UPV-EHU ADDI
  • Back
    • English
    • español
    • Basque
  • Login
  • English 
    • English
    • español
    • Basque
  • FAQ
View Item 
  •   ADDI
  • INVESTIGACIÓN
  • Artículos, Comunicaciones, Libros
  • Comunicaciones
  • View Item
  •   ADDI
  • INVESTIGACIÓN
  • Artículos, Comunicaciones, Libros
  • Comunicaciones
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

SPIN at MentalRiskES 2023: Transformer-Based Model for Real-Life Depression Detection in Messaging Apps

Thumbnail
View/Open
MentalRiskES.pdf (833.9Kb)
Date
2023
Author
Zubiaga Amar, Irune
Justo Blanco, Raquel ORCID
Metadata
Show full item record
  Estadisticas en RECOLECTA
(LA Referencia)

Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2023) co-located with the Conference of the Spanish Society for Natural Language Processing (SEPLN 2023) Jaén, Spain, September 26, 2023 / CEUR Workshop Proceedings 3496 : (2023)
URI
http://hdl.handle.net/10810/63013
Abstract
Depression is a prevalent and severe mental health condition that significantly impacts global population, causing personal suffering and reduced quality of life. Its symptoms are often visible on social media and digital platforms, making them valuable for detecting depression. This paper represents our submission for the MentalRiskEs task at IberLEF 2023. We present a novel hierarchical model for real-time chat applications, using natural language processing techniques to identify individuals at risk. Our approach combines similarity-based stance representation with a sentence-level transformer encoder block, reducing manual effort and time required for feature selection. Our focus includes binary classification of depressed and non-depressed users, as well as multi-class classification based on the user’s coping mechanisms.
Collections
  • Comunicaciones

DSpace 6.4 software copyright © -2023  DuraSpace
OpenAIRE
EHU Bilbioteka
 

 

Browse

All of ADDICommunities & CollectionsBy Issue DateAuthorsTitlesDepartamentos (cas.)Departamentos (eus.)SubjectsThis CollectionBy Issue DateAuthorsTitlesDepartamentos (cas.)Departamentos (eus.)Subjects

My Account

Login

Statistics

View Usage Statistics

DSpace 6.4 software copyright © -2023  DuraSpace
OpenAIRE
EHU Bilbioteka