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Scalable video coding allows an efficient provision of video services at different quality levels with different energy demands.
According to the specific type of service and network scenario, end users and/or operators may decide to choose among different
energy versus quality combinations. In order to deal with the resulting trade-off, in this paper we analyze the number of video
layers that are worth to be received taking into account the energy constraints. A single-objective optimization is proposed based
on dynamically selecting the number of layers, which is able to minimize the energy consumption with the constraint of a minimal
quality threshold to be reached. However, this approach cannot reflect the fact that the same increment of energy consumption
may result in different increments of visual quality.Thus, a multiobjective optimization is proposed and a utility function is defined
in order to weight the energy consumption and the visual quality criteria. Finally, since the optimization solving mechanism is
computationally expensive to be implemented in mobile devices, a heuristic algorithm is proposed. This way, significant energy
consumption reduction will be achieved while keeping reasonable quality levels.

1. Introduction

The evolution of multimedia encoding techniques allows effi-
ciently provisioning video services at different quality levels.
However, resulting streams lead also to different energy con-
sumptions making it difficult to simultaneously satisfy both
energy consumption and quality requirements. Therefore,
an energy versus quality compromise solution is commonly
required. In commercial cellular networks, users are used to
dealingwith these trade-offs eithermanually or automatically
(i.e., using small widgets to reduce display brightness, disable
radio interfaces, etc.) and normally maintaining the same
play-out quality. However, reduced energy consumption
becomes a truly severe constraint in specific communication
scenarios such as mobile emergency networks or distributed
sensors. Additionally, any solution will also depend on the
characteristics of the video players although higher resolution
video could improve visual quality for high-end mobile
devices, for others no visible quality improvement is achieved
due to available screen resolution, codecs, or CPU power.
So, additional energy consumption, higher data bandwidth,
and spectrum use would have no real impact on users
satisfaction. Energy- and visual quality-aware video dynamic

transmission schemes would allow network operators and
users to avoid such waste of resources.

In order to cope with the heterogeneity of mobile devices
and user requirements for efficient mobile video delivery, a
multilayer scheme is broadly considered as the best solution.
In this paradigm, each video is encoded into a single stream
with multiple layers, where each layer is only transmitted
once. Scalable Video Coding (SVC) standard, an extension
for H.264/AVC standard, makes this multilayering possi-
ble, becoming the most promising encoding technology
for solving the problem of multiuser video streaming in
most mobile environments (see [1, 2]). This mechanism for
content delivery provides quality differentiation, so that the
same content is sent simultaneously in different qualities
without replicating the original information. This way, users
that demand lower energy consumption can maintain the
reproduction but accepting lower quality level.

For example, [3–5] have proposed broadcasting schemes
that would allow mobile devices to receive and decode the
most suitable number of layers, maintaining the perceived
video quality proportional to the consumed energy in aDVB-
H scenario. Under typical system parameters of mobile TV
networks, the proposed schemes allow mobile devices to
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achieve energy savings between 60% and 95% depending
on how many layers they receive. In [5], not only does
the proposed scheme enable each device to achieve energy
saving proportional to perceived quality but also low channel
switching delays are guaranteed, which is also important to
user experience.

However, in these works the expected visual quality
level as perceived by the user is not quantified, which is
fundamental to find a relation between energy consumption
and user Quality of Experience (QoE).

In [6], authors follow a similar approach but in a
802.11e environment by using sleep cycles of wireless adapter
for energy saving. In this case, a simple QoE estimation
algorithm is used to trigger specific power save protocol
operations. However, they only modify the behaviour of the
receiver with a single version of the content. Furthermore, no
analysis of the optimality of their approach is included.

Such kind of optimization in 802.11 is carried out in [7],
including both linear programming techniques and heuris-
tics. Unfortunately, only energy is considered as optimization
criteria and no effect into quality is analyzed.

Finally, [8] proposes a method for statically selecting the
best number of layers for the whole duration of a video
with energy constraints. However, no compromise solution
is provided and DVB-H scenarios only are considered.

In order to cover these lacks, in this paper we analyze the
optimal strategy to be applied if we can modify dynamically
the number of layers during the video reproduction con-
sidering energy and quality constraints. Therefore, the main
contributions of the paper are as follows. (1) We analyze the
energy versus QoE trade-offs considering either energy or
quality as constraints. (2) We formulate the aforementioned
scenarios in terms of single-objective linear programming
(SOLP) problems and analyze the optimal sets in both the
input and the objective space. (3)We study themultiobjective
problem therefore allowing deployers to fine tune the relative
weights of green consciousness and quality criteria. (4) We
propose lightweight heuristics for energy- and QoE-aware
optimization that ensure a feasible implementation on the
end user while providing near-optimal solutions.

Therefore, the rest of this paper is structured as follows.
In Section 2, we analyze the dual energy minimizing and
QoE maximizing problem while alternating the number of
reproduced layers during a video session. Section 3 considers
users that have both energy and QoE related criteria, and
Section 4 summarizes achieved results.

2. Energy/QoE Single Optimization

In this section, we will express the Energy versus QoE trade-
off in terms of a typical optimization problem with different
objectives and constraints, analyze the optimal strategy, and
compare it with the traditional ones.

Traditional QoE-aware energy-constrained video repro-
duction strategies select the maximum number of layers that
the available battery [8] and/or CPU load [9] would allow for
the full video playout in an static way, so that the decision is
taken just once. We will generalize and refer to this kind of
strategies as basic strategy.

Considering (1) that each additional layer provides dif-
ferent QoE level (see, e.g., [10, 11]) and energy consumption
and (2) that SVC players [12] support switching from a layer
to another, we will instead propose a dynamic method for
triggering layer switching considering energy constraints.

We will therefore focus on selecting the best set of
different time periods 𝑡

𝑖
so that during 𝑡

𝑖
(𝑠)𝑖 layers will be

reproduced.
For simplicity purposes, we will consider 4 layers to

illustrate the method. For a video of duration 𝑇(𝑠) it is clear
then that 𝑡

1
+ 𝑡
2
+ 𝑡
3
+ 𝑡
4

= 𝑇. In our optimization problem
t = [𝑡
1

𝑡
2

𝑡
3

𝑡
4
] will be the input variables.

In order to define our optimization problem completely,
we will consider that the average of the satisfaction over the
whole video reproduction Q̂oE is a good estimator of video
quality. Then, we have an optimization problem consisting of
the following.

(A2.1) Minimizing energy consumption for a given video
and certain minimum acceptable visual quality.

(A2.2) Maximizing user QoE for a given video and certain
maximum energy constraint.

Any single-objective optimization problem (SOP) [13]
like (A2.1) and (A2.2) aims at choosing the “best” possible
combination of input parameters in order to optimize the one
considered criterion.

Let x ∈ R𝑀 be a vector of 𝑀 input variables of the
optimization problem.

The SOP can be stated as follows:

max {𝑓 (x) = 𝑧}

s.t. x ∈ 𝑆, 𝑧 ∈ R,

(1)

where 𝑆 is the set of feasible points in the input space
delimited by 𝑖 inequalities and 𝑗 equalities such as

x ∈ 𝑆 ⇐⇒ {

𝑔 (x) ≤ b, (𝑏
1
, 𝑏
2
, . . . , 𝑏

𝑖
)

ℎ (x) = c, (𝑐
1
, 𝑐
2
, . . . , 𝑐

𝑗
) .

(2)

Thus, the SOP could be summarized as “finding the set of
input variables xopt belonging to 𝑆 region so that 𝑓(xopt) =

𝑧opt is max,” where 𝑆 is constrained by inequalities 𝑔(x) ≤ b
and equalities ℎ(x) = c.

If both 𝑓(x) is linear and 𝑆 is defined by linear conditions
(therefore both 𝑔(x) and ℎ(x) are linear functions as well),
then the SOP is called single objective linear programming
problem (SOLP) [14].

The basic metric that we will use for estimating the
whole user satisfaction regarding video quality will be the
average value of the Mean Opinion Score (MOS) according
to the number of layers reproduced along each time period.
Therefore,

Q̂oE =
1

𝑇

4

∑

𝑖=1

∫

𝑡𝑖

MOS
𝑖 (𝑡) ⋅ 𝑑𝑡, (3)

where MOS
𝑖
(𝑡) is the evolution of the QoE measured in the

MOS scale along the 𝑖th period.
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If the visual quality is considered roughly constant for
a certain bitrate or number of layers and we denote 1 ≤

MOS
𝑖

≤ 5 as the MOS estimated for a certain number of
layers according to subjective tests, then MOS

𝑖
(𝑡) ≈ MOS

𝑖

for the whole period. Therefore,

Q = [𝑄
1

𝑄
2

𝑄
3

𝑄
4
] , 𝑄

𝑖
=
MOS
𝑖

𝑇

(4)

are the normalized quality coefficients, and (3) can be
expressed as follows:

Q̂oE = Q ⋅ t⊺. (5)

Similarly, according to [8, 15], the battery consumption
in mobile video players shows some kind of dependence on
the number of layers received. Therefore, the total energy
consumption will depend on the number of layers that will
be received so that total consumption 𝑃 along the whole
reproduction time can be expressed as follows:

𝑃 = B ⋅ t⊺, (6)

where B = [𝐵
1

𝐵
2

𝐵
3

𝐵
4
] is the vector of normalized

coefficients of battery consumption.
Thisway, problem (1) can be expressed as a SOLPproblem

for both (A2.1) and (A2.2).

2.1. Minimizing Energy Consumption Assuring a QoE Thresh-
old (A2.1). In this case, the objective function to be min-
imized is the energy consumption so that 𝑓(x) = 𝑃.
Minimum energy consumption will be constrained by the
QoE threshold, the user will stand (𝐸) in terms of Q̂oE ≥ 𝐸.
This constraint will lead to the associated inequality in (7).
Similarly, the sum of the time period for all the layer numbers
must be the total duration of the video𝑇 leading to an equality
constraint expressed with the identity vector i = [1 1 1 1].
Consider the following:

max {−B ⋅ t⊺}

s.t. [
[I]
Q] ⋅ t⊺ ≥ [

[0]
𝐸

]

i ⋅ t⊺ = 𝑇,

(7)

where the natural condition 𝑡
𝑖
≥ 0 for all 𝑖 is included in the

matrix notation in (7) using the identity 4 × 4 matrix [I].
Then, the SOLP problem in (7) can be solved by typical

well-known optimization problem resolution mechanisms
such as the simplex method [16]. Therefore, we can eas-
ily calculate the solution of the SOLP for a wide range
of constraints and Q parameters. In fact, considering the
proposed transmission scheme in [8], we have carried out
the optimization for the parameters collected in Table 1 and
obtained Figures 1 and 2. Note that the normalized available
battery is measured in seconds to avoid specific details about
battery characteristics (like voltage and capacity in mAh).

Formobile videos with different motion levels or Content
Types (CTs) (referred to as Low Motion (LM), Medium
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Figure 1: Comparison between basic strategy and energy optimiza-
tion.
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Figure 2: Static versus dynamic energy optimization for different
CTs and SRs.

Motion (MM), and High Motion (HM)) and Spatial Res-
olutions (SRs) we have calculated the QoE-optimal layer
selection strategy with the energy constraint. Note that,
although we have considered a specific scenario in our study,
the method can be applied to any multilayer broadcasting
technology just by considering related Q and MOS

𝑖
coeffi-

cients.
In order to calculate realistic QoE constraints, we must

consider𝐸min and𝐸max: theminimumandmaximumachiev-
able Q̂oE considering 𝑡

1
= 𝑇 and 𝑡

4
= 𝑇, respectively

(i.e., receiving only 1 layer—worst quality—or 4 layers—best
quality—during the whole video length). According to the
metric used 𝐸min = MOS

1
and 𝐸max = MOS

4
. Finally, since
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Table 1: Values for coefficients for battery minimizing SOLP ob-
tained from [8].

Concept Value
Video length
𝑇 (s)

7200

QoE
threshold 𝐸

𝐸min ≤ 𝐸 ≤ 𝐸max

Available
battery (s)

1000

Content
Type

SR Values per layer

MOS
𝑖

LM QVGA [3.20 3.99 4.45 4.78]

MM QVGA [2.36 3.57 4.27 4.77]

HM QVGA [1.45 3.03 3.95 4.60]

LM QCIF [3.71 3.82 3.89 3.93]

MM QCIF [3.08 3.50 3.74 3.92]

HM QCIF [2.29 3.07 3.52 3.85]

𝐾 ⋅ [2 3 4 5] where the constant 𝐾

B depends on the transmission scheme only
regardless of the CT and resulting spatial resolution

the additional constraint of the total energy consumption
must be less than the available battery (if a handheld device)
or the energy budget, not all points will be feasible.

In Figure 1, the objective space (namely, minimum bat-
tery consumption versus QoE threshold) and the finite
decision points associated to the traditional selection of a
fixed number of layers for the whole video are shown for a
certain CT/SR combination. Considered remaining battery
constraint results in a Feasible Point (FP) that represents the
maximum achievable QoE level. Both this FP and discrete
no. L points are shown (the points related to reproducing a
certain number of layers during the whole play-out time, 𝑇).

We can see how, by changing the number of layers
reproduced along the video duration, we can optimize the
energy consumption with finer grain QoE constraints. This
way, for MOS

1
≤ Q̂oE < MOS

2
traditional static strategies

would result in selecting 2 layers (2L) for the whole duration
of the video and consuming associated energy. Our dynamic
approach would instead allow the selection of different
(energy, QoE) points. On the other hand, if we compare in
detail both approaches for this concrete CT and SR (LM
and QVGA), obtained optimum strategy does not match the
simplest one in 2L point. This clearly reflects the energy
saving achieved as for the sameMOS less energy is consumed.

Additional results are depicted in Figure 2 for every com-
bination of video types and encoding resolutions considered.
Examining in detail the figure we can see how optimization
strategy does not match the traditional static approaches
(fixed no. L points). Furthermore, vertical lines show the
result of ensuring certain QoE levels for different CTs. For
example, for selected Q̂oE thresholds, the QCIF versions are
better in terms of energy consumption for HM and MM
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Figure 3: Comparison between basic strategy and QoE optimiza-
tion.

videos, while QVGA is better for the threshold considered in
the LM case.

2.2. Maximizing User QoE Constrained by Maximum Energy
Consumption (A2.2). For (A2.2), in an analogous way to
Section 2.1, the objective function to be maximized is the
MOS so that 𝑓 = Q̂oE. Maximum achievable QoE will
be constrained by the maximum battery consumption 𝐶.
This constraint will lead to the associated inequality in the
following:

max {Q ⋅ t⊺}

s.t. [
[I]
−B

] ⋅ t⊺ ≥ [
[0]
−𝐶

]

I ⋅ t⊺ = 𝑇.

(8)

Figure 3 depicts the evolution in the objective space of
the proposed optimal strategy in comparison with the basic
one considering #L points only. Once more, we can see how
the proposed scheme allows us to set a continuous range of
energy constraints resulting in different values of Q̂oE. In
this case, an available energy budget in the [𝐸

1
, 𝐸
2
) range

would collapse into the same 1L point, therefore allowing only
minimum Q̂oE.

When we compare the obtained results for different
CT/SR combinations (in Figure 4), we can see, again, how the
QoE maximizing quality selection mechanism would choose
QCIF (for the particular energy saving constraints marked
with a vertical line in the figure) for LMandMMvideos, while
QVGA for the HM one.

2.3. Comparison between SOLP Approaches. In Sections 2.1
and 2.2, we have used the simplex optimization method for
SOLPs in order to optimize either energy for a given QoE
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Figure 4: Static versus dynamic QoE optimization for different CTs
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threshold orQoE for a givenmaximumbattery consumption.
Due to the nature of the linear optimization problem, if
we compare both optimization approaches, we can see in
Figure 6 that both lead to the same shape in the objective
space.This conclusion is consistentwith the nature of the dual
problem itself, since energy and QoE are opposite objectives,
and the constraint in one problem becomes the objective
function in the other.

Since carrying out the simplex method for the opti-
mization of every video reproduction would be inviable for
handheld devices due to the high CPU power needed, we
focus on developing heuristics capable of providing near-
optimal solutions. This way, both video operators and end
users themselves would be able to reduce their energy
consumption while maintaining QoE levels. In order to do
so, we have analyzed more deeply the shape of the optimal
set (namely, Pareto front in the objective space) for three
different situations and compared it with the #L points. We
can see (Figure 5) how the optimal strategy for energy versus
QoE, depending on MOS

𝑖
and B evolution:

(1) follows exactly the line between 1L and 4L (including
2L and 3L), constrained by the FP;

(2) follows the polygon (the 2D polytope in the objective
space) 1L-2L-3L-4L constrained by the FP;

(3) follows the 1L and 4L but without going through 2L
and 3L points.

We conclude that, regardless of the specific parameters of
the SOLP problem to be solved, the optimal strategy always
includes 1L and 4L points (or associated FP point if 4L is
not feasible due to the battery constraint). This result is quite
evident since reproducing just 1 or all the 4 layers gives the
minimum and maximum QoE and battery. However, both
2L ([0 𝑇 0 0]) and 3L ([0 0 𝑇 0]) points are not always
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Figure 5: Pareto fronts for 3 different MOS
𝑖
and B.

optimal points (i.e., they do not belong to the Pareto front).
As a result, the simple strategy of following the 1L-2L-3L-4L
path must be carefully reviewed.

Therefore, in order to propose an optimization strategy,
we must evaluate the evolution of the Pareto front in both the
objective and the input space for every possible situation (1,
2, and 3).

In Figures 6 and 7, we can see such evolution for the
objective and input space in the aforementioned Situations 1
and 2. Figure 6 confirms the superposition of both (A2.1) and
(A2.2) Pareto fronts in the objective space for both situations.
In Figure 7, we depict the 4D input space with the points
that belong to the Pareto front in both situations. In order
to do so, (𝑥, 𝑦, 𝑧) space coordinates correspond to 𝑡

1
, 𝑡
2
, and

𝑡
3
, respectively. The fourth dimension (𝑡

4
) is represented by

the area of the sphere in the (𝑡
1
, 𝑡
2
, 𝑡
3
) point. Finally, the

result of the objective function is represented by the color
of the sphere according to the colormap shown. (𝑇, 0, 0, 0),
(0, 𝑇, 0, 0), (0, 0, 𝑇, 0), and (0, 0, 0, 𝑇) points are also depicted
with spheres.

When comparing Situations 1 and 2 in the input space,
we can see how, for the former, the optimal path does not
follow any simple strategy. However, the latter follows a linear
path in a set of consecutive planes, which leads to easy-to-
implement heuristics.

After comparing the figures for MOS
𝑖
for every consid-

ered video CTs and SRs and the evolution of the energy
consumption versus the number of layers, we conclude that
all of them follow the Situation 2. In fact, if we analyze the
sufficient conditions leading to Situation 2 it is clear that, if
the function max MOS = 𝑓(min Energy) in the objective
space is convex, the resulting shape would belong to this
group. Most QoE studies aiming at mapping satisfaction
versus network performance parameters use logarithmic
expressions (see [17]), so that they are convex. In our case, due
to this convexity of theMOS expression and the proportional
𝐾 ⋅ (𝑖 + 1) dependency of the energy with t(𝑖) for all 𝑖, an
increment achieved by the simplex algorithm in terms of
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Figure 6: Situations 1 and 2 in the objective space.
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Figure 7: Situations 1 and 2 in the input space.

MOS = MOS + ΔMOS would be caused by a displacement
vector t = t + Δt leading to a (𝑃


,MOS) point above the

1L–4L line in the objective space. An equivalent conclusion
will be obtained if we calculate the gradient of bothMOS and
energy, or if we consider that many optimization methods
indeed provide the convex part of the Pareto front.

Therefore, in this case the associated optimization
heuristic is straightforward, regardless either optimization
approach 1 (minimize energy for a certain QoE) or 2 (maxi-
mize QoE for a certain energy budget) is applied. Algorithm 1
shows the complete optimization heuristic procedure. The
algorithm is based on the fact that the optimal polytope
will follow the 1L-2L-3L-4L path (constrained by the FP).
Additionally, we take into account that, due to the linear
constraints, the polytope will be formed by the intersection
of planes leading to lines in the different 2D planes formed by
the successive input parameters. So, since t = [𝑡

1
𝑡
2

𝑡
3

𝑡
4
]

is the 4D input space, the optimization heuristic will consider

the polytope delimited by 1L, 2L, 3L, and 4L/FP points and
planes [𝑡

1
𝑡
2

0 0], [0 𝑡
2

𝑡
3

0], and [0 0 𝑡
3

𝑡
4
]. Note

here that along the different figures in this paper, we have set a
maximum energy constraint leading to an FP between 3L and
4L for illustration purposes. In a real scenario, the FP could
be anywhere in the 1L–4L Pareto Front.

Regardless our aim is minimizing energy for a certain
QoE or maximizing QoE with a certain energy budget, we
will calculate the 2D plane where the target point in the
input space will be located at. Since both energy and QoE
are monotonically growing with t(𝑖) for all 𝑖 either the QoE
or the battery constraint will allow us to select the plane by
evaluating the BAT

𝑖
−BAT

𝑖+1
orQoE

𝑖
−QoE

𝑖+1
intervals where

𝑖 = 1 ⋅ ⋅ ⋅ FP. Later, the linear dependence will allow us to
express topt(𝑖) as a function of provided constraints (see lines
18–21 and 28–30).

In Figure 8, the results obtained with the heuristics for
both Situations 1 and 2 in the objective space are depicted.
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(1) 𝑇 ← Video Length {Initialize total time to play the whole video}
(2) B ← obtain 𝐵 from Transmission Scheme() {Obtain battery related coefficients}
(3)Q ← obtain 𝑄 from Subjective Tests (CT, SR) {Obtain QoE related coefficients}
(4) 𝐸max ← maximum Battery Consumption
(5) for 𝑖 = 1 → 4 do
(6) t

𝑖
← [0 0 0 0]

(7) t
𝑖
(𝑖) = 𝐿

(8) QoE
𝑖
← Q ⋅ t⊺

𝑖
{Obtain QoE for #L point}

(9) BAT
𝑖
← B ⋅ t⊺

𝑖
{Obtain Battery consumption for #L point}

(10) end for
(11) BATFP ← 𝐸max {Maximum battery sets the FP}
(12) QoEFP ← calculate FP(t1, t2, t3, t4,BATFP) {Obtain QoE for FP}
(13) If minimize Energy then {minimize energy for a given QoE constraint}
(14) 𝐸 ← minimum Acceptable QoE
(15) 𝑖 ← find Plane(𝐸,QoE

𝑖
,BAT

𝑖
,BATFP ,QoEFP)

(16) 𝑎 ←
BAT
𝑖+1

− BAT
𝑖

QoE
𝑖+1

− QoE
𝑖

(17) 𝑏 ←
BAT
𝑖+1

− BAT
𝑖
⋅ QoE

𝑖+1
/QoE

𝑖

1 − QoE
𝑖+1

/QoE
𝑖

(18) BATopt ← 𝑎 ⋅ 𝐸 + 𝑏

(19) topt ← [0 0 0 0]

(20) topt(𝑖) ←
𝐸 − 𝑇 ⋅ Q(𝑖 + 1)

Q(𝑖) − Q(𝑖 + 1)

(21) topt(𝑖 + 1) ← 𝑇 − topt(𝑖)
(22) else {maximize QoE for a given energy constraint}
(23) 𝐶 ← maximum Energy Consumption
(24) 𝑖 ← find Plane(𝐶,QoE

𝑖
,BAT

𝑖
,BATFP ,QoEFP)

(25) 𝑎 ←
BAT
𝑖+1

− BAT
𝑖

QoE
𝑖+1

− QoE
𝑖

(26) 𝑏 ←
BAT
𝑖+1

− BAT
𝑖
⋅ QoE

𝑖+1
/QoE

𝑖

1 − QoE
𝑖+1

/QoE
𝑖

(27) QoEopt ←
𝐶 − 𝑏

𝑎

(28) topt ← [0 0 0 0]

(29) topt(𝑖) ←
𝐶 − 𝑇 ⋅ B(𝑖 + 1)

B(𝑖) − B(𝑖 + 1)

(30) topt(𝑖 + 1) ← 𝑇 − topt(𝑖)
(31) end if

Algorithm 1: Heuristic for both SOLP optimization problems.

Note that, even for Situation 1 the heuristic provides values
very close to the Pareto set. The reason is that 2L, 3L
and the points in the 1L–4L path belong to the Pareto
front. At the same time, when approaching these points
from [𝑡

1
𝑡
2

−
𝑡
3

𝑡
4
] and [𝑡

1
𝑡
2

+
𝑡
3

𝑡
4
], there exist different

combinations of t(𝑖) that result in the equivalent point in the
objective space. Therefore, depending on the path followed
by the simplex algorithm and the stopping thresholds, the
simulation would provide different points in the input space,
but the heuristic is still capable of providing equivalent
optimal points in the objective space.

Figure 9 shows the effect of applying developed algorithm
for Situation 3. As already mentioned, although each case

should be evaluated in terms of MOS
𝑖
and B in order to

estimate associated situation, the convex shape of the MOS
functionmakes this situation highly improbable. Anyway, the
equivalent heuristic is again quite simple, since the Pareto
front follows the 1L–4L path.

3. Hybrid Approach: Optimizing Energy
Consumption and QoE

In the previous section, we have focused on analysing the
problem of optimizing one single objective (i.e., either energy
or QoE) in our mobile video scenario. Therefore, we have
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Figure 8: Situations 1 and 2 in the objective space including heuristics.
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Figure 9: Situation 3 in the objective and input space including original heuristics.

expressed both optimization problems in terms of SOP. The
considered Q̂oE metric allowed us to reduce such problems
to SOLP ones and describe them with the matrix notation in
(7) and (8).

However, real users do not usually consider a single cri-
terion while evaluating a product or a service [18]. Generally
speaking, most users will not care about energy consumption
or quality in an isolated way but will take into account both

criteria. On one hand, commercial users would probably
prefer assuring higher quality for playing movies. In other
scenarios, such as aforementioned emergency networks, they
would instead put the emphasis on preserving battery. How-
ever, minimum image quality levels should be also provided
to keep quality of information so that, for example, first
responders would be still capable of evaluating the risks of
an emergency. Therefore, the two original SOPs merge into
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Figure 10: Evolution of optimization strategies with 0.5 ≤ 𝑤 ≤ 1 in the objective space.

a more complex Multiple Objective Optimization Problem
(MOOP) including two objectives: minimizing energy con-
sumption (i.e., 𝑓

1
(t)) and maximizing QoE (i.e., 𝑓

2
(t)).

Then, the MOOP is an extension of the SOP, which can
be defined as follows:

max {𝑓
1 (x) = 𝑧

1
}

max {𝑓
2 (x) = 𝑧

2
}

...

max {𝑓
𝑘 (x) = 𝑧

𝑘
}

s.t. x ∈ 𝑆,

(9)

where 𝑓
𝑖
is the 𝑖th criterion function.

The simplest solution for the MOOP problem consists of
finding the input vector xopt so that

∃xopt ∈ 𝑆 | max {𝑓
𝑖
(xopt) = 𝑧

𝑖opt
} ∀𝑖 = 1, 2, . . . , 𝑘. (10)

In most of the cases, there will not exist such xopt which
maximizes all the criteria simultaneously. So, we will have
to redefine the nature of the problem by introducing the
concept of utility function, 𝑈. Then, the real formulation of
the MOOP can be expressed mathematically as follows:

max {𝑈 (𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑘
)} . (11)

Then, any MOOP requires the definition of a utility
function that collects users’ preferences regarding different
considered criteria as in (11). Many authors have considered
the linear composition of preferences with different weights
to express the articulation of preferences in communications
systems withmethods such as the Analytic Hierarchy Process
(AHP; see, e.g., [19]) to infer the weight of each criterion out
of user surveys. If we consider that our utility function follows
this linear approach:

𝑈 (x) = 𝑤
1
⋅ 𝑓
1 (x) + 𝑤

2
⋅ 𝑓
2 (x) , (12)

where, if we normalize 𝑓
1
and 𝑓

2
between the same value

ranges (i.e., 1 ≤ 𝑓
𝑖

≤ 5 as in the MOS scale), associated
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Figure 11: Evolution of optimization strategies with 0.5 ≤ 𝑤 ≤ 1 in the input space.

weights will follow 𝑤
1
+ 𝑤
2
= 1 so that we could express the

utility function in a linear way as in the following:

𝑈 (x) = 𝑤 ⋅ 𝑓
1 (x) + (1 − 𝑤) ⋅ 𝑓



2
(x) . (13)

Since both 𝑓
1
and 𝑓



2
(normalized 𝑓

2
) are related to

QoE and battery criteria, respectively, if we consider similar
expressions as those in (7) and (8) for the objective functions,
we could expand expression (13) as follows:

𝑈 (t) = 𝑤 ⋅

4

∑

𝑖=1

Q (𝑖) ⋅ t (𝑖) + (1 − 𝑤) ⋅

4

∑

𝑖=1

B (𝑖) ⋅ t (𝑖) , (14)

where B is the vector of normalized battery parameters so
that 1 ≤ 𝑓



2
≤ 5. Note that, contrary to Q, B coefficients

will decrease with 𝑖B(𝑖) > B(𝑖 + 1) for all 𝑖 since users
satisfaction regarding battery will decrease when the number
of layers and therefore the battery consumption grows. If we
manipulate this expression for the utility function, we can
express the complex MOOP into a simplified SOLP similar
to (7) and (8) as follows:

max {M ⋅ t⊺}

s.t. [
[

[

[I]
−B
Q

]
]

]

⋅ t⊺ ≥ [
[

[

[0]
−𝐶

𝐸

]
]

]

I ⋅ t⊺ = 𝑇,

(15)
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whereM(𝑖) = 𝑤 ⋅Q + (1 −𝑤) ⋅B. In order to calculate B, we
carry out a mapping between the actual battery consumption
and associated satisfaction, where B(1) will be associated
with the maximum satisfaction andB(4)with the lowest one
(maximum consumption).

Once M is calculated and maximum battery and min-
imum QoE are set, we can use simplex again in order to
optimize users’ satisfaction considering both battery and
QoE. Figure 10 depicts the evolution of the optimal strategy
in the objective space for different values of 𝑤, the relative
weight of both criteria. Both hybrid optimization (with
proposed utility function) together with maximizing QoE
only policy, static assignment and proposed heuristics are
shown. The different values for 𝑤 represent how important
is the “Green characteristic” of the device for the user and/or
video provider when compared with video quality (with 𝑤 =

1 completely important and 𝑤 = 0 not important at all).
We have computed only the range 0.5 ≤ 𝑤 ≤ 1, since

the same figures were obtained for lower values of 𝑤. We
can see how, for all 𝑤 < 0.7, the optimal shape is restricted
to a single point (corresponding to 1L). The reason is that,
considering the low importance of QoE, the optimization
algorithm considers that it is always more convenient to
restrict the energy consumption rather than receive more
layers and obtain better video quality. The higher the 𝑤

value, the closer the Pareto fronts gets to our original single-
objective optimization.

In Figure 11, we carry out the equivalent analysis in the
input space. Once again, the Pareto front for considered Q
and B leads to a simplified optimization strategy for t. In
this case, however, the evolution is from plane [𝑡

1
0 𝑡
3

0]

to plane [0 0 𝑡
3

𝑡
4
].

In order to get the exact topt point for every 𝐸 and 𝐶

constraint pair, we carry out the same equations as in lines
18–21 and 28–30 of Algorithm 1.

Therefore, in order to solve the MOLP problem, we could
use any LP optimization technique (i.e., simplex or Interior
PointsMethod) or analyze the problem in a case per case basis
in order to infer whether a simple per-plane heuristic could
be applied. In any case, the complexity of the solution is low.
For example, although simplex’s complexity analysis is rather
a problem dependent leading even to worst-case exponential,
due to the small size of the input matrix, results are obtained
in less than 20 iterations, and empirical tests have led to less
than 30ms of CPU consumption.

4. Conclusions

In this paper, we analyze the trade-off between energy
consumption and visual quality for mobile video systems.

Different optimization approaches have been evaluated.
The simplest static strategy comprises receiving the highest
number of video layers while coping with the video duration
requirements. Thus, taking as inputs the video length and
the amount of remaining battery, we always select the best
possible visual quality.Themain drawback of this approach is
that all the battery is available to be used in the video playout.

In Section 2, we introduce a single-objective optimization
problem as a way to provide an automated decision making

process to the mobile device. Two approaches have been
defined and solved by linear programming: energy consump-
tion minimization constrained to a minimal QoE threshold,
and QoE maximization constrained to a maximum level
of battery consumption. Contrary to the previous case, the
decision maker may provide a noninteger number of layers,
providing a finer grain resolution for quality optimization.
Yet although we are able to introduce additional energy
constraints to the automated decision making, the desired
remaining battery level must be a priori computed without
further information of the achievable QoE level.

Additionally, once the energy or quality constraints are
assured, the single-objective optimization will lead to the
feasible point of maximum quality or minimum energy
consumption. Therefore, this approach does not explore the
intermediate points as possible optimum solutions, where we
can make use of the different relations between increased
energy consumption and enhanced visual quality.

In order to overcome this drawback, we analyze in
Section 3 the problem from a multiobjective optimization
standpoint. Both energy and quality are considered as objec-
tive functions by means of a weighted utility function,
which allows us to solve the problem as a single-objective
linear programming problem. Different weights have been
evaluated, which entail different priority to energy saving
or required quality. These weights could be used to define
different user profiles, different device energy saving modes,
or dynamically adapted based on the status of the device
battery.

Since the implementation of the optimization algorithm
in a mobile handset may result on a resource-consuming
process, we propose the use of a heuristic algorithm. From
the analysis of the evolution of both the objective function
and input variable spaces, different alternatives are found
for the shape of the Pareto front. However, considering the
logarithmic shape of the evolution of most MOS-related
utility functions, a simple heuristic has been proposed. As a
result, the proposed algorithm can be run on a mobile device
as a decisionmaking process to trigger the switching between
layers.
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