Show simple item record

dc.contributor.authorSingh, Gurpreet
dc.contributor.authorTapia-Ruiz, Nuria
dc.contributor.authorLópez del Amo, Juan Miguel
dc.contributor.authorMaitra, Urmimala
dc.contributor.authorSomerville, James W.
dc.contributor.authorArmstrong, A. Robert
dc.contributor.authorMartínez de Ilarduya, Jaione
dc.contributor.authorRojo Aparicio, Teófilo ORCID
dc.contributor.authorBruce, Peter G.
dc.date.accessioned2018-03-26T07:29:20Z
dc.date.available2018-03-26T07:29:20Z
dc.date.issued2016-07-26
dc.identifier.citationChemistry of materials 28(14) : 5087-5094 (2016)es_ES
dc.identifier.issn0897-4756
dc.identifier.issn1520-5002
dc.identifier.urihttp://hdl.handle.net/10810/25989
dc.description.abstractMagnesium substituted P2-structure Na0.67Ni0.3Mn0.7O2 materials have been prepared by a facile solid-state method and investigated as cathodes in sodium-ion batteries. The Mg-doped materials described here were characterized by Xray diffraction (XRD), Na-23 solid-state nuclear magnetic resonance (SS-NMR), and scanning electron microscopy (SEM). The electrochemical performance of the samples was tested in half cells vs Na metal at room temperature. The Mg-doped materials operate at a high average voltage of ca. 3.3 V vs Na/Na+ delivering specific capacities of similar to 120 mAh g(-1), which remain stable up to 50 cycles. Mg doping suppresses the well-known P2-O2 phase transition observed in the undoped composition by stabilizing the reversible OP4 phase during charging (during Na removal). GITT measurements showed that the Na-ion mobility is improved by 2 orders of magnitude with respect to the parent P2-Na0.67Ni0.3Mn0.7O2 material. The fast Na-ion mobility may be the cause of the enhanced rate performance.es_ES
dc.description.sponsorshipAt CIC Energigune this work was financially supported by LINABATT project from Ministerio de Economia Competitividad (ENE2013-44330-R). P.G.B. (University of Oxford) is indebted to the Engineering and Physical Sciences Research Council, including the SUPERGEN program, for financial support.es_ES
dc.language.isoenges_ES
dc.publisherAmerican Chemical Societyes_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.subjectbatterieses_ES
dc.subjectsodiumes_ES
dc.subjectsubstitutiones_ES
dc.subjectperformancees_ES
dc.subjecttransitiones_ES
dc.subjectelectrodees_ES
dc.subjectP2-TYPEes_ES
dc.subjectcapacityes_ES
dc.subjectlithiumes_ES
dc.subjectphasees_ES
dc.titleHigh Voltage Mg-Doped Na 0.67 Ni 0.3 − x Mg x Mn 0.7 O 2 ( x = 0.05, 0.1) Na- Ion Cathodes with Enhanced Stability and Rate Capabilityes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.holderThis is an open access article published under a Creative Commons Attribution (CC-BY) License, which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.es_ES
dc.rights.holderAtribución 3.0 España*
dc.relation.publisherversionhttps://pubs.acs.org/doi/10.1021/acs.chemmater.6b01935es_ES
dc.identifier.doi10.1021/acs.chemmater.6b01935
dc.departamentoesQuímica inorgánicaes_ES
dc.departamentoeuKimika ez-organikoaes_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

This is an open access article published under a Creative Commons Attribution (CC-BY)
License, which permits unrestricted use, distribution and reproduction in any medium,
provided the author and source are cited.
Except where otherwise noted, this item's license is described as This is an open access article published under a Creative Commons Attribution (CC-BY) License, which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.