cultured in media buffered at pH values of 5, 7 or 9.

Figure 6B shows that this strain conidiated at a rate 500 fold

greater at pH 5 than at pH 9, while the wild type presented a 10

fold difference. We confirmed that the variations in medium pH

were minimal (,0.5) after incubation at all the set pH values.

These results indicate that GmcA activity is principally required at

alkaline pH values (see discussion).

GmcA Requirement for Conidiation Under Alkaline
Conditions is Overcome Using Alternative Carbon
Sources to Glucose

Previous work described transcriptional and translational

changes in gmcA and the derived protein levels upon menadione

exposure [22]. This suggests a putative role of GmcA in the A.

nidulans response to oxidative stress, and probably additional

abiotic stresses. Thus, we followed the DgmcA phenotype under

oxidative but also osmotic and saline stresses. To prevent the use of

urea as both carbon and nitrogen sources, we induced medium

alkalinization with 80 mM nitrate, conditions in which the null

gmcA strain exhibits a marked aconidial phenotype. The addition

of dihydrogen phosphate as salt-stress inducer (Figure 7A; second

column) or sucrose as osmotic-stress inducer (Figure 7A; third

column) increased conidia production while the addition of

compounds causing oxidative stress such as hydrogen peroxide

(Figure 7A; fourth column) or menadione (not shown) did not and

neither caused any defect on the growth of the null gmcA mutant,

so the activity of this enzyme is not essential to mediate response to

these stresses for colony growth.

It has recently been shown that the ratio of asexual and sexual

structures is altered in a veA wild-type background when glucose

concentration is increased from 1 to 2% [10]. By comparing the

DgmcA aconidial phenotype in both veA1 and wild-type veA

backgrounds with the corresponding isogenic wild-type strains

(under constant light or darkness), we observed no phenotypic

changes, and concluded that the role of GmcA in the induction of

conidiation is not VeA-dependent (not shown). However, we

wanted to study the effect of increasing concentrations of different

compounds by using glucose as fermentable and glycerol as non-

fermentable carbon sources. For a more detailed analysis, carbon

sources were added in order to render equimolar carbon

concentrations. Nitrate was used again as the nitrogen source

instead of urea and the pH of the medium was confirmed to be

8.060.5 at the incubation times shown in Figure 7B. In a range

glucose concentrations (0.3; 0.5; 1; 2 and 5%) the DgmcA fluffy

phenotype was not altered (lower 0.5% and upper 5% limits of the

range shown in Figure 7B, rows 1 and 3, respectively). DgmcA also

remained fluffy at 1, 2 and 5% glycerol but produced three times

more conidia than the wild type at 10% glycerol (Figure 7B, rows

2 for 1% glycerol and 4 for 10%, respectively). The effect of these

specific carbon sources is demonstrated because colonies of a DflbB

strain remained aconidial in all cases. The effect of high glycerol

concentrations on the DgmcA phenotype could be derived from a

re-organization of metabolic pathways, eliminating the require-

ment of GmcA activity to induce brlA expression. Alternatively, the

high osmolarity induced by the excess of glycerol could provoke on

the DgmcA strain a similar response to that induced by 1M sucrose

(Figure 7A).

brlA is Induced in the DgmcA Strain in Medium with High
Glycerol Concentrations

The suppression of the DgmcA aconidial phenotype under

specific environmental conditions, i.e. 10% glycerol when 80 mM

nitrate is used or 10 mM ammonium when 1% glucose is used,

may be interpreted as resulting from the induction of brlA

expression. To verify this, we analyzed brlA mRNA levels under

conditions previously shown to promote or repress conidiation in

the DgmcA strain. Firstly, we checked the results shown in

Figure 7B. Total RNA samples were extracted from mycelia of

wild-type and DgmcA strains, grown in liquid (vegetative, 18 h, 0

time at figures) or solid (asexual; 6 h, 12 h and 24 h; see Materials

and Methods) MMA supplemented with 80 mM nitrate and

varying concentrations of glucose or glycerol. Figure 8A confirmed

Figure 3. Alignment of GmcA sequence with the five most closely related GMCs based on phylogenetic analysis. Invariant residues are
displayed in red background while conserved residues are in yellow. The non-contiguous sequence comprising the substrate binding domain is
boxed in red. Table 1 gives the reference for each sequence. Cysteine and histidine residues are marked with blue and green stars, respectively.
Residue numbering is for the Aspergillus nidulans GmcA sequence.
doi:10.1371/journal.pone.0040292.g003
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Figure 4. Phenotype characterization of DgmcA strain on solid and liquid media. A) Colonial growth and conidiation pattern of the DgmcA
(BD429) and DflbB;DgmcA (BD431) strains compared to their respective parentals (TN02A3 and BD177, respectively) at 48, 72, 96 and 120 hours of
culture on MMA supplemented with nitrate (10 mM) and glucose (1% w/v). Scale bar = 1.5 cm. B) Nutrient starvation induction of conidiating
structures in mycelia from wild-type (row 1), DflbB (row 2); DgmcA (row 3) and the double null (DflbB;DgmcA) (row 4) strains. Mycelia were cultured for
18 hours at 37uC in MMA and subsequently transferred for additional 20 hours to standard MMA (Control; column 1), MMA without nitrogen (column
2) or MMA without carbon and ammonium (column 3) or nitrate (column 4) as nitrogen sources. FC: Fully developed Conidiophores. SC: Simplified
Conidiophores. C: Single conidia emerging from a vegetative cell. Scale bar = 50 mm.
doi:10.1371/journal.pone.0040292.g004

Figure 5. Extracellular complementation assays for conidiation induction. A) Schematic representation of the procedure followed in
extracellular complementation experiments and the interpretation of possible results. B) Contact zones and magnifications of selected regions are
shown for different combinations of strains. On the left, DgmcA (BD429; green spores; top), DfluG (TTA127.4; yellow spores; middle) or DflbB (BD143;
green spores; bottom) null mutants are assayed against the wild type (yellow, MAD782, or green, FGSC26, colored) strains. On the right, contact
regions and respective magnifications of selected regions are shown between DfluG (TTA127.4; yellow) and DflbB (BD143; green; top), DgmcA (BD429;
green) and flbB- (BD70; yellow; middle) or DgmcA (BD429; green) and DfluG (TTA127.4; yellow; bottom) strains. Images were taken 120 hours after
inoculation. Scale bars represent 2 cm (left) and 0.15 cm (right), respectively.
doi:10.1371/journal.pone.0040292.g005
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brlAa/b expressions in the DgmcA strain when 10% glycerol was

used but brlA transcripts were not detected in 0.5 or 5% glucose

and 1% glycerol. These results explained the phenotypes shown in

Figure 7B.

Secondly, we analyzed the expression levels of brlAa/b and gmcA

at the same time points but, in this case, total RNA samples were

extracted from mycelia of wild-type, DflbB, DgmcA and double null

strains grown in media containing either nitrate (80 mM) or

ammonium (10 mM) as the main nitrogen source and glucose

(1%) as the carbon source (Figure 8B). As expected, the culture

medium was alkaline when nitrate was added and acid when

ammonium was used. In samples from the wild type strain, brlA

expression was lower when nitrate was used (Figure 8B). In

samples from the DgmcA strain brlA transcription was reduced in

ammonium medium but undetectable in nitrate medium

(Figure 8A, third column). This indicates that conidiation is

favored in ammonium medium, and that GmcA activity is

principally required in nitrate, which correlates with the conidia-

tion levels measured in Figure 6A. The absence of brlA transcript

in the double null DflbB;DgmcA mutant in any of the conditions

and times analyzed in Figure 8B accounts for the extremely

aconidial phenotype observed in this strain.

Overexpression of FlbD Suppreses the Lack of GmcA
Activity

The fact that gmcA transcript levels are higher when medium

contains nitrate (Figure 8B, first and second columns) supports a

hypothesis where GmcA oxidoreductase activity is a pre-requisite

for subsequent brlA expression at those specific conditions. Thus,

we continued the study of the transcriptional relationship of gmcA

with the UDA pathway using RNA samples obtained from

mycelia grown in nitrate (80 mM) medium. Expressions of gmcA,

flbB and flbD were then analyzed in wild type, DflbB, DflbD and

DgmcA genetic backgrounds (Figure 9A). gmcA transcript levels were

not altered in a DflbD background, suggesting that FlbD does not

control its expression (Figure 9A, first row). Furthermore, we

observed no major alteration in flbB and flbD expression pattern in

a DgmcA background (Figure 9A, rows 2 and 3, respectively),

suggesting that the transcription of both genes is not affected when

GmcA is absent.

To gain more information on the transcriptional relationship

among these three genes, alcAp driven over-expression of gmcA, flbB

or flbD was studied in different genetic backgrounds (see Materials

and Methods; [19]). Threonine (100 mM) was used as inducer of

alcA expression and over-expression was confirmed by Northern-

blot (not shown). Repression of alcAp was achieved using yeast

extract (5 g.l21) and glucose (1%). Phenotypes of recombinant and

recipient strains were analyzed under alcA-induced and repressing

conditions in either ammonium (10 mM) or nitrate (80 mM) solid

minimal medium (Figure 9B). Over-expression of gmcA did not

promote any visible phenotypic alteration in the parental wild type

strain (Figure 9B, left block of panels) while it complemented the

DgmcA aconidial phenotype (Figure 9B, right block). In agreement

with Northern-blot experiments shown in figure 1B, gmcA

overexpression did not reverse the DflbB fluffy phenotype

(Figure 9B, middle block), indicating that the partial suppression

of the fluffy phenotype observed in a null flbB strain when cultured

for an extended period of time [12,37] was not due to

accumulation of gmcA transcript and thus GmcA activity.

Relevant to the understanding of the regulatory mechanisms

under the UDA pathway was the finding that conidiation was

restored in a null gmcA background when flbD but not flbB was

over-expressed. This suggests that GmcA could act upstream to

FlbD regulatory activity. However, the genetic interactions

between gmcA and flbB do not allow us to locate the former

sequentially downstream of flbB in the UDA pathway.

Discussion

A first study of those proteins presenting altered levels in a DflbB

mutant allowed us to identify GmcA, the first member of a new

glucose-methanol-choline oxidoreductase family restricted to

ascomycota. There is no evidence supporting gmcA as a direct

transcriptional target of FlbB. Moreover, neither of the known

consensus binding motifs for FlbB were found in the 2000 base-

pairs upstream of the GmcA coding region [16,19]. However, an

important issue is that gmcA expression is elevated in the absence of

FlbB, and yet GmcA is required for conidiophore development.

This indicates that the aconidial phenotype of the DflbB strain is

likely due to factors other than the overproduction of GmcA. Miss-

scheduled GmcA expression and localization may be the critical

factor behind the pattern of observed results.

FlbB exerts a relevant role at early stages of conidiophore

development, where it activates brlA expression jointly with FlbD

[19]. Our results suggest that GmcA may exert its role at this stage

of development, since flbD overexpression overcomes the aconidial

phenotype of DgmcA mutants. However, GmcA displays some

specificity with respect to FlbB activity since, while the DflbB

mutant is aconidial under a wide array of environmental

conditions, the DgmcA strain is fluffy only under alkaline conditions.

Alkaline pH constitutes a major environmental stress for Aspergillus

nidulans and, up to date, we have described three transcription factors

whose activities are required for tolerance to alkalinity: PacC

mediates the ambient pH regulatory pathway, CrzA mediates the

homeostasis of calcium and SltA mediates cation/salt stress response

[40,41]. Interestingly mutations in any of these principal regulatory

elements cause major morphological defects including compact

colony morphology and reduced conidiation. In fact, CrzA has been

directly related with conidiation through the regulation of brlA

expression [42]. The oxidoreductase GmcA is not required for

tolerance to alkalinity neither for cation, salt, ROS nor osmotic

stresses and, in agreement with our observations, targets for PacC,

SltA or CrzA were not found at the gmcA promoter. An indirect mode

of control by these factors cannot be ruled out at this stage as the

activity of GmcA is required to provide with appropriate asexual

development under alkaline growth conditions. The aconidial

phenotype of the DgmcA strain in those conditions resembles that of

fluffy mutants and we have confirmed that the expression of brlA is

greatly decreased in this strain. The complete inhibition of brlA

expression in the DflbB;DgmcA mutant and its aconidial phentotype

at all growth conditions assayed suggest that GmcA also participates

in the induction of development in other growth conditions.

Figure 6. Effect of medium alkalinization on the conidiation capacity of null gmcA mutant. A) Conidiation phenotypes after 72 hours of
wild-type (TN02A3), DflbB (BD177), DgmcA (BD429) and the double null DflbB;DgmcA (BD431) strains grown on MMA supplemented with different
concentrations of nitrate (upper block) or ammonium (lower block) as main nitrogen sources. Scale bar = 2 cm. B) Growth of wild-type and mutant
strains on MMA with pH values buffered to 5 (upper line), 7 (middle line) and 9 (lower line) at 96 hours of culture in MMA supplemented with urea as
the main nitrogen source. Scale bar = 1.5 cm. Graphs at the right show conidia production per square centimeter for each strain and growth
condition.
doi:10.1371/journal.pone.0040292.g006
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Figure 7. DgmcA null mutant under different stress conditions or carbon sources. A) Colony and conidiation phenotypes of wild type
(TN02A3), DflbB (BD177), DgmcA (BD429) and double null (DflbB;DgmcA; BD431) cultured on standard nitrate (80 mM) MMA alone or supplemented
with H2PO4 (0.5 M), sucrose (1 M) or hydrogen peroxide (6 mM) after 72 hours of culture. Scale bar = 2 cm. B) Colonial growth of the same strains in
standard nitrate (80 mM) MMA supplemented with different concentrations of glucose (0.5 and 5% w/v) or glycerol (1 and 10%) as carbon sources
after 72 hours of culture. Scale bar = 2 cm. Graphs at the right side show conidia production per square centimeter for each strain and growth
condition.
doi:10.1371/journal.pone.0040292.g007
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The role of Gmc proteins in the development of higher

eukaryotes has been documented but this is the first report in

fungi. GMC enzymatic activity is required in important develop-

mental pathways of Drosophila melanogaster, such as syntheses of

rhodopsins and ecdysteroids [43–45]. The Drosophila ninaG gene

encodes a GMC-type oxidoreductase that catalyzes a late step in

the synthesis of the Rh1 rhodopsin chromophore [46,47]. In

insects, one pathway of the metabolism of the moulting and sex

hormones ecdysteroids [26,43,48,49] involves the GMC family

protein ecdysone oxidase, which catalyzes the oxidation of

ecdysone into 3-dehydroecdysteroid [49]. In this work, we

demonstrate that GmcA activity in conidiation is specific because

it is not shared by GmcT, the closest GMC oxidoreductase within

24 encoded by Aspergillus genome. However, the details of the

enzymatic reaction catalyzed by GmcA remain to be specified in a

forthcoming study.

Asexual development under solid culture conditions involves the

contact with the atmosphere, and extracellular metabolites are

known to participate in the induction o the process. The UDA

FluG is known to control the synthesis of an extracellular

triggering signal. Two additional gene clusters also participate in

the synthesis and extracellular accumulation in the culture

medium of this signal, the meroterpenoid deshydroaustinol

[14,50]. Colony contact experiments clearly demonstrate that

GmcA directly or indirectly participates in the biosynthesis of a

metabolite which can be transmitted extracellularly. The results

indicate that this compound is unrelated to the FluG or FlbB

extracellular signaling compounds. The nature of the metabolite is

currently under study.

Although we could not identify the reaction catalyzed by

GmcA, the requirement of this protein for the induction of

development in Aspergillus nidulans is evident. It will be the

challenge for future studies to unravel the genetic relationship of

gmcA with the UDA pathway and how the cellular processes that

demand the activity of those proteins are coupled to generate a

Figure 8. Nitrogen and carbon regulation of brlA expression in the DgmcA mutant. A) Northern blot experiments showing brlA expression
in wild type (TN02A3) and DgmcA (BD429) genetic backgrounds during vegetative growth (18 hours), labeled as 0, and 6, 12 and 24 hours after the
induction of asexual development. RNA samples were obtained as described in Materials and Methods. Nitrate (80 mM) was used as the main
nitrogen source while glucose (Glu) or glycerol (Gly) was used as carbon source. B) gmcA and brlA expression levels in wild type (TN02A3), DflbB
(BD177), DgmcA (BD429) and double null (DflbB, DgmcA; BD431) backgrounds, at the same time points as in panel A. RNA samples were obtained
from mycelia grown in nitrate (80 mM) or ammonium (10 mM)-containing media, using glucose (1%) as the main carbon source. rRNA: Ribosomal
RNAs, used as loading control.
doi:10.1371/journal.pone.0040292.g008
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coordinated asexual response, providing the fungus with an

enhanced capability for adapting to changing environment.

Materials and Methods

Strains, Oligonucleotides and Culture Media
Strains and oligonucleotides used in this study are listed in

Table 2 and Table S3, respectively. Liquid and solid standard

minimal (MMA) and complete media (MCA: MMA +5g.l21 yeast

extract) were used with the appropriate supplements. Nutrient

depletion experiments were performed essentially as described

previously [36]. Briefly, 106 spores/ml of each strain under

analysis were inoculated in liquid MMA and cultured for 18 hours

at 37uC and 250 rpm. Mycelia were then filtered and re-

inoculated in fully supplemented MMA, MMA without any

carbon source or MMA without a nitrogen source. Images were

taken after 20 hours of culture in starved media.

Figure 9. Transcriptional relationship of gmcA with the UDA pathway. A) Northern blot experiments showing flbB, flbD and gmcA expression
in wild type (TN02A3), DflbB (BD177), DflbD (BD198) and DgmcA (BD429) genetic backgrounds, during vegetative growth and asexual development.
Numbers indicate the time (hours) of incubation. RNA samples were obtained from mycelia grown in liquid MMA using nitrate (80 mM) as the main
nitrogen source. rRNA: Ribosomal RNAs, used as loading control. B) Phenotypes of strains overexpressing (OE) gmcA, flbB or flbD under the control of
alcA promoter in wild type (BD520), DflbB (BD523) or DgmcA backgrounds (BD526; BD545 and BD543, respectively), in MMA containing 5 g.l21 yeast
extract and glucose (Glu, 1%) or threonine (Thr, 100 mM) as the carbon source and ammonium (NH4

+, 10 mM) or nitrate (NO3
2, 80 mM) as the

nitrogen source. C- designates parental strains (TN02A3; BD143 and BD429, respectively) and alcAp empty strains transformed with the empty pALC-
pyroA* plasmid (BD188; BD194 and BD531, respectively; [17]). Images were taken 48 hours after inoculation. Scale bar = 2 cm.
doi:10.1371/journal.pone.0040292.g009
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Ammonium or nitrate was added at 10 or 80 mM. The

standard concentration of all carbon sources was 1% (w/v). Saline,

osmotic or oxidative stress conditions were induced by adding

sodium dihydrogen phosphate (0.5 M), sucrose (1 M), hydrogen

peroxide (6 mM) or menadione (10–60 mM) to nitrate or

ammonium-containing MMA. Induction of asexual and sexual

development and localization analyses were carried out as

previously described [16,17].

For the generation of the gmcA::gfp overexpression plasmid, a

genomic DNA fragment containing the gmcA::gfp fusion was

amplified by PCR from strain BD438 using oligonucleotides flbF-

gfpFP-alcA and alcA-gmcA-Up. These oligonucleotides contained

EcoRI and BamHI restriction sites, respectively, and allowed the

ligation with an EcoRI-BamHI digested pALC-pyroA* plasmid

[17]. Plasmids for flbB or flbD overexpression were obtained

previously by Garzia and coworkers [19]. Overexpression

experiments driven by the alcA promoter were performed in

MMA containing 5 g.l21 yeast extract and 100 mM threonine as

carbon source (MMT) essentially as described in [17]. Samples for

RNA extraction were obtained after the inoculation of 106

spores.ml21 and their culture for 18 hours at 37uC and 250rpm in

MMA and subsequent transfer to MMT for 6 hours.

RNA samples for the analysis of brlA expression in media with

different concentrations of either glucose or glycerol were obtained

as follows: 106 spores.ml21 of strains TN02A3 or BD429 were

cultured for 18 hours in liquid MMA with 80 mM nitrate and

either 1% glucose or 1% glycerol. Mycelia were filtered to induce

asexual development and deposited onto solid MMA plates

containing 80 mM nitrate and 0.5% or 5% glucose, and 1% or

10% glycerol, respectively. Samples were processed for RNA

extraction after 6, 12 and 24 hours of culture at 37uC.

TN02A3, BD177, BD143 and BD429 were used as recipient

strains for deletion, tagging and overexpression of the genes of

interest. All transformation cassettes for deletion and tagging were

generated using the fusion PCR technique [51] and transforma-

tion of protoplasts was essentially performed as described by

Tilburn and colleagues [52]. Homologous monocopy recombina-

tion was confirmed by Southern-blot while overexpression of gmcA,

flbB and flbD were verified through Northern blotting.

Strain (BD605) was generated as follows: We amplified a PCR

cassette including the gmcA ORF plus 1.5 kb from both the

upstream and 39UTR regions (oligonucleotides gmcA-PP1 and

gmcA-GSP4). The cassette was inserted between the two NotI sites

of pGEM-T-easy vector (Promega). This fragment was released

from the pGEM-T-easy vector after digestion with NotI and

inserted into a previously generated pBS (pBlueScript SK+,

Stratagene) plasmid bearing a truncated pyroA* allele (unpub-

lished), also digested with NotI. We transformed strain BD429

with this recombinant and the empty plasmids and selected single-

Table 2. Aspergillus nidulans strains used in this study.

Strain Genotype Source

TNO2A3 pyrG89; DnkuA::argB; argB2; pyroA4 [64]

FGSC26 biA1 [65]

TTA127.4 pabaA1, yA2; DfluG::trpC

TGS6 pabaA1, yA2; DargB::trpCDB; trpC801; DtmpA::argB; veA1 [38]

BD70 pabaA1 yA2; flbB(G456A); DargB::trpCDB; trpC801 [36]

BD142 pyrG89; DnkuA::argB; argB2; DflbE::pyrG, pyroA4 [17]

BD143 pyrG89; DnkuA::argB; argB2; DflbB::pyrG, pyroA4 [36]

BD177 pyrG89, pabaA1; DnkuA::argB; DflbB::riboB, pyroA4; riboB2 [17]

BD188 pyrG89; DnkuA::argB; argB2; pyroA4, alcA(p)::pyroA* [19]

BD194 pyrG89;DnkuA::argB;argB2;DflbB::pyrG,pyroA4, alcA(p)::pyroA* This study

BD198 pyrG89, pabaA1; DnkuA::argB; DflbD::riboB, pyroA4; riboB2 [19]

BD429 pyrG89;DnkuA::argB;argB2;pyroA4;DgmcA::pyrG This study

BD431 pyrG89, pabaA1; DnkuA::argB; DflbB::riboB,pyroA4; DgmcA::pyrG; riboB2 This study

BD438 pyrG89; DnkuA::argB; argB2; gmcA::gfp::pyrG, pyroA4 This study

BD440 pyrG89; DnkuA::argB; argB2; gmcA::3ha::pyrG, pyroA4 This study

BD442 pyrG89, pabaA1; DnkuA::argB; DflbB::riboB,pyroA4; gmcA::gfp::pyrG; riboB2 This study

BD444 pyrG89, pabaA1; DnkuA::argB; DflbB::riboB,pyroA4; gmcA::3ha::pyrG; riboB2 This study

BD516 pyrG89; DnkuA::argB; argB2; pyroA4; DgmcT::pyrG This study

BD520 pyrG89; DnkuA::argB; argB2; pyroA4, alcA(p)::gmcA::gfp::pyroA* This study

BD523 pyrG89; DnkuA::argB; argB2; DflbB::pyrG,pyroA4, alcA(p)::gmcA::gfp::pyroA* This study

BD526 pyrG89; DnkuA::argB; argB2; pyroA4, alcA(p)::gmcA::gfp::pyroA*; DgmcA::pyrG This study

BD531 pyrG89; DnkuA::argB; argB2; pyroA4, alcA(p)::pyroA*; DgmcA::pyrG This study

BD543 pyrG89; DnkuA::argB; argB2; pyroA4, alcA(p)::flbD::pyroA*; DgmcA::pyrG This study

BD545 pyrG89; DnkuA::argB; argB2; pyroA4, alcA(p)::flbB::pyroA*; DgmcA::pyrG This study

BD604 pyrG89; DnkuA::argB; argB2; pBS::pyroA*; DgmcA::pyrG This study

BD605 pyrG89; DnkuA::argB; argB2; pBS::gmcA::pyroA*; DgmcA::pyrG This study

*All strains are veA1.
doi:10.1371/journal.pone.0040292.t002
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copy plasmid integrations at the pyroA locus through Southern

blotting using specific radiolabelled probes.

For extracellular complementation experiments MCA supple-

mented with nitrate (80 mM) was used. Strains were point-

inoculated onto the solid medium at a separation of 2 cm. After 5

days of cultivation, the contact zone was examined and

photographed under a binocular Nikon SMZ800 microscope.

To determine spore production in each condition and strain,

colony diameter was measured after the incubation time. Spores

were collected in 1 ml of an aqueous solution containing 0.02%

tween 20 (Acros Organics) and counted. Spore concentration

(spores per square centimeter) was determined by dividing spore

number with colony area.

Fluorescence Microscopy
Observation of fluorescent chimeras was carried out using a

DMI6000B Leica microscope, equipped with a 63x Plan Apo

1.4 N.A oil immersion lens (Leica), illuminated with a 100w

mercury lamp and fitted with a GFP (excitation 470 nm; emission

525 nm) filter. Images were recorded with an ORCA-ER digital

camera (Hamamatsu Photonics) and processed with Metamorph

(Universal Image) or ImageJ 1.37 (http://rsb.info.nih.gov/ij/)

software.

Preparation of Protein Extracts and Western-blot
Analyses

Two different protocols were used for total protein extraction,

our standard procedure described in [17], and a modification for

Aspergillus nidulans of the alkaline lysis extraction procedure used for

Saccharomyces cerevisiae described in [53]. For the latter, mycelia

were collected, frozen in dry ice and lyophilized. Cells were

disrupted using a Minibeadbeater (Biospec Products) and 3–5 mg

samples were transferred to Eppendorf tubes for solubilization in

1ml/tube of lysis solution (0.2 M NaOH and 0.2% (vol/vol) b-

mercaptoethanol). Tubes were vortexed, incubated on ice for 10

minutes, precipitated with 7.5% (vol/vol) trichloroacetic acid and

centrifuged at 14,000 g for 5 minutes at 4uC. Pellets were

resuspended in 0.1 ml Tris base (1 M), mixed with 2 volumes of

Laemmli loading buffer, and incubated for 2 min at 100uC.

Proteins were then resolved in 10% SDS-polyacrylamide gels,

electrotransferred onto nitrocellulose filters and exposed to rat

anti-HA (Roche; 1/1.000) or rabbit anti-hexokinase (1/80,000)

monoclonal antibody cocktails. Peroxidase conjugated anti-rat

(Southern Biotech; 1/4,000) or anti-rabbit (Sigma; 1/10,000) IgG

immunoglobin were used as secondary antibodies. Peroxidase

activity was detected with SuperSignalH West Pico Chemilumi-

niscent Substrate (Thermo Scientific).

Precipitation of Protein Extracts, Two-dimensional
Electrophoresis and Image Acquisition

Samples containing 200 mg of protein were precipitated using

methanol/chloroform protocol [54]. Protein pellets were dried

and resuspended in 200 ml of 2X buffer (7 M urea, 2 M thiourea,

4% [w/v] CHAPS and 0.0003% [w/v] bromophenol blue). For 2-

D electrophoresis, 100 ml of each sample were diluted to a total

volume of 140 ml with 2X buffer, 18.2 mM DTT and 0.5% of IPG

buffer solution (pH 3–10) (BIO-RAD) as final concentrations. First

dimension was run on IPG strips (pH 3–10 NL, 7 cm; BIO-RAD)

in a Protean IEF Cell system (BIO-RAD). As recommended by the

manufacturers, a 7 steps program was used: 50 V for 12 h, 250 V

for 1 h, 500 V for 1 h, 1000 V for 1 h, 2000 V for 1 h, 8000 V

for 1 h [linear ramp] and 8000 V until voltage?time reached

3500 V?h in this step. More than total 12000 V?h were reached in

all the cases. Second dimension was run on 12% SDS-PAGE at

0.5 watts/gel for 30 min and then at 1.5 watts/gel until the die-

front reached the bottom edge (approximately 2 h) in a Mini-

Protean Cell (BIO-RAD). Dual Color Precision Plus Protein

Standard (BIO-RAD) was used as molecular weight marker. Gels

were stained with Colloidal Blue Staining Kit (Invitrogen).

Melanie 2D gel analysis software (version 7.05; Swiss Institute of

Bioinformatics, Switzerland) and The EXQuest Spot Cutter (BIO-

RAD) were used for imaging the gels, quantify spots and picking

the selected spots.

MALDI Peptide Mass Fingerprinting, Tandem Mass
Spectrometry (MS/MS) Analysis and Database Searching

Protein bands were processed automatically in a Proteineer DP

(Bruker Daltonics, Bremen, Germany) as described by [55]. The

same procedure as described in [56] was then used to process plugs

for protein identification.

Northern and Southern Blotting
The isolation of genomic DNA and total RNA as well as the

preparation of DNA probes for Southern and Northern blotting

were carried out essentially as described previously by [17].

Sequence Analyses
The 27 sequences of GMC clade 1 as described by [23] were

retrieved from the National Center for Biotechnology Information

protein database. As some accession numbers had been supersed-

ed, the updated entries were used (see Table 1). In addition, we

substituted the P. pulmonarius AAO sequence used in the [23] study

with the aryl alcohol oxidase (AAO) from Plerurotus eryngii [31]

because its structure has been described (PDB ID: 3FIM). These

two AAO sequences share 95% identity over 593 contiguous

amino acids. Additional annotations for sequences were sought by

querying the PROSITE database [29] and the SignalP predictor

[34].

Retrieval of 500 GMC sequences from the 98 complete

Ascomycete sequencing project databases listed on the Hyphal

Tip web page (fungalgenomes.org) was carried out by scoring for

the presence of both GMC Pfam motifs [28]. The two motifs,

pfam05199 (GMC oxred C) and pfam00732 (GMC oxred N) were

deemed present at Hidden Markov Model E values of less than

1230 and 1250, respectively, using HMMsearch [57].

Phylogenetic Analysis
We followed the PHYLIP (version 3.69; [58]) distance method

that was used for the analysis presented in Figure 6 of [23], with

the addition of GmcA to the 27 clade 1 GMC sequences. In brief,

after aligning the sequences using CLUSTAL, columns with more

than 50% gaps were removed and 100 data sets were generated for

the 548 remaining columns using SEQBOOT and PROTDIST.

The most probable tree was generated using FITCH and

CONSENSE with 10 randomizations of input order and allowing

global rearrangements. The tree graphic was generated using

Dentroscope version 2.7.4 [59]. The alignment of GmcA with

related sequences was formatted with ESPript [60].

Partitioning GMC Sequences into Co-factor and Substrate
Binding Domains

In order to determine which residues of GmcA comprised each

of the two domains, we modeled the sequence onto the PerynAAO

structure (PDB ID: 3FIM) using Swiss-Model Workspace [61,62]

as it had the highest similarity to GmcA in the PDB database (98%

coverage, 28% identity, E = 5263). Inspection of the model and
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comparison of QMEAN scores indicated that the cofactor binding

domain was a usable model while the SBD was poorly modeled

(with QMEAN scores of 1.861.0 and 2.661.2, respectively). By

mapping the cofactor binding domain of the 3FIM structure onto

the GmcA sequence, the amino acids comprising the two domains

were identified (cofactor binding domain residues: 1–50, 65–73,

85–96, 111–129, 202–302, 428–444, 512–550, 559–576). This

procedure was extended to partition the residues of additional sets

of GMCs by editing CLUSTAL alignments with Jalview [63].

Supporting Information

Figure S1 Phenotype of the DgmcA strain reconstituted
with an ectopic copy of gmcA integrated at the pyroA
locus. Wild-type (TN02A3), DgmcA (BD429) and reconstituted

(BD605) strains after 60 hours of culture in MMA supplemented

with 80 mM nitrate as the main nitrogen source. The DgmcA strain

shows a marked fluffy phenotype in these conditions (see Figure 6

in main text) while the reconstituted strain BD605 displays a

conidiating phenotype similar to that of the wild-type. A strain

transformed with the empty plasmid was used as a control (BD604;

see Materials and Methods). Scale bar = 2 cm.

(TIF)

Table S1 Genes identified by mass spectroscopy.

(DOC)

Table S2 Compositional characteristics of GMCs and
27 putative Ascomycete GmcA orthologs with BLAST E
= 0.

(DOC)

Table S3 Oligonucleotides used in this study.

(DOC)

Text S1 Characterization of the GmcA sequence and
ortholog search.

(DOC)
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