Now showing items 1-4 of 4

    • Thumbnail

      A global agenda for advancing freshwater biodiversity research 

      Maasri, A.; Jähnig, S. C.; Adamescu, M. C.; Adrian, R.; Baigun, C.; Baird, D. J.; Batista-Morales, A.; Bonada, N.; Brown, M. L.; Cai, Q.; Campos-Silva, J. V.; Clausnitzer, V.; Contreras-MacBeath, T.; Cooke, S. J.; Datry, T.; Delacámara, G.; De Meester, L.; Dijkstra, D. K. B.; Do, V. T.; Domisch, S.; Dudgeon, D.; Erös, T.; Freitag, H.; Freyhof, J.; Friedrich, J.; Friedrichs-Manthey, M.; Geist, J.; Gessner, M. O.; Goethals, P.; Gollock, M.; Gordon, C.; Grossart, H. P.; Gulemvuga, V.; Gutiérrez-Fonseca, P. E.; Haase, P.; Hering, D.; Hahn, H. J.; Hawkins, C. P.; He, F.; Heino, J.; Hermoso, V.; Hogan, Z.; Hölker, F.; Jeschke, J. M.; Jiang, M.; Johnson, R. K.; Kalinkat, G.; Karimov, B. K.; Kasangaki, A.; Kimirei, I. A.; Kohlmann, B.; Kuemmerlen, M.; Kuiper, J. J.; Kupilas, B.; Langhans, S. D.; Lansdown, R.; Leese, F.; Magbanua, F. S.; Matsuzaki, S. i. S.; Monaghan, M. T.; Mumladze, L.; Muzon, J.; Mvogo Ndongo, P. A.; Nejstgaard, J. C.; Nikitina, O.; Ochs, S.; Odume, O.; Opperman, J. J.; Patricio, H.; Pauls, S.; Raghavan, R.; Ramírez, A.; Rashni, B.; Ross-Gillespie, V.; Samways, M. J.; Schäfer, R. B.; Schmidt-Kloiber, A.; Seehausen, O.; Shah, D. N.; Sharma, S.; Soininen, J.; Sommerwerk, N.; Stockwell, J. D.; Suhling, F.; Tachamo Shah, R. D.; Tharme, R. E.; Thorp, J. H.; Tickner, D.; Tockner, K.; Tonkin, J. D.; Valle, M.; Vitule, J.; Volk, M.; Wang, D.; Worischka, S.; Wolter, C. (Ecology Letters, 2022-02-01)
      ...
    • Thumbnail

      Low sensitivity of gross primary production to elevated CO2 in a mature eucalypt woodland 

      Yang, J.; Medlyn, B.E.; De, Kauwe, M.G.; Duursma, R.A.; Jiang, M.; Kumarathunge, D.; Crous, K.Y.; Gimeno, T.E.; Wujeska-Klause, A.; Ellsworth, D.S. (EGU Publications, 2020)
      The response of mature forest ecosystems to a rising atmospheric carbon dioxide concentration (span classCombining double low line"inline-formula"iC/ia/span) is a major uncertainty in projecting the future trajectory of ...
    • Thumbnail

      Optimal stomatal theory predicts CO<inf>2</inf> responses of stomatal conductance in both gymnosperm and angiosperm trees 

      Gardner, A.; Jiang, M.; Ellsworth, D.S.; MacKenzie, A.R.; Pritchard, J.; Bader, M.K.F.; Barton, C.V.M.; Bernacchi, C.; Calfapietra, C.; Crous, K.Y.; Dusenge, M.E.; Gimeno, T.E.; Hall, M.; Lamba, S.; Leuzinger, S.; Uddling, J.; Warren, J.; Wallin, G.; Medlyn, B.E. (New Phytologist, 2023)
      Optimal stomatal theory predicts that stomata operate to maximise photosynthesis (Anet) and minimise transpirational water loss to achieve optimal intrinsic water-use efficiency (iWUE). We tested whether this theory can ...
    • Thumbnail

      The fate of carbon in a mature forest under carbon dioxide enrichment 

      Jiang, M.; Medlyn, B.E.; Drake, J.E.; Duursma, R.A.; Anderson, I.C.; Barton, C.V.M.; Boer, M.M.; Carrillo, Y.; Castañeda-Gómez, L.; Collins, L.; Crous, K.Y.; De Kauwe, M.G.; Dos Santos, B.M.; Emmerson, K.M.; Facey, S.L.; Gherlenda, A.N.; Gimeno, T.E.; Hasegawa, S.; Johnson, S.N.; Kännaste, A.; Macdonald, C.A.; Mahmud, K.; Moore, B.D.; Nazaries, L.; Neilson, E.H.J.; Nielsen, U.N.; Niinemets, Ü.; Noh, N.J.; Ochoa-Hueso, R.; Pathare, V.S.; Pendall, E.; Pihlblad, J.; Piñeiro, J.; Powell, J.R.; Power, S.A.; Reich, P.B.; Renchon, A.A.; Riegler, M.; Rinnan, R.; Rymer, P.D.; Salomón, R.L.; Singh, B.K.; Smith, B.; Tjoelker, M.G.; Walker, J.K.M.; Wujeska-Klause, A.; Yang, J.; Zaehle, S.; Ellsworth, D.S. (Springer Nature, 2020)
      Atmospheric carbon dioxide enrichment (eCO2) can enhance plant carbon uptake and growth1 5, thereby providing an important negative feedback to climate change by slowing the rate of increase of the atmospheric CO2 ...