Show simple item record

dc.contributor.authorGonzález Villegas, Alvaro
dc.contributor.authorZhukova Zhukova, Valentina ORCID
dc.contributor.authorCorte León, Paula ORCID
dc.contributor.authorChizhik, Alexander
dc.contributor.authorIpatov, Mihail
dc.contributor.authorBlanco Aranguren, Juan María ORCID
dc.contributor.authorZhukov Egorova, Arkady Pavlovich ORCID
dc.date.accessioned2022-02-18T19:19:25Z
dc.date.available2022-02-18T19:19:25Z
dc.date.issued2022-01-29
dc.identifier.citationSensors 22(3) : (2022) // Article ID 1053es_ES
dc.identifier.issn1424-8220
dc.identifier.urihttp://hdl.handle.net/10810/55528
dc.description.abstractThe influence of Joule heating on magnetic properties, giant magnetoimpedance (GMI) effect and domain wall (DW) dynamics of Fe75B9Si12C4 glass-coated microwires was studied. A remarkable (up to an order of magnitude) increase in GMI ratio is observed in Joule heated samples in the frequency range from 10 MHz to 1 GHz. In particular, an increase in GMI ratio, from 10% up to 140% at 200 MHz is observed in Joule heated samples. Hysteresis loops of annealed samples maintain a rectangular shape, while a slight decrease in coercivity from 93 A/m to 77 A/m, after treatment, is observed. On the other hand, a modification of MOKE hysteresis loops is observed upon Joule heating. Additionally, an improvement in DW dynamics after Joule heating is documented, achieving DW propagation velocities of up to 700 m/s. GMI ratio improvement along with the change in MOKE loops and DW dynamics improvement have been discussed considering magnetic anisotropy induced by Oersted magnetic fields in the surface layer during Joule heating and internal stress relaxation. A substantial GMI ratio improvement observed in Fe-rich Joule-heated microwires with a rectangular hysteresis loop and fast DW propagation, together with the fact that Fe is a more common and less expensive metal than Co, make them suitable for use in magnetic sensors.es_ES
dc.description.sponsorshipThis work was funded by the Spanish MCIU under PGC2018-099530-B-C31 (MCIU/AEI/FEDER, UE), by the EU under “INFINITE” (Horizon 2020) project, by the Government of the Basque Country under PUE_2021_1_0009 and Elkartek (CEMAP and AVANSITE) projects by the Diputación Foral de Gipuzkoa in the frame of Programa “Red guipuzcoana de Ciencia, Tecnología e Innovación 2021” under 2021-CIEN-000007-01 project and by the University of Basque Country under the scheme of “Ayuda a Grupos Consolidados” (Ref.: GIU18/192) and COLAB20/15 project.es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.relationinfo:eu-repo/grantAgreement/MCIU/PGC2018-099530-B-C31es_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/
dc.subjectmagnetic microwireses_ES
dc.subjectmagnetic anisotropyes_ES
dc.subjectjoule heatinges_ES
dc.subjectgiant magnetoimpedancees_ES
dc.subjectdomain wall propagationes_ES
dc.subjecthysteresis loopes_ES
dc.titleTuning of Magnetoimpedance Effect and Magnetic Properties of Fe-Rich Glass-Coated Microwires by Joule Heatinges_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.date.updated2022-02-11T14:47:06Z
dc.rights.holder© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).es_ES
dc.relation.publisherversionhttps://www.mdpi.com/1424-8220/22/3/1053es_ES
dc.identifier.doi10.3390/s22031053
dc.departamentoesPolímeros y Materiales Avanzados: Física, Química y Tecnología
dc.departamentoesFísica aplicada I
dc.departamentoeuPolimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia
dc.departamentoeuFisika aplikatua I


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Except where otherwise noted, this item's license is described as © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).