Show simple item record

dc.contributor.authorHernández‐Arriaga, Ana M.
dc.contributor.authorDel Cerro, Carlos
dc.contributor.authorUrbina Moreno, Leire
dc.contributor.authorEceiza Mendiguren, María Aranzazu
dc.contributor.authorCorcuera Maeso, María Ángeles
dc.contributor.authorRetegui Miner, Aloña
dc.contributor.authorPrieto, M. Auxiliadora
dc.date.accessioned2019-11-22T09:45:06Z
dc.date.available2019-11-22T09:45:06Z
dc.date.issued2019-02-22
dc.identifier.citationMicrobial biotechnology 12(4) : 620-632 (2019)es_ES
dc.identifier.issn1751-7915
dc.identifier.urihttp://hdl.handle.net/10810/36425
dc.description.abstractKomagataeibacter medellinensis ID13488 (formerly Gluconacetobacter medellinensis ID13488) is able to produce crystalline bacterial cellulose (BC) under high acidic growth conditions. These abilities make this strain desirable for industrial BC production from acidic residues (e.g. wastes generated from cider production). To explore the molecular bases of the BC biosynthesis in this bacterium, the genome has been sequenced revealing a sequence of 3.4Mb containing three putative plasmids of 38.1kb (pKM01), 4.3kb (pKM02) and 3.3 Kb (pKM03). Genome comparison analyses of K.medellinensis ID13488 with other cellulose-producing related strains resulted in the identification of the bcs genes involved in the cellulose biosynthesis. Genes arrangement and composition of four bcs clusters (bcs1, bcs2, bcs3 and bcs4) was studied by RT-PCR, and their organization in four operons transcribed as four independent polycistronic mRNAs was determined. qRT-PCR experiments demonstrated that mostly bcs1 and bcs4 are expressed under BC production conditions, suggesting that these operons direct the synthesis of BC. Genomic differences with the close related strain K.medellinensis NBRC 3288 unable to produce BC were also described and discussed. © 2019 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.es_ES
dc.description.sponsorshipThe authors thank for the financial support from the Foundation Domingo Martınez (2015‐Area Materiales 2), the Spanish Ministry of Science, Innovation and Universities (MAT2016‐76294‐R, BIO2017‐83448‐R), the Community of Madrid (P2013/MIT2807), the Basque Government in the frame of Grupos Consolidados (776‐13). L.U. wishes to acknowledge the Basque Government for its PhD grant PIF PRE_2014_1_371. We thank the support of Francisco Blanco in the statistical analyses of the date.es_ES
dc.language.isoenges_ES
dc.publisherWileyes_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.subjectbacterial cellulose synthase
dc.subjectacetobacter-xylinum
dc.subjectgene
dc.subjectbiosynthesis
dc.subjectquantification
dc.subjectidentification
dc.subjectmechanism
dc.subjectabsolute
dc.subjectoperon
dc.titleGenome sequence and characterization of the bcs clusters for the production of nanocellulose from the low pH resistant strain Komagataeibacter medellinensis ID13488es_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.holderAttribution 4.0 International (CC BY 4.0)es_ES
dc.rights.holderAtribución 3.0 España*
dc.relation.publisherversionhttps://onlinelibrary.wiley.com/doi/full/10.1111/1751-7915.13376es_ES
dc.identifier.doi10.1111/1751-7915.13376
dc.departamentoesIngeniería química y del medio ambientees_ES
dc.departamentoeuIngeniaritza kimikoa eta ingurumenaren ingeniaritzaes_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution 4.0 International (CC BY 4.0)
Except where otherwise noted, this item's license is described as Attribution 4.0 International (CC BY 4.0)