Show simple item record

dc.contributor.authorGarcía Sánchez, Susana
dc.contributor.authorBernales Pujana, Irantzu
dc.contributor.authorCristobal Barragán, Susana
dc.date.accessioned2016-04-18T14:11:39Z
dc.date.available2016-04-18T14:11:39Z
dc.date.issued2015-04-24
dc.identifier.citationBMC Genomics 16 : (2015) // Article ID 341es
dc.identifier.issn1471-2164
dc.identifier.urihttp://hdl.handle.net/10810/17932
dc.description.abstractBackground: The impact of nano-scaled materials on photosynthetic organisms needs to be evaluated. Plants represent the largest interface between the environment and biosphere, so understanding how nanoparticles affect them is especially relevant for environmental assessments. Nanotoxicology studies in plants allude to quantum size effects and other properties specific of the nano-stage to explain increased toxicity respect to bulk compounds. However, gene expression profiles after exposure to nanoparticles and other sources of environmental stress have not been compared and the impact on plant defence has not been analysed. Results: Arabidopsis plants were exposed to TiO2-nanoparticles, Ag-nanoparticles, and multi-walled carbon nanotubes as well as different sources of biotic (microbial pathogens) or abiotic (saline, drought, or wounding) stresses. Changes in gene expression profiles and plant phenotypic responses were evaluated. Transcriptome analysis shows similarity of expression patterns for all plants exposed to nanoparticles and a low impact on gene expression compared to other stress inducers. Nanoparticle exposure repressed transcriptional responses to microbial pathogens, resulting in increased bacterial colonization during an experimental infection. Inhibition of root hair development and transcriptional patterns characteristic of phosphate starvation response were also observed. The exogenous addition of salicylic acid prevented some nano-specific transcriptional and phenotypic effects, including the reduction in root hair formation and the colonization of distal leaves by bacteria. Conclusions: This study integrates the effect of nanoparticles on gene expression with plant responses to major sources of environmental stress and paves the way to remediate the impact of these potentially damaging compounds through hormonal priming.es
dc.description.sponsorshipThis work was supported by grants to SC from the Swedish Research Council-Natural Science (VR-N), Carl Trygger Foundation, VINNOVA-Vinnmer program, Linkoping University, and ALF-funding from Ostgota Counties, Sweden and by the IKERBASQUE-Basque Foundation for Science, Spain. SGIker technical and human support (University of Basque Country, Spanish Ministry of Science-MICINN, Basque Government) is gratefully acknowledged. We thank to Narges Bayat for her assistance in NP characterization and design of NP exposures.es
dc.language.isoenges
dc.publisherBiomed Centrales
dc.rightsinfo:eu-repo/semantics/openAccesses
dc.subjectnanoparticleses
dc.subjectnanotoxycologyes
dc.subjectarabidopsises
dc.subjectdefencees
dc.subjecttranscriptomees
dc.subjectstresses
dc.subjectsystemic acquired responsees
dc.subjecttitanium-dioxide nanoparticleses
dc.subjectthaliana gene expressiones
dc.subjectchlamidomonas reinhardtiies
dc.subjectsilver nanoparticleses
dc.subjectstress responsees
dc.subjectsalt stresses
dc.subjectphosphorus avilabilityes
dc.subjectdunaliella-tertiolectaes
dc.subjectphosphate starvationes
dc.subjectgrowthes
dc.titleEarly response to nanoparticles in the Arabidopsis transcriptome compromises plant defence and root-hair development through salicylic acid signallinges
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2015 García-Sánchez et al.; licensee BioMed Central. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.es
dc.relation.publisherversionhttp://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-015-1530-4#Abs1es
dc.identifier.doi10.1186/s12864-015-1530-4
dc.departamentoesFisiologíaes_ES
dc.departamentoeuFisiologiaes_ES
dc.subject.categoriaBIOTECHNOLOGY AND APPLIED MICROBIOLOGY
dc.subject.categoriaGENETICS AND HEREDITY


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record