Show simple item record

dc.contributor.authorLerma-Usabiaga, Garikoitz
dc.contributor.authorMukherjee, Pratik
dc.contributor.authorRen, Zhimei
dc.contributor.authorPerry, Michael L.
dc.contributor.authorWandell, Brian A.
dc.date.accessioned2020-02-10T14:47:39Z
dc.date.available2020-02-10T14:47:39Z
dc.date.issued2019
dc.identifier.citationGarikoitz Lerma-Usabiaga, Pratik Mukherjee, Zhimei Ren, Michael L. Perry, Brian A. Wandell, Replication and generalization in applied neuroimaging, NeuroImage, Volume 202, 2019, 116048, ISSN 1053-8119, https://doi.org/10.1016/j.neuroimage.2019.116048.es_ES
dc.identifier.issn1053-8119
dc.identifier.urihttp://hdl.handle.net/10810/40535
dc.descriptionAvailable online 26 July 2019.es_ES
dc.description.abstractThere is much interest in translating neuroimaging findings into meaningful clinical diagnostics. The goal of scientific discoveries differs from clinical diagnostics. Scientific discoveries must replicate under a specific set of conditions; to translate to the clinic we must show that findings using purpose-built scientific instruments will be observable in clinical populations and instruments. Here we describe and evaluate data and computational methods designed to translate a scientific observation to a clinical setting. Using diffusion weighted imaging (DWI), Wahl et al. (2010) observed that across subjects the mean fractional anisotropy (FA) of homologous pairs of tracts is highly correlated. We hypothesize that this is a fundamental biological trait that should be present in most healthy participants, and deviations from this assessment may be a useful diagnostic metric. Using this metric as an illustration of our methods, we analyzed six pairs of homologous white matter tracts in nine different DWI datasets with 44 subjects each. Considering the original FA measurement as a baseline, we show that the new metric is between 2 and 4 times more precise when used in a clinical context. Our framework to translate research findings into clinical practice can be applied, in principle, to other neuroimaging results.es_ES
dc.description.sponsorshipThis work was supported by a Marie Sklodowska-Curie (H2020-MSCA-IF-2017-795807-ReCiModel) grant to G.L.-U. We acknowledge research grant support from the James S. McDonnell Foundation, the Charles A. Dana Foundation, the American Society of Neuroradiology, the U.S. National Institutes of Health (R01NS060776), and the Academic Senate of the University of California, San Francisco for the Wahl 2010 et al.es_ES
dc.language.isoenges_ES
dc.publisherNeuroImagees_ES
dc.relationinfo:eu-repo/grantAgreement/EC/H2020- MSCA-IF-2017-795807es_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.subjectReplicationes_ES
dc.subjectGeneralizationes_ES
dc.subjectGeneralizabilityes_ES
dc.subjectComputational reproducibilityes_ES
dc.subjectStructural MRIes_ES
dc.subjectDWIes_ES
dc.subjectWhite matter tractses_ES
dc.subjectBiomarkeres_ES
dc.titleReplication and generalization in applied neuroimaginges_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.holder© 2019 Elsevier Inc. All rights reserved.es_ES
dc.relation.publisherversionhttps://www.sciencedirect.com/journal/neuroimagees_ES
dc.identifier.doi10.1016/j.neuroimage.2019.116048


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record