Show simple item record

dc.contributor.authorHurtado Salinas, Daniel Eduardo
dc.contributor.authorSarasola Iñiguez, Ane
dc.contributor.authorStel, Bart
dc.contributor.authorCometto, Fernando P.
dc.contributor.authorKern, Klaus
dc.contributor.authorArnau Pino, Andrés ORCID
dc.contributor.authorLingenfelder, Magalí Alejandra
dc.date.accessioned2020-02-07T09:22:31Z
dc.date.available2020-02-07T09:22:31Z
dc.date.issued2019-06-30
dc.identifier.citationACS Omega 4(6) : 9850-9859 (2019)es_ES
dc.identifier.issn2470-1343
dc.identifier.urihttp://hdl.handle.net/10810/40504
dc.description.abstractPhotosynthesis is the model system for energy conversion. It uses CO2 as a starting reactant to convert solar energy into chemical energy, i.e., organic molecules or biomass. The first and rate-determining step of this cycle is the immobilization and activation of CO2, catalyzed by RuBisCO enzyme, the most abundant protein on earth. Here, we propose a strategy to develop novel biomimetic two-dimensional (2D) nanostructures for CO2 adsorption at room temperature by reductionist mimicking of the Mg-carboxylate RuBisCO active site. We present a method to synthesize a 2D surface-supported system based on Mg2+ centers stabilized by a carboxylate environment and track their structural dynamics and reactivity under either CO2 or O-2 exposure at room temperature. The CO2 molecules adsorb temporarily on the Mg2+ centers, producing a charge imbalance that catalyzes a phase transition into a different configuration, whereas O-2 adsorbs on the Mg2+ center, giving rise to a distortion in the metal-organic bonds that eventually leads to the collapse of the structure. The combination of bioinspired synthesis and surface reactivity studies demonstrated here for Mg-based 2D ionic networks holds promise for the development of new catalysts that can work at room temperature.es_ES
dc.description.sponsorshipWe acknowledge the support of Dr. G. Ruano during the first phase of this project and Dr. M. Muntwiler and Dr. J. Zhang during our beamtimes at PEARL, PSI, Switzerland. A.S. and A.A. acknowledge support from the Spanish Ministerio de Ciencia e Innovacion (Grant No. FIS2016-75862-P).es_ES
dc.language.isoenges_ES
dc.publisherAmerican Chemical Societyes_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.subjecttotal-energy calculationses_ES
dc.subjectcarbon-dioxidees_ES
dc.subjectterephthalic acides_ES
dc.subjectphase-transformationses_ES
dc.subjectactive-siteses_ES
dc.subjectsurfacees_ES
dc.subjectadsorptiones_ES
dc.subjectoxygenes_ES
dc.subjectXPSes_ES
dc.subjectnanostructureses_ES
dc.titleReactivity of Bioinspired Magnesium-Organic Networks under CO2 and O-2 Exposurees_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.holderThis is an open access article published under a Creative Commons Attribution (CC-BY) License, which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.es_ES
dc.rights.holderAtribución 3.0 España*
dc.relation.publisherversionhttps://www.ncbi.nlm.nih.gov/pubmed?Db=pubmed&Cmd=Retrieve&list_uids=31460076&dopt=abstractpluses_ES
dc.identifier.doi10.1021/acsomega.9b00762
dc.departamentoesFísica aplicada Ies_ES
dc.departamentoesFísica de materialeses_ES
dc.departamentoeuFisika aplikatua Ies_ES
dc.departamentoeuMaterialen fisikaes_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

This is an open access article published under a Creative Commons Attribution (CC-BY)
License, which permits unrestricted use, distribution and reproduction in any medium,
provided the author and source are cited.
Except where otherwise noted, this item's license is described as This is an open access article published under a Creative Commons Attribution (CC-BY) License, which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.