Show simple item record

dc.contributor.authorIlin Moskalenko, Andrey
dc.contributor.authorVan der Graaf, Charlotte M.
dc.contributor.authorYusta Arnal, Iñaki
dc.contributor.authorSorrentino, Andrea
dc.contributor.authorSánchez Andrea, Irene
dc.contributor.authorSánchez España, Javier
dc.date.accessioned2022-11-08T16:31:45Z
dc.date.available2022-11-08T16:31:45Z
dc.date.issued2022-08
dc.identifier.citationFrontiers in Bioengineering and Biotechnology 10 : (2022) // Article ID 978728es_ES
dc.identifier.issn2296-4185
dc.identifier.urihttp://hdl.handle.net/10810/58280
dc.description.abstractMicrobial sulfate (SO4 (2-)) reduction in Acid Mine Drainage (AMD) environments can ameliorate the acidity and extreme metal concentrations by consumption of protons via the reduction of SO4 (2-) to hydrogen sulfide (H2S) and the concomitant precipitation of metals as metal sulfides. The activity of sulfate-reducing bacteria can be stimulated by the amendment of suitable organic carbon sources in these generally oligotrophic environments. Here, we used incubation columns (IC) as model systems to investigate the effect of glycerol amendment on the microbial community composition and its effect on the geochemistry of sediment and waters in AMD environments. The ICs were built with natural water and sediments from four distinct AMD-affected sites with different nutrient regimes: the oligotrophic Filon Centro and Guadiana acidic pit lakes, the Tintillo river (Huelva, Spain) and the eutrophic Brunita pit lake (Murcia, Spain). Physicochemical parameters were monitored during 18 months, and the microbial community composition was determined at the end of incubation through 16S rRNA gene amplicon sequencing. SEM-EDX analysis of sediments and suspended particulate matter was performed to investigate the microbially-induced mineral (neo)formation. Glycerol amendment strongly triggered biosulfidogenesis in all ICs, with pH increase and metal sulfide formation, but the effect was much more pronounced in the ICs from oligotrophic systems. Analysis of the microbial community composition at the end of the incubations showed that the SRB Desulfosporosinus was among the dominant taxa observed in all sulfidogenic columns, whereas the SRB Desulfurispora, Desulfovibrio and Acididesulfobacillus appeared to be more site-specific. Formation of Fe3+ and Al3+ (oxy)hydroxysulfates was observed during the initial phase of incubation together with increasing pH while formation of metal sulfides (predominantly, Zn, Fe and Cu sulfides) was observed after 1-5 months of incubation. Chemical analysis of the aqueous phase at the end of incubation showed almost complete removal of dissolved metals (Cu, Zn, Cd) in the amended ICs, while Fe and SO4 (2-) increased towards the water-sediment interface, likely as a result of the reductive dissolution of Fe(III) minerals enhanced by Fe-reducing bacteria. The combined geochemical and microbiological analyses further establish the link between biosulfidogenesis and natural attenuation through metal sulfide formation and proton consumption.es_ES
dc.description.sponsorshipThis research was funded by the Spanish Ministry of Science and Innovation through grant number CGL 2016-74984-R and by the research program STW under project number 14797 and a Gravitation grant (SIAM 024.002.002) financed by the Dutch Research Council (NWO). Additionally, it was funded by Basque Government grant (Consolidated Group IT1678-22). We greatly appreciate a special grant "Centros de Excelencia Severo Ochoa" given by IGME-CSIC, with which we could cover the article processing charge of this mansucript.es_ES
dc.language.isoenges_ES
dc.publisherFrontiers Mediaes_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.subjectbiosulfidogenesises_ES
dc.subjectdesulfosporosinuses_ES
dc.subjectsulfate-reducing bacteriaes_ES
dc.subjectmetal sulfide neoformationes_ES
dc.subjectacid mine drainage (AMD)es_ES
dc.subjectmine tailingses_ES
dc.subjectincubation columnes_ES
dc.subjectbioremediationes_ES
dc.titleGlycerol amendment enhances biosulfidogenesis in acid mine drainage-affected areas: An incubation column experimentes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.holder© 2022 Ilin, van der Graaf, Yusta, Sorrentino, Sánchez-Andrea and Sánchez-España. This is an open- access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.es_ES
dc.rights.holderAtribución 3.0 España*
dc.relation.publisherversionhttps://www.frontiersin.org/articles/10.3389/fbioe.2022.978728/fulles_ES
dc.identifier.doi10.3389/fbioe.2022.978728
dc.departamentoesGeologíaes_ES
dc.departamentoeuGeologiaes_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

© 2022 Ilin, van der Graaf, Yusta,
Sorrentino, Sánchez-Andrea and
Sánchez-España. This is an open-
access article distributed under the
terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permitted which does
not comply with these terms.
Except where otherwise noted, this item's license is described as © 2022 Ilin, van der Graaf, Yusta, Sorrentino, Sánchez-Andrea and Sánchez-España. This is an open- access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.