Show simple item record

dc.contributor.authorMitrović, Zoran D.
dc.contributor.authorHussain, Azhar
dc.contributor.authorDe la Sen Parte, Manuel ORCID
dc.contributor.authorRadenović, Stojan
dc.date.accessioned2020-04-07T17:53:20Z
dc.date.available2020-04-07T17:53:20Z
dc.date.issued2020-03-04
dc.identifier.citationMathematics 8(3) : (2020) // Article ID 347es_ES
dc.identifier.issn2227-7390
dc.identifier.urihttp://hdl.handle.net/10810/42635
dc.description.abstractIn this paper we obtain a best approximations theorem for multi-valued mappings in G -convex spaces. As applications, we derive results on the best approximations in hyperconvex and normed spaces. The obtain results generalize many existing results in the literature.es_ES
dc.description.sponsorshipThe third author would like to thanks Basque Government for its support of this work through Grant IT1207-19.es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/
dc.subjectG -convex spaceses_ES
dc.subjecthyperconvex spacees_ES
dc.subjectKKM mapes_ES
dc.subjectbest approximationses_ES
dc.titleOn Best Approximations for Set-Valued Mappings in G-convex Spaceses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.date.updated2020-03-27T14:54:12Z
dc.rights.holder© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/)es_ES
dc.relation.publisherversionhttps://www.mdpi.com/2227-7390/8/3/347es_ES
dc.identifier.doi10.3390/math8030347
dc.departamentoesElectricidad y electrónica
dc.departamentoeuElektrizitatea eta elektronika


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/)
Except where otherwise noted, this item's license is described as © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/)